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Abstract. We study the convergence of general threshold dynamics type approx-

imation schemes to hypersurfaces moving with normal velocity depending on the normal

direction and the curvature tensor. We also present results about the asymptotic shape of

fronts propagating by threshold dynamics. Our results generalize and extend models

introduced in the theories of cellular automaton and motion by mean curvature.

Introduction.

In this paper we study the convergence of general threshold dynamics type ap-

proximation schemes to hypersurfaces moving with normal velocity depending on the

normal direction and the curvature tensor. These schemes are generalizations and

extensions of the threshold dynamics models introduced by Gravner and Gri¤eath

[GrGr] to study cellular automaton modeling of excitable media and by Bence,

Merriman and Osher [BMO] to study the mean curvature evolution.

Cellular automaton models are mathematical models used to understand the

transmission of periodic waves through environments such as a network or a tissue. A

common feature of many such models is that some threshold level of excitation must

occur in a neighborhood of a location to become excited and conduct a pulse. Typical

physical systems which exhibit such phenomenology are, among others, neural networks,

cardiac muscle, Belousov-Zhabotinsky oscillating chemical reaction, etc.

Interfaces (fronts, hypersurfaces) in R
N evolving with normal velocity

V ¼ vðDn; nÞ;ð0:1Þ

where n and Dn are the unit normal vector to the surface and its gradient respectively,

arise in geometry, in image processing, in the theory of turbulent flame propagation and

combustion, as well as in the study of the asymptotic behavior, as time t !y, of

general systems describing the evolution in time of some order parameter identifying the

di¤erent phases of a material or the total (averaged) magnetization of a stochastic

system, etc.

Typical examples of interface dynamics appearing in the aforementioned areas are,

among others, the anistropic motion with normal velocity
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V ¼ ÿtr½EðnÞDn� þ cðnÞ;

where E AS
N , SN being the space of N �N symmetric matrices, a special case of

which is the motion by mean curvature

V ¼ ÿtrDn ¼ k1 þ � � � þ kNÿ1;

where k1; . . . ; kNÿ1 are the principal curvatures of the surface, as well as the curvature-

independent motion

V ¼ cðnÞ:

The main mathematical characteristic of such evolutions is the development of

singularities in finite time, independently of the smoothness of the initial surface. A

great deal of work has been done during the last few years to interpret the evolution

past the singularities. A rather general approach to provide a weak formulation for the

motion past singularities, known as the level set approach, was introduced for numerical

computations by Osher and Sethian [OS]—see, also, Barles [B1] for a simple model on

flame propagation—and was developed rigorously by Evans and Spruck [ES] for mean

curvature and by Chen, Giga and Goto [CGG] for more general geometric evolutions

(see also Barles, Soner, Souganidis [BSS], Soner [Son], Ishii and Souganidis [IS] and

Goto [Go]). More recently, Barles and Souganidis [BS] introduced another equivalent

way to study the generalized evolution, which for definiteness we call the direct ap-

proach, which is more geometric and is more suitable to study asymptotic problems.

The outcome of all aforementioned work has been the development of a weak

notion of evolving fronts called generalized front propagation. The generalized front

propagation fG tgtV0, with given normal velocity starting from a surface G0 in R
N ,

is defined for all tV 0, although it may become extinct in finite time. Moreover, it

agrees with the classical di¤erential—geometric motion, as long as the latter exists. The

generalized motion may, on the other hand, develop singularities, change topological

types and exhibit various other pathologies.

In spite of these peculiarities, the generalized motion fG tgtV0 has been proven to

be the right way to extend the classical motion past the singularities. Some of the

most definitive results in this direction are about the fact that the generalized evolution

(0.1) governs the asymptotic behavior of the solution of semilinear reaction-di¤usion

equations and systems. The first result in this direction for the Allen-Cahn equation

was obtained by Evans, Soner and Souganidis [ESS] and later extended by Barles, Soner

and Souganidis [BSS]. See also Barles and Souganidis [BS1] for a number of new and

very striking examples.

Another recent striking application of the generalized front propagation is the fact

that it governs the macroscopic behavior, for large times and in the context of grain

coarsening, of a number of stochastic interacting particle systems like the stochastic Ising

model with long-range interactions and general spin flip dynamics (see Katsoulakis and

Souganidis [KS1, 2, 3] as well as [BS1] and [Sou1, 2]). Such systems are standard

Gibbsian models used in statistical mechanics to describe phase transitions. It turns out

that the generalized front propagation not only describes the limiting behavior of such

systems but also provides a theoretical justification, from the microscopic point of view,

of several phenomenological sharp interface models in phase transitions.
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Next we describe the results of this paper in the context of a very simple cellular

automaton, the so-called majority voter model, which is described in detail in Gri¤eath

[Gr]. The voter model is set on a lattice which represents a population with two

possible political choices. Each individual (each cell), from time to time, checks the

neighborhood and joins the majority depending on the number of neighbors already

belonging to it. This mechanism creates, of course, a moving front. The threshold

dynamics here di¤er from the one’s in [Gr] in the sense that the ‘‘occupied set’’ may

shrink.

To simplify the presentation we consider the whole space R
N instead of the lattice

Z
N . We then fix a threshold parameter y A ð0; 1Þ, and we choose a subset NHR

N

such that

N is an open bounded neighborhood of the origin with jNj ¼ 1;ð0:2Þ

where jAj denotes the N-dimensional Lebesgue measure of A, and we define the function

m : SNÿ1 ! R, SNÿ1 being the unit sphere in R
N , by

mðpÞ ¼ maxfl A R : jfz A R
N

: hp; ziU ÿ lgVNjV yg;ð0:3Þ

where h�; �i denotes the usual inner product in R
N .

For each h > 0, we define Mh : M ! M, M being the set of measurable subsets of

R
N , by

MhðAÞ ¼ fx A R
N

: jðxþ hNÞVAjV yhNg:ð0:4Þ

The meaning of this definition is that, if A is the occupied set at time t, the occupied set

MhðAÞ at time tþ h consists of those points for which the volume of the overlap

between xþ hN and A exceeds yjhNj.

Next for any tV 0 and h > 0 define the mapping C h
t : M ! M by

C h
t ¼ M

jÿ1
h if ð j ÿ 1ÞhU t < jh; with j A N ;ð0:5Þ

where M k
h denotes the k-times iterate of Mh and M 0

h is the identity. The two-parameter

family fC h
t g describes an approximation for the motion with normal velocity

V ¼ mðnÞ:ð0:6Þ

Indeed let W0HR
N be open and define

Wh
t ¼ C h

t ðW0Þ:

The following theorem is a special case of one of the main results of this paper.

Since being precise with its statement will only lead to a far less palatable and readable

introduction, here we choose to be a bit imprecise and we denote it in quotes.

‘‘Theorem A’’ Let fG tgtV0 be the generalized front propagation of G0 ¼ qW0 with

normal velocity given by (0.6). Then, as h ! 0,

qWh
t ! G t in the Hausdorff metric:

Next we introduce an approximation for curvature-dependent motions. To this end

assume that, in addition to (0.2),

N is symmetric with respect to the origin; i:e:;ÿN ¼ N;ð0:7Þ
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and define, for each p A SNÿ1, the matrix EðpÞ ¼ ðEklðpÞÞ A S
N and the scalar BðpÞ A R

by

EðpÞ ¼
ð

NVp?
zn zdHNÿ1ðzÞð0:8Þ

and

BðpÞ ¼ H
Nÿ1ðNV p?Þ:ð0:9Þ

Here and henceforth p? denotes the orthogonal complement of the vector p, i.e., p? ¼
fx A R

N
: hx; pi ¼ 0g and H

k denotes the k-dimensional Hausdor¤ measure.

Fix c A R and introduce, for h > 0, the map ~MMh : M ! M given by

~MMhðAÞ ¼ fx A R
N
: jðxþ

ffiffiffi

h
p

NÞVAjV yhh
N=2g;ð0:10Þ

where

yh ¼
1

2
ÿ c

ffiffiffi

h
p

;ð0:11Þ

and define, for each tV 0 and h > 0, the map ~CC h
t : M ! M by

~CC h
t ¼ ~MM

jÿ1
h if ð j ÿ 1ÞhU t < jh; with j A N ;

where the superscript k in ~MM k
h has the same meaning as in M k

h above. The two-

parameter family f ~CC h
t g describes an approximation for the motion with normal velocity

V ¼ ÿ 1

2
Bÿ1ðnÞ tr½EðnÞDn� þ cBÿ1ðnÞ:ð0:12Þ

Indeed let W0HR
N be open and define

W
h
t ¼ ~CC h

t ðW0Þ:
The following theorem is again a special case of one of the main results in the pa-

per. As in ‘‘Theorem A’’ we select to state it here in a somehow imprecise way.

‘‘Theorem B’’ Let fG tgtV0 be the generalized front propagation of G0 ¼ qW0 with

normal velocity given by (0.12). Then, as h ! 0,

qW
h
t ! G t in the Hausdorff metric:

An approximation of the type described by ‘‘Theorem B’’ for the special case of the

motion by mean curvature was introduced in [BMO], which considered the case where,

in the definition (0.10), c ¼ 0 and the Lebesgue measure of the overlap between A and

xþ
ffiffiffi

h
p

N is replaced by the average value of the characteristic function of A over the

Gaussian kernel centered at x. The result of [BMO] was rigorously justified by Evans

[E], Mascarenhas [M] and Barles and Georgelin [BG]. This was then extended by Ishii

[Is1] for more general radially symmetric kernels.

We continue presenting, in the same informal way, another result about the

asymptotic behavior, as t ! y, of fronts moving with normal velocity given by either

(0.6) or (0.12). To this end, given a continuous function n A CðSNÿ1; ð0;yÞÞ, we define

the Wul¤ crystal of n by

W ¼ fx A R
N
: hx; piU nðpÞ for all p A SNÿ1g:ð0:13Þ
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‘‘Theorem C’’ Let W0 be a ‘‘large’’ bounded open subset of RN . Let fG tgtV0 be

the generalized front propagation of qW0 governed by

V ¼ ÿtr½EðnÞDn� þ nðnÞ;ð0:14Þ

where E A CðSNÿ1
;S

NÞ satisfies EðnÞV 0. Then, as t ! y,

tÿ1
G t ! qW in the Hausdorff metric:

When E ¼ 0 on SNÿ1, a discrete version of ‘‘Theorem C’’ was proved in [GrGr] and

a continuous one by Soravia [Sor]. ‘‘Theorem C’’ is also related to a conjecture by

Angenent and Gurtin [AG], which was proved in [Son]. The result of [Son] says

that, given a uniformly convex Wul¤ crystal, there exists a particular class of E A

CðSNÿ1
;S

NÞ so that the claim of the ‘‘Theorem C’’ holds true. It is, of course, clear

from the statement of ‘‘Theorem C’’ above that such a restriction on the choice is not

necessary.

The paper is organized as follows: In Section 1 we recall some basic materials. In

particular in Subsection 1.1 we recall the definition of the generalized level-set front

propagation and summarize a number of facts which are relevant to our analysis. In

Subsection 1.2 we recall an abstract formulation, introduced by Barles and Souganidis

[BS2] to prove convergence of approximations to viscosity solutions of second order pde,

which will be used extensively throughout the paper. Section 2 is devoted to curvature-

independent motions, i.e., results like ‘‘Theorem A’’. In Section 3 we discuss ap-

proximations to curvature dependent motions and we present results like ‘‘Theorem

B’’. In Section 4 we discuss about schemes obtained by combinations of two di¤erent

threshold dynamics. Section 5 is devoted to the asymptotic shapes of propagating

fronts obtained by the iteration of the threshold dynamics. Section 6 is devoted to

results like ‘‘Theorem C’’ on the asymptotic shapes of propagating fronts for large

times. In Section 7 we discuss the asymptotics, similar to Sections 5 and 6, of the

threshold dynamics on scaled lattices. Precise references and discussion of the rela-

tionship of our results with other works are presented in each section. Part of the

results presented in this paper come from the Ph.D. thesis of Pires [P] under the

supervision of Souganidis.

§1. Preliminaries.

1.1. Generalized front propagation

Here we briefly describe the basic facts about the generalized front propagation

defined by the level-set approach. Since we will not be using the direct approach in this

paper, we refer to [BS1] and [Sou1, 2] for its definition, its applications and relation to

the level-set approach.

Although the velocity law of the form (0.1) is of common use, the derivative Dn

depends on how n is extended away from the surface, which is inappropriate for our

problems. Thus we henceforth use the following description of the velocity law

V ¼ vððI ÿ nn nÞDnðI ÿ nn nÞ; nÞ;ð1:1Þ
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which does not depend on the way n is extended outside the surface, does not loose any

information concerning the surface carried by Dn and hence is more natural than (0.1).

