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Abstract Threshold implementation (TI) is a masking method that provides se-
curity against first-order DPA with minimal assumptions on the hardware. It is
based on multi-party computation and secret sharing. In this paper, we provide
an efficient technique to find TIs for all 3 and 4-bit permutations which also covers
the set of 3 × 3 and 4 × 4 invertible S-boxes. We also discuss alternative meth-
ods to construct shared functions by changing the number of variables or shares.
Moreover, we further consider the TI of 5-bit almost bent and 6-bit almost perfect
nonlinear permutations. Finally, we compare the areas of these various TIs.
Keywords: DPA, masking, glitches, sharing, nonlinear functions, S-box, decom-
position

1 Introduction

The computation of a cryptographic algorithm leaks side-channel information. Side-
channel analysis (SCA) uses this information to reveal the secret such as the key
that is used in the algorithm. The most common SCA technique is to analyze the
power consumption of the device using differential power analysis (DPA). This
analysis exploits the correlation between the instantaneous power consumption of
a device and the intermediate results of a cryptographic algorithm.

Several countermeasures against side-channel attacks have been proposed. Some
introduce noise in the side-channel such as executing random delays or dummy
operations. There are also circuit design approaches [47] that try to balance the
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power consumption of different data values. Masking is an alternative approach
to randomize the intermediate values of an algorithm. This can be done at the
algorithm level [1, 13, 26, 41, 44], at the gate level [27, 48] or even in combination
with circuit design approaches [42]. However, it has been shown that hardware

implementations are difficult to protect against DPA [33, 35] due to presence of
glitches. The main advantages of the threshold implementation approach are that
it provides provable security against first-order DPA attacks with minimal assump-
tions on the hardware technology, in particular, it is also secure in the presence
of glitches, and that the method allows to construct realistic-size circuits [38–40].
However, a TI can still be broken by univariate mutual information analysis [3] or
univariate higher order attacks [34].

It has been shown that all 3 and 4-bit permutations have TI with 3, 4 or 5
shares [11]. There are many S-boxes used in cryptographic algorithms that are
chosen from these sets of permutations. The TI approach is also applied to some
algorithms such as PRESENT [43], AES [8,36] and Keccak [4, 7].

Contribution. This paper is an extended and completed version of the paper
presented at CHES 2012 [11]. In [11] we have proposed two techniques to find
sharings which satisfy the properties of TI, namely direct sharing and sharing
with correction terms. We have shown how these techniques can be applied to all
3 and 4-bit permutations. We left then as an open question if TI with 3 shares for
some quadratic permutation classes can be found.

The current submission contains the following new contributions. First, we
provide an answer to the above mentioned open question posed in the earlier ver-
sion of the paper (Section 3.2). Second, we extend our previous work by providing
TI for 5-bit almost bent and 6-bit almost perfect non-linear permutations which
have cryptographic significance since they provide optimum differential and linear
properties (Section 4). Third, we provide area distributions for various classes with
different numbers of shares in the open cell library NANGATE [37] (Section 5).
Finally, we propose two extensions to the basic sharing approach by using virtual
shares and virtual variables, and by varying the number of the shares (Section 6).

Organization. After providing some preliminary information on classification
of permutations and threshold implementation in Section 2, we recall the previous
work on 3 and 4-bit permutations in Section 3. We provide an answer in Sec-
tion 3.2 to an open question from [11] whether 3 shares sharing exists for all 3-bit
permutations. In Section 4, we improve the previous work to some 5 and 6-bit per-
mutations which have cryptographic significance. We provide area requirements of
all these permutations in Section 5. In the basic approach of TI, the number of
input and output shares and variables are the same. In Section 6, we propose two
extensions to the basic sharing approach: namely using virtual shares and virtual
variables, and varying the number of the shares.

2 Preliminaries

2.1 Permutations and Affine Equivalence Relations

We consider n-bit permutations sometimes defined over a vector space Fn
2 or over

a finite field GF (2n) some of which define n × n invertible S-boxes that are used
in cryptographic algorithms. The degree of such a permutation F is the algebraic
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degree of the (n, n) vectorial Boolean function [14]. Any such function F (x) can
be considered as an n-tuple of Boolean functions (f1(x), . . . , fn(x)) called the co-
ordinate functions of F (x).

