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Abstract. Side-channel attacks have proven many hardware implemen-
tations of cryptographic algorithms to be vulnerable. A recently proposed
masking method, based on secret sharing and multi-party computation
methods, introduces a set of sufficient requirements for implementations
to be provably resistant against first-order DPA with minimal assump-
tions on the hardware. The original paper doesn’t describe how to con-
struct the Boolean functions that are to be used in the implementation.
In this paper, we derive the functions for all invertible 3×3, 4×4 S-boxes
and the 6 × 4 DES S-boxes. Our methods and observations can also be
used to accelerate the search for sharings of larger (e.g. 8 × 8) S-boxes.
Finally, we investigate the cost of such protection.
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1 Introduction

Side-channel analysis exploits the information leaked during the computation
of a cryptographic algorithm. The most common technique is to analyze the
power consumption of a cryptographic device using differential power analysis
(DPA). This side-channel attack exploits the correlation between the instanta-
neous power consumption of a device and the intermediate results of a crypto-
graphic algorithm.

Several countermeasures against side-channel attacks have been proposed. Cir-
cuit design approaches try to balance the power consumption of different data val-
ues [31]. Another method is to randomize the intermediate values of an algorithm
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by masking them. This can be done at the algorithm level [1,5,12,24], at the gate
level [13, 27, 32] or even in combination with circuit design approaches [25].

Many of these approaches result in very secure software implementations.
However, it has been shown that hardware implementations are much more dif-
ficult to protect against DPA [17]. The problem of most of these masking ap-
proaches is that they underestimate the amount of information that is leaked
by hardware, for instance during glitches or other transient effects. The security
proofs are based on an idealized hardware model, resulting in requirements on
the hardware that are very expensive to meet in practice. The main advantages
of the threshold implementation approach are that it provides provable secu-
rity against first-order DPA attacks with minimal assumptions on the hardware
technology, in particular, it is also secure in the presence of glitches, and that
the method allows to construct realistic-size circuits [20, 22, 23].

1.1 Organization and Contributions of This Paper

The remainder of this paper is organized as follows. In Section 2 we introduce
the notation and provide some background material. Section 2.6 contains our
first contribution: a classification of S-boxes which simplifies the task to find
implementations for all S-boxes. In Section 3 we present our second contribution:
a method to decompose permutations as a composition of quadratic ones. We
prove that all 4-bit S-boxes in the alternating group can be decomposed in this
way. We extend the sharing method in Section 4 and show that all 3×3, 4×4 and
DES 6×4 S-boxes can be shared with minimum 3 and/or 4 shares. We investigate
the cost of an HW implementation of the shared S-boxes in Section 5. Some ideas
for further improvements will be provided in the full version of the paper [2].
Finally, we conclude in Section 6.

2 Preliminaries

We consider n-bit permutations sometimes defined over a vector space Fn
2 or

over a finite field GF (2n). The degree of such a permutation F is the algebraic
degree of the (n, n) vectorial Boolean function [6] or also called n-bit S-box.
Any such function F (x) can be considered as an n-tuple of Boolean functions
(f1(x), . . . , fn(x)) called the coordinate functions of F (x).

2.1 Threshold Implementations

Threshold implementations (TI), are a kind of side-channel attack countermea-
sures, based on secret sharing schemes and techniques from multiparty compu-
tation. The approach can be summarized as follows. Split a variable x into s
additive shares xi with x =

∑
i xi and denote the vector of the s shares xi by

x = (x1, x2, . . . , xs). In order to implement a function a = F (x, y, z, . . . ) from
Fm

2 to Fn
2 , the TI method requires a sharing, i.e. a set of s functions Fi which

together compute the output(s) of F . A sharing needs to satisfy three properties:
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Correctness: a = F (x, y, z, . . . ) =
∑

i Fi(x,y, z, . . . ) for all x,y, z, . . . satisfy-
ing

∑
i xi = x,

∑
i yi = y,

∑
i zi = z, . . .

Non-completeness: Every function is independent of at least one share of the
input variables x, y, z. This is often translated to “Fi should be independent
of xi, yi, zi, . . . .”

Uniformity (balancedness): For all (a1, a2, . . . , as) satisfying
∑

i ai = a, the
number of tuples (x,y, z, . . . ) ∈ Fms for which Fj(x,y, z, . . . ) = aj , 1 ≤ j ≤
s, is equal to 2(s−1)(m−n) times the number of (x, y, z, . . . ) ∈ Fm for which
a = F (x, y, z, . . . ). Hence, if F is a permutation on Fm, then the functions Fi

define together a permutation on Fms. In other words, the sharing preserves
the output distribution.

