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Threshold characteristics of multimode laser oscillators 
Lee W. Casperson 

School of Engineering and Applied Science, University of California. Los Angeles. California 90024 
(Received 3 March 1975) 

The oscillation characteristics of a multimode laser are considered in detail. and for the first time 
saturation by all of the cavity modes is included. Analytical expressions are obtained for the mode 
amplitudes, linewidths, and over·all spectral characteristics of lasers operating above and below threshold. 
It is found that with increasing excitation the spontaneous emission spectrum is gradually resolved into a 
set of narrow discrete modes. Slightly above threshold the number of modes reduces in a homogeneoulsy 
broadened laser until only a single mode is oscillating strongly. The theoretical results are in agreement 
with experimental data that have been reported using semiconductor lasers. With inhomogeneous 
broadening the spectral width goes through a minimum near threshold. 

PACS numbers: 42.60.J, 42.50. 

I. INTRODUCTION 

Most of the basic features of laser oscillation have 
been understood for many years. At low excitation lev­
els the output radiation is in the form of a continuous 
narrow-band emission spectrum characteristic of a 
Gaussian random-noise process. Above threshold the 
output is in the form of discrete directional amplitude­
stabilized modes. In ideal homogeneously broadened 
lasers, for example, it is well known that above thresh­
old single-mode operation is expected. The lowest-loss 
mode clamps the gain and prevents oscillation in any 
other mode. t Even in such an ideal system, however, 
many features of operation below threshold and in the 
threshold transition region have not been treated quan­
titatively. Experimentally, one finds a large number of 
longitudinal modes oscillating in the viCinity of thresh­
old. Only somewhat above threshold is the spectrum re­
duced to a single monochromatic mode. 2 

The purpose of this work is to develop a general an­
alytic theory for the output properties of laser oscil­
lators. Saturation due to all of the laser, modes is 
considered, and the results differ from previous single­
mode theories. Good agreement is obtained with experi­
mental data regarding laser output intensity and spectral 
structure. The analysis is particularly relevant for 
semiconductor lasers, where the relatively high levels 
of spontaneous emission can make the threshold transi­
tion indistincL For the same reason the results may be 
important for a detailed understanding of ultraviolet and 
potential x-ray laser systems. Traditionally, the onset 
of lasing is observed as an abrupt increase in output 
intensity. It is shown here, however, that laser sys­
tems can be contemplated in which output intensity mea­
surements as a function of excitation yield no informa­
tion about the threshold transition. 

In Sec. II a set of coupled rate equations for the mode 
intensities is reduced to a single transcendental equa­
tion. The total power output is discussed in Sec. III, 
and other spectral details are considered in Sec. IV. 
Expressions for the oscillation linewidth are derived in 
Sec. V, and inhomogeneous broadening is treated in 
Sec. VI. 

II. THEORY 

There are various ways that one can proceed in de­
veloping a model for laser oscillation. The details de-
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pend on the specifiC problem under consideration and 
the level of rigor that is required. Our objective here 
is to develop with minimum complexity a model which 
includes the basic saturation properties of the Fabry­
Perot cavity modes. 

If the oscillation linewidth is narrow compared to the 
homogeneous linewidth, the intenSity associated with a 
particular mode in a Fabry-Perot laser can be written3 

(1) 

where R, and Rr are, respectively, the reflection co­
efficients of the left and right mirrors, g is the gain co­
efficient, .6. v is the longitudinal mode spacing, and the 
integral represents one loop around the cavity. I J is the 
total intensity incident on the right-hand mirror and 10 

is the intensity of spontaneously emitted radiation which 
has made at most one loop through the cavity. Other 
cavity losses, if any, are assumed to be included in the 
mirror reflectivities. If the saturated gain is small and 
independent of position (uniform pumping, low-loss 
mirrors), Eq. (1) reduces to 

IJ = .6. vIol (1 - R,Rr - 2gl), 

where 1 is the length of the amplifying laser medium. 