For a detailed discussion on velocity laws, see [GiGo].

In what follows we assume that

v A CðSN � SNÿ1Þð1:2Þ

and

v is nondecreasing; i:e:; for all p A SNÿ1 and all X ;Y ASN
;

if XUY then vðX ; pÞV vðY ; pÞ:

(

ð1:3Þ

Intuitively the monotonicity means the following avoidance inclusion-type property:

If fAtgtV0, fBtgtV0 are two one-parameter families of subsets of RN with boundaries

qAt and qBt moving by (1.1), n denoting the outward unit normal, and if in addition

A0HB0, then AtHBt for all t > 0.

We begin with the classical derivation of the level-set approach. Let fG tgtV0 be a

smooth motion with normal velocity v, as in (1.1), let fDtgtV0 be a family of smooth

open subsets of RN such that G t ¼ qDt and choose n to be the normal vector of G t

outward to Dt. Assume that u : R
N � ½0;yÞ ! R is a Cy function such that

Dt ¼ fx A RN
: uðx; tÞ > 0g;G t ¼ fx A RN

: uðx; tÞ ¼ 0g and jDuj0 0 on6
t>0

G t � ftg:

A straightforward computation—see for example [ES]—yields, under the additional

assumption that all the smooth level sets of u move with velocity given by (1.1), that u

must satisfy the pde

ut þ FðD2u;DuÞ ¼ 0 in RN � ð0;yÞ;ð1:4Þ

where F :S
N � ðRNnf0gÞ ! R is related to v by

FðX ; pÞ ¼ ÿjpjvðÿjpjÿ1ðI ÿ pn pÞX ðI ÿ pn pÞ;ÿpÞ:ð1:5Þ

Here and below, for all q A RNnf0g,

q ¼ jqjÿ1
q:

Note that the monotonicity assumption (1.3) on v yields that F is degenerate elliptic, i.e.,

it satisfies, for all X ;Y ASN and p A RNnf0g,

if XUY then FðX ; pÞVF ðY ; pÞ:ð1:6Þ

To justify and extend the above to the case of not necessarily smooth motions it is

necessary to use the notion of viscosity solutions for fully nonlinear elliptic and par-

abolic, possibly degenerate, partial di¤erential equations, for short pde, introduced by

Crandall and Lions. This theory provides the existence and uniqueness of viscosity

solution of (1.4) under rather general conditions on F, which are, by the way, satisfied

by the F ’s considered in this paper. We refer to [ES], [CGG], [BSS], [IS] and [Go] for

such results and to the ‘‘User’s Guide’’ by Crandall, Ishii and Lions [CIL] and the book

of Barles [B2] for a general overview of the theory of viscosity solutions.
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Next we recall the level-set approach to the generalized evolution of hypersurfaces

or sets. To this end, let E denote the collection of triples ðG;Dþ;DÿÞ of mutually

disjoint subsets of RN such that G is closed, Dþ and Dÿ are open and RN ¼ G UDþ U

Dÿ.

For any ðG0;D
þ
0 ;D

ÿ
0 Þ A E first choose a function g A BUCðRNÞ, the space of

bounded uniformly continuous functions on R
N , such that

Dþ
0 ¼ fx A RN

: gðxÞ > 0g; Dÿ
0 ¼ fx A RN

: gðxÞ < 0g and G0 ¼ fx A RN
: gðxÞ ¼ 0g;

then consider the initial value problem

ðiÞ ut þ FðD2u;DuÞ ¼ 0 in RN � ð0;yÞ,

ðiiÞ u ¼ g on RN � f0g,

�

ð1:7Þ

where F is defined by (1.5), and let u A BUCðRN � ½0;yÞÞ be the unique viscosity

solution of (1.7). Finally, set

G t ¼ fx A RN
: uðx; tÞ ¼ 0g; Dþ

t ¼ fx A RN
: uðx; tÞ > 0g; Dÿ

t ¼ fx A RN
: uðx; tÞ < 0g:

Since F is geometric, i.e., it satisfies, for l > 0, m A R, and ðX ; pÞ A S
N � RNnf0g,

F ðlX þ mpn p; lpÞ ¼ FðX ; pÞ;ð1:8Þ

the collection fðG t;D
þ
t ;D

ÿ
t ÞgtV0HE is determined, independently of the choice of g, by

the initial data ðG0;D
þ
0 ;D

ÿ
0 Þ. (See, for example, [ES], [CGG], [IS], etc.)

Next for each tV 0 define the mapping Et : E ! E by

EtðG0;D
þ
0 ;D

ÿ
0 Þ ¼ ðG t;D

þ
t ;D

ÿ
t Þ;

and notice that fEtgtV0 satisfies the properties: E0 ¼ idE, Etþs ¼ Et � Es for all t; sV 0—

see for example, [ES], [CGG], [IS], and [Go].

Definition 1.1. The collection fEtgtV0 is called the generalized evolution with

normal velocity v. The collection fG tgtV0 of closed sets is called the generalized front

propagation of G0 with normal velocity v.

Notice that the generalized front propagation is determined not only by G0 but also

by the choice of Dþ
0 and Dÿ

0 , which is related to choosing an orientation for the normal

to G0. In particular the generalized front propagation di¤ers, in general, if Dþ
0 and

Dÿ
0 are interchanged or if Dþ

0 and Dÿ
0 are replaced by the empty set q and Dþ

0 UDÿ
0 ,

respectively.

For the analysis in this paper it is also important to consider discontinuous solutions

to (1.7) (i) with initial data given by characteristic functions. The existence and stability

properties of such solutions were studied in detail in Barles, Soner and Souganidis [BSS].

An interesting issue regarding generalized evolution of fronts is whether the front

develops interior or not. This is related to the uniqueness of discontinuous solutions to

the initial value problem for (1.7). We refer to [BSS] and [Sou1] for this as well as

further discussion and examples for which interior develops.

We conclude this subsection introducing some additional notation which helps the

presentation of the main results of the paper. To this end, for each ðG0;D
þ
0 ;D

ÿ
0 Þ A E
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and tV 0, we define the maps Xt : F ! F and Nt : O ! O, F and O being the

collections of closed and open subsets of RN respectively, by

XtðD
þ
0 UG0Þ ¼ Dþ

t UG t and NtðD
þ
0 Þ ¼ Dþ

t ;ð1:9Þ

where ðG t;D
þ
t ;Dÿ

t Þ ¼ EtðG0;D
þ
0 ;Dÿ

0 Þ. It can be shown that Xt is well-defined. Indeed,

the decomposition of any A A F into two sets Dþ
0 and G0 is not unique in general.

However, the set Dþ
t UG t is independent of the choice of Dþ

0 and G0. A similar

discussion applies to the mapping Nt. We also call fXtgtV0 and fNtgtV0 the generalized

evolutions with normal velocity v. Hopefully, this notation will not create any con-

fusion in the presentation, although in what follows we use the same expression—

generalized evolution with normal velocity v—for the three di¤erent collections fEtgtV0,

fXtgtV0, and fNtgtV0

It is, of course, immediate that if A A O, B A F and AHB, then

NtðAÞHXtðBÞ:

1.2. An abstract formulation

Motivated by the problem of proving convergence of approximation schemes to the

viscosity solution of second order, fully nonlinear, possibly degenerate, parabolic pde,

Barles and Souganidis introduced in [BS2] (see also [Sou 3, 4] for a similar formulation

for first order equations) the following abstract formulation.

For each hV 0, let Gh : BUCðRNÞ ! BUCðRNÞ be such that for all u; v A BUCðRNÞ

and c A R,

Ghðuþ cÞ ¼ Ghuþ c;ð1:10Þ

and

if uU v then GhuUGhv:ð1:11Þ

It follows, from an observation due to Crandall and Tartar [CT], that, if (1.10)

holds, then (1.11) is equivalent to

kGhuÿ GhvkU kuÿ vk;ð1:12Þ

where kjk denotes the sup-norm of j.

Assume also that there exists a continuous function F : S
N � ðRNnf0gÞ ! R which

is degenerate elliptic, i.e., it satisfies (1.6), such that, for all smooth function j and all

x A R
N , we have

lim�

h!0
rÿ1ðGhjÿ jÞðxÞUÿF�ðD

2jðxÞ;DjðxÞÞ;ð1:13Þ

and

lim�
h!0

rÿ1ðGhjÿ jÞðxÞVÿF �ðD2jðxÞ;DjðxÞÞ:ð1:14Þ

Here and henceforth, f � and f� denote the upper- and lower-semicontinuous

envelopes of the function f, i.e.,

f �ðxÞ ¼ lim
r!0

supf f ðyÞ : y A Bðx; rÞg and f�ðxÞ ¼ lim
r!0

infff ðyÞ : y A Bðx; rÞg:
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(See [Is2].) If f f eg
e>0 is a family of locally bounded functions, following [BP], we

define the generalized half-relaxed limits lim� and lim� by

lim�

e!0
f ðxÞ ¼ lim

r!0
supf f eðyÞ : 0 < e < r; y A Bðx; rÞg

and

lim�
e!0

f eðxÞ ¼ lim
r!0

inff f eðyÞ : 0 < e < r; y A Bðx; rÞg

and finally, if g is a uniformly continuous function, og denotes its modulus of

continuity.

Given T > 0, a partition P ¼ f0 ¼ t0 < � � � < tn ¼ Tg of ½0;T � with mesh kPk ¼

max1UiUnðti ÿ tiÿ1Þ and g A BUCðRNÞ define uP : R
N � ½0;T � ! R by

uPð�; tÞ ¼
Gtÿtiÿ1

ðuPð�; tiÿ1ÞÞ if t A ðtiÿ1; ti�,

g if t ¼ 0.

(

ð1:15Þ

We need one more assumption about the way uP assumes the initial condition

g. We assume that

there exists o A Cð½0;yÞ; ½0;yÞÞ; independent of P and depending

on g only through the modulus of continuity of g;

such that oð0Þ ¼ 0 and for all t A ½0;T �;

kuPð�; tÞ ÿ gkUoðtÞ:

8

>

>

>

>

>

<

>

>

>

>

>

:

ð1:16Þ

It turns out that, if the initial value problem

ut þ F ðD2u;DuÞ ¼ 0 in RN � ð0;T �,

u ¼ g on RN � f0g

(

ð1:17Þ

has a unique viscosity solution u A BUCðRN � ½0;T �Þ, then the functions uP converge

to it.

Indeed the following theorem was proved in [BS2].

Theorem 1.1. Assume that Gh : BUCðRNÞ ! BUCðRNÞ satisfies (1.10), (1.11),

(1.13) and (1.14). For all T > 0, g A BUCðRNÞ and all partitions P of ½0;T �, let

uP : R
N � ½0;T � ! R be defined by (1.15) and assume that, in addition, (1.16) is also

satisfied. Let u be the unique viscosity solution of (1.17). Then, as kPk ! 0,

uP ! u uniformly in RN � ½0;T �:

§2. Schemes for Curvature-Independent Motion.

We begin by formulating approximation schemes of the type described in ‘‘Theorem

A’’ for motions with curvature-independent normal velocity. To this end, choose f A

MðRNÞ, MðRNÞ being the space of measurable real-valued functions on R
N , and a

threshold parameter y A ð0; 1Þ. Throughout this section we assume that
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f V 0 on R
N and

ð

R
N

f ðxÞ dx ¼ 1;ð2:1Þ

and

for each p A SNÿ1 there exists a unique vðpÞ A R such that

ð

hp;xiVvðpÞ

f dx ¼ y:ð2:2Þ

The assumption that
Ð

f ¼ 1 is only made to simplify the presentation. The existence

of v in (2.2) is obvious, the only real assumption being its uniqueness. It follows

immediately from (2.1) and (2.2) that v A CðSNÿ1Þ.

We also define the function F A CðRNÞ by

F ðpÞ ¼
ÿjpjvðÿpÞ if p0 0,

0 if p ¼ 0.

(

ð2:3Þ

It is then immediate that for all e > 0 and p A R
Nnf0g,

ð

hp;xiUFðpÞþe

f ðxÞ dx > y and

ð

hp;xiUFðpÞÿe

f ðxÞ dx < y:

We are interested in describing the evolution of sets with normal velocity v. We

argue as follows:

For each h > 0, define the operators Sh : LyðRNÞ ! LyðRNÞVCðRNÞ and Mh :

M!M by

ShgðxÞ ¼ hÿN

ð

R
N

f ðhÿ1ðxÿ yÞÞgðyÞ dy ¼

ð

R
N

f ðyÞgðxÿ hyÞ dy;ð2:4Þ

and

MhðAÞ ¼ fx A R
N

: Sh1AðxÞV yg;ð2:5Þ

where 1A denotes the characteristic function of the set A. As mentioned in the

Introduction, MhðAÞ is the location of A, after time h, when A moves with the threshold

dynamics determined by f and y.