All permutations from a set X to itself form the symmetric group on X denoted
by SX . A transposition is a permutation which exchanges two elements and keeps
all others fixed. A classical theorem states that every permutation can be written as
a product of transpositions [45], and although the representation of a permutation
as a product of transpositions is not unique, the number of transpositions needed
to represent a given permutation is either always even or always odd. The set of all
even permutations form a normal subgroup of SX , which is called the alternating

group on X and denoted by AX . The alternating group contains half of the elements
of SX . Instead of AX and SX , we will write here Am and Sm, where m is the size
of the set X.

Lemma 1 ([49]) For all n ≥ 3, the n-bit affine permutations are in the alternating

group.

Definition 1 ([21]) Two permutations S1(x) and S2(x) are affine/linear equivalent

if there exists a pair of affine/linear permutations A(x) and B(x), such that S1 =
B ◦ S2 ◦A.

Every affine permutation A(x) can be written as A ·x+a with a an n-bit constant
and A an n× n matrix which is invertible over GF (2). It follows that there are

2n ×
n−1∏
i=0

(2n − 2i) (1)

different affine permutations.
The relation “being affine equivalent” can be used to define equivalence classes.

Note that the algebraic degree is invariant under affine equivalence, hence all
permutations in a class have the same algebraic degree. Moreover, if a permutation
is represented with an even (resp. odd) number of transpositions, all of its affine
equivalent permutations are also represented with an even (resp. odd) number of
transpositions.

It is well known that all 2-bit permutations are affine, hence there is only one
class. The set of 3-bit permutations contains 4 equivalence classes [21]: 3 classes
containing quadratic functions, and one class containing the affine functions. The
Inversion in GF (23) and the S-boxes of the PRINTcipher [28], the Threeway [19]
and the Baseking [20] algorithms, which are the only cryptographically significant
3 × 3 S-boxes, belong to the same class, denoted by Q3

3 in this paper with the
representative given in Table 9.

The maximal algebraic degree of a balanced n-variable Boolean function is n−1
[16, 31]. De Cannière [12, 21] uses an algorithm to search for the affine equivalent
classes which guesses the effect of the affine permutation A for as few input points
as possible, and then uses the linearity of A and B (as given in Definition 1) to
follow the implications of these guesses as far as possible. This search is accelerated
by applying the next observation, which follows from linear algebra arguments
(change of basis):

Lemma 2 ([30]) Let S be an n-bit permutation. Then S is affine equivalent to another

permutation S̃ with S̃(i) = i, for i ∈ {0, 1, 2, 4, 8, . . . , 2n−1}.
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In the case n = 4, this observation reduces the search space from 16! ≈ 244 to
11! ≈ 225.

De Cannière lists the 302 equivalence classes for the 4-bit permutations [21]: the
class of affine functions, 6 classes containing quadratic functions and the remaining
295 classes containing cubic functions. The classes are listed in Tables 10–12 in
the Appendix. The numberings of the classes are derived from the lexicographical
ordering of the truth tables of the permutations. In order to increase readability,
we introduce the following notation An

i , Qn
j , Cnk to denote the Affine class number

i, Quadratic class number j and Cubic class number k of permutations of Fn
2 .

There are many cryptographically significant 4-bit permutations. First Leander
and Poschmann [30] and later Saarinen et al. [46] classify all 4 × 4 invertible S-
boxes up to affine equivalence and provide 16 “golden” S-box classes that provide
optimal differential and linear properties which would bring an advantage against
cryptanalysis. Table 14 in the Appendix lists some of the S-boxes used in the design
of cryptographic algorithms together with golden S-boxes (depicted as Optimal Gi)
and the classes to which they belong.

On the other hand, the number of classes increase exponentially when permu-
tations with bigger sizes are considered. There exists roughly 261 and 2215 different
classes for 5-bit and 6-bit permutations respectively [21]. The new hash function
standard Keccak [5] uses a 5-bit permutation as its non-linear layer. We will
provide a separate discussion for the 5-bit and 6-bit permutations in Section 4.