For homogeneously broadened lasers, the noise in­
tensity per mode incident on the right-hand mirror is 

(2) 

10 = [hvN21 A(N2 - Nt) ][1 + R, exp(gl) ][exp(gl) - 1]. (3) 

Here N2 and Nt are the total population densities of the 
upper and lower laser levels, and A is the cross-sec­
tional area of the beam. For simplicity we assume that 
the lower-level population is negligible, and then Eq. 
(3) reduces to 

10 = (hvl A)[l + R, exp(gl) ][exp(gl) - 1]. (4) 

In this commonly occurring limit the result applies 
also to inhomogeneously broadened lasers, and the mode 
characteristics of these lasers are considered in Sec. 
VI. If the gain is small, Eq. (4) is 

Io=2hvglIA. (5) 

Combining Eqs. (2) and (5) we obtain the expression for 
mode intensity: 

I _ h //.6.// 2gZ 
J- A 1-R,Rr -2gZ' 

(6) 

The intensities of all of the laser modes could be de-
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termined from Eqo (6) if the gain g were known. With 
saturation, however, the gain is a function of the mode 
intensities, so the solution is not so easy. First an ex­
plicit expression for the intensity and frequency depen­
dence of g must be obtained. It has been shown that in 
a laser medium with nonnegligible Doppler broadening 
the intensity of radiation at the frequency IIJ is described 
by4 

where Y(II) =2(11- 1I0)/t:..llh is a normalized frequency, k 
is a pumping constant, s is a saturation parameter, and 
the natural damping ratio €= (t:..!1/ t:..IlD)(ln2)1/2 measures 
the relative importance of homogeneous and Doppler 
broadening. The homogeneous and Doppler linewidths 
are given respectively by t:..llh and t:..IlD' The derivation 
can be generalized in a straightforward fashion to the 
interaction with a large number of saturating modes, 
and the result is 

dIJ kIJL'" (2 2) -=- exp -€ Y 
dz rr _'" 

x [[1 + (y - YJ)2] (1 +.?;? 1 + ~I~ Yn)2)] -1 dy. (8) 

Since Eq. (8) describes the growth of intensity, it fol­
lows that the gain coefficient for the jth mode is 

Our initial interest here is in homogeneously broadened 
laser media. In the homogeneous limit E» 1 Eq. (9) re­
duces to 

g=gh ~1 + y~) (1 +~ 1 S:ny~)] -1, (10) 

where we have introduced the homogeneous line-center 
unsaturated gain coefficient gh = krr-1/2C 1. Equations (6) 
and (10) may be combined yielding 

I = hilt:.. II [0 -RIRr) (1 + 2) (1 + ~ sIn )_ 1]-1. (11) 
J A \ 2gh l YJ n 1 + y~ 

This can be regarded as a coupled set of equations 
governing the intensities of all of the laser modes. 
These equations must be solved simultaneously in order 
to obtain a meaningful description of the mode behavior 
near threshold. In previous analytical treatments it has 
been assumed that only a single cavity mode has gain. 
The single-mode apprOximation is usually not valid, and 
it cannot predict the important spectral changes which 
occur in the threshold transition regime. One purpose 
of the present work is to obtain exact solutions to Eq. 
(11). 

Multiplying both sides of Eq. (11) by s(l + y~)"l and 
summing over aU modes yields 

shllt:..11 ~ 1 1 
x=-A- J 1 + y, (1 +x)?·-f(l +y~) -1' 

where we have introduced the parameter r 

(12) 

= 2ghl(1- RIRr)"l, which is the ratio of the round-trip 
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gain to the round-trip cavity loss, and the intensity 
parameter 

x=~1+SIn2' (13) 
n Yn 

Equation (12) is now a single equation for the parameter 
x. Once x has been determined, all other properties of 
the laser output follow readily from Eq. (11). 