This approach results in combinational logic with the following properties. Firstly,
since each Fi is completely independent of the unmasked values, also the sub-
circuits implementing them are, even in the presence of glitches. Because of
the linearity of the expectation operator, the same holds true for the average
power consumption of the whole circuit, or any linear combination of the power
consumptions of the subcircuits. This implies perfect resistance against all first-
order side-channel attacks [23]. The approach was recently extended and applied
to Noekeon [23], Keccak [4], Present [26] and AES [19]. Whereas it is easy to
construct for any function a sharing satisfying the first two properties, the uni-
formity property poses more problems. Hence reasonable questions to ask are:
which functions (S-boxes) can be shared with this approach, how many shares
are required and how can we construct such sharing?

A similar approach was followed in [28], where Shamir’s secret sharing scheme
is used to construct hardware secure against dth-order side-channel attacks in
the presence of glitches. Instead of constructing dedicated functions Fi, they
propose a general method which replaces every field multiplication by 4d3 field
multiplications and 4d3 additions, using 2d2 bytes of randomness. While the
method is applicable everywhere, in principle, there are cases where it may prove
too costly.

2.2 Decomposition as a Tool to Facilitate Sharing

In order to share a nonlinear function (S-box) with algebraic degree d, at least
d + 1 shares are needed [20, Theorem 1]. Several examples of functions shared
with 3 shares, namely quadratic Boolean function of two and three variables,
multiplication on the extension field GF (22m)/GF (2m) (e.g. multiplication in
GF (4)), and the Noekeon S-box have been provided [20,22,23]. A realization of
the inversion in GF (16) with 5 shares was given in [20]. Since the area require-
ments of an implementation increase with the number of shares, it is desirable
to keep the number of shares as low as possible.

The block ciphers Noekeon and Present have been designed for compact hard-
ware implementations. They have S-boxes, which are not very complex 4×4 cubic
permutations. Realizations for these two block ciphers have been presented for
Noekeon in [22, 23] and in [26] for Present. In order to decrease the algebraic
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degree of the functions for which sharings need to be found, these three real-
izations decompose the S-box into two parts. For the Present S-box, decompo-
sitions S(x) = F (G(x)) with G(0) = 0 have been found where F (x) and G(x)
are quadratic permutations [26]. By varying the constant term G(0) the authors
found all possible decompositions of S(X) = F (G(X)). Both S-boxes F (x), G(x)
have been shared with three shares (F1, F2, F3) and (G1, G2, G3) that are correct,
non-complete and uniform.

When the AES S-box (with algebraic degree seven) is presented using the
tower field approach, the only nonlinear operation is the multiplication in GF (4),
which is a quadratic mapping [19]. This observation has lead to a TI for AES
with 3 shares. In order to guarantee the uniformity, re-sharing (also called re-
masking) has been used four times. Re-sharing is a technique where fresh uniform
and random masks/shares are added inside a pipeline stage in order to make the
shares follow an uniform distribution again.

A novel fault attack technique against several AES cores including one claimed
to be protected with TI method has been proposed in [18]. But as the authors
pointed out, contrary to the AES TI implementation in [19], their targeted core
has been made without satisfying the non-completeness and uniformity proper-
ties by “sharing” the AND gates with 4 shares formula from [19, 20]. Since the
used method does not satisfy the TI properties it should not be called a TI im-
plementation of AES. In addition, the TI method was never claimed to provide
protection against fault attacks.

2.3 Equivalence Classes for n = 2, 3, 4

Definition 1 ([8]). Two S-boxes S1(x) and S2(x) are affine/linear equivalent
if there exists a pair of invertible affine/linear permutation A(x) and B(x), such
that S1 = B ◦ S2 ◦A.
Every invertible affine permutation A(x) can be written as A · x + a with a an
n-bit constant and A an n× n matrix which is invertible over GF (2). It follows

that there are 2n ×∏n−1
i=0 (2

n − 2i) different invertible affine permutations.
The relation “being affine equivalent” can be used to define equivalence classes.

We now investigate the number of classes of invertible n × n S-boxes for n =
2, 3, 4. Note that the algebraic degree is affine invariant, hence all S-boxes in a
class have the same algebraic degree.

It is well known that all invertible 2 × 2 S-boxes are affine, hence there is
only one class. The set of invertible 3× 3 S-boxes contains 4 equivalence classes
[8]: 3 classes containing quadratic functions, and one class containing the affine
functions. We will provide a table with a representative of each class in the full
version of the paper [2].