2.2 Glitches and First-Order DPA

Glitches are undesired transitions in the output of a cell that occur before the
signal settles to its intended value. In a CMOS circuit, which is one of the most
widely used circuit types, glitches occur a lot mainly because of two reasons. The
first reason is that the wires in the circuit which carry input values of a cell
have different lengths and propagation delays which might cause the inputs to a
cell arrive in different times. Similarly, each type of cell can also have a different
propagation delay which affect the cells that take an output value of a cell as an
input. Another reason is that some cells take output values of other cells, which
are in different stages of the circuit, as inputs. This glitching naturally increases
together with the increase of stages in the combination circuit. The amount of
glitching cells has a strong impact on the power consumption and the fact that this
glitching is data dependent makes the circuit vulnerable to DPA. More information
on glitches can be found in [32].

A first-order DPA can be put in correspondence with observing the value of
one single wire in the circuit [18, 25]. In a glitchy circuit, that can be considered
as observing (unintended) intermediate values of the circuit during the calculation
of a function which can give considerably high amount of information on the data
the function uses.

2.3 Threshold Implementations (TIs)

TI is a kind of side-channel attack countermeasure, based on (t, n) secret sharing
schemes and techniques from multiparty computation. The approach can be sum-
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marized as follows. Split a variable x ∈ Fm
2 into s shares xi ∈ Fm

2 by means of
Boolean masking satisfying (s, s) secret sharing schemes. An (s, s) secret sharing
is defined as distributing parts of a secret x among t = s players such that the
information from at least n = s players are required to calculate the secret, i.e.
in the TI setting without loss of generality the shares x1, . . . , xs−1 are randomly
chosen variables from a uniform distribution and xs is calculated so that the XOR
sum of these shares is equal to the variable itself (x =

∑
i xi). Hence, the knowl-

edge of up to s − 1 shares does not reveal any information on x. We denote the
vector of the s shares xi by x ∈ Fms

2 s.t x = (x1, x2, . . . , xs). In order to implement
a function Fn

2 3 a = F (x) from Fm
2 to Fn

2 , the TI method requires a sharing, i.e.
a vector F of s functions Fi which together compute the output(s) of F . We call
each component Fi of F as a component function1. A sharing needs to satisfy three
properties for TI:

Correctness: For all a ∈ Fn
2 , a = F (x) implies that a =

∑
i ai =

∑
i Fi(x) for all x

satisfying
∑

i xi = x and x ∈ Fm
2 .

Non-completeness: Every function is independent of at least one share of the input
variable x to provide security against first order side channel attacks. This is
often translated as “Fi should be independent of xi” hence xi is not an input of
Fi. This property, which is not enforced in standard masking methods, provides
first-order DPA security of F in the presence of glitches with the condition that
the input is an (s, s) sharing. Hence the lack of this property would make the
circuit of F vulnerable against glitch attacks as will be discussed later.

Uniformity: For all (a1, a2, . . . , as) satisfying
∑

i ai = a, the number of valid shar-

ing x ∈ Fms
2 for which Fj(x) = aj , 1 ≤ j ≤ s, is equal to 2(s−1)(m−n) times the

number of x ∈ Fm
2 for which a = F (x).

If F is a permutation on Fm
2 , then the functions Fi define together a permu-

tation on Fms
2 . This further implies that the sharing F is balanced (as defined

in [16]). If, on the other hand, m < n, then the uniformity can be achieved only
if the number of shares in the input is larger than the number of shares in the
output. In this paper, except Section 6, we restrict ourselves to the case where the
input and output have the same number of shares (denoted by s).

If the input sharing is uniform and the sharing is correct and non-complete,
then any single component function Fi is independent of the unmasked value x.
Since each of the Fi is independent of x, each of the sub-circuits implementing one
of the Fi is independent of x. Alternatively, the intermediate values of one wire in
the circuit mentioned in Section 2.2, do not provide information depending on all
the shares which could lead to x. Hence, none of the sub-circuits, by itself, can leak
any information on the unmasked value even in the presence of glitches. Under
the assumption that the total leakage of all the sub-circuits when implemented
on the same chip is the same as the sum of the leakages of the sub-circuits when
implemented separately, we can invoke the linearity of the expectation operator
to derive that the average power consumption of the circuit doesn’t leak any
information on the unmasked values, even in the presence of glitches. Hence, we
have perfect resistance against attacks based on the average power consumption,
e.g. first-order side-channel attacks.