Using previous definitions, the frequency parameter 
Yj in Eq. (12) can be replaced by 2jt:..II/t:..llh yielding 

_shll~v 1 t 1 
x- A (l+x)r- t -l J.-'" 1 + (2jt:..II/t:..llh)2 

x (:1 + (1 + x)(2jt:..l1/ t:..lIh)2) -1 
l+x-r 

shllll.lI 1 tIl 
=-A- (1 + x)r- I - 1 }._", 1 + a2j2 1 + b2j2 (14) 

where the definition of a and b are obvious. The sum­
mation in Eq. (14) can be performed using the theorem 
from the calculus of residues5 

t fen) = - 6 residues of rrf(z)cot(rrz) at the poles of fez), 
n=_OO 

(15) 

and the result is 

'" 1 1 rra coth(lT/ a) - rrb coth(rr/b) 
J!?'" 1 + a2pl + b2p a2 

- b2 (16) 

where the relationships cot(iz) = - i cothz and cot(- iz) 
= i cothz have been used. With the basic definitions of 
a and b Eq. (14) now reduces to 

x rrshllt:.. vh{ f.. 1 + x ) 1/2 
2A \1 +x-r 

Xcoth[~~~e~:;r~ 11] -coth(~~~)}. (17) 

Equation (17) is a transcendental equation yielding the 
intenSity parameter x for an arbitrary homogeneously 
broadened Fabry-Perot laser. Numerical solutions can 
be readily obtained. For most practical lasers, how­
ever, the mode spacing is much less than the transition 
linewidth (t:..I1« t:..llh), and in this limit Eq. (17) reduces 
to 

[( 
l+x ~112 J x=xo 1 + -1 x-r 

where the spontaneous emission input to the laser is 
measured by the parameter 

xo = rrshv~II/2A. 

(18) 

(19) 

Equation (18) is a cubic equation in x which can be solved 
explicitly. 6 Alternatively, the solutions can be obtained 
by elementary iterations with a hand calculator. As in­
dicated previously, the parameter x can then be used 
in Eq. (11) to determine the basic features of the laser 
output. Of particular interest are the total intensity, the 
shape of the over-all output spectrum, and the oscilla­
tion linewidth. These topics are the subjects of the fol­
lowing sections. 

Two regimes of the solutions of Eq. (18) are of par­
ticular interest. These are when r is less than unity 
(below threshold) and when r is greater than unity 
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FIG. 1. Total multimode intensity xt in a homogeneously 
broadened laser as a function of the threshold parameter r for 
various values of xQ_ The experimental points are from Ref. 8 
(triangles) and Ref. 9 (circles). 

(above threshold). For the usual case of xo« 1 we find 
the two useful limits 

X= [(1- r)-1/2 -lho, r< 1 

=r-l, r> 1. 

These results will be employed in the following 
discussions. 

III. TOTAL MUlTIMODE INTENSITY 

(20) 

One of the fundamental measurable quantities in a 
laser oscillator is the total output intensity. Many ex­
periments and applications are sensitive to the intensity 
and it is important that this quantity be understood the­
oretically. Multiplying Eq. (11) by s and summing over 
all modes, we find that the total normalized intensity 
incident on a mirror is 

" SkllAII 1 ~ 1 
x t =~ sfj =--A- (1 + x)r- i _ 1 j':-:", 1 + b2l ' (21) 

where b is the same as defined previously. The sum can 
be performed by the residue method yielding 

skllAII 1 1T (7T\ 
Xt =-A- (1 + x)r-1 _ 1 b coth b) 

r(1 + x)-lxo th r7TAllh (1 + x - r) 1I2J ( 2) 
[1 - r(1 + x)-1Ji12 co L2AII 1 + x . 2 

If the mode spacing is much less than the transition 
linewidth, this reduces to 

_ r(1 +xt1xo 
Xt- [1- r(1 +xti J172' 

(23) 

Equation (22) is an explicit expression for the inten­
sity when the parameter x is known, and x is obtained 

5196 J. Appl. Phys., Vol. 46, No. 12, December 1975 

from Eq. (17). For most multimode lasers the approxi­
mate forms given in Eqs. (18) and (23) are valid_ These 
results are plotted in Fig. 1 for a wide range of values 
of Xo and r. Evidently for small values of xo, the inten­
sity increases abruptly by several orders of magnitude 
when the gain increases past threshold (r= 1). However, 
when Xo is large the transition region becomes poorly 
defined. With Xo = 1, for example, one finds x t = rand 
there is no transition at all. 

