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Abstract—The error threshold for fault-tolerant quantum
computation with concatenated encoding of qubits is penalized by
internal communication overhead. Many quantum computation
proposals rely on nearest neighbor communication, which requires
excess gate operations. For a qubit stripe with a width of + 1

physical qubits implementing levels of concatenation, we find
that the error threshold of 2.1 10 5 without any communication
burden is reduced to 1.2 10 7 when gate errors are the dominant
source of error. This 175 penalty in error threshold translates
to an 13 penalty in the amplitude and timing of gate operation
control pulses.

Index Terms—Fault tolerance, quantum information.

I. INTRODUCTION

ACRITICAL architectural issue for quantum computation
is the internal communication of quantum information

within the processor. There are a variety of proposed quantum
processor implementations with different mechanisms for in-
ternal communication. For instance, the linear ion trap proposal
of Cirac and Zoller [1] involves physical motion of massive
ions for internal communication, as do proposals using more
complex ion trap structures [2]. Alternative proposals involve
using photons and cavity quantum electrodynamics (QED)
for communication [3]. The cavity QED approach has been
extended to the solid state [4], [5]. Even direct transport of
information carrying electrons has been suggested for the solid
state [6], [7].

This paper is motivated by another class of quantum com-
putation proposals that rely upon local communication through
nearest neighbor interactions [8]–[10]. For instance, commu-
nication among electron spins in semiconductors can be per-
formed with sequential SWAP gate operations, which are gen-
erated by a controlled Heisenberg exchange between adjacent
electrons. An appealing feature of the SWAP operation is that
it is generated by the very same two-qubit interaction used for
computational operations. Also, a substantial degree of paral-
lelism can be employed. However, the protection of qubits with
concatenated error correction requires communication between
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a number of physical qubits that grows exponentially with con-
catenation level. This exponential increase in SWAP operations
might suggest that concatenated error correction will fail to re-
duce the logical qubit error rate. Gottesman [11] and Aharanov
and Ben-Or [12] have pointed out that a threshold error exists
despite an exponential increase in logical gate count with con-
catenation level , although no attempt was made to quantify
what that threshold might be. In this paper, we estimate that
threshold.

The main result we report here is that the number of nearest
neighbor communication operations is merely a constant factor
over and above the necessary logical operations for error
correction at each concatenation level . Our estimated error
thresholds are summarized in Table I. We analyzed in detail
fault-tolerant error correction with a concatenated 7-qubit
Calderbank–Shor–Steane (CSS) code [13], [14] on a linear
qubit stripe with a width of physical qubits for levels
of concatenation and find an 175 reduction in threshold
gate operation error due to nearest neighbor communication
overhead. This translates to a 13 increase in accuracy of
control pulse amplitude and timing in gate operations. Although
nearest neighbor communication incurs a significant penalty in
the requisite experimental accuracy of qubit gate operations, it
is not a fundamental obstacle to fault-tolerant computation in
the solid state. Our analysis is in general agreement with the
recent work of Svore et al. [15], who also show that internal
communication with local interactions incurs an error threshold
penalty, although they do not fully account for all communica-
tion steps.

This paper is organized as follows. In Section II, we describe
the underlying architecture of a quantum processor composed
of electron spin qubits, including a description of the physical
layout of electron spin qubits and their grouping into concate-
nated CSS logical qubits. We describe a fault-tolerant error cor-
rection protocol in Section III. Our protocol implements error
recovery without direct measurement. In Section IV, we calcu-
late the threshold error for gate operations under our error cor-
rection protocol, with various assumptions about available re-
sources. Section V considers the relation between control pulse
accuracy and gate error thresholds.

II. LAYOUT ARCHITECTURE

Given the problem of internal communication in a quantum
processor, a higher dimensional architecture is preferred be-
cause it would allow qubits to be as close as possible. However,
there must be access by control wires, thus limiting the packing
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TABLE I
GATE COUNT FOR ERROR CORRECTION N +N AND FOR LOGICAL CNOT OPERATIONS N +N UNDER DIFFERENT ASSUMPTIONS OF INTERNAL

COMMUNICATION RESOURCES AND QUANTUM ERROR CORRECTION. APPROXIMATE THRESHOLD GATE ERROR PROBABILITIES ARE GIVEN, AS

WELL AS CONTROL PULSE ACCURACY THRESHOLDS (SEE TEXT FOR DETAILS)