It is worth remarking that, if the set A is a half plane with outward normal vector

p A SNÿ1, e.g., if A ¼ fx : hx; pi � 0g, then

MhðAÞ ¼ fx A R
N

: hp; xiU hvðpÞg:

Next, for all tV 0 and h > 0 define the mapping C h
t :M!M by

C h
t ¼ M

jÿ1
h ; if ð j ÿ 1ÞhU t < jh;ð2:6Þ

where M k
h is the k-th iterate of Mh if k A N and the identity mapping if k ¼ 0. This

two-parameter family fC h
t g yields an approximation scheme for the motion with normal

velocity v.

Throughout the paper, for each A AM and e > 0, we write

Ae ¼ fx A R
N

: distðx;AcÞ > eg and Ae ¼ fx A R
N

: distðx;AÞ < eg;ð2:7Þ

where distðx;AÞ is the usual distance from x to A.
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We have:

Theorem 2.1. Assume (2.1) and (2.2). Then for all e > 0 and T > 0, there exists a

d > 0 such that, for all A AM, if 0 < h < d, then

NtðAeÞHC h
t ðAÞHNtðA

eÞ and XtðAeÞHC h
t ðAÞHXtðAeÞ:

Theorem 2.1 has the following consequence, from the point of view of the Hausdor¤

metric.

Theorem 2.2. Assume (2.1) and (2.2) and let K be a compact subset of RN � ½0;yÞ

and e > 0. Then for every closed set A there exists d > 0 such that if 0 < h < d, then

6
tV0

C h
t ðAÞ � ftg

 !

VKH 6
tV0

XtðAÞ � ftg þ Bð0; eÞ:

Similarly for every open set A there exists d > 0 such that, if 0 < h < d, then

6
tV0

NtðAÞ � ftg

 !

VKH 6
tV0

C h
t ðAÞ � ftg þ Bð0; eÞ:

Following [E] and [GrGr], we introduce, for h > 0, the operator Gh : MðRNÞ !

MðRNÞ given by

GhcðxÞ ¼ supfl A R : Sh1fcVlgðxÞV yg;

where here and henceforth fcV lg is the abbreviated notation for fx A R
N

: cðxÞV lg.

Following [BS2], for t A ½0;T � and h > 0, we also introduce the operator Qh
t :

MðRNÞ ! MðRNÞ given by

Qh
t ¼ G

jÿ1
h if ð j ÿ 1ÞU t < jh ð j A NÞ:

It is clear (see, for example, [E] and [Is1]) that

GhcðxÞ ¼ inffl A R : Sh1fcVlgðxÞ < yg ¼ supfl A R : x A MhðfcV lgÞg:

It is also not hard to check that, if l ¼ GhcðxÞ, then

Sh1fcVlgðxÞV y and Sh1fcVlþegðxÞ < y for all e > 0:

The above inequalities imply that, for all l A R,

GhcðxÞV l if and only if x A MhðfcV lgÞ:

In particular, for all A AM, we have

1MhðAÞ ¼ Gh1A and 1C h
t ðAÞ

¼ Qh
t 1A:

The proofs of Theorems 2.1 and 2.2 are based on the following

Theorem 2.3. Fix g A BUCðRNÞ and let u A BUCðRN � ½0;yÞÞ be the unique

viscosity solution of (1.7) with F given by (2.3). Then, for all 0 < T < y, as h ! 0,

Qh
t gðxÞ ! uðx; tÞ uniformly on R

N � ½0;T �:
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Theorem 2.3 follows from Theorem 1.1 provided we verify its assumptions, which

we do next. To this end, we summarize below some of the basic properties of Gh.

Since their proof follows along the lines of the analogous statements [E] and [Is1], we

omit them. First of all, if r A CðRÞ is a nondecreasing function, then

Ghðr � jÞ ¼ r � ðGhjÞ for all j A MðRNÞ and h > 0:ð2:8Þ

Also for any j;c A MðRNÞ,

if jUc then GhjUGhc:ð2:9Þ

It follows that, for all c A R; y A RN and j A MðRNÞ,

Ghðjþ cÞ ¼ Ghjþ c; Ghc ¼ c and Ghjð� þ yÞ ¼ ðGhjÞð� þ yÞ:ð2:10Þ

But then (cf. [CT] and the discussion in Section 1.1), for all hV 0 and j;c A

MðRNÞ,

kGhjÿ GhckU kjÿ ck and kGhjkU kjk:

Hence, if j A BUCðRNÞ,

jGhjðxÞ ÿ GhjðyÞjUojðjxÿ yjÞ;ð2:11Þ

where oj is the modulus of continuity of j, and hence, Gh maps BUCðRNÞ into itself.

We now proceed with the

Proof of Theorem 2.3. 1. Since, for all h > 0, the map Gh : BUCðRNÞ !

BUCðRNÞ (cf. (2.10), (2.11)) satisfies (1.10) and (1.12), we may conclude, using Theorem

1.1, provided we verify (1.13), (1.14) and (1.16).

2. The fact that the generator-type inequalities (1.13) and (1.14) hold is an im-

mediate consequence of

Lemma 2.1. Let j A C 1ðRNÞ. Then, for all z A RN and e > 0, there exists d > 0,

such that, for all x A Bðz; dÞ and h A ð0; d�,

GhjðxÞU jðxÞ þ ðÿFðDjðzÞÞ þ eÞh and GhjðxÞV jðxÞ þ ðÿFðDjðzÞÞ ÿ eÞh:

Proof. 1. Since Gh is translation invariant, we may assume that z ¼ 0.

2. Set p ¼ Djð0Þ. We only show that there exists d > 0 such that, for all x A

Bð0; dÞ and h A ð0; d�,

Sh1fjVjðxÞþðÿFðpÞþeÞhgðxÞ < y;

which yields the first inequality above. The other inequality follows similarly.

3. Setting E ¼ fy A RN
: hp; yiUF ðpÞ ÿ e=2g and noting that E ¼ q if p ¼ 0, we

observe that

ð
E

f ðyÞ dy < y:

4. Choose a su‰ciently large R > 0 and a su‰ciently small d > 0, so that
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ð

Bð0;RÞ c
f ðyÞ dy < yÿ

ð

E

f ðyÞ dy;

and, for all x A Bð0; dÞ, h A ð0; d � and y A Bð0;RÞ,

jjðxÿ hyÞ ÿ jðxÞ þ hhp; yijU
eh

2
:

5. It follows that, for all x A Bð0; dÞ, h A ð0; d � and y A Bð0;RÞ,

if jðxÿ hyÞV jðxÞ þ ðÿFðpÞ þ eÞh then hp; yiUFðpÞ ÿ
e

2
:

Hence, for all x A Bð0; dÞ and h A ð0; d �,

Sh1fjVjðxÞþðÿFðpÞþeÞhgðxÞU

ð

EVBð0;RÞ

f ðyÞ dyþ

ð

Bð0;RÞ c
f ðyÞ dy < y;

which completes the proof. r

3. Continuing with the proof of Theorem 2.3 and in preparation towards proving

(1.16) we need the following lemma, in which, as it follows from its proof, we may

replace the functions Gjxj by the functions G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxj2 þ 1

q

.

Lemma 2.2. There exists a constant C > 0 such that, if jðxÞ ¼ jxj (respectively

jðxÞ ¼ ÿjxj), then for all x A RN and h > 0,

GhjðxÞU jðxÞ þ Ch ðrespectively GhjðxÞV jðxÞ ÿ ChÞ

Proof. 1. Since both inequalities are proved similarly, here we only present the

proof of the first one.

2. Fix R > 0 so that

ð

Bð0;RÞ c
f ðxÞ dx < y;

and note that, for x, y A RN and h > 0,

if jxÿ hyjV jxj þ Rh then jyjVR:

Hence, for all x A RN and h > 0,

Sh1fjVjxjþRhgðxÞ ¼

ð

R
N

f ðyÞ1fjVjxjþRhgðxÿ hyÞ dyU

ð

Bð0;RÞ c
f ðyÞ dy < y;

and therefore,

GhjðxÞU jðxÞ þ Rh: r

4. Next we verify (1.16). To this end, fix e > 0 and h > 0 and observe that there

exists a constant Ce > 0 such that, for all rV 0, ogðrÞU eþ Cer. We then have, for all

x; y A RN , that

ÿeÿ Cejxÿ yj þ gðyÞU gðxÞU gðyÞ þ eþ Cejxÿ yj:
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Lemma 2.2 yields that for all x; y A R
N ,

ÿCeChÿ Cejxÿ yj ÿ eþ gðyÞUGhgðxÞU gðyÞ þ eþ Cejxÿ yj þ CeCh:

A simple induction now gives for all ðx; tÞ A RN � ½0;yÞ,

ÿeÿ CeCtþ gðxÞUQh
t gðxÞU gðxÞ þ eþ CeCt:

The function oðrÞ ¼ inffe > 0 : eþ CeCrg has the required properties.

5. The proof of Theorem 2.3 is now complete following Theorem 1.1. r

We now continue with the

Proof of Theorem 2.1. 1. Fix T > 0, e A ð0; 1Þ, A AM, define the function g :

R
N ! R by

gðxÞ ¼
minfdistðx;AcÞ; 1g if x A A,

ÿminfdistðx;AÞ; 1g if x A Ac,

(

and note that g A BUCðRNÞ and

fg > ÿeg ¼ Ae and fgV eg ¼ Ae:

2. Let u A BUCðRN � ½0;yÞÞ be the unique viscosity solution of (1.7). Then, for

all tV 0, we have

NtðA
eÞ ¼ fuð�; tÞ > ÿeg and XtðAeÞ ¼ fuð�; tÞV eg:

Theorem 2.3 also yields the existence of d > 0 such that if 0 < h < d and 0U tUT , then

for all x A R
N ,

jQh
t gðxÞ ÿ uðx; tÞj < e=2:

3. Fix 0 < h < d and 0U tUT . It follows that

C h
t ðAÞHC h

t ðfgV ÿ e=2gÞ ¼ fQh
t gV ÿ e=2gHNtðA

eÞHXtðAeÞ;

and

C h
t ðAÞIC h

t ðfgV e=2gÞ ¼ fQh
t gV e=2gIXtðAeÞINtðAeÞ;

hence the claim. r

To prove Theorem 2.2 we need

Lemma 2.3. Let A be a closed subset of RN . Then

7
e>0

6
tV0

NtðAeÞ � ftgH 6
tV0

XtðAÞ � ftg:

Proof. The proof of Theorem 2.1 yields that for some function u A CðRN � ½0;yÞÞ

and all e > 0,

NtðA
eÞ ¼ fuð�; tÞ > ÿeg and XtðAÞ ¼ fuð�; tÞV 0g:
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Hence, for all e > 0,

6
tV0

NtðAeÞ � ftgH fuV ÿ eg;

and therefore,

7
e>0

6
tV0

NtðAeÞ � ftgH 7
e>0

fuV ÿ eg ¼ 7
tV0

XtðAÞ � ftg: r

We now proceed with the

Proof of Theorem 2.2. 1. Fix a compact subset K of RN � ½0;yÞ and e > 0. In

view of Theorem 2.1, to prove the first assertion we only need to show that there exists

d > 0 such that

6
tV0

NtðA
dÞ � ftg

 !

VKH 6
tV0

XtðAÞ � ftg þ Bð0; eÞ:

2. Arguing by contradiction, we assume that for each n A N there exists ðxn; tnÞ A K

such that

ðxn; tnÞ A 6
tV0

NtðA
1=nÞ � ftg and ðxn; tnÞ B 6

tV0

XtðAÞ � ftg þ Bð0; eÞ:ð2:12Þ

Note that (2.12) yields that

Bððxn; tnÞ; eÞV 6
tV0

XtðAÞ � ftg

 !

¼ q:ð2:13Þ

3. Since K is compact, we may assume that as n ! y, ðxn; tnÞ ! ð~xx; ~tt Þ for some

ð~xx; ~tt Þ A K , and moreover, that ðxn; tnÞ A Bðð~xx; ~tt Þ; eÞ for all n A N . But then, (2.13) yields

that

ð~xx; ~tt Þ B 6
tV0

XtðAÞ � ftg:

On the other hand (2.12) yields that for all g > 0

ð~xx; ~tt Þ A 6
tV0

NtðAgÞ � ftg:

These last two statements together with Lemma 2.3 yield a contradiction.

4. The second assertion can be proved similarly. r

§3. Schemes for Anisotropic Mean Curvature Motion.