The maximal algebraic degree of a balanced 4-variable Boolean function is 3
[7, 16]. De Cannière uses an algorithm to search for the affine equivalent classes
which guesses the affine permutation A for as few input points as possible, and
then uses the linearity of A and B to follow the implications of these guesses



80 B. Bilgin et al.

as far as possible. This search is accelerated by applying the next observation,
which follows from linear algebra arguments (change of basis):

Lemma 1 ([15]). Let S be an n×n bijection. Then S is affine equivalent to an
S-box S̃ with S̃(0) = 0, S̃(1) = 1, S̃(2) = 2, . . . , S̃(2n−1) = 2n−1.

In the case n = 4, this observation reduces the search space from 16! ≈ 244 to
11! ≈ 225.

De Cannière lists the 302 equivalence classes for the 4 × 4 bijections [8]: the
class of affine functions, 6 classes containing quadratic functions and the re-
maining 295 classes containing cubic functions.1 We will list the classes in the
full version of the paper [2]. The numbering of the classes is derived from the
lexicographical ordering of the truth tables of the S-boxes. In order to increase
readability, we introduce the following notation An

i , Qn
j , Cn

k to denote the Affine
class number i, Quadratic class number j and Cubic class number k of permu-
tations of Fn

2 .

2.4 Order of a Permutation

All bijections from a setX to itself (also called permutations) form the symmetric
group on X denoted by SX . A transposition is a permutation which exchanges
two elements and keeps all others fixed. A classical theorem states that every
permutation can be written as a product of transpositions [29], and although
the representation of a permutation as a product of transpositions is not unique,
the number of transpositions needed to represent a given permutation is either
always even or always odd. The set of all even permutations form a normal
subgroup of SX , which is called the alternating group on X and denoted by AX .
The alternating group contains half of the elements of SX . Instead of AX and
SX , we will write here An and Sn, where n is the size of the set X .

2.5 Known S-Boxes and Their Classes

There are only few cryptographically significant 3 × 3 S-boxes: the Inversion in
GF (23), the PRINTcipher, the Threeway and the Baseking S-boxes. They all
belong to Class 3. There are many cryptographically significant 4 × 4 S-boxes.
To mention some of them: Twofish, Gost, Serpent, Lucifer, Clefia, HB1, HB2,
mCrypton, Klein, Khazad, Iceberg, Puffin, Present, Luffa, Hamsi, JH, Noekeon,
Piccolo.

2.6 The Inverse S-Box

Note that S−1, the inverse S-box, is not necessarily affine equivalent to S and in
this case may not have the same algebraic degree. We know however, that the
inverse of an affine permutation is always an affine permutation. In the case of

1 Independent of [8,15], Saarinen classified the 4× 4 S-boxes using a different equiva-
lence relation [30].
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3 × 3 S-boxes it follows that the inverse of a quadratic permutation is again a
quadratic permutation. Moreover, it can be shown that the 3 quadratic classes
in S8 are self-inverse, i.e. S−1 belongs to the same class as S. In the case n = 4,
we can apply the following lemma.

Lemma 2 ([6]). Let F be a permutation of GF (2n), then deg(F−1) = n− 1 if
and only if deg(F ) = n− 1.

Since the inverse of an affine S-box is affine, and, when n = 4, the inverse of
a cubic S-box is cubic, it follows that in this case the inverse of a quadratic
S-box is quadratic. The Keccak S-box (n = 5) is an example where the algebraic
degree of the inverse S-box (3) is different from the algebraic degree of the S-box
itself (2) [3].

We have observed that there are 172 self-inverse classes in S16. The remaining
130 classes form 65 pairs, i.e., any S-box S of the first class has an inverse S-box
S−1 in the second class (and vice versa). We will provide the list of the pairs of
inverse classes in the full version of the paper [2].

3 Decomposition of 4 × 4 S-Boxes

In this section we consider all 4× 4 bijections, and investigate when a cubic bi-
jection from S16 can be decomposed as a composition of quadratic bijections. We
will refer to the minimum number of quadratic bijections in such a decomposi-
tion as decomposition length. Recall that the Noekeon S-box is cubic but defined
as a composition of two quadratic S-boxes in F4

2 : S(x) = S2(S1(x)). Similarly
the Present S-box is cubic but has also been shown to be decomposable in two
quadratic S-boxes.

Lemma 3. If an S-box S can be decomposed into a sequence of t quadratic S-
boxes, then all S-boxes which are affine equivalent to S can be decomposed into
a sequence of t quadratic S-boxes.

Lemma 4 ([33]). For all n, the n × n affine bijections are in the alternating
group.