1 The component function defined for shared functions in this paper is different than the
definition provided in [16]
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In order to achieve correctness and non-completeness, we need at least n + 1
shares for a function with algebraic degree n as proven in [40]. Even though it is
possible to consider the full permutation from a cryptographic algorithm as F and
try to satisfy the correctness and non-completeness properties directly, such a TI is
infeasible due to the high degree of the permutation. Typically, the cryptographic
algorithms have more than one rounds each of them taking the previous round
output as input. Hence, one can consider each round as F and with a lower degree
and satisfy the correctness and non-completeness properties with uniform input
sharing for each round. In that case, in order to satisfy the non-completeness in
the following rounds, each round should be separated by registers. Moreover, in
order to guarantee the uniformity of the input sharing on the following rounds, we
require the sharing of each round function to be uniform [8].

2.4 TI and Affine Equivalence

Theorem 1 If we have a TI for a representative of an affine equivalence class (as in

Definition 1), then we can derive a TI for all permutations from the same class.

Proof Let S be an n-bit permutation which has a uniform, non-complete and cor-
rect sharing S using s shares Si. Denote the input vector of S by x, and the shares
by xi. Each Si contains n coordinate shared functions depending on at most (s−1)
of the xi, such that the non-completeness property is satisfied. Without loss of gen-
erality, we denote by xi the vector (x1, . . . , xi−1, xi+1, . . . , xs) which contains the
s− 1 inputs of Si.

We now construct a uniform, non-complete and correct sharing for any per-
mutation S̃ which is affine equivalent to S. By Definition 1, there exist two n-bit
affine permutations A and B s.t. S̃ = B ◦S ◦A. In order to lighten the notation, we
give the proof for the case that A and B are linear permutations. We define A,B

as the ns × ns permutations that apply A, respectively B, to each of the shares
separately:

A(x1, x2, . . . xs) = (A(x1), A(x2), . . . A(xs)),

B(x1, x2, . . . xs) = (B(x1), B(x2), . . . B(xs)).

Denote yi = A(xi), 1 ≤ i ≤ s and without loss of generality define yi as the vector
y1, . . . , yi−1, yi+1, . . . , ys that we need to compute Si. Consider S(A(x1, x2, . . . , xs)) =
(S1(y1), S2(y2), . . . , Ss(ys)). By slight abuse of notation we can write yi = A(xi)
and see that the non-completeness of the Si is preserved in S ◦ A. Since A is a
permutation, it preserves the uniformity of the input and since S is uniform so
will be the composition S ◦ A. The correctness follows from the fact that S is a
correct sharing and that

y1 + y2 + . . .+ ys = A(x1) +A(x2) + . . .+A(xs) = A(x1 + x2 + . . . xs) = A(x).

Consider now B(S(A(x))) = (B(S1(y1)), B(S2(y2)), . . . , B(Ss(ys))). Since B is a
permutation, it preserves uniformity of the output and since S is uniform, the
composition B ◦ S is uniform. The composition is non-complete since the Si are
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non-complete and B does not combine different shares. Correctness follows from
the fact that S is a correct sharing and hence

B(S1(y1)) +B(S2(y2)) + . . .+B(Ss(ys))

= B(S1(y1) +S2(y2) + . . .+ Ss(ys)) = B(S(A(x))). ut

3 Permutations of Size n = 3, 4

In this section, we only consider 3-bit and 4-bit permutations unless stated other-
wise explicitly for generalization.

Lemma 3 There is a transformation which expands Q3
1, Q3

2 and Q3
3 (in Table 9) into

Q4
4, Q4

12 and Q4
300 (in Table 10-12) correspondingly.