Numerous measurements have been reported of the 
output power of laser oscillators in the vicinity of 
threshold. Especially interesting for our work are the 
detailed experimental plots which have been obtained 
with semiconductor lasers. It is generally believed 
that the laSing transition in GaAs is primarily homo­
geneously broadened due to rapid thermalization of the 
electrons. 7 Two typical data sets involving electrically8 
and optically9 excited GaAs are reproduced in Fig. 1 
fitted roughly to the theoretical curves. Agreement is 
excellent from well below threShold and through the 
threshold region. The slight discrepancy above thresh­
old may be due to details of the measurement process, 10 

heating, changes in the waveguide properties, spatial 
hole burning, or other nonlinear effects. Basically 
though, the theory we have presented provides a useful 
description of the laser intenSity characteristics over 
the entire small-signal range, 

The data shown in Fig. 1 indicate that for those par­
ticular lasers the value of the parameter Xo is in the 
range of 10-3_10-4• The reasonableness of this value 
can be readily checked. In terms of the saturation power 
Ps=A/s, Eq. (19) is 

(24) 

Using typical values for GaAs lasers (A=8700 A, AAh 
=400 A) this gives xo=5. 69 X lO-6p;l, where Ps is mea­
sured in watts. If we take 10 mW as a reasonable satura­
tion power for oscillation in a single transverse mode, 11 

the result is Xo = 5.69 X 10-4, which is in the range of the 
experimental values. 

The results also have significant implications for 
lasers operating at shorter wavelengths. An important 
feature of Eq. (24) is that the parameter Xo is strongly 
wavelength dependent. Thus, shortening the wavelength 
by 10 times in the example given previously would in­
crease Xo by a factor of 103 and the threshold would be 
completely obscured. 

In most conventional lasers, however, the value of 
Xo is much less than unity. In YAG, for instance, with 
reasonable numbers (A = 1. 06 j.J., AAh = 4.5 A, P s = 1 W) 12 

Eq. (24) yields Xo = 3.5 X 10-8• For such small values of 
xo, it is useful to consider limiting expressions for the 
total intensity. From Eqs. (18) and (23) one obtains 

Xt=rxo/(I- r)lfZ, r< 1 

=r-l, r>1 (25) 

and recourse to the general equations is not required 
at aU. 

We have considered so far the intensity characteris­
tics of multimode lasers in which the mode spacing is 
much less than the over-aU linewidth Allh_ It is also 
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FIG. 2. Width of the Lorentzian mode-spectrum envelope Avs 
and the individual oscillation modes Avosc in a homogeneously 
broadened laser as a function of r for various values of xo. The 
experimental data are from Fig. 4 of Ref. 11 and correspond 
to currents of 740, 800, 820, 840, and 960 mAo 

useful to consider the opposite limit of single-mode os­
cillation. When the mode spacing is much greater than 
Avh , the coth functions in Eqs. (17) and (22) can be re­
placed by the reciprocals of their arguments yielding 

2xo Av r xor x t=-- (26) 
1T A vh 1 + X t - r 1 + x t - r . 

Thus the intensity for a single mode at line center is 
governed by a quadratic equation with the solution 

xt =t{(r-1) +[(r_l)2+4x~r]1/2}. (27) 

For the limits of operation below and above threshold 
this result reduces to 

xt =rx~/(l- r), r< 1 

=r-l, r> 1. (28) 

Similar expressions have been obtained in previous 
single-mode theories. 13,14 It should be noted that below 
threshold the single-mode results are distinctly differ­
ent in form from Eq. (25) and do not correctly describe 
the intensity behavior of a multimode laser. Also, the 
single- mode model gives no inSight regarding the over­
all spectral characteristics of the laser output. 