Lemma 5. All 4× 4 quadratic S-boxes belong to the alternating group A16.

Proof. Since all invertible affine transformations are in the alternating group (the
previous Lemma), two S-boxes which are affine equivalent, are either both even
or both odd. We have taken one representative of each of the 6 quadratic classes
Q4

i for i ∈ {4, 12, 293, 294, 299, 300} [8] and have verified that their parities are
even. ��
Now we investigate which permutations we can generate by combining the affine
and the quadratic permutations. We start with the following lemma.

Lemma 6. Let Qi be 6 arbitrarily selected representatives of the 6 quadratic
classes Q4

i . (Hence i ∈ {4, 12, 293, 294, 299, 300}.) Then all cubic permutations
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S that have decomposition length 2, are affine equivalent to one of the cubic
permutation that can be written as

S̃i×j = Qi ◦A ◦Qj , (1)

where A is an invertible affine permutation and i, j ∈ {4, 12, 293, 294, 299, 300}.
It follows that we can construct all cubic classes of decomposition length 2 by
running through the 36 possibilities of i × j and the 322560 invertible affine
transformations in (1). This approach produces 30 cubic classes. In the remain-
der, we will denote the S-boxes S̃i×j by i × j and refer to them as the simple
solutions. In the full version of the paper [2] we provide the list of the simple
solutions for all 30 decompositions with length 2. Note that if Qi ◦A ◦Qj = S,
i.e. S can be decomposed as a product of i × j, then Q−1

j ◦ A−1 ◦ Q−1
i = S−1.

Since for n = 4 all quadratics are affine equivalent to their inverse, it follows
that S−1 is decomposed as a product of j × i. Thus any self-inverse class has
decomposition i× j and j× i as well. For the pairs of inverse classes we conclude
that if i× j belongs to the first class then j × i belongs to the second class.

To obtain all decompositions with length 3 we use similar approach as for
length 2 but the first permutation Qi is cubic (instead of quadratic) and belongs
to the already found list of cubic classes decomposable with length 2. It turns
out that we can generate in this way the 114 remaining elements of A16.

Summarizing, we can prove the following Theorem and Lemma (stated with-
out proof in [9]).

Theorem 1. A 4 × 4 bijection can be decomposed using quadratic bijections if
and only if it belongs to the alternating group A16 (151 classes).

Proof. (⇒) Let S be a bijection which can be decomposed with quadratic per-
mutations say Q1◦Q2◦. . .◦Qt. Since all Qi ∈ A16 (Lemma 5) and the alternating
group is closed it follows that S ∈ A16.
(⇐) Lemma 3, Lemma 6 and the discussion following it imply that we can gen-
erate all elements of the alternating group using quadratic permutations. ��
The left-hand-side columns of Table 1 list the decompositions of all 4×4 S-boxes.
Theorem 1 implies that the classes which are not in the alternative group i.e. in
S16 \A16, can’t be decomposed as a product of quadratic classes. Now we make
the following simple observation:

Lemma 7. Let S̃ be a fixed permutation in S16\A16 then any cubic permutation
from S16 \A16 can be presented as a product of S̃ and a permutation from A16.

4 Sharing with 3, 4 and 5 Shares

In this section we focus first on the permutations which can be shared with 3
shares, i.e. all S-boxes in F3

2 and half of the S-boxes in F4
2 . Next we focus on

those functions that can be shared with 4 shares, i.e. the other half of the S-boxes
in F4

2 . Then, we will show how to share all of these S-boxes in F4
2 with 5 shares

without need of a decomposition.
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4.1 A Basic Result

Theorem 2. If we have a sharing for a representative of a class, then we can
derive a sharing for all S-boxes from the same class.

Proof. Let S be an n× n S-box which has a uniform, non-complete and correct
sharing S̄ using s shares Si. Denote the input vector of S by x, and the shares by
xi. Each Si contains n coordinate shared functions depending on at most (s− 1)
of the xi, such that the noncompleteness property is satisfied. We denote by xi

the vector containing the s− 1 inputs of Si.
We now construct a uniform, non-complete and correct sharing for any S-box

S̃ which is affine equivalent to S. By definition, there exist two n× n invertible
affine permutations A and B s.t. S̃ = B ◦ S ◦ A. In order to lighten notation,
we give the proof for the case that A and B are linear permutations. We define
Ā, B̄ as the ns × ns permutations that apply A, respectively B, to each of the
shares separately:

Ā(x1, x2, . . . xs) = (A(x1), A(x2), . . . A(xs)),

B̄(x1, x2, . . . xs) = (B(x1), B(x2), . . . B(xs)).