Fig. 1. Schematic representation showing how the number of available metal
wire layers limits the width of a 2-D qubit array to only about 10–20 qubits.

geometry. Fig. 1 shows a schematic cross section of a two-di-
mensional (2-D) semiconductor qubit array controlled by gate
electrodes accessing qubits from the side. The number of ver-
tical stacked control electrodes is limited to twice the number
of metal wiring layers in the integrated circuit technology. The
need for a reasonable fabrication yield limits the number of met-
allization layers to 10, which means that the 2-D array can be
at most 20 qubits wide. Fig. 1 illustrates the case for five met-
allization layers. In this respect, we agree with Copsey et al.
[16], who pointed out this restriction specifically in the context
of semiconductor qubits. Thus, while the qubit array might be
locally 2-D, the overall architecture will consist of one-dimen-
sional (1-D) stripes of moderate width, as illustrated in Fig. 2.

The lowest level of concatenated qubit encoding, which is
, can be laid out along the stripe width, but all higher

concatenation levels must be laid out along the stripe length and
are effectively 1-D. Thus, we are led to an essentially 1-D con-
catenation hierarchy, which is the most challenging for internal
quantum communication.

Fig. 2. Requirement for gate electrode access to qubits restricts the layout to
stripes of either serpentine or intersecting geometry.

Universal sets of fault-tolerant operations are known only for
CSS error-correcting codes of various size [12], [17]–[19]. In
our work, we shall consider the CSS code [7], [1], [3]. Concate-
nation [20], where each logical qubit is composed of encoded
qubits, which are in turn composed of encoded qubits and so on,
can suppress logical error rate to an arbitrary degree, provided
that the physical error rates remain below a threshold value. The
self-similarity of concatenation naturally leads to the self-sim-
ilar logical structure illustrated in Fig. 3. There are seven level

logical qubits forming the CSS codeword that represents
a single level logical qubit . A minimum of two logical
zeros, , and six initially arbitrary ancillae, , are re-
quired to perform error correction on . We consider
parallel lines of physical qubits to implement error correction
and computation with levels of concatenation. The error cor-
rection protocol is described in detail in the next section. An im-
portant feature of the self-similar hierarchy is that, at each con-
catenation level, the same qubit protection block is employed
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Fig. 3. Self-similar concatenated hierarchy of logical qubits on a linear array, with concatenation level L down to L� 2, as shown. Error correction requires a
minimum of two logical zeros, j0i , and six ancillae, jai . Altogether, 27 level L � 1 qubits are minimally required to protect a single level L qubit j i .
The exponential growth with concatenation levelL of physical nearest neighbor operations to interact j i and j�i is apparent. We consider a layout withL+1
adjacent linear arrays of qubits, each organized according to the illustrated logical hierarchy.

Fig. 4. Each unitary operation U at logical level L is followed by error
correction E at error-correction level L.

Fig. 5. Modified Steane error-correction circuit (E ). The indicator block
I computes an error syndrome and decodes the syndrome into a bit-wise
error indicator used for error recovery. The logical SWAP gate, as well as the
CNOT gates, requires shuffling of the constituent L � 1 qubits (see Fig. 8).
We allow only nearest neighbor operations at all logical levels in adherence to
self-similarity.

(for ancillae as well as information bearing qubits). Error cor-
rection can thus take place at any logical level within an appro-
priate logical qubit protection block.

III. ERROR-CORRECTION PROTOCOL

For estimating error thresholds, we consider an aggressive
error-correction scheme where every unitary operation at
concatenation level is followed by error correction at level

, as illustrated in Fig. 4.
The error-correction operation can be implemented in a

fault-tolerant manner with a Steane error-correction circuit [21]
that is slightly modified to that shown in Fig. 5. Error correc-
tion takes place within an error-correction block, with the log-
ical qubit and logical zero states explicitly shown.
The two groups of three ancillae, , are made use
of within the bit-flip indicator circuit, denoted by . As can be
seen in Fig. 5, the Steane error-correction circuit is particularly
parsimonious in its use of gate operations and leads to particu-
larly favorable error thresholds. The bit-flip indicator block is
essential, where, for each logical zero , it computes a bit-flip
error syndrome into three ancillae qubits . The syndrome
is then decoded within the indicator block into a bit-wise error
indicator that can be directly used for error recovery. Note also
that only nearest neighbor operations at logic level are em-
ployed, which is in strict adherence to self-similarity from the
physical layer up to concatenation level .