IV. OUTPUT SPECTRUM 

We have indicated how the total intensity in a homo­
geneously broadened laser oscillator can be calculated. 
Another important characteristic is the oscillator spec­
trum. Using previous definitions, Eq. (16) can be re­
written in the form 

hvAv 1 
Ii =-;;- (1 + x)r-1(1 + y~) _ 1 

h:AV 1 +: _ r [1 + (1 ~; ~ r) y~]_l (29) 

Thus it is apparent that the envelope of the oscillation 

5197 J. Appl. Phys., VoL 46, No. 12, December 1975 

mode intensities is always a Lorentzian function, 
whether the laser is above threshold or not. In real 
frequency units the full width of the spectrum at half 
maximum is 

AVs=Avh (1- 1 :xy/2. (30) 

The parameter x may be obtained as a solution of Eq. 
(17). If the mode spacing is much less than the transi­
tion linewidth (Av« Avh ), x is obtained from Eq. (18), 
and (30) reduces to 

Avs= AVh (:x :~o) . (31) 

For small values of xo, it is useful to consider two 
limiting regimes corresponding to operation below and 
above threshold. With Eq. (20) the results are 

AVs/Avh= (1- r)1/2, r< 1 

=xo/(r-l), r>1. (32) 

Thus the linewidth below threshold is a function only of 
the gain and loss, independent of the level of spontane­
ous emission input. 

In Fig. 2 are plots of the spectral width Av s from Eqs. 
(18) and (31) for various values of xo. Evidently Av s may 
decrease by several orders of magnitude as the gain in­
creases past threshold. This means that when r is only 
slightly greater than unity, oscillation is confined most­
ly to a single longitudinal mode. Precisely this behavior 
has been widely reported in mode studies with homo­
geneously broadened lasers. The experimental pOints 
in the figure are obtained by fitting Lorentzian envelopes 
to the mode spectra shown in Fig. 4 of Ref. 11. The 
data were obtained using a GaAs laser, and apparently 
the appropriate value of Xo is between 10-3 and 10-4• 

This value is in agreement with the GaAs intensity data 
described previously. 

r = 1.02 

r = 1 

,= 0.9 

III1I1II1 I I I 

II i "'111111111111111 II 
-1 -.5 .5 

FIG. 3. Longitudinal-mode amplitudes vs normalized frequency 
Ys = 2 (v - vJ/ Avs for various values of the threshold parameter 
r. In this example the spontaneous emission parameter is Xo 
= 10-3 and the mode spacing is foAvh' 
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Some specific theoretical longitudinal mode spectra 
are shown in Fig. 3. The mode amplitudes are plotted 
versus the normalized frequency Ys= 2(v - vo)/.o.vs for 
various values of the threshold parameter r. In this 
example the spontaneous emission parameter is Xo 
= 10-3

, the mode spacing is in .o.vh , and the normalization 
is such that the center mode amplitude is constant. 
Clearly shown is the rapid line narrowing that occurs 
near threshold, and the transition is still more abrupt 
for smaller values of xo. 

The theoretical expressions derived here are in good 
agreement with threshold spectral data obtained using 
semiconductor lasers. Far above threshold, however, 
a discrepancy begins to occur. The theory predicts con­
tinued narrowing (or continued single-mode operation), 
while in practice the spectral envelope ):>egins to re­
broaden. Typically, oscillation of additional modes 
begins to occur when the gain exceeds losses by a factor 
of about 2-4 (r = 2 to 4).7-9,11,15 Several possible ex­
planations have been proposed including inhomogeneity 
in the material, spatial hole burning, 7,11 or some addi­
tional nonlinearity. A detailed discussion of this problem 
has been given. 16 In practice high-power single-mode 
output would be best achieved by using laser amplifiers 
after an oscillator which is operating close to threShold. 