Denote yi = A(xi), 1 ≤ i ≤ s and define yi as the vector containing the
s − 1 shares yi that we need to compute Si. Consider S̄(Ā(x1, x2, . . . , xs)) =
(S1(y1), S2(y2), . . . Ss(ys)). By slight abuse of notation we can write yi = Ā(xi)
and see that the noncompleteness of the S̄i is preserved in S̄ ◦ Ā. Since Ā is a
permutation, it preserves the uniformity of the input and since S̄ is uniform so
will be the composition S̄ ◦ Ā. The correctness follows from the fact that S̄ is a
correct sharing and that

y1 + y2 + · · ·+ ys = A(x1) +A(x2) + · · ·+A(xs) = A(x1 + x2 + . . . xs) = A(x).

Consider now B̄(S̄(A(x))) = (B(S1(y1)), B(S2(y2)), . . . , B(Ss(ys))). Since B̄ is
a permutation, it preserves uniformity of the output and since S̄ is uniform, the
composition B̄ ◦ S̄ is uniform. The composition is non-complete since the S̄i are
non-complete and B̄ doesn’t combine different shares. Correctness follows from
the fact that S̄ is a correct sharing and hence

B(S1(y1)) +B(S2(y2)) + · · ·+B(Ss(ys))

= B(S1(y1) +S2(y2) + · · ·+ Ss(ys)) = B(S(A(x))). ��

4.2 Direct Sharing

The most difficult property to be satisfied when the function is shared is the uni-
formity. Assume that we want to construct a sharing for the function F (x, y, z)
with 3 shares. Then it is easy to produce a sharing which satisfies the correctness
and the non-completeness requirements and is rotation symmetric, by means of
a method that we call the direct sharing method, and that we now describe.
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First, we replace every input variable by the sum of 3 shares. The correctness is
satisfied if we ensure that

F1 + F2 + F3 = F (x1 + x2 + x3, y1 + y2 + y3, z1 + z2 + z3).

In order to satisfy non-completeness, we have to divide the terms of the right
hand side over the three Fj in such a way that Fj doesn’t contain a term in xj .
We achieve this by assigning the linear terms containing an index j to Fj−1, the
quadratic terms containing indices j and j + 1 to Fj−1 and the quadratic terms
containing indices j only to Fj−1. For example,

F (x, y, z) = x+ yz, gives:

F1 = x2 + z2y2 + z2y3 + z3y2

F2 = x3 + z3y3 + z3y1 + z1y3

F3 = x1 + z1y1 + z1y2 + z2y1.

Note that the uniformity of sharing produced in this way is not guaranteed. It
has to be verified separately. The method can easily be generalized for larger
number of shares.

Direct sharing has been used in [26] for the decomposition of the quadratic
permutations F and G of the Present S-box S and similarly for Noekeon [23],
Keccak [4].

With the direct sharing method we were able to find sharings respecting the
uniformity condition for all 1344 permutations of Q3

1, but none of Q3
2 and Q3

3.
We were also able to find sharings for all 322560 permutations of Q4

4, Q4
294 and

Q4
299, but none of Q4

12, Q4
293 and Q4

300. So, unfortunately half of the quadratic
S-boxes can’t be shared directly with length 1 but we still can find a sharing with
length 2 by decomposing them as a composition of the already shared quadratic
S-boxes. Thus, if we use only direct sharing we will be able to find sharings for
all S-boxes in the alternating group but at the cost of longer path.

4.3 Correction Terms

Since direct sharing not always results in an uniform sharing the use of correc-
tion terms (CT) has been proposed [20, 22]. Correction terms are terms that
can be added in pairs to more than one share such that they satisfy the non-
completeness rule. Since the terms in a pair cancel each other, the sharing still
satisfies the correctness.

By varying the CT one can obtain all possible sharings of a given function.
Consider a Boolean quadratic function with m variables (1 output bit), which
we want to share with 3 shares. Note that the only terms which can be used as
CT are xi or xiyi (or higher degree) for i = 1, 2, 3. Indeed terms like xiyj for
i 
= j can’t be used in the i-th and j-th share of the function because of the
non-completeness rule and therefore such a term can be used in only 1 share,
hence it can’t be used as a CT.
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Thus counting only the linear and quadratic CT and ignoring the constant
terms, which will not influence the uniformity, for a quadratic function with
m variables we obtain that there are 3(m +

(
m
2

)
) CT. Taking into account all

possible positions for the CT we get 23(m+(m2 )) sharings. For example, for a
quadratic function of 3 variables there are 218 possible CT and therefore for a
3× 3 S-boxes the search space will be 254. This makes the exhaustive search (to
find a single good solution) over all CT unpractical, even for small S-boxes. For
sharing with 4 shares even more terms can be used as CT.