Proof Starting from a 3-bit permutation S and adding a new variable we can
obtain a 4-bit permutation S̃. Namely, the transformation is defined as follows: let
S(y, z, w) = (a, b, c) and define S̃(x, y, z, w) = (a, b, c, x). It is easy to check that this
transformation maps the first 3 classes into the other 3 classes. ut

The relation from Lemma 3 explains why if we have a TI for a class in F3
2 we

also obtain a TI for the corresponding class in F4
2 and vice versa, i.e., if we cannot

implement a class with TI then the corresponding class cannot be implemented
with TI either.

Note that S−1, the inverse permutation, is not necessarily affine equivalent to
S and in this case may not have the same algebraic degree. We know however,
that the inverse of an affine permutation is always an affine permutation. In the
case of 3-bit permutations it follows that the inverse of a quadratic permutation
is again a quadratic permutation. Moreover, it can be shown that the 3 quadratic
classes in S8 are self-inverse, i.e. S−1 belongs to the same class as S. In the case
n = 4, we can apply the following lemma.

Lemma 4 ([14]) Let F be a permutation of GF (2n), then deg(F−1) = n− 1 if and

only if deg(F ) = n− 1.

Since the inverse of an affine permutation is affine, and, when n = 4, the inverse of
a cubic permutation is cubic, it follows that in this case the inverse of a quadratic
permutation is quadratic. The Keccak S-box (n = 5) [5], which is a permutation,
is as an example where the algebraic degree of the inverse S-box (3) is different
from the algebraic degree of the S-box itself (2).

We have observed that there are 172 self-inverse classes in the symmetric group
S16. The remaining 130 classes form 65 pairs, i.e., any permutation S of the first
class has an inverse permutation S−1 in the second class (and vice versa). Table 1
gives the list of the pairs of inverse classes.

3.1 Direct Sharing

The most difficult property of TI to be satisfied when the function is shared is the
uniformity. Assume that we want to construct a TI for the function F (x, y, z) with
3 shares. It is easy to produce a sharing which satisfies the correctness and the
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Table 1: Pairs of inverse classes

65 pairs of inverse classes; the remaining 172 classes are self-inverse

(C429,C430),(C433,C434),(C439,C440),(C443,C444),(C447,C448),(C449,C450),(C452,C453),(C458,C459),(C460,C461),

(C463,C464),(C466,C467),(C468,C469),(C470,C471),(C473,C474),(C479,C480),(C485,C486),(C487,C488),(C490,C491),

(C493,C494),(C495,C496),(C497,C498),(C4103,C4104),(C4105,C4106),(C4108,C4109),(C4110,C4111),(C4112,C4113),

(C4114,C4115),(C4116,C4117), (C4120,C4121),(C4123,C4124),(C4126,C4127),(C4128,C4129),(C4130,C4131),

(C4132,C4133),(C4143,C4144),(C4147,C4148),(C4150,C4151),(C4152,C4153),(C4154,C4155),(C4156,C4157),

(C4158,C4159),(C4161,C4162),(C4164,C4165),(C4166,C4167),(C4169,C4170),(C4171,C4172),(C4181,C4182),

(C4183,C4184),(C4185,C4186),(C4190,C4191),(C4199,C4200),(C4201,C4202),(C4203,C4204),(C4206,C4207),

(C4209,C4210),(C4211,C4212),(C4214,C4215),(C4226,C4227),(C4229,C4230),(C4233,C4234),(C4241,C4242),

(C4243,C4244),(C4256,C4257),(C4259,C4260),(C4296,C4297).

non-completeness requirements and is rotation symmetric, by means of a method
that we call the direct sharing method, and that we now describe for 3 shares. First,
we replace every input variable by the sum of 3 shares. The correctness is satisfied
if we ensure that

F1 + F2 + F3 = F (x1 + x2 + x3, y1 + y2 + y3, z1 + z2 + z3).

In order to satisfy non-completeness, we have to divide the terms of the right hand
side over the three Fj in such a way that Fj does not contain the terms xj , yj and
zj where j ∈ {1, 2, 3}. We achieve this by assigning the linear terms containing an
index j to Fj−1, the quadratic terms containing indices j and j + 1 to Fj−1 and
the quadratic terms containing indices j only to Fj−1. For example,

F (x, y, z) = x+ yz,

gives:

F1 = x2 + y2z2 + y2z3 + y3z2

F2 = x3 + y3z3 + y3z1 + y1z3 (2)

F3 = x1 + y1z1 + y1z2 + y2z1.