We have only considered oscillation in a single tran­
verse mode. The fundamental tranverse mode is usually 
desirable for practical applications, and most lasers 
are designed for this type of operation. In a few situa­
tions, however, oscillation in multiple transverse modes 
is either useful or unavoidable, and a more general the­
oretical model can be developed. It is necessary first 
to specify the kind of spatial overlap between the modes. 
We mention briefly the simplest limit of rapid spatial 
relaxation. In this liinit the transverse modes all com­
pete for the same population inversion and the mathe­
matics is relatively straightforward. 

With rapid spatial relaxation the principal difference 
between the various transverse modes involves the ca­
vity loss and hence the threshold parameter r. From 
Eq. (18) the x parameter corresponding to the first­
order transverse mode is governed by 

Xl =x{ (1 ~;t~=~ r
1
) 1/2 -1] , (33) 

where r1 is the loss for this mode, and x trans is a sum 
over all transverse modes according to 

(34) 

Summing Eq. (33) yields 

Xtrans=Xo2?[(l }X:r:t:,::~J1/2 -1] • (35) 

This is a single equation which can be solved for x tran" 

if the rn values of the various transverse modes are 
known. For stripe geometry lasers the mode-dependent 
losses can be calculated. 17 The intensity in any partic­
ular mode then follows from Eq. (11) using x -xtr_ and 
the value of r ,appropriate to the transverse mode order. 
The total intensity of the longitudinal modes in a trans­
verse mode set follows from Eq. (23), and the spectral 
width of a mode set is given by Eq. (30). 
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V. OSCILLATION l/NEWIDTH 

The purpose of this section is to derive expressions 
for the linewidth of the individual cavity modes. The 
starting point follows from a straightforward analysis 
of a Fabry-Perot interferometer containing an amplify­
ing medium. When the lines are narrow compared to 
the mode spacing, the line shape is approximately 
Lorentzian with a full width at half-maximum given by 

.o.v08C= .o.v[l- R~ /2R; /2 exp<.Hgdz)] 

x{1T[R~ /2R; /2 exp(fiigdz) ]1/2}-1 

= .o.vc[exp(pigdz) ]-1{1_ R} /2R~/2[exp(§igdz) - 1] 

x (1 _ R} /2R; /2)"1} , (36) 

where we have defined the empty-cavity linewidth by 

(37) 

If the saturated gain is small and independent of position 
and if the mirror losses are small, Eq. (36) reduces to 

( gl)_ ( 2gl) 
.o.v08C =.o.V C 1-1_R}72~7Z -.o.vo 1-1-R

I
R

r 
• 

(38) 

With Eq. (10) and the definition of r, this is 

.o.v08c =.o.Vc (l (l+xd~+yj»)' (39) 

Equation (39) is an explicit expression for the line­
width when the parameter x is known, and x is given by 
Eq. (18). Clearly, the narrowest modes are those near 
line center (yJ "" 0), which are also the most intense. 
The width of the line- center modes is 

.o.v08C = .o.vc (1- 1: ;) . 
This can be put in an alternative form using Eq. (18) 
and the result is 

(40) 

( 
Xo )2 .o.V08C =.o.VC x+x

o 
. (41) 

For small values of x ° it is again useful to consider the 
limits corresponding to operation below and above 
threshold. With Eq. (20) the results are 

.o.vosj.o.vc=l-r, r<l 

=[xo/(r-l)]2, r>1. (42) 

Equation (41) has the same form as Eq. (31) except that 
the factor in parentheses in Eq. (41) is squared. It fol­
lows that the oscillation linewidth of the central modes 
is proportional to the square of the over-all spectral 
width, independent of the level of pumping. In Fig. 2 
is a plot of the oscillation linewidth from Eqs. (18) and 
(41) for various values of xo. Like the spectral width, 
the oscillation linewidth decreases drastically above 
threshold. 