Fig. 6. Error-correction circuit (phase-error portion only) directly
incorporating the preparation of requisite logical zeros. Ancillae begin in
arbitrary states jarbi. Three 0 blocks prepare logical zeros that are purified
into a single j0i state for use in error correction. A modified indicator block
I corrects for possible parity errors in the raw j0i ’s.

The key point about the bit-flip indicator block is that it op-
erates on logical zeros that have effectively measured the logical
qubit error, but not the logical qubit itself, by virtue of a logical
CNOT gate. As was pointed out by Boykin et al. [22], the iden-
tification of which operations require full quantum coherence
and which operations do not is important since “quantum” oper-
ations require full protection against both phase-flip and bit-flip
errors, while “classical” operations require protection against
bit-flip errors only. Note from Fig. 5 that the outputs of indi-
cator block are used only as control bits for the error recovery
operations acting upon the logical qubit. Arbitrary phase flips
in the output of have no effect on the logical qubit. Likewise,
phase flips on the input of have no effect on the logical qubit
since the syndrome is encoded as bit flips on the input to . We
need only to protect against bit-flip errors in , so that the op-
erations within can be thought of as essentially “classical” in
nature, even though they are executed by physical qubit gates.
Thus, can, in principle, be protected with classical fault tol-
erance, which has been shown to be much more efficient than
quantum fault tolerance [23] to ensure that the operations within

will contribute negligibly to the quantum error threshold.
Of course, the requisite logical zeros that allow for effi-

cient fault-tolerant error correction are complex entangled states
which must be created with low error probability to begin with.
One approach to this problem is to dedicate adjacent quantum
circuitry whose sole function is to prepare and purify logical
zeros, providing a steady supply at various concatenation levels
specifically for this purpose. Alternatively, the preparation of
logical zeros can be performed directly within the qubit error
protection block. The full error-correction circuit is illustrated
in Fig. 6. Purification of three ’s, prepared by the block,
results in a single state for use in error correction. The
zero preparation block is given in Fig. 7. Bit-flip errors are cor-
rected with a modified indicator block , which also corrects
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Fig. 7. Circuit 0 for preparation of a single logical zero j0i from lower
level j0i ’s. Only nearest neighbor operations are employed.

for a possible parity flip error corresponding to the logical zero
being in the state (and thus requiring a minimum of four
ancillae). The qubit protection block must increase in size to
accommodate preparation in this case. A total of 46 qubits
would be required that are arranged in the following sequence
of qubits (compare with Fig. 6): seven qubits for storing

, seven qubits for storing a , three ancillae for
, seven qubits for storing a , four ancillae for ,

seven qubits for storing a , seven qubits for storing a ,
and four ancillae for .

IV. ERROR THRESHOLD PENALTY

The number of physical qubits for our concatenated CSS en-
coding required to store and protect one logical qubit is 27
(or 46 , including logical zero preparation). Several levels of
concatenation already lead to a large number of physical qubits
(although the width of the qubit stripe grows only as ).
Likewise, the number of physical gate operations grows expo-
nentially ( ), where is approximately the number of logical
operations required at level in order to implement a single
logical function at level . For example, with a single level of
encoding, is simply the number of physical gate operations
required to perform some function on our seven-qubit CSS code
word (or multiple code words in the case of a multiqubit logical
function).

The number of gate operations will depend on the function
being performed. We consider implementing a simple two-qubit
unitary followed by error correction , as illustrated in
Fig. 4(b). Error correction might require logical gate
operations at level . There will be additional logical SWAP
operations at level that are required to move qubits around,
since only nearest neighbor interactions are permitted. We let

be the number of required nearest neighbor SWAP com-
munication operations, which brings the total number of level

operations to . Of course, the unitary
will require operations at level , as well as addi-
tional communication operations at level . The total gate
operation count at level to implement followed by
is simply . The total physical gate
count is again approximately ,
because each of the operations at is simply a unitary

followed by error correction . The self-similar hier-
archy requires that operations at are required for each
operation at and so forth, including communication.