We formulate here approximation schemes of the type described in ‘‘Theorem B’’

for curvature-dependent motions. To this end, fix f A MðRNÞ such that

f ðxÞV 0; f ðÿxÞ ¼ f ðxÞ for all x A R
N ; and

ð

R
N

f ðxÞ dx ¼ 1;ð3:1Þ
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0 <

ð

p?
ð1þ jxj2Þ f ðxÞ dHNÿ1 < y for all p A SNÿ1;ð3:2Þ

the functions p 7!
ð

p?
f ðxÞ dHNÿ1ðxÞ and p 7!

ð

p?
xixj f ðxÞ dHNÿ1ðxÞ;

with i; j A f1; . . . ;Ng; are continuous on SNÿ1;

8

>

<

>

:

ð3:3Þ

and
ð

R
N

jxj2 f ðxÞ dx < y:ð3:4Þ

Next we consider collections fRðrÞg0<r<1HR such that

RðrÞ ! y and
ffiffiffi

r
p

RðrÞ ! 0; as r ! 0;ð3:5Þ

and functions g: RNÿ1 ! R of the form

gðxÞ ¼ aþ hAx; xi with a A R and A A S
Nÿ1:ð3:6Þ

Also for any U A OðNÞ, OðNÞ denoting the group of N �N orthogonal matrices,

and f : R
N ! R we define fU : R

N ! R by

fUðxÞ ¼ f ðU �xÞ:

In addition to (3.1)–(3.4), we need to assume that

for all collections fRðrÞg0<r<1 satisfying ð3:5Þ and all

functions g of the form ð3:6Þ; as r ! 0

sup
U AOðNÞ

sup
0<r<r

�

�

�

�

ð

Bð0;RðrÞÞ
fUðx; rgðxÞÞgðxÞ dxÿ

ð

R
Nÿ1

fUðx; 0ÞgðxÞ dx
�

�

�

�

! 0:

8

>

>

>

>

<

>

>

>

>

:

ð3:7Þ

Fix c A R and define the function v: S
N � SNÿ1 ! R by

vðX ; pÞ ¼
ð

p?
f ðxÞ dHNÿ1ðxÞ

� �ÿ1

ÿ 1

2

ð

p?
hXx; xi f ðxÞ dHNÿ1ðxÞ þ c

� �

:

Since, for all p, x A RN , hpn p x; xi ¼ hp; xi2, it follows that for all ðX ; pÞ A S
N�

SNÿ1,

vððI ÿ pn pÞXðI ÿ pn pÞ; pÞ ¼ vðX ; pÞ and vðX ;ÿpÞ ¼ vðX ; pÞ:
Our goal in this section is to define threshold dynamics-type approximation scheme

for hypersurfaces or sets moving with normal velocity v.

As in Section 2, for h > 0, we define the operator Sh: MðRNÞ ! MðRNÞ by

ShcðxÞ ¼ hÿN=2

ð

R
N

f ðhÿ1=2ðxÿ yÞÞcðyÞ dy ¼
ð

R
N

f ðyÞcðxÿ
ffiffiffi

h
p

yÞ dy;

the mapping Mh: M ! M by

MhðAÞ ¼ fx A RN
: Sh1AðxÞV yhg;
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where

yh ¼
1

2
ÿ c

ffiffiffi

h
p

;

and, for all tV 0 and h > 0, the mapping C h
t : M ! M by

C h
t ¼ M

jÿ1
h if ð j ÿ 1ÞhU t < jh; with j A N ;

where as before M k
h is the k-th iterate of Mh if k A N and the identity mapping if

k ¼ 0. This two-parameter family fC h
t g yields an approximation scheme for the motion

with normal velocity v.

We have:

Theorem 3.1. Assume (3.1)–(3.4) and (3.7). Then for all T > 0 and e > 0, there

exists d > 0 such that if h A ð0; dÞ, t A ½0;T � and A A M, then

NtðAeÞHC h
t ðAÞHNtðAeÞ and XtðAeÞHC h

t ðAÞHXtðAeÞ:

Theorem 3.2. Assume (3.1)–(3.4) and (3.7) and let K be a compact subset of RN�
½0;yÞ and e > 0. Then, for any closed AHR

N and open BHR
N , there exists d > 0

such that if 0 < h < d,

6
tV0

C h
t ðAÞ � ftg

 !

VKH 6
tV0

XtðAÞ � ftg þ Bð0; eÞ;

and

6
tV0

NtðBÞ � ftg
 !

VKH 6
tV0

C h
t ðBÞ � ftg þ Bð0; eÞ:

We will prove Theorems 3.1 and 3.2 following the same strategy as for Theorems

2.1 and 2.2. To this end, choose h0 su‰ciently small so that

1=6 < yh < 5=6 for all h A ð0; h0Þ;

and, as before, for h A ð0; h0Þ and tV 0, define the operators Gh, Q
h
t : MðRNÞ ! MðRNÞ

by

GhjðxÞ ¼ supfl A R : Sh1fjVlgðxÞV yhg;
and

Qh
t ¼ G

jÿ1
h if ð j ÿ 1ÞhU t < jh; with j A N :

Next define the function F : S
N � ðRNnf0gÞ ! R by

F ðX ; pÞ ¼ ÿjpjvðÿjpjÿ1ðI ÿ pn pÞXðI ÿ pn pÞ;ÿpÞ

¼ ÿ
ð

p?
f ðxÞ dHNÿ1ðxÞ

� �ÿ1 1

2

ð

p?
hXx; xi f ðxÞ dHNÿ1 þ cjpj

� �

:

8

>

>

<

>

>

:

ð3:8Þ

It is easy to check that F is degenerate elliptic and geometric, i.e., that it satisfies (1.6)

and (1.8). The initial value problem for a function u with level sets moving by normal
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velocity v is

ut þ F ðD2u;DuÞ ¼ 0 in RN � ð0;yÞ,
u ¼ g on RN � f0g.

(

ð3:9Þ

It turns out (cf. [IS]) that for all g A BUCðRNÞ, (3.9) admits a unique viscosity

solution u A BUCðRN � ½0;yÞ).
We have

Theorem 3.3. Assume (3.1)–(3.4) and (3.7), fix g A BUCðRNÞ and let u A

BUCðRN � ½0;yÞÞ be the unique viscosity solution of (3.9) with F given by (3.8). Then,

for all 0 < T < y, as h ! 0,

Qh
t gðxÞ ! uðx; tÞ uniformly on RN � ½0;T �:

Since Theorems 3.1 and 3.2 follow from Teorem 3.3 exactly as Theorems 2.1 and

2.2 follow from Theorem 2.3, here we only present the proof of Theorem 3.3.

Moreover, since the mapping Gh satisfies (2.8), (2.9), (2.10) and (2.11), as it can be

easily checked, the proof of Theorem 3.3 follows, on the basis of Theorem 1.1, exactly

the same steps as those in the proof of Theorem 2.3. Below we only state and prove

the lemmas which are needed for the proof and refer the reader to the proof of Theorem

2.3 for the rest of the details.

We have

Lemma 3.1. Let j A C2ðRNÞ, z A RN and e > 0, and assume that DjðzÞ0 0. There

exists d A ð0; h0Þ such that for all x A Bðz; dÞ and h A ð0; d �,

GhjðxÞU jðxÞ þ ðÿFðD2jðzÞ;DjðzÞÞ þ eÞh;
and

GhjðxÞV jðxÞ þ ðÿFðD2jðzÞ;DjðzÞÞ ÿ eÞh:
Proof. 1. Since both inequalities are proved similarly, here we present the proof of

the first one.

2. Assume, without any loss of generality, that z ¼ 0 and fix a A R such that

a > ÿF ðD2jð0Þ;Djð0ÞÞ:

We need to show that there exists d > 0 such that for all x A Bð0; dÞ and h A ð0; d �;

Sh1fjVjðxÞþahgðxÞ < yh:

3. Fix d1 > 0 such that Dj0 0 on Bð0; d1Þ, choose a continuous family

fUðxÞgx ABð0; d1ÞHOðNÞ such that for all x A Bð0; d1Þ,

UðxÞ DjðxÞ
� �

¼ eN ;

where eN denotes the unit vector in RN with unity as its N-th component, and note that

if x A Bð0; d1Þ, then

Sh1fjVjðxÞþahgðxÞ ¼
ð

R
N

fUðxÞðzÞ1fjVjðxÞþahg xÿ
ffiffiffi

h
p

UðxÞ�z
� �

dz:
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4. The inequality

a > ÿF ðDj;D2jÞ in Bð0; d1Þ;

which is valid if d1 is small enough and which we assume hereafter, then reads

1

2

ð

R
Nÿ1

hP�UðxÞD2jðxÞUðxÞ�Px; xi fUðxÞðx; 0Þ dxÿ a

ð

R
Nÿ1

fUðxÞðx; 0Þ dx < ÿcjDjðxÞj;

where P denotes the N � ðN ÿ 1Þ matrix, whose ði; jÞ-th entries are unity if i ¼ j and

zero if i0 j.

5. Next choose e > 0 and d2 A ð0; d1� such that for all x A Bð0; d2Þ,

1

2

ð

R
Nÿ1

hP�Uð0ÞðD2jð0Þ þ 3eIÞUð0Þ�Px; xi fUðxÞðx; 0Þ dxð3:10Þ

ÿðaÿ eÞ
ð

R
Nÿ1

fUðxÞðx; 0Þ dx < ÿðcþ 2eÞjDjð0Þj:

6. According to Taylor’s theorem, there exists g > 0 such that for all h > 0, y A RN

and x A Bð0; d2Þ, if
ffiffiffi

h
p

jyjU g, then

jðxÿ
ffiffiffi

h
p

UðxÞ� yÞU jðxÞ ÿ
ffiffiffi

h
p

hDjðxÞ;UðxÞ� yiþ h

2
hUðxÞðD2jðxÞ þ eIÞUðxÞ� y; yi

U jðxÞ ÿ
ffiffiffi

h
p

jDjðxÞjyN þ Chy2N

þ h

2
hP�UðxÞðD2jðxÞ þ 2eIÞUðxÞ�Py 0; y 0i;

where y ¼ ðy 0; yNÞ A RNÿ1 � R and C is some positive constant.

Replacing g and d2 by smaller positive constants if necessary, we deduce that for

y A Bð0; g=
ffiffiffi

h
p

Þ and x A Bð0; d2Þ, if

jðxÿ
ffiffiffi

h
p

UðxÞ� yÞV jðxÞ þ ah;ð3:11Þ

then

yNU

ffiffiffi

h
p

jDjðxÞj ÿ C
ffiffiffi

h
p

yN
ÿaþ 1

2
hP�UðxÞðD2jðxÞ þ 2eIÞUðxÞP� y 0; y 0i

� �

U

ffiffiffi

h
p

jDjð0Þj ÿaþ eþ 1

2
hP�Uð0ÞðD2jð0Þ þ 3eIÞUð0Þ�Py 0; y 0i

� �

:

Define

Ae ¼ jjð0Þjÿ1
P�Uð0ÞðD2jð0Þ þ 3eIÞUð0Þ�P and ae ¼ ðaÿ eÞjDjð0Þjÿ1:

Then, if (3.11) is satisfied, we have

yNU
ffiffiffi

h
p

ÿae þ
1

2
hAey

0; y 0i

� �

:ð3:12Þ
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7. Assumption (3.4) yields the existence of a decreasing o A Cð½0;yÞ; ½0;yÞÞ such

that oðRÞ ! 0 as R ! y, and

ð

Bð0;RÞ c
f ðyÞjyj2dyUoðRÞ2 for all RV 0:

For each 0 < t < 1, define RðtÞ A ð0;yÞ, by

oðRðtÞÞ ¼ tRðtÞ2;ð3:13Þ
and note that the collection fRðtÞg0<t<1 satisfies (3.5). Then choose t A ð0; 1Þ such that

RðtÞU g=t for all t A ð0; t�:ð3:14Þ
8. Write

r ¼
ffiffiffi

h
p

; TðrÞ ¼ Bð0;RðrÞÞ � RHR
N ;

and

gðxÞ ¼ ÿae þ
1

2
hAex; xi

� �

for x A RNÿ1:

Fix h A ð0;minfh0; t2g� and x A Bð0; d2Þ and observe that

Sh1fjVjðxÞþahgðxÞU
ð

Bð0;RðrÞÞVfyNUrgðy 0Þg
fUðxÞðyÞ dyþ

ð

Bð0;RðrÞÞ c
fUðxÞðyÞ dy

U

ð

TðrÞVfyNUrgðy 0Þg
fUðxÞðyÞ dyþ 2

ð

Bð0;RðrÞÞ c
fUðxÞðyÞ dy;

and
ð

Bð0;RðrÞÞ c
fUðxÞðyÞ dyU

1

RðrÞ2
ð

Bð0;RðrÞÞ c
f ðyÞjyj2dyUoðRðrÞÞr;

and also that

1

2
¼

ð

yNU0

fUðxÞðyÞ dyU
ð

TðrÞVfyNU0g
fUðxÞðyÞ dyþ oðRðrÞÞr:

9. Next note that

ð

TðrÞVfyNUrgðy 0Þg
fUðxÞðyÞ dyÿ

ð

TðrÞVfyNU0g
fUðxÞðyÞ dy

¼
ð

Bð0;RðrÞÞ
dx

ð rgðxÞ

0

fUðxÞðx; rÞ dr ¼
ð r

0

dr

ð

Bð0;RðrÞÞ
fUðxÞðx; rgðxÞÞgðxÞ dx:

It follows from (3.7) that as r ! 0,

1

r

ð

TðrÞVfyNUrgðy 0Þg
fUðxÞðyÞ dyÿ

ð

TðrÞVfyNU0g
fUðxÞðyÞ dy

( )

!
ð

R
Nÿ1

fUðxÞðx; 0ÞgðxÞdx;

with the convergence uniform in Bð0; d2Þ.
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Replacing t by a smaller constant independent of x A Bð0; d2Þ, we may assume that

1

r

ð

TðrÞVfyNUrgðy 0Þg
fUðxÞðyÞ dyÿ

ð

TðrÞVfyNU0g
fUðxÞðyÞ dy

( )

U

ð

R
Nÿ1

fUðxÞðx; 0ÞgðxÞ dxþ e:

Finally, noting that from (3.10),

ð

R
Nÿ1

fUðxÞðx; 0ÞgðxÞ dxU ÿ cÿ 2e;

we get

Sh1fjVjðxÞþahgðxÞU
1

2
þ r

ð

R
Nÿ1

fUðxÞðx; 0ÞgðxÞ dxþ ðeþ 3oðRðrÞÞÞr

U
1

2
þ rðÿcÿ eþ 3oðRðrÞÞÞ:

Since we may assume that 3oðRðrÞÞ < e for all 0 < rU t, we conclude that for

some d > 0 and for all x A Bð0; dÞ and h A ð0; d �,

Sh1fjVjðxÞþahgðxÞ < yh;

hence the claim. r

Lemma 3.2. There exist constants C > 0 and d A ð0; h0Þ such that if jðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxj2 þ 1

q

(respectively jðxÞ ¼ ÿ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxj2 þ 1

q

Þ, then for all x A RN and h A ð0; d �,

GhjðxÞU jðxÞ þ Ch ðrespectively GhjðxÞV jðxÞ ÿ ChÞ:

Proof. 1. We only prove the first inequality here, since the proof of the second

one is similar.

2. Fix c1 > jcj and choose, using (3.2) and (3.3), a positive constant C1 such that for

all U A OðNÞ,
ð

R
Nÿ1

fUðx; 0Þjxj2dxÿ
C1

2

ð

R
Nÿ1

fUðx; 0Þ dx < ÿc1:ð3:15Þ

3. We first prove, using arguments similar to the ones for Lemma 3.1, that there

exists d A ð0; h0Þ such that for all h A ð0; d � and x A Bð0;
ffiffiffi

h
p

=dÞc,

Sh1fjVjðxÞþC1hgðxÞ < yh:ð3:16Þ

To this end, choose a collection fUðpÞgp ASNÿ1HOðNÞ such that UðpÞp ¼ eN , define

for p A SNÿ1, the function fp : R
N ! R, by fpðxÞ ¼ f ðUðpÞ�xÞ, choose o A Cð½0;yÞ;RÞ

and define a collection fRðrÞg0<r<1H ð0;yÞ as in the proof of Lemma 3.1.

4. Let x A RNnf0g and h A ð0; h0Þ and observe that if y A RN is such that

jðxÿ
ffiffiffi

h
p

UðxÞ� yÞV jðxÞ þ C1h;ð3:17Þ

then

jxjyNU
ffiffiffi

h
p 1

2
jyj2 ÿ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxj2 þ 1

q

� �

:
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If in addition
ffiffiffi

h
p

jyjU jxj;ð3:18Þ
then (3.17) yields

yNU 1ÿ
ffiffiffi

h
p

yN
2jxj

 !ÿ1 ffiffiffi

h
p

jxj
1

2
jy 0j2 ÿ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxj2 þ 1

q
� �

:ð3:19Þ

5. Assume that jxjU 1. If (3.18) holds, then

1

2
< 1ÿ

ffiffiffi

h
p

yN
2jxj

 !ÿ1

U 2;

and hence (3.17) and (3.18) imply that

yNU

ffiffiffi

h
p

jxj jy 0j2 ÿ C1

2

� �

:

Choose r1 A ð0; 1Þ such that

rRðrÞU 1 for all r A ð0; r1�;

and set r ¼
ffiffiffi

h
p

jxjÿ1 and gðxÞ ¼ jxj2 ÿ C1=2 for x A R
Nÿ1.

Noting that if r A ð0; r1� and y A Bð0;RðrÞÞ, then
ffiffiffi

h
p

jyj=jxjU 1, we find that for

r A ð0; r1� and TðrÞ1Bð0;RðrÞÞ � RHR
N ,

Sh1fjVjðxÞþC1hgðxÞU
ð

Bð0;RðrÞÞ
fxðyÞ1fjVjðxÞþC1hgðxÿ

ffiffiffi

h
p

UðxÞ� yÞ dyþ roðRðrÞÞ

U

ð

TðrÞVfyNUrgðy 0Þg
fxðyÞ dyþ 2roðRðrÞÞ:

Assumption (3.7) and the choice of C1 yield the existence of a constant r2 A ð0; r1�
(see the proof of Lemma 3.1) such that for all r A ð0; r2� and p A SNÿ1,

ð

TðrÞVfyNUrgðy 0Þg
fpðyÞ dyU

1

2
ÿ c1rþ roðRðrÞÞ;

where we used the fact that
ð

TðrÞVfyNU0g
fpðyÞ dyU

1

2
þ roðRðrÞÞ:

Hence, if r ¼
ffiffiffi

h
p

=jxj A ð0; r2�, then

Sh1fjVjðxÞþC1hgðxÞU
1

2
ÿ c1rþ 3roðRðrÞÞ:

Since
ffiffiffi

h
p

=jxjV
ffiffiffi

h
p

, we can choose r3 A ð0; r2� such that if 0 <
ffiffiffi

h
p

=jxjU r3,

Sh1fjVjðxÞþC1hgðxÞ <
1

2
ÿ jcjhU yh:
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6. Now let jxjV 1. Note that if (3.17) and (3.18) hold, then

yNU 1ÿ
ffiffiffi

h
p

yN
2jxj

 !ÿ1 ffiffiffi

h
p

jxj
1

2
jy 0j2 ÿ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxj2 þ 1

q
� �

U

ffiffiffi

h
p

jy 0j2 ÿ C1

2

� �

:

Set r ¼
ffiffiffi

h
p

and observe that if r A ð0; r1� and y A Bð0;RðrÞÞ, then by our choice of

fRðrÞg,

jxjÿ1
ffiffiffi

h
p

jyjU rRðrÞU 1:

Repeating the computations in Step 5 we conclude that for some r4 > 0, if
ffiffiffi

h
p
U r4,

then

Sh1fjVjðxÞþC1hgðxÞ < yh:

Thus, setting d ¼ minfr3; r24g, we have (3.16).

7. Fix d > 0 and C1 > 0 such that (3.16) holds, and then x A RN and h A ð0; h0Þ such
that jxjU

ffiffiffi

h
p

=d. We will show that there exists a constant C2 > 0 such that

Sh1fjVjðxÞþC2hgðxÞ < yh:

8. Choose R > 0 and C2 > 0 such that

ð

Bð0;RÞ c
f ðyÞ dy <

1

6
and C2VR2 þ 2

d
R;

and observe that if y A RN satisfies

jðxÿ
ffiffiffi

h
p

yÞV jðxÞ þ C2h;

then

C2hUC2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxj2 þ 1

q

U ÿ 2
ffiffiffi

h
p

hx; yiþ hjyj2U 2h

d
jyj þ hjyj2;

i.e., C2U ð2=dÞjyj þ jyj2, which implies that jyjVR.

Therefore, we have

Sh1fjVjðxÞþC2hgðxÞU
ð

Bð0;RÞ c
f ðyÞ dy <

1

6
< yh:

Combining this last inequality with (3.16) concludes the proof of the first

inequality. r

We are now in position to prove

Lemma 3.3. Let g A BUCðRNÞ. Then there exist a constant d A ð0; h0Þ and a

continuous function o : ½0;yÞ ! ½0;yÞ, with oð0Þ ¼ 0, depending only on the modulus of

continuity og of g, such that for all x A RN , tV 0, and h A ð0; d �,

jQh
t gðxÞ ÿ gðxÞjUoðtÞ:
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Proof. The proof is similar to that of Lemma 2.3. The only di¤erence is that

we now use Lemma 3.2 in place of Lemma 2.2 and start with the inequality

jgðxÞ ÿ gðyÞjU eþ Cejðxÿ yÞ for all x; y A RN
;

where e > 0, Ce > 0, and jðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxj2 þ 1

q

ÿ 1 and which is valid for all e > 0 with

su‰ciently large Ce > 0. r

Proof of Theorem 3.3. 1. Since the mapping Gh satisfies (2.8), (2.9), (2.10) and

(2.11) and since Lemma 3.3 yields (1.16), we may conclude using Lemmas 3.1, 3.2 and

3.3, if we verify (1.13) and (1.14), which, if DjðxÞ0 0, are immediate from Lemma 3.1.

2. Next consider (1.13) and (1.14) in the case where DjðxÞ ¼ 0 and assume (see, for

example, [BG]) that also D2jðxÞ ¼ 0. As a matter of fact, since the mappings Gh are

translation invariant, we may assume that x ¼ 0. Moreover, careful inspection of the

proof of Proposition 1 of [BG] indicates that we may also assume that jðyÞ ¼ ajyj4 for

some a > 0.

3. Set cðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxj2 þ 1

q

ÿ 1 and note that for all x A RN , jxj4 ¼ ððcðxÞ þ 1Þ2 ÿ 1Þ2.

4. Lemma 3.2 yields the existence of d > 0 and C > 0 such that for all x A Bð0; dÞ

and 0 < hU d,

GhjðxÞ ¼ aGhððcþ 1Þ2 ÿ 1Þ2ðxÞ ¼ aððGhcðxÞ þ 1Þ2 ÿ 1Þ2

U aððcðxÞ þ Chþ 1Þ2 ÿ 1Þ2 ¼ aðjxj2 þ ChÞ2 ¼ jðxÞ þ að2dC þ C2hÞh:

It follows that

lim�

h!0
hÿ1ðGhjÿ jÞð0ÞU 2adC;

and letting d ! 0,

lim�

h!0
hÿ1ðGhjÿ jÞð0ÞU 0 ¼ ÿF�ð0; 0Þ;

and hence, (1.13).

5. The fact that

lim�
h!0

hÿ1ðGhjÿ jÞð0ÞV 0 ¼ ÿF �ð0; 0Þ;

follows similarly. r

§4. Mixed schemes.

Here we present a few examples of schemes which can be obtained as a combination

of the threshold dynamics discussed in Sections 2 and 3.

To this end, for i ¼ 1; 2; let ð fi; yiÞ be a pair of a function and a threshold value,

satisfying (2.1) and (2.2) and define vi : SNÿ1 ! R and for all h > 0 the mappings Si;h

and Mi;h :M!M respectively by

ð

hx;piVviðpÞ

fiðxÞ dx ¼ yi; Si;hcðxÞ ¼

ð

R
N

fiðyÞcðxÿ hyÞ dy;
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and

Mi;hðAÞ ¼ fx A R
N

: Si;h1AðxÞV yig:

The first example is the scheme obtained by interchanging M1;h and M2;h at each

interval of length h > 0. We thus define C h
t :M!M by

C h
t ¼ M2;h �M1;h

ÿ � jÿ1
if ð j ÿ 1ÞhU t < jh; with j A N :

Theorem 4.1. Let fXtgtV0 and fNtgtV0 be the generalized evolutions with normal

velocity v1 þ v2. For all T > 0 and e > 0, there exists d > 0 such that if 0 < h < d,

0U tUT , and A AM, then

NtðAeÞHC h
t ðAÞHNtðA

eÞ and XtðAe ÞHC h
t ðAÞHXtðAe Þ:

Assertions analogous to Theorems 2.2 and 2.3 hold for the C h
t defined above, but

we will not discuss them here. Theorem 4.1 is, in principle, a special case of Trotter’s

product formula in semi-group theory. The proof follows from a straightforward

adaptation of the proof in Section 2 and hence we omit it.