4.4 A Link between the 3 × 3 S-Boxes and Some Quadratic 4 × 4
S-Boxes

Lemma 8. There is a transformation which expands Q3
1, Q3

2 and Q3
3 into Q4

4,
Q4

12 and Q4
300 correspondingly.

Proof. Starting from a 3× 3 S-box S and adding a new variable we can obtain a
4× 4 S-box S̃. Namely, the transformation is defined as follows: let S(w, v, u) =
(y1, y2, y3) and define S̃(x,w, v, u) = (y1, y2, y3, x). It is easy to check that this
transformation maps the first 3 classes into the other 3 classes. ��

The relation from Lemma 8 explains why if we have a sharing for a class in F3
2

we also obtain a sharing for the corresponding class in F4
2 and vice versa, i.e., if

we can’t share a class the corresponding class also can’t be shared. The results
we have obtained with 3 shares are summarized in Table 1 (middle columns).

Recall that if we use only direct sharing we will be able to share with 3 shares
all S-boxes in the alternating group but at the cost of longer path than the one
obtained by decomposition. However using CT we found sharing for classes: Q3

1,
Q3

2, Q4
4, Q4

12, Q4
293, Q4

294 and Q4
299. So all quadratic classes except Q3

3 and Q4
300

can be shared with 3 shares and without decomposition. We want to pose an
open question: find sharing without decomposition to classes Q3

3 and Q4
300 or

show why they can’t be shared with 3 shares in that way.

4.5 Sharing Using Decomposition

As an alternative to the search through a set of correction terms, we can also
construct sharings after using decomposition: we try to decompose S-boxes into
S-boxes for which we already have sharings. This decomposition problem is more
restrained than the basic problem discussed in Section 3 for sharing with 3 shares,
since we can use only the quadratic S-boxes for which we already have a sharing.
It turns out that this extra requirement sometimes increases the decomposition
length by one. For example, decomposition for Q3

3 is 1 × 2 and 2 × 1, i.e., we
obtain a sharing for Q3

3 at the cost of length 2 (instead of length 1). Similarly
Q4

300 can be decomposed as 4× 12, 4× 293, 12× 4, 12× 294, 293× 4, 293× 294,
294 × 12 and 294 × 293 so, again we obtain a sharing with length 2. Table 1
(right columns) gives the results.
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Recall that one can’t find a sharing with 3 shares for cubic functions outside
the alternating group. Thus, 4 shares will be required in this case. Using direct
sharing with 4 shares we obtain slightly better results for the quadratic S-boxes
compared to 3 shares since we were able to share also class Q4

300 (and therefore
Q3

3 too). The sharing of class Q4
300 has further improved the sharings of C4

130,
C4
131 and C4

24 which have sharing with shorter length for 4 shares than for 3
shares. We have also found sharings with 4 shares for the cubic classes C4

1 , C4
3 ,

C4
13 and C4

301 from S16 \A16 using direct sharing. By using Lemma 7 we obtain
sharings with 4 shares for all 4× 4 S-boxes. Observe that the total length of the
sharing depends on the class we use (C4

1 , C4
3 , C4

13 and C4
301) and also on the class

from the alternating group, which is used for the decomposition. For example,
class C4

7 can be decomposed using C4
1 with length 4 but with classes C4

3 and C4
13

it can be decomposed with length 3. Note also that the number of solutions
differ. We have found 10, 31 and 49 solutions when using C4

1 , C4
3 and C4

13 classes,
correspondingly. Surprisingly for the classes in the alternating group we have
only slight improvement with 4 shares compared to 3 shares and only a few
classes in S16 \A16 have direct sharing with 4 shares. However with 5 shares all
classes can be shared directly without decomposition which is a big improvement
compare to the situation with 4 shares.

Table 1. Overview of the numbers of classes of 4× 4 S-boxes that can be decomposed
and shared using 3 shares, 4 shares and 5 shares. The numbers are split up according
to the decomposition length of the S-boxes (1, 2, 3, or 4), respectively their shares.

unshared 3 shares 4 shares 5 shares remark
1 2 3 1 2 3 4 1 2 3 1

6 5 1 6 6 quadratics
30 28 2 30 30 cubics in A16

114 113 1 114 114 cubics in A16

– – 4 22 125 151 cubics in S16\A16

An open question is why for all S-boxes the sharing with 4 shares does not
improve significantly the results compared to 3 shares and suddenly with 5 shares
we can share all classes with length 1.