Fig. 8. Logical SWAP operation illustrated at concatenation levels L through
L�2with nearest neighbor interactions only. The number of levelL�1 SWAPs
required to implement a single levelL SWAP between adjacent logical qubits is
N +N = 7+42. There are 21 levelL�1 SWAPs to interleave the qubits,
seven level L� 1 qubit-wise SWAPs, and 21 level L� 1 SWAPs to undo the
interleaving. Note that a single gate failure does not produce correlated errors
within a logical qubit. Error correction, and swapping through the additional
qubits in a qubit protection block, are omitted here for clarity.

In reality, the gate count varies among the var-
ious logical qubit operations possible. For instance, Hadamard
at level requires Hadamard gates at level and

communication gates. In contrast, the gate operations
involved in a logical SWAP on the same

qubit line are illustrated in Fig. 8 for adjacent logical qubits.
Clearly, the value of can be very large, although a substan-
tial fraction of operations at each logical level can be performed
in parallel. Note the fault tolerance of the logical SWAP gate: a
single swap gate failure induces one error in each logical qubit,
which can be recovered independently by error correction. Of
course, the extra qubits involved in a qubit protection block in-
creases the number of communication swaps . As a final
example, we show the partial sequence of gate operations re-
quired for the logical CNOT gate in Fig. 9. It is in implementing
the CNOT gate that an additional line of qubits is used for every
concatenation level, resulting in a total of lines of qubits.
Similar sequences are used for the SWAP and CNOT gates re-
quired for the error-correction operation , contributing to

.
Despite the exponential increase in physical qubits and phys-

ical gate operations with concatenation level (while the width of
the stripe merely grows linearly in concatenation level), logical
errors are suppressed double-exponentially with concatenation
level. We let be the logical error probability on a first-level
encoded state after a two-qubit unitary followed by a single
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Fig. 9. Partial sequence for a logical level L CNOT operation illustrated at
concatenation level L� 1 with nearest neighbor interactions only. (a) Logical
code words j i and j'i are (b) first brought into adjacent positions, and
(c) then each of the seven constituent L� 1 qubits are moved into an adjacent
qubit row to be (d) brought together for qubit-wise interaction (only the third
qubits j i and j' i are shown interacting). The logical qubits are
brought back to their original positions for error correction after the logical
CNOT. The scheme is applied recursively until physical CNOT gates are
performed in the L+ 1st row. The CNOT gates for the error-correction circuit
are similarly implemented. Note that a single gate failure does not produce
multiple errors within a logical qubit.

error-correction cycle. By the fault-tolerant construction of
and , the probability of a logical error is bounded above by
the probability that two gate operations fail

(1)

where is the probability of physical gate error, which is as-
sumed to be equal for all gates, and
as before. While logical error rates shall vary slightly due to dif-
ferences in amongst the logical gate operations with
the dominant remaining fixed, a conservative esti-
mate can be had by taking the gate counts for the logical CNOT
gate as representative. The criterion for error correction to re-
duce the likelihood of qubit error is . This leads to the
threshold error condition . Likewise, at higher levels
of concatenation, we have

(2)

which leads to being the error threshold
condition for all . The corresponding required phase accuracy
for gate operations, as described in Section V, is .
From the above relations, we arrive at the standard logical error
probability for concatenated error correction

(3)

but where now includes the nearest neighbor communication
overhead at a particular concatenation level. The exponent
results in an overwhelming super-exponential in suppression
of logical errors, while the number of qubits and gate operations
increases only exponentially in .

Suppose that a quantum computation requires a sequence of
logical gate operations, then a logical error probability

will give the correct result with only several trials of the

computation. The relation between the maximum number of
operations in a calculation and concatenation level can be
written

(4)

or alternatively

(5)

For instance, the error threshold might be , while
the physical gate operation error is an order of magnitude better
at . We then have an accessible computation
length , which, for , gives . It
follows that interesting calculations can be performed with only
a few layers of concatenation (i.e., a qubit stripe with a width of
only a few qubits) if physical error probabilities well below the
error threshold can be achieved.