Next we consider another example. For h > 0 define Mh :M!M by

MhðAÞ ¼ M1;hðAÞVM2;hðAÞ;

where, for i ¼ 1; 2; Mi;h are as above. Then define C h
t :M!M for tV 0 by C h

t ¼

M
jÿ1
h if ð j ÿ 1ÞhU t < jh with j A N .

We have

Theorem 4.2. Let fXtgtV0 and fNtgtV0 be the generalized evolutions with normal

velocity minfv1; v2g. For all T > 0 and e > 0, there exists d > 0 such that if 0 < h < d,

0U tUT , and A AM, then

NtðAeÞHC h
t ðAÞHNtðA

eÞ and XtðAe ÞHC h
t ðAÞHXtðAe Þ:

We remark that assertions analogous to Theorems 2.2 and 2.3 hold for the above

C h
t . We shall not give here the details of the proof of Theorem 4.2 which is again a

straightforward adaptation of the arguments in Section 2 and hence we omit it.

If we define

MhðAÞ ¼ M1;hðAÞUM2;hðAÞ

and replace the normal velocity minfv1; v2g by maxfv1; v2g in Theorem 4.2, then the

resulting assertion is still valid. Moreover, in the above definitions of approximation

schemes, if we replace one or both of Mi;h, i ¼ 1; 2, by the operators Mh introduced in

Section 3, then the assertions with this replacement togehter with obvious changes of

velocity functions still hold valid.

§5. Asymptotics of iterations.

Let f ; v; y;F and for h > 0, Mh and Gh be as in Section 2. In the sequel we write

M and G for M1 and G1 respectively.
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Throughout this section assume that

v > 0 on SNÿ1
:ð5:1Þ

Our goal here is to show that if a bounded measurable subset A of RN contains a ball

centered at the origin with su‰ciently large radius, then the set M kðAÞ is asymptotically,

as k ! y, similar to the Wul¤ crystal W of ‘‘surface energy’’ v.

Recall that the Wul¤ crystal W of ‘‘surface energy’’ v, which is defined by

W ¼ Wv ¼ fx A R
N

: hx; piU vðpÞ for all p A SNÿ1g;ð5:2Þ

is a bounded, closed convex subset of R
N having the origin as its interior point.

The concept of the Wul¤ crystal (shape) is an important one in the study of phase

transitions. Equilibrium problems for material that may change phase usually lead to

the minimization of functionals involving bulk and surface energies ([F ], [FM ], [T1]). It

is known (see, for example, [T1, 2, 3], [F ], and [FM ] and the references therein) that the

Wul¤ crystal W is the solution of the Wul¤ problem, which is about minimizing

functionals of form

ð
qE

vðnðxÞÞ dHNÿ1ðxÞ;

among all smooth domains E with a given volume, n being the outward unit normal to

its boundary qE and v representing the energy density per unit area.

Consider next the function K : R
N ! R given by

KðxÞ ¼ sup
p ASNÿ1

fhx; piÿ vðpÞg:ð5:3Þ

It is immediate that K is a convex continuous function and that

W ¼ fx A R
N

: KðxÞU 0g; intW ¼ fx A R
N

: KðxÞ < 0g and

W
c ¼ fx A R

N
: KðxÞ > 0g:

The main result in this section is

Theorem 5.1. There exists R > 0 such that if A A M is bounded and contains

Bð0;RÞ and if e > 0, then for a su‰ciently large number J A N and for all k A N such that

kV J,

WeH kÿ1M kðAÞHW
e
:

Recall that M denotes Mh with h ¼ 1 in the above and in what follows.

Theorem 5.1 is proved as Theorems 2.1 and 3.1 once we establish what plays the

role of Theorems 2.3 and 3.3 in this context.

To this end we define for each k A N the operator Rk : LyðRNÞ ! LyðRNÞ by

RkjðxÞ ¼ GkjðkxÞ:

The next theorem corresponds to Theorems 2.3 and 3.3.
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Theorem 5.2. There exists R > 0 such that if A A M is bounded and contains

Bð0;RÞ, then as k ! y,

Rk1AðxÞ !
1 if x A intW,

0 if x A W
c;

�

with the convergence uniform outside any neighborhood of qW.

In preparation for the proof of Theorem 5.2, we need to consider the stationary first

order pde

ÿhx;Duiþ F ðDuÞ ¼ 0 in RN ;ð5:4Þ

together with the conditions

(i) u : R
N ! f0; 1g,

(ii) u�ð0Þ ¼ 1,

(iii) u�ðxÞ ¼ 0 if jxj is sufficiently large.

8

>

<

>

:

ð5:5Þ

Here, as usual, u� and u� denote the upper and lower semicontinuous envelopes of u,

respectively.

We will prove the following.

Theorem 5.3. Let u be a viscosity supersolution (respectively subsolution) of (5.4)

satisfying (5.5) (i), (ii) (respectively (5.5) (i), (iii)). Then

u ¼ 1 in intW ðrespectively u ¼ 0 in W
cÞ:

Proof. 1. Let K be the function defined by (5.3). Then

(i) x A intW if and only if KðxÞ < 0,

(ii) x A qW if and only if KðxÞ ¼ 0,

(iii) x A W
c if and only if KðxÞ > 0.

8

<

:

ð5:6Þ

2. Let u be a supersolution of (5.4), set

U ¼ intW and U0 ¼ U V fu� ¼ 1g;

and observe that U0 0q, U0 is open, and U is connected.

To conclude it is enough to show that U0 is closed in U, since then U ¼ U0, hence

u� ¼ 1 in U, and therefore u ¼ 1 in U.

3. Fix y A U VU0 and choose r > 0 such that Bðy; 2rÞHU . Choose z A Bðy; r=2Þ

VU0 and set

jðxÞ ¼ 1ÿ rÿ1jxÿ zj:

Note that Bðz; rÞHU , y A intBðz; rÞ, and

j ¼ 0U u� on qBðz; rÞ and jðzÞ ¼ 1 ¼ u�ðzÞ:

Let d ¼ ÿmaxBðz; rÞK . It follows that for all x A Bðz; rÞ and p A SNÿ1,

hx; piÿ vðpÞU ÿ d < 0:
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Furthermore, the definition of F also yields for all x A Bðz; rÞ and p A R
N
;

hx; piþ FðÿpÞU ÿ djpj:

Therefore, if x A Bðz; rÞnfzg, then

ÿhx;DjðxÞiþ F ðDjðxÞÞUÿ djDjðxÞj ¼ ÿrÿ1d:

4. If minBðz; rÞðu� ÿ jÞ < 0, let x̂x be a minimum point of u� ÿ j over Bðz; rÞ. Then,

x̂x A intBðz; rÞnfzg and, since u� is a viscosity supersolution of (5.4),

ÿhx̂x;Djðx̂xÞiþ F ðDjðx̂xÞÞV 0;

which is a contradiction. Hence, u�V j on Bðz; rÞ and, in particular,

u�ðxÞ > 0 if x A intBðz; rÞ:

It follows that z A U0 and therefore U0 is closed in U.

5. Assume that u is a subsolution of (5.4). It follows from (5.6) (ii) that for each

z A qW there exists pz A SNÿ1 such that

hz; pzi ¼ vðpzÞ:

Moreover, note also that hx; pziU vðpzÞ for all x A W and z A qW.

Next for each z A qW define the half space

Lz ¼ fx A R
N
: hx; pziU vðpzÞg:

The convexity of W yields that W ¼7
z A qW

Lz and hence, W
c ¼6

z A qW
ðLzÞ

c.

6. Fix z A qW, choose a g A C1ðRÞ such that g ¼ 1 on ðÿy; 0�, g 0 < 0 in ð0;yÞ and

g > 0 in ð0;yÞ, and define j A C1ðRNÞ by

jðxÞ ¼ gðhx; pziÿ vðpzÞÞ:

If x A ðLzÞ
c, then

ÿhx;DjðxÞiþ vðDjðxÞÞ ¼ jg 0ðhx; pziÿ vðpzÞÞjðhx; pziÿ vðpzÞÞ > 0:

7. Fix R > 0 such that u�ðxÞ ¼ 0 if jxjVR, and set W ¼ ðLzÞ
c
V intBð0;RÞ. Since

u�U j on qW, an argument similar to the one in Step 4 yields that u�U j on W. Hence,

u ¼ 0 in W. Since R can be taken arbitrarily large, it follows that

uðxÞ ¼ 0 on ðLzÞ
c
;

which implies that u ¼ 0 in W
c. r

We need the following lemmas for the proof of Theorems 5.1 and 5.2.

Lemma 5.1. Let A A M be bounded. Then there exists R > 0 such that for all x A

Bð0;RÞc and k A N ,

Rk1AðxÞ ¼ 0:

Proof. 1. Let S ð¼ S1Þ be the operator defined by
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ScðxÞ ¼

ð
R

N

f ðyÞcðxÿ yÞ dy:

Then for all B AM,

G1BðxÞ ¼ 0 if and only if S1BðxÞ < y:

2. Choose L > 0 so that AHBð0;LÞ. Since 1AU 1Bð0;LÞ on R
N , it follows that for

all k A N ,

Rk1AURk1Bð0;LÞ on R
N
:

Select RVL so that

ð
Bð0;RÞ c

f ðyÞ dy < y:

Then for all x A Bð0;Lþ RÞc,

S1Bð0;LÞðxÞ ¼

ð
R

N

f ðyÞ1Bð0;LÞðxÿ yÞ dyU

ð
Bð0;RÞ c

f ðyÞ dy < y;

and hence

G1Bð0;LÞU 1Bð0;LþRÞ on R
N
:

3. A simple induction argument yields that for all k A N ,

Gk
1Bð0;LÞU 1Bð0;LþkRÞ on R

N
;

hence

Rk1Bð0;LÞðxÞU 1Bð0;LþkRÞðkxÞU 1Bð0;2RÞðxÞ on R
N

and therefore, Rk1A ¼ 0 on Bð0; 2RÞc. r

Lemma 5.2. There exist R > 0 and e > 0 such that if A AM contains the ball

Bð0;RÞ, then for all k A N ,

Rk1A ¼ 1 in Bð0; eÞ:

Proof. 1. Let S be the operator defined in the proof of Lemma 5.1 and fix g > 0

such that g < minjpj¼1 vðpÞ.

It follows that

min
jpj¼1

ð
hp;yiVg

f ðyÞ dy > y:

Moreover, set

d ¼ min
jpj¼1

ð
hp;yiVg

f ðyÞ dyÿ y ð> 0Þ;

choose R > 0 so that
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ð

Bð0;RÞ c
f ðyÞ dy < d;

and finally set e ¼ g=3 and L ¼ maxf2Rþ e; eÿ1R2g.

2. If JVL, then

S1Bð0;JÞV y on Bð0; J þ eÞ:ð5:7Þ

Indeed, fix JVL and observe that if x A Bð0; ðJ þ eÞ=2Þ and y A Bð0;RÞ, then

jxÿ yjU
J þ e

2
þ RU J;

and if x A Bð0; J þ eÞnBð0; ðJ þ eÞ=2Þ, y A Bð0;RÞ, and hx; yiV g, then

jxÿ yj2 ¼ jxj2 þ jyj2 ÿ 2hx; yiU ðJ þ eÞ2 þ R2 ÿ ðJ þ eÞgU J 2 ÿ eJ þ R2
U J 2:

Therefore, we have

S1Bð0;JÞV

ð

Bð0;RÞ

f ðyÞ dy > 1ÿ d > y on B 0;
J þ e

2

� �

;

and for all x A Bð0; J þ eÞnBð0; ðJ þ eÞ=2Þ,

S1Bð0;JÞðxÞV

ð

Bð0;RÞVfhx;yiVgg

f ðyÞ dy >

ð

fhx;yiVgg

f ðyÞ dyÿ dV y:

3. It follows from (5.7) that if JVL, then

G1Bð0;JÞ ¼ 1 on Bð0; J þ eÞ;

and hence

G1Bð0;JÞV 1Bð0;JþeÞ on R
N :

A simple induction yields that for all k A N ,

Gk
1Bð0;LÞV 1Bð0;LþkeÞ on R

N ;

and hence for all k A N and x A R
N ,

Rk1Bð0;LÞðxÞV 1Bð0;LþkeÞðkxÞV 1Bð0; eÞðxÞ:

Finally, if Bð0;LÞHA, then Rk1AVRk1Bð0;LÞV 1Bð0; eÞ on R
N and hence for all

k A N,

Rk1A ¼ 1 on Bð0; eÞ: r

Lemma 5.3. Let A AM. Then uþ ¼ lim�
k!yRk1A (respectively uÿ ¼ lim� k!yRk1A)

is a viscosity subsolution (respectively a viscosity supersolution) of (5.4).

Proof. 1. We only show that uþ is a viscosity subsolution of (5.4) and leave it to

the reader to check that uÿ is a viscosity supersolution of (5.4).