Recall that for the Present S-box, decompositions S(x) = F (G(x)) have been
found in [26]. The authors also made an observation that exactly 3

7 sharings out
of the decompositions automatically satisfy the uniformity condition (i.e. without
any correction terms). Recall that with the direct sharing method without CT
we (as well as the authors of [26]) were able to share only 3 quadratic classes: Q4

4,
Q4

294 and Q4
299. The Present S-box belongs to C4

266 and has 7 simple solutions
but only 3 of them can be shared namely 294× 299, 299× 294, 299× 299, which
explains the authors’ observation.

In the full version of the paper [2] we provide a complete list for the sharings
with 3 and with 4 shares with their lengths. Recall that all classes can be shared
with 5 shares with length 1 and that for the S-boxes in S16\A16 no solution with
3 shares exist. Note that the DES 6 × 4 S-boxes can be considered as an affine
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2 × 2 selection S-box with four 4 × 4 S-boxes attached. Since we have sharings
for both 2× 2 and 4× 4 S-boxes we conclude that we have sharings for the DES
6× 4 S-boxes as well.

5 HW Implementation of the Sharings

In this section, our aim is to provide a fair comparison and prediction what the
cost (ratio of area to a NAND gate referred to as GE) will be for a protected
S-box in a specified library. For our investigations we used the TSMC 0.18µm
standard cell library in the Synopsis development tool.

Quadratic classes and cubic classes with length 1 form the basis to all our
implementations. Therefore, we concentrated our efforts on these classes. While
considering 3 × 3 S-boxes we synthesized 840 affine equivalent S-boxes for each
class. However the number of S-boxes in a class increases to more than 322560
as we move to 4 × 4 S-boxes. In that case, we choose 1000 S-boxes per class to
synthesize.

Table 2. S8: Quadratic S-boxes sharing

3×3 S-boxes Sharing Original Unshared Shared Shared Shared
Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S8 (L) L reg L reg 1 reg 1 reg

Q3
1

Min
1

27.66
-

98.66 138.00 148.00
Max 29.66 121.66 150.00 185.66

Q3
2

Min
1

29.00
-

116.66 174.00 180.00
Max 29.66 155.00 226.66 220.33

Q3
3

Min
2

30.00 50.00 194.33 140.00 167.00
Max 32.00 51.00 201.00 194.33 228.66

Table 3. A16: Quadratic S-boxes sharing

4×4 S-boxes Sharing Original Unshared Shared Shared Shared
Quadratic Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S16 (L) L reg L reg 1 reg 1 reg

Q4
4

Min
1

37.33
-

121.33 168.33 186.33
Max 44.00 223.33 258.00 309.00

Q4
12

Min
1

36.66
-

139.33 204.00 218.00
Max 48.00 253.33 290.33 340.66

Q4
293

Min
1

39.33
-

165.33 194.33 235.00
Max 48.66 297.33 313.00 358.33

Q4
294

Min
1

40.00
-

141.33 170.33 210.33
Max 49.66 261.00 240.00 255.00

Q4
299

Min
1

40.33
-

174.33 211.00 247.00
Max 48.00 298.00 295.33 294.66

Q4
300

Min
2

33.66 58.00 207.33 209.66 249.33
Max 52.66 70.00 346.00 295.00 342.33
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Table 4. S16: Cubic S-boxes sharing

4×4 S-boxes Sharing Original Unshared Shared Shared Shared
Cubic Length S-box Decomposed 3 shares 4 shares 5 shares

Class # in S16 (L,L′) L’ reg L reg L’ reg 1 reg

C4
1 ∈ S16 \A16 Min

1,1
39.66 – 213.66 273.66

Max 40.33 – 378.00 464.66

C4
3 ∈ S16 \A16 Min

1,1
40.33 – 230.33 286.33

Max 43.00 – 413.66 500.66

C4
13 ∈ S16 \ A16 Min

1,1
40.33 – 260.00 319.00

Max 41.33 – 423.00 502.66

C4
301 ∈ S16 \ A16 Min

1,1
39.33 – 289.33 350.33

Max 59.33 – 526.33 605.66

C4
150 ∈ A16 2,2 46.33 71.66 305.33 430.66 414.33

C4
151 ∈ A16 2,2 47.33 69.66 286.00 410.00 390.00

C4
130 ∈ A16 3,2 48.00 97.33 393.00 375.66 442.66

C4
131 ∈ A16 3,2 50.00 99.00 386.00 363.33 435.66

C4
24 ∈ A16 4,3 48.33 151.33 674.00 616.66 734.66

C4
204 ∈ S16 \ A16 2,2 49.00 80.33 - 413.00 501.33

C4
257 ∈ S16 \ A16 2,2 47.66 73.66 - 486.00 594.00

C4
210 ∈ S16 \ A16 3,3 47.66 119.33 - 602.00 695.33

In tables 2, 3 and 4 we show the implementation results for each class only
the S-box with the minimum GE from the result of our original S-box synthesis
(over the class), as well as the S-box with the maximum GE. However, note that
the Min and Max values should only be taken as indications.