The problem of estimating error threshold has been reduced
to counting gate operations, for which our numerical results are
summarized in Table I. Note that we have neglected storage er-
rors in our present analysis since the coherence times of electron
spins in semiconductors [24] exceed the expected gate operation
times by at least 8 orders of magnitude, with further improve-
ment expected. The top row of Table I gives the most favor-
able error thresholds where any qubit can interact with any other
qubit without any extra communication operations. The bottom
row is the least favorable case where nearest neighbor SWAP
operations are used on a linear qubit array to implement all op-
erations. The middle row represents an intermediate case, where
the remote CNOT is used to perform a CNOT gate between
distant qubits [25], [26]. The remote CNOT requires a shared
Einstein–Podolsky–Rosen (EPR) pair, which is a resource that
might be generated by independent hardware with sufficient pu-
rity that the EPR error rate contributes negligibly to the overall
error rate of the remote CNOT and the error threshold. Mea-
surement and classical communication are also required for the
remote CNOT (see the Appendix).

For all three communication schemes, the gate count is given
in Table I for subcases where ’s are supplied by adjacent
circuitry (e.g., a parallel qubit stripe) or where the ’s are
prepared directly within the error-correction circuit itself (as in
Fig. 6), thus burdening the error threshold. In the former case,
we assume that the adjacent circuitry can prepare and purify
logical zeros to reach an error probability much less than the
preparation circuit of the former case, thereby contributing to
the error threshold negligibly. This might be achieved by suc-
cessive rounds of purification.

In all cases, we assume that those portions of the circuit that
can be implemented with classical fault-tolerant logic [22], al-
beit with qubit gates, take advantage of the greater efficiency of
classical coding. The threshold error for classical fault-tolerant
circuits has been estimated to be between 1/100 to 1/3000
depending on topology and communication resources [23];
therefore, we assume that the error rates in the classical circuits
are negligible compared to the quantum circuits, so that in
counting the gate operations we can neglect the operations in
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Fig. 10. Conceptual illustration of a qubit pseudospin that might miss a target
x axis by an angle � due to a control pulse error. The resulting probability of
qubit error is � � (�=2) .

and . Furthermore, the dual-control phase flip and
dual-control bit flip are assumed to count
merely as two-qubit interactions, since fault-tolerant classical
logic can be used to generate a single classical control bit. The
remaining sundry details involved in counting gate operations
are left to the Appendix.

Observing the gate error thresholds in Table I, we see that
SWAP communication incurs a penalty of 175 compared to
the case of free communication. Communication through the
remote CNOT incurs a penalty of 12 compared to the free
communication case. The improvement associated with remote-
CNOT communication is not as much as one might expect, since
the remote CNOT requires multiple operations proportional to
the size of the logical qubits. Thus, internal quantum communi-
cation reduces gate error thresholds for fault-tolerant computa-
tion by a substantial factor that we estimate to be from 12
to 175 . While this certainly increases the difficulty in ex-
perimentally realizing fault-tolerant gate operations, it is by no
means an impasse for solid-state quantum computation, as we
discuss in Section V.

V. ERROR PROBABILITY AND GATE OPERATION ACCURACY

So far, we have worked entirely with error probabilities. In
practice, experimental gate accuracy is more naturally specified
in terms of control pulse amplitude. Consider the spin (or a qubit
pseudospin), illustrated in Fig. 10. Suppose a control pulse, as is
used in spin resonance, was to bring the spin into alignment with
the axis. However, an error in pulse area, phase, or timing may
cause a misalignment by some small angle . The probability of
error is then the probability that the spin is not projected into
the direction when a measurement is performed along the

axis. The probability of projection along the direction is
, so that the error probability is

(6)

The required gate timing and amplitude accuracy is ,
which is specified as a phase angle, is proportional to the square
root of the threshold error probability. The gate accuracy thresh-
olds are given in degrees in Table I. Of course, the 12 to

175 penalty in error probability threshold becomes only a
3.5 to 13 penalty in control pulse accuracy. In order to

achieve an error probability of 10 , one would require about
1/30 of a degree accuracy in control pulse timing, which is not
entirely infeasible since it would require about 1-ps phase accu-
racy in a clock period of about 10 ns. Recall that an error prob-
ability of 10 for a quantum processor with threshold error
probability 10 and three levels of concatenation will allow a
computation with 10 operations. Thus, thinking about gate
errors in terms of phase angle makes it clear that very small error
probabilities are achievable.