2. Fix j A C1ðRNÞ and let x̂x be a strict maximum point of uþ ÿ j. Without loss of

generality we may assume that Djðx̂xÞ0 0, since otherwise there is nothing to prove, and
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that ðuþ ÿ jÞðx̂xÞ ¼ 0 and limjxj!yjðxÞ ¼ y. Then,

uþU j on R
N and lim

jxj!y

ðuþ ÿ jÞðxÞ ¼ ÿy:

3. Fix any a > ÿFðDjðx̂xÞÞ and choose d > 0 according to Lemma 2.1 such that

GhjðxÞU jðxÞ þ ah for all x A Bðx̂x; dÞ and h A ð0; d �:ð5:8Þ

Fix any e A ð0; d=2�, set

g ¼ ÿ sup
Bðx̂x; eÞ c

ðuþ ÿ jÞ ð> 0Þ; Lk ¼ sup
R

N

ðRk1A ÿ jÞ;

and

I ¼ k A N : kV 2;Lk þ
e

k
VLkÿ1;Lk > ÿ

g

2

n o

:

It is easily seen that aI ¼ y, where aI denotes the number of elements of I, and

that there exists k0 A N such that for all kV k0,

sup
Bðx̂x; eÞ c

ðRk1A ÿ jÞU ÿ
g

2
:

4. Fix any k A I such that kV k0. Then,

Lk þ
e

k
VLkÿ1; Lk > ÿ

g

2
; and sup

Bðx̂x; eÞ c
ðRk1A ÿ jÞU ÿ

g

2
:

Choose also ~xx A Bðx̂x; eÞ such that

ðRk1A ÿ jÞð~xxÞ > ÿ
g

2
and ðRk1A ÿ jÞð~xxÞVLk ÿ ekÿ1;

and observe that we may assume by choosing k su‰ciently large that

ðk ÿ 1Þÿ1
U d and ðk ÿ 1Þÿ1

k~xx A Bðx̂x; dÞ:

5. Using (5.8) and the fact that

Lkÿ1V ðRkÿ1gÿ jÞ on R
N ;

we obtain

Rk1Að~xxÞ ¼ Gðkÿ1Þÿ1 � Rkÿ11Aððk ÿ 1Þÿ1
k~xxÞ

UGðkÿ1Þÿ1jððk ÿ 1Þÿ1
k~xxÞ þ Lkÿ1U jððk ÿ 1Þÿ1

k~xxÞ þ ðk ÿ 1Þÿ1
aþ Lk þ kÿ1e;

and hence

Lk ÿ
e

k
U ðRk1A ÿ jÞð~xxÞU jððk ÿ 1Þÿ1

k~xxÞ ÿ jð~xxÞ þ ðk ÿ 1Þÿ1
aþ Lk þ kÿ1e

U ðk ÿ 1Þÿ1
h~xx;Djð~xxÞiþ ðk ÿ 1Þÿ1

aþ Lk þ kÿ1eþ oððk ÿ 1Þÿ1Þ;

where oðrÞ is a function satisfying limr!0 oðrÞ=r ¼ 0.
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Sending k ! y along a sequence in I, e ! 0 and a ! ÿF ðDjðx̂xÞÞ, we conclude that

ÿhx̂x;Djðx̂xÞiþ F ðDjðx̂xÞÞU 0: r

Proof of Theorems 5.1 and 5.2. Theorem 5.2 is an immediate consequence of

Lemmas 5.1, 5.2, and 5.3 and Theorem 5.3 and then Theorem 5.1 follows immediately

from Theorem 5.2. r

§6. Large times asymptotics.

Consider v1 A CðSN � SNÿ1Þ and v2 A CðSNÿ1Þ and assume that v1 is monotone,

i.e., that it satisfies (1.3), so that the function v A CðSN � SNÿ1Þ given by

vðX ; pÞ ¼ v1ðX ; pÞ þ v2ðpÞ

is also monotone.

In this section we are concerned with the asymptotics, in the limit t ! y, of the

motion of hypersurfaces or sets with normal velocity v. We show that, under ap-

propriate hypotheses on the vi’s, if the initial set is bounded and large enough, the

corresponding generalized front propagation is asymptotically similar to the Wul¤

crystal of the energy function v2.

Our precise assumptions on v1 and v2 are:

v2 > 0 on SNÿ1
;ð6:1Þ

and

v1ðlX ; pÞ ¼ lv1ðX ; pÞ for all l > 0 and ðX ; pÞ A S
N � SNÿ1

:ð6:2Þ

Let W denote the Wul¤ crystal of the energy v2, i.e.,

W ¼ fx A RN
: hx; piU v2ðpÞ for all p A SNÿ1g:

As noted in Section 5, W is a bounded, closed convex subset of RN with the origin as

its interior point.

The main result in this section is:

Theorem 6.1. (i) There exists R > 0 such that if e > 0 and AHR
N is bounded and

contains Bð0;RÞ, then for some T > 0 and for all tVT ,

WeH tÿ1NtðintAÞ and tÿ1XtðAÞHW
e
:

(ii) As t ! y, tÿ1ðXtðAÞnNtðintAÞÞ ! qW in the Hausdor¤ metric.

The initial value problem in the level-set approach corresponding to the motion with

normal velocity v is given by

ðiÞ ut þ F1ðD
2u;DuÞ þ F2ðDuÞ ¼ 0 in RN � ð0;yÞ,

ðiiÞ u ¼ g on RN � f0g,

(

ð6:3Þ

where

F1ðX ; pÞ ¼ ÿjpjv1ðÿjpjÿ1ðI ÿ pn pÞXðI ÿ pn pÞ;ÿpÞ;
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and

F2ðpÞ ¼ ÿjpjv2ðÿpÞ:

Below we write

F ðX ; pÞ ¼ F1ðX ; pÞ þ F2ðpÞ;

and note that, in view of (6.2), for all ðX ; pÞ ASN � ðRNnf0gÞ,

F1ðX ; pÞ ¼ ÿv1ðÿðI ÿ pn pÞXðI ÿ pn pÞ;ÿpÞ:

We continue with a number of observations and lemmas which set the ground for

the proof of Theorem 6.1. To this end, note that for each R > 0,

F1 is bounded on fX ASN
: kXkURg � ðRNnf0gÞ;ð6:4Þ

and

F1ðl
2X ; lpÞ ¼ l

2F1ðX ; pÞ for all l > 0 and ðp;XÞ ASN � ðRNnf0gÞ:ð6:5Þ

Finally, if u : R
N � ð0;yÞ ! R, we define

uðxÞ ¼ lim
e!0

supfuðsy; sÞ : s > e
ÿ1
; y A Bðx; eÞg

and

uðxÞ ¼ lim
e!0

inffuðsy; sÞ : s > e
ÿ1
; y A Bðx; eÞg:

We have

Lemma 6.1. Let u be a bounded viscosity subsolution (respectively supersolution) of

(6.3) (i). Then u (respectively u ) is a viscosity subsolution (resp. supersolution) of

ÿhx;Duiþ F2ðDuÞ ¼ 0 in RN
:

Proof. 1. We only consider here the case where u is a subsolution, the other claim

being proved similarly.

2. Set

wðx; tÞ ¼ uðtx; tÞ;

and observe that at least formally,

0V utðtx; tÞ þ F ðD2uðtx; tÞ;Duðtx; tÞÞ

¼ wtðx; tÞ ÿ tÿ1hx;Dwðx; tÞiþ Fðtÿ2D2wðx; tÞ; tÿ1Dwðx; tÞÞ

¼ wt þ tÿ1ðÿhx;Dwiþ F2ðDwÞÞ þ tÿ2F1ðD
2w;DwÞ:

Indeed, it is easily justified that

twt ÿ hx;Dwiþ F2ðDwÞ þ tÿ1F1ðD
2w;DwÞU 0 in RN � ð0;yÞð6:6Þ

holds in the viscosity sense.

Propagating fronts 299



3. For n A N and tV n, set gnðtÞ ¼ eÿð1=nÞðtÿnÞ. Then for all tV n,

jtg 0
nðtÞjU 1:ð6:7Þ

4. Now fix j A C2ðRNÞ and assume that uÿ j has a strict maximum at x̂x A R
N .

Since we may assume that

lim
jxj!y

jðxÞ ¼ y and uðx̂xÞ ¼ jðx̂xÞ;

it follows that

uU j on R
N and lim

jxj!y

ðuÿ jÞ ¼ ÿy:

5. Set

en ¼ sup
x ARN ; tVn

ðw�ðx; tÞ ÿ jðxÞÞ;

and observe that since uðx̂xÞ ¼ jðx̂xÞ, en ! 0 as n ! y.

Set dn ¼ en þ 1=n. It is then clear that for x A R
N and t ¼ n,

w�ðx; tÞ ÿ jðxÞ ÿ dne
ÿð1=nÞðtÿnÞ

U ÿ
1

n
:

Since

lim
n!y

sup
x ARN ; tVn

ðw�ðx; tÞ ÿ jðxÞ ÿ dne
ÿð1=nÞðtÿnÞÞ ¼ 0;

there exists an > 0 such that

sup
x ARN ; tVn

ðw�ðx; tÞ ÿ jðxÞ ÿ dne
ÿð1=nÞðtÿnÞ ÿ antÞV ÿ

1

2n
:

Note also that

lim
jxjþt!y

ðw�ðx; tÞ ÿ jðxÞ ÿ dne
ÿð1=nÞðtÿnÞ ÿ antÞ ¼ ÿy;

and that if t ¼ n,

w�ðx; tÞ ÿ jðxÞ ÿ dne
ÿð1=nÞðtÿnÞ ÿ ant < ÿ

1

n
:

It follows from above that the function

w�ðx; tÞ ÿ jðxÞ ÿ dne
ÿð1=nÞðtÿnÞ ÿ ant

achieves a maximum over R
N � ½n;yÞ at some ðxn; tnÞ A R

N � ðn;yÞ.

Since w� is a subsolution of (6.6), it follows that there exists a constant C > 0 such

that

0V tn ÿ
dn

n
eÿð1=nÞðtnÿnÞ þ an

� �

ÿ hxn;DjðxnÞiþ F2ðDjðxnÞÞð6:8Þ

þ tÿ1
n F1ðD

2jðxnÞ;DjðxnÞÞ

V ÿ dn ÿ hxn;DjðxnÞiþ F1ðDjðxnÞÞ ÿ tÿ1
n C:

H. Ishii, G. E. Pires and P. E. Souganidis300



The choice of an yields

ÿ
1

2n
Uw�ðxn; tnÞ ÿ jðxnÞ ÿ dne

ÿð1=nÞðtnÿnÞ ÿ antnU dn ÿ antn:ð6:9Þ

Hence, antnU dn þ 1=2n and so, limn!yantn ¼ 0. Since the set fxng is clearly bounded,

we may assume that xn ! ŷy as n ! y for some ŷy A RN . Then we find from (6.9) that

0U uðŷyÞ ÿ jðŷyÞ.

Since x̂x is a strict maximum point of uÿ j, it follows that ŷy ¼ x̂x. Letting n ! y in

(6.8), we conclude

ÿhx̂x;Djðx̂xÞiþ F1ðDjðx̂xÞÞU 0: r

Lemma 6.2. Let u be an upper semicontinuous viscosity subsolution of (6.3) (i)

satisfying for some R0,

0U uU 1 on RN � ½0;yÞ and u ¼ 0 on Bð0;R0Þ
c � f0g:ð6:10Þ

Then there exists R > 0 such that for all ðx; tÞ A Bð0;RÞc � ½1;yÞ,

uðtx; tÞ ¼ 0:

Proof. 1. Let h A CyðRÞ be such that h ¼ 1 on ðÿy; 0�, h 0
U 0 on R, and h ¼ 0

on ½1;yÞ and set

C1 ¼ max
p ASNÿ1

jF1ðÿI ; pÞj and C2 ¼ max
p ASNÿ1

jF2ðpÞj:

Choose RVR0 so that

RV
C1

R0
þ C2

and define w A CyðRN � ½0;yÞÞ by

wðx; tÞ ¼ hðjxj ÿ Rtÿ R0Þ:

2. If x0 0, we have, with h 0 denoting the value of h 0 at jxj ÿ Rtÿ R0,

wtðx; tÞ þ FðD2wðx; tÞ;Dwðx; tÞÞ ¼ ÿh 0Rþ F ðh 0jxjÿ1ðI ÿ xn xÞ þ h 00xn x; h 0xÞ

¼ ÿh 0ðRþ jxjÿ1
F1ðÿI ;ÿxÞ þ F2ðÿxÞÞ

V ÿ h 0ðRÿ C1R
ÿ1
0 ÿ C2ÞV 0:

It is also obvious that

wtð0; tÞ þ FðD2wð0; tÞ;Dwð0; tÞÞV 0 for tV 0:

3. Since wV u on RN � f0g, the standard comparison results (see, e.g., [IS ]) yield

that wV u on R
N � ½0;yÞ, which shows that

uðx; tÞ ¼ 0 for ðx; tÞ A RN � ½0;yÞ if jxjVRtþ R0 þ 1:
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Therefore, noting that if ðx; tÞ A Bð0; 2ðRþ 1ÞÞc � ½1;yÞ, then

2jtxjV jxjtþ jxjV 2ðRtþ R0 þ 1Þ;

we obtain

uðtx; tÞ ¼ 0 for all ðx; tÞ A Bð0; 2ðRþ 1ÞÞc � ½1;yÞ: r

Lemma 6.3. There exist constants R > 0 and e > 0 such that if u is a lower

semicontinuous viscosity supersolution of (6.3) (i) such that

0U uU 1 on RN � ½0;yÞ and u ¼ 1 on Bð0;RÞ � f0g;ð6:11Þ

then

uðtx; tÞ ¼ 1 for all ðx; tÞ A Bð0; eÞ � ½0;yÞ:

Proof. 1. Fix g A CyðRÞ as in the proof of Lemma 6.2 and set

C ¼ max
p ASNÿ1

jF1ðÿI ; pÞj; g ¼ ÿmax
SNÿ1

F2ð1min
SNÿ1

v2Þ; and e ¼ g=2:

Choose R > 0 so that C=RU g=2 and define w A CyðRN � ½0;yÞÞ by

wðx; tÞ ¼ gðjxj ÿ etÿ RÞ;

where h is a function as in the previous proof.