The area results listed in the column original S-box for an n×n S-box include
one n-bit register. If a decomposition is necessary for a correct, non-complete
and uniform sharing, then we included registers in between every pipelining
operation as required [23] which increases the cost as expected.

For classes with decomposition length more than 1, we randomly choose a
class representative i.e. an S-box. Then we implement the smallest amongst all
possible decompositions of this S-box, namely the one which gives minimum
GE. We saw that, classes Q3

3, Q4
300, C4

150, C4
151, C4

130, C4
131, C4

24, C4
204, C4

257 and
C4
210 give relatively small results when implemented as 2 × 1, 12 × 4, 12 × 293,

293 × 12, 12 × 4 × 299, 299 × 12 × 4, 299 × 12 × 4 × 299, 3 × 294, 3 × 12 and
3 × 293× 12 respectively. The area figures for C4

204 and C4
257 differ significantly.

Closer inspection reveals that this is due to the fact that their decompositions
use different S-boxes from C4

3 ; the S-box used in the decomposition of C4
204 is

smaller than the one in the decomposition of C4
257.

6 Conclusions

In this paper we have considered the threshold implementation method, which
is a method to construct implementations of cryptographic functions that are
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secure against a large class of side-channel attacks, even when the hardware
technology is not glitch-free.

We have analyzed which basic S-boxes can be securely implemented using 3, 4
or 5 shares. We have constructed sharings for all 3×3, 4×4 S-boxes and 6×4 DES
S-boxes. Thus we have extended the threshold implementation method to secure
implementations for any cryptographic algorithm which uses these S-boxes. Note
that the mixing layer in the round function of a block cipher is a linear operation
and thus it is trivially shared even with 2 shares. Finally, we have implemented
several of the shared S-boxes in order to investigate the cost of the sharing as
well as the additional cost due to the pipelining stages separated by latches or
registers.

Table 5. Range for the ratio area of the Shared with length L S-box
area of the Original S-box

3 shares 4 shares 5 shares remark
1 2 3 4 1 2 3 1

3.6–5.2 6.3–6.5 – – 5.0–7.6 – – 5.4–7.4 quadratics in S8

3.3–6.2 6.2–6.6 – – 4.3–6.4 – – 5.1–7.4 quadratics in S16

– 6.0–6.6 7.7–8.2 13.9 – 7.3–9.3 12.8 8.2–15.2 cubics in A16

– – – – 5.4–10.2 8.4–10.2 12.6 10.2–14.6 cubics in S16\A16

Our results summarized in Table 5 show that such secure implementation can
also be made efficient. Note that we consider the cost of sharing with L registers
which is the total price for the sharing (since it includes the sharing logic plus
registers). Observe that the increase of the cost for sharing with 3 shares of a
quadratic S-box is similar for n = 3 and n = 4. As expected, the longer length
a sharing has, the more costly it becomes (for 3 and 4 shares). It can be seen
that sharings with 4 and 5 shares cost up to 50% more than sharings with 3
shares. However, there are several cases when using 4 or 5 shares reduces the
cost by up to 30%, respectively 10%, compared to 3 shares with longer sharing
length. For certain S-boxes using 5 shares may be even beneficial compared to
4 shares (up to 4%) but in general 5 shares are up to 30% more expensive than
4 shares.

An obvious conclusion is that the cost of the TI method heavily depends on the
class the given S-box belongs to as well as the chosen number of shares and the
associated sharing length. Therefore, in order to minimize the implementation
cost the number of shares have to be carefully chosen. For all tested S-boxes
we were able to find a sharing with cost ranging from 3.3 till 12.8 times the
area of the original S-box. However, note that the area numbers are based on a
few implementations from each class. The ratios may change significantly if the
smallest/biggest S-boxes are found for every class.

Acknowledgements: We would like to thank Christophe De Cannière for
the fruitful discussions and for sharing with us his toolkit for affine equivalent
classes.
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