VI. CONCLUSION

Internal quantum communication remains a challenging ar-
chitectural problem that impacts the threshold error for fault-tol-
erant computation with encoded logical qubits. The commu-
nication operation overhead required to distribute information
among a number of qubits that grows exponentially with con-
catenation level can be a significant burden. Whether one is lim-
ited to nearest neighbor communication, a communication bus
(as in the original Cirac–Zoller ion trap proposal [1]), or com-
munication by modified teleportation schemes such as the re-
mote CNOT, there is always a communication penalty in error
threshold. The minimum communication overhead cost is asso-
ciated with a communication bus, where a single operation for
“transmitting” and a single operation for “receiving” is possible
in principle. The question of whether a sufficiently robust com-
munication bus is available for solid-state qubits remains open.
Ballistic transport of electron spins through mesoscopic wires
is predicted to give error rates of 0.6 for GaAs [7], far above
our stated threshold requirements even for the free communi-
cation case. Much more promising is the combination of cavity
QED techniques with confined electron spins [4] or supercon-
ducting circuits [5], where an electromagnetic bus can couple a
number of qubits. The error rates of such a bus, the reconfigura-
bility of its links, and its parallelism (i.e., how many qubits can
be transported simultaneously or through the same link) must
all be carefully considered in determining what benefits, if any,
we can expect over nearest neighbor architectures. Nonetheless,
we expect that communication overhead can be mitigated to a
large extent by circuit optimization. Recent work [27] on laying
out Shor’s factorization algorithm on a linear chain of qubits
under the restriction of nearest neighbor interaction has shown
that circuit optimization can greatly reduce the number of log-
ical qubit SWAPs required.

APPENDIX I
THRESHOLD ERROR CALCULATIONS

We provide a brief summary here of the counting of gate
operations, which then leads to the threshold error. Error cor-
rection at concatenation level with the circuit requires
the use of both single-qubit unitaries and two-qubit unitaries at
levels down to the physical layer. Interestingly, the quantum
portions of the circuit (see Figs. 5 or 6) consists of gate
operations that are directly fault-tolerant, where qubit-wise (or
transversal) operations are sufficient. These operations include
CNOT, SWAP, and Hadamard rotation (H). The control bits of
the dual control gates are classical, so a full quantum Toffoli
is not required. Of course, indirectly fault-tolerant gates such as
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Fig. 11. Remote-CNOT gate, modified from [26], requires a shared EPR pair
j	 i = (j01i+ j10i)=p2, measurement M , and classical communication
to implement a CNOT operation between distant qubits.

the Toffoli or rotation are required for uni-
versal computation. We do not calculate the error threshold for
indirectly fault-tolerant gates here.

A. Free Communication

First, we consider the idealized case where communication
is achieved without any extra operations, in other words, any
two qubits can interact directly at any time. In this case,

, and we need only count the number of computa-
tionally useful gates. A directly fault-tolerant two-qubit unitary
will require operations. The error correction gate count
without logical zero preparation is

(7)

where the gate type and count are indicated. With logical
zero preparation, we have

(8)

where again gate type and count was indicated.

B. Remote-CNOT Communication

Next, we consider the intermediate communication case
involving remote-CNOT operation, which we abbreviate as
reCNOT. The reCNOT circuit is indicated in Fig. 11. For sim-
plicity, we assume that the classical communication and EPR
preparation introduce negligible errors compared to the other
gate operations involved. We see that a reCNOT between two
level qubits requires five level operations, so that a
reCNOT between two level qubits requires
level operations. The error correction gate count without
logical zero preparation becomes

(9)

where and are counted as reCNOT operations
(recall that they can be implemented with single classical con-
trol bits). With logical zero preparation, we have

(10)

where we have made use of both nearest neighbor CNOT and
reCNOT in the logical zero preparation.

C. SWAP Communication

Finally, we consider communication by SWAP gates. Without
logical zero preparation, a level qubit protection block is 27

qubits long. Applying CNOT between two level qubits
as in Fig. 9 requires level operations
on each logical qubit argument. The error-correction operation
requires

(11)

where we note that 112 communication SWAPs are required
for applying CNOT between with an adjacent , and
84 communication SWAPs are required for logical swapping of
a with another taking account of the extra ancillae

in the way.
When logical zero generation is included, the qubit protection

block increases in size to 46 qubits. Applying CNOT between
two level qubits now requires level
operations because of the increased size of the qubit protection
block. The error correction operation requires

(12)

where we note that each logical generation requires 27 level
operations (Fig. 7), and the SWAP communication ac-

counts for all extra ancillae in the way.
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