2. It follows that if h 0 denotes the value h 0ðjxj ÿ etÿ RÞ,

wtðx; tÞ þ FðD2wðx; tÞ;Dwðx; tÞÞU ÿ h 0ðeþ jxjÿ1
F1ðÿI ;ÿxÞ þ F2ðÿxÞÞ

U ÿ h 0ðeþ CRÿ1 ÿ gÞU 0:

3. By comparison we conclude that for all ðx; tÞ A RN � ½0;yÞ, with jxjU etþ R,

uðx; tÞV hðjxj ÿ etÿ RÞ ¼ 1:

Hence,

uðtx; tÞ ¼ 1 for all ðx; tÞ A Bð0; eÞ � ½0;yÞ: r

We may now present the

Proof of Theorem 6.1. 1. Fix R > 0 to be a constant as in Lemma 6.3, fix a

bounded AHR
N so that Bð0;RÞH intA and set

W ¼ 6
tV0

NtðintAÞ � ftg and u ¼ 1W:

2. It is well-known (see, e.g., [BSS]) that u is a lower semicontinuous viscosity

supersolution of (6.3) (i) satisfying (6.11). Lemma 6.3 yields the existence of d > 0 such

that

u ¼ 1 in intBð0; dÞ:

Then, using Lemma 6.1 and Theorem 5.3, we conclude that

u ¼ 1 in intW:
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3. Noting that for all ðx; tÞ A R
N � ð0;yÞ,

uðtx; tÞ ¼ 1tÿ1NtðintAÞðxÞ;

we see from the above that for each e > 0 there exists T > 0 such that for all tVT ,

WeH tÿ1NtðintAÞ:

4. Next set

S ¼ 6
tV0

XtðAÞ � ftg and u ¼ 1S:

Then u is an upper semicontinuous viscosity subsolution of (6.3) (i). It follows from

Lemma 6.2 that for some L > 0,

u ¼ 0 in Bð0;LÞc:

5. We then conclude, using Lemma 6.1 and Theorem 5.3, that u ¼ 0 in W
c, and

furthermore that for each e > 0 there exists T > 0 such that for all tVT ,

tÿ1XtðAÞHW
e: r

§7. Asymptotics of threshold dynamics on scaled lattices.

In this section we study the asymptotics of iterations of threshold dynamics on

lattices. The threshold dynamics considered are of the type discussed in Section 2 and

the result to be established is similar to the one in Section 5. The situation here is,

however, a bit restrictive compared to the one in Section 5. Indeed the functions

(denoted below by 1N) here corresponding to f in Section 5 are characteristic functions

of sets. This restriction is made just to simplify the presentation.

To this end consider sequences fhkgk ANH ð0;yÞ, fNkgk AN , fAkgk ANHZ
N and

fykgk ANH ð0; 1Þ, a threshold parameter y A ð0; 1Þ and a set N A M.

If Q denotes the unit cube ½ÿ1=2; 1=2�NHR
N , throughout this section we assume:

hk ! 0 as k ! y;ð7:1Þ

aNk<y for all k AN ; jNj < y; and as k ! y; 1hkðNkþQÞ ! 1N in L1ðRNÞ;ð7:2Þ

there exist d0 > 0 and R0 > 0 such that

Bð0; d0ÞV hkZ
NH hkAkHBð0;R0Þ for all k A N ;

(

ð7:3Þ

yk ! y as k ! y;ð7:4Þ

for all p A SNÿ1 there exists a unique vðpÞ A R such that

jfx A R
N

: hx; piV vðpÞgVNj ¼ yjNj;

(

ð7:5Þ

and finally,

v > 0 on SNÿ1:ð7:6Þ
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Note that the condition (7.5) is exactly the same as (2.2) with f replaced by

jNjÿ1
1N.

For each k A N define the mapping Mk of the set of all subsets of ZN into itself by

MkðAÞ ¼ fx A Z
N

: aððxÿNkÞVAÞV ykaNkg:

Our result here is

Theorem 7.1. There exists R > 0 such that if d0VR, then for all e > 0 there exists

J A N such that for all nV J and kV J,

We V
hk
n
Z

N
H

hk
n
M n

k ðAkÞHW
e
;

where M n
k denotes the n-th iterate of Mk and W is the Wul¤ crystal defined by (5.2).

The underlying idea here is the following. The threshold dynamics we are con-

sidering, which are parametrized by k, evolve subsets of the scaled lattice hkZ
N . In this

space the initial set hkAk evolves by the iteration of the mapping

A 7! fx A hkZ
N

: aððxÿ hkNkÞVAÞV ykaðhkNkÞg:

The resulting set, after n iterations, is exactly the set hkM
n
k ðAkÞ. The asymptotic

shape of the evolving set hkM
n
k ðAkÞ is roughly similar to the Wul¤ crystal as n ! y,

and the larger k is, the more the shape is similar to the Wul¤ crystal.

Since the proof of Theorem 7.1 is similar to that of Theorem 5.1, here we only

present the outline of the proof.

For each k A N and h > 0 define the operator Gk;h on MðRNÞ by

Gk;hjðxÞ ¼ supfl A R : a½ðxÿ hhkNkÞV fjV lg�V ykaNkg;

and the function F A CðRNÞ by

FðpÞ ¼
ÿjpjvðÿpÞ if p0 0

0 if p ¼ 0.

(

Lemma 7.1. Let j A C1ðRNÞ and z A R
N . Then for all e > 0 there exist J A N and

d > 0 such that for all kV J, 0 < hU d and x A Bðz; dÞ,

Gk;hjðxÞU jðxÞ þ ðÿFðDjðzÞÞ þ eÞh

and Gk;hjðxÞV jðxÞ þ ðÿF ðDjðzÞÞ ÿ eÞh:

Proof. 1. We only present the proof of the first inequality.

2. It is enough to show that for any a A R such that a > ÿF ðDjðzÞÞ, there exist

J A N and d > 0 such that if kV J, h A ð0; d � and x A Bðz; dÞ, then

a½ðxÿ hhkNkÞV fjV jðxÞ þ ahg� < ykaNk:

3. Set p ¼ DjðzÞ, fix a > ÿF ðpÞ and choose e > 0 such that

aV ÿ FðpÞ þ 3e:

In view of (7.2), (7.4) and (7.5), choose J A N and d > 0 such that for all kV J,

a½fx A R
N

: hx; piUF ðpÞ ÿ egV hkNk� < ðyk ÿ dÞaNk;
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and choose R > 0 such that for any kV J,

a½Bð0;RÞc V hkNk� < daNk:

4. For each k A N set

N
1
k ¼Nk VBð0; hÿ1

k RÞ and N2
k ¼Nk VBð0; hÿ1

k RÞc:

Let 0 < gU 1, 0 < hU g, x A Bðz; gÞ and

y A ðxÿ hhkN
1
kÞV fjV jðxÞ þ ahg;

and choose z AN1
k so that y ¼ xÿ hhkz. Then, assuming that g is su‰ciently small

enough, by Taylor’s theorem we have

jðxÞ þ ahU jðxÿ hhkzÞ

U jðxÞ ÿ hhkhDjðxÞ; ziþ eh

U jðxÞ ÿ hhkhp; ziþ 2eh;

i.e.,

hhkhp; ziU ðÿaþ 2eÞh:

Our choice of e yields that

hkhp; ziUFðpÞ ÿ e;

which shows

a½ðxÿ hhkN
1
kÞV fjV jðxÞ þ ahg�Ua½hkNk V fx : hx; piUF ðpÞ ÿ eg�

< ðyk ÿ dÞaNk:

Thus we have

a½ðxÿ hhkNkÞV fjV jðxÞ þ ahg�

< ðyk ÿ dÞaNk þa½ðxÿ hhkN
2
kÞV fjV jðxÞ þ ahg�

< ðyk ÿ dÞaNk þ daNk ¼ ykaNk: r

To continue, we define uþ; uÿ : R
N ! R by

uþðxÞ ¼ lim
r!0

sup 1ðhk=nÞM
n
k
ðAkÞðyÞ : k; n A N ; nV rÿ1; kV rÿ1; y A Bðx; rÞV

hk
n
Z

N
n o

;

and

uÿðxÞ ¼ lim
r!0

inf 1ðhk=nÞM
n
k
ðAkÞðyÞ : k; n A N ; nV rÿ1; kV rÿ1; y A Bðx; rÞV

hk
n
Z

N
n o

:

Lemma 7.2. The function uþ (respectively uÿ) is a viscosity subsolution (respectively

supersolution) of

ÿhx;Duiþ FðDuÞ ¼ 0 in R
N :ð7:7Þ
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Proof. 1. We only check here that uþ is a subsolution of (7.7).

2. Fix j A C 1ðRNÞ and assume that x̂x A R
N is such that

ðuþ ÿ jÞðx̂xÞ ¼ 0 and ðuþ ÿ jÞðxÞ < 0 for all x A R
Nnf0g;

and

lim
jxj!y

ðuþ ÿ jÞðxÞ ¼ ÿy:

3. We may assume that Djðx̂xÞ0 0, since otherwise we are done.

4. Fix any a > ÿFðDjðx̂xÞÞ and, according to Lemma 7.1, choose d > 0 and J A N

such that for all kV J, h A ð0; d � and x A Bðx̂x; dÞ,

Gk;hjðxÞU jðxÞ þ ah:ð7:8Þ

Fix any e A ð0; d=2� and set

g ¼ ÿ sup
Bðx̂x; eÞ c

ðuþ ÿ jÞ;

and for k; n A N ,

uk;n ¼ 1ðhk=nÞM
n
k
ðAkÞ; Zk;n ¼ ðhk=nÞZ

N ; Lk;n ¼ sup
Zk; n

ðuk;n ÿ jÞ;

and

Ik ¼ n A N : nV 2; Ln;k þ
e

n
VLk;nÿ1; Ln;k > ÿ

g

2

n o

:

It is easily seen that aIk ¼ y for infinitely many k’s and that there exists J A N such

that

sup
kV J;nV J

sup
Zk; nVBðx̂x; eÞ

c

ðuk;n ÿ jÞU ÿ
g

2
:

5. Now choose k, n A N so that n A Ik, kV J and nV J. It follows that

Lk;n þ
e

n
VLk;nÿ1;Lk;n > ÿ

g

2
; and sup

Zk; nVBðx̂x; eÞ
c

ðuk;n ÿ jÞU ÿ
g

2
:

We conclude arguing exactly as in Steps 4 and 5 of the proof of Lemma 5.3.

r

The next two lemmas are proved as Lemmas 5.1 and 5.2.

Lemma 7.3. For all R > 0 there exist L > 0 and J A N such that for all kV J and

n A N , if hkAkHBð0;RÞ, then

ðhk=nÞM
n
k ðAkÞHBð0;LÞ:

Lemma 7.4. There exist R > 0, e > 0 and J A N such that for all kV J and n A N , if

hkAkIBð0;RÞVZk;1, then

ðhk=nÞM
n
k ðAkÞIBð0; eÞVZk;n:
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Since the proof of Theorem 7.1 is an immediate consequence of Lemmas 7.2, 7.3,

and 7.4 and Theorem 5.3, we omit it.
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