It is also conventional to express the linewidth of a 
mode in terms of the total power output from that mode. 
The output power of the jth mode is related to the inter­
nal intenSity I j by 

PJ = [(1- Rz) + (1- Rr)}AIJ" 2(1- R} /2R; 12)AlJ • (43) 
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FIG _ 4. Normalized mode intensity sl; In an inhomogeneously 
broadened laser as a function of r for various values of xo. The 
mode spacing is large compared to aVIl' 

Then with Eqs. (11) and (37) the output pOWer is 

(44) 

Using Eq. (39), this is 

(45) 

or 

(46) 

This is a new explicit relationship between the oscilla­
tion linewidth and output power, and it is valid for all 
levels of pumping. Far below threshold the output power 
is small and we have avo• c '" aVe. Above threshold Eq. 
t46) reduces to the well-known resulf8 

(47) 

VI. INHOMOGENEOUS BROADENING 

The discussion so far has been restricted to the limit 
of homogeneous broadening, avll » avD • Similar calcu­
lations can be performed When inhomogeneous broaden­
ing is dominant. In one limit the various modes inter­
act with different classes of atoms, and the Gaussian 
function can be removed from the integral in Eq. (9) 
yielding 

= k exp(- €2y~) 1" dz 
g 7f 1 + sl + ZZ • _.. ; 

This can be written 

g=g,(l +SI;)"l/Z, 
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(48) 

(49) 

where g, = k exp(- €2y~) is the inhomogeneous gain at the 
laser frequency. 

With Eqs. (6) and (49) it fOllows that the normalized 
intensity is governed by 

sI; = h~~V [ (1 ;g~:RT) (1 + SI;)1/2 _ 1] _1 

I 
Xo 

r-1(1 + sl;)172 _ 1 . (50) 

This is a cubic equation for the intensity, and the solu­
tions are plotted in Fig. 4 for various values of the pa­
rameter x~. When x~ is small, useful limiting forms of 
Eq. (50) are 

=~-1, r> 1. (51) 

As an example, reasonable values for a small 6328-A. 
helium-neon laser would be av = 7.5 X 108 Hz, P s = 10-4 

W yielding x~= 2. 4x 10-6• Thus from Fig. 4 the thresh­
old transition for a particular mode is again highly 
abrupt. 

The oscillation linewidth of a cavity mode can be found 
by combining Eqs. (38) and (49), and the result is 

(52) 

where the threshold parameter is defined by r 
= 2g,l(1- RIRr)-1. Equation (52) gives the linewidth ex­
plicitly after sl; is found from Eq. (50). The linewidth 
is plotted in Fig. 5 for various values of x~. When x~ 
is small, useful asymptotic formulas are 

avosjave=l-r, r<l 

=x~/(~-l), r>1. (53) 

It also follows from Eqs. (37), (43), and (50) that the 
total power output from the jth mode is 

P j = 21Thvave/(r-1(1 + Slj )1 /2 _ 1). (54) 

10-1 

10-2 

" ~ 
..a 

10-3 

10-4 

10-5 '--_--L_-'-....L...J...L..J....w...I.-...lo....J_~~...J......L..I~ 
.1 _2 .5 2 5 10 

FIG. 5. Oscillation Unewidth AVoac in an Inhomogeneously 
broadened laser as a function of r for various values of xo. 
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.1 .2 .5 2 5 10 

FIG. 6. Normalized multimode intensity 7rEXt in an inhomoge­
neously broadened laser as a function of r for various values 
of xo. The mode spacing is small compared to .6.vh' 

Therefore, with Eq. (52) the linewidth can be expressed 
in terms of the mode power according to 

.6.vosc= 21Thll(.6.11 c)2/(PJ + 21Thll.6.vc ), (55) 

which is the same as Eq. (46) governing the linewidth 
of a homogeneously broadened laser. 

The other limit of interest in an inhomogeneously 
broadened laser occurs when the modes are closely 
spaced compared to the homogeneous linewidth. Then 
the mode summation in Eq. (9) can be replaced by an 
integral, and the gain is 

g=!!.l" exp(- €2y2) ~Y (1 +1" sl(Yn) dYn 2)_1 . (56) 
1T_", l+(y-Yj) _ .. l+(Y-Yn) 

When the intensity distribution is uniform over a homo­
geneous linewidth, l(Yn) can be removed from the de­
nominator integral in (56) and the result Simplifies to 

With Eq. (6) the intensity distribution is 

This is a quadratic equation with the solution 

sl(y J) = ([r exp(- €2y~) _ 1] +([r exp(- €2y:) _ 1]2 

+ 4xor exp(- €2y2)}1 12)(21T)"\ 

(57) 

(58) 

(59) 

where Xo is given by Eq. (19). The parameter r is now 
the ratio of the line-center gain to the loss. The total 
intensity is obtained by integrating Eq. (59) over all 
frequencies. With the integration variable z = € dy, the 
final result can be written 
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1T€Xt = 10" ([r exp(- Z2) - 1] +{[r exp(- Z2) _ 1]2 

+ 4xor exp(- Z2W 12) dz. (60) 

Equation (60) is plotted in Fig. 6 for various values 
of x o. Evidently, the threshold characteristics are sim­
ilar to those shown in the previous figures. It also fol­
lows from Eq. (60) that for fixed values of rand Xo the 
total intensity is proportional to C 1

• For small values 
of Xo these results simplify somewhat in the regions 
above and below threshold. When r is greater than unity, 
the upper limit of integration is (lnr)l 12 and we obtain 

1T€Xt = 2xo J~'" dz[r-1 exp(z2) - 1]-1, r < 1 

= 1Tl 12r erf(lnr)l 12 _ 2{lnr)1 12, r> 1. (61) 

Equations (60) and (61) would apply, for example, in 
long 6328-A helium-neon lasers, when the mode spaCing 
becomes less than the homogeneous linewidth. Under 
typical operating conditions the collision-broadened 
homogeneous linewidth of a helium-neon laser is about 
150 MHz, so the corresponding cavity length is roughly 
L = c(2.6.vh)-1 = 1 m. The parameter x 0 can be found from 
Eq. (24). 

The spectral width can also be calculated. From Eq. 
(59) the intensity at line center is 

(62) 

In terms of this intensity one finds after some algebra 
that the full spectral width is given by 

( 
2r[1Ts1(0) +2xo] )1/2 -1/2 

.6.11 s = .6.vD In [1Ts1(0) J2 + 21Ts1(0) (ln2) . (63) 

This expression is plotted in Fig. 7. The spectral width 
goes through a sharp minimum near threshold and then 
rebroadens back to the Doppler width. For small values 
of Xo the limiting forms of Eq. (63) are 

.6.v s = .6.vD[ln(2 _ r)]l 12(ln2)"1 12, r<l 

= .6.VD{ln[2r/(r + 1) lP 12(ln2)-t/2 , r>1. (64) 

.8 

.6 

.4 

.2 

o ~_----L_~-'----L-J.J-~~-~----L-~~~~ 
.1 .2 .5 2 5 10 

FIG. 7. Width of the mode-spectrum envelope .6.vs in an in­
homogeneously broadened laser as a function of r for various 
values of xo. 
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We have treated here all of the important limiting 
regions of laser oscillation. The same general methods 
also apply in cases of mixed broadening or when sub­
stantial spectral variations occur on a scale comparable 
to t.vh , but then the analysiS becomes more involved. 
In any event the examples given here include the ma­
jority of practical laser oscillators. 

VII. CONCLUSION 

A rigorous understanding of the output characteristics 
of laser oscillators is essential for many practical ap­
plications. In this paper we have presented a new for­
malism which takes into account saturation by the cavity 
modes. Specific aspects of laser oscillation which have 
been considered in detail include the total multimode 
output power, the over-all spectral characteristics, and 
the linewidth of the individual cavity modes. The pre­
dicted behavior in the threshold region is different from 
that antiCipated using previous theories, and the analy­
tical expressions are in agreement with published ex­
perimental data. The results are of interest from a 
theoretical point of view, but in addition they should 
lead to an improved understanding of existing and pro­
posed laser systems, especially those haVing substantial 
spontaneous emission inputs. 
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