The method can easily be generalized for larger number of shares and higher
degrees.

Note that the uniformity of a sharing produced in this way is not guaranteed.
It has to be verified separately. On the other hand, it is enough to find a uniform
direct sharing for one permutation within the class to judge if a permutation that
belongs to the same class has a TI by Theorem 1. Therefore, we run an algorithm
that goes through all permutations within a class to find a permutation that has
direct uniform sharing. With this method using 3 shares, we were able to find
TIs for permutations of Q3

1, but none of Q3
2 and Q3

3. We were also able to find
TIs for permutations of Q4

4, Q4
294 and Q4

299, but none of Q4
12, Q4

293 and Q4
300. So,

unfortunately half of the quadratic permutations does not have a TI when shared
directly with 3 shares. We can increase the number of shares to find a uniform
sharing for quadratic or cubic permutations. When we use 4 shares, we observe
that all quadratic classes have at least one permutation that has a TI with direct
sharing. We have also found TIs for the permutations in cubic classes C41 , C43 , C413
and C4301 from S16\A16 using direct sharing with 4 shares. On the other hand, with
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5 shares we can find a TI for at least one permutation for all classes when shared
directly which is a big improvement compared to the situation with 4 shares.

3.2 Sharing Using Correction Terms

Since direct sharing does not always result in a uniform sharing the use of correction

terms (CT) has been proposed [38, 39]. Correction terms are terms that can be
added in pairs to more than one share, such that they satisfy the non-completeness
rule. Since the terms in a pair cancel each other, the sharing still satisfies the
correctness.

By varying the CT one can obtain all possible sharings of a given function.
Consider a Boolean quadratic function with m variables (1 output bit), which
we want to share with 3 shares. Note that the only terms which can be used as
CT without increasing the degree of the component functions are xi or xiyi for
i = 1, 2, 3. Indeed terms like xiyj for i 6= j cannot be used in the i-th and j-th
share of the function because of the non-completeness rule, i.e. such a term can
be used in only 1 out of 3 shares, hence it cannot be used as a CT. We can also
use higher degree terms such as xiyizi . . . as CT if we do not limit the CT to the
function degree.

Counting the linear, quadratic and cubic CT and ignoring the constant terms,
which will not influence the uniformity, we obtain 3(m+(m2 )+(m3 )) CT. Taking into

account all possible positions for the CT we get 23(m+(m2 )+(m3 )) different sharings.
For example, for a quadratic function of 3 variables there are 221 possible CT
and therefore for a 3 × 3 S-box, the space of CT will be of size 263. This makes
the exhaustive search (to find a single good solution) over the set of defined CT
unpractical, even for small S-boxes. For a sharing with 4 shares even more terms
can be used as CT. In [11], we left the problem of having an efficient algorithm to
search through CT as an open question. Here we describe an algorithm that can
provide a negative result if there does not exist any TI with correction terms, with
a complexity less than the exhaustive search.

Consider a TI with the s-sharing F of an n-bit permutation F (if it exists).
The uniformity property implies that the vectorial Boolean function F : Fns

2 →
Fns
2 ,F = (F1, ..., Fs) is a balanced function. Recall some properties of the balanced

vectorial functions [16].

Lemma 5 Let F = (f1, ..., fn) be a vectorial Boolean function from Fn
2 to Fn

2 . F is

a bijection if and only if for any k (1 6 k 6 n) and for any tuple of indices i1, ..., ik
(1 6 i1 6 . . . 6 ik 6 n) the vectorial Boolean function (fi1 , ..., fik) is balanced.

Let F = (f1, ..., fn) be a vectorial Boolean function such that F : Fn
2 → Fn

2 and
F = (f11, ..., fn1, ..., f1s, ..., fns) be the direct sharing of F with s shares Fi =
(f1i, ..., fni). We say that the function CF = (c11, ..., cn1, ..., c1s, ..., cns), where cij :
Fns
2 → F2 are CT, is a correction function for F, if the function F + CF satisfies all

the properties of a TI.
Let k ∈ {1, . . . , ns} and let (i1j1, ..., ikjk) be a k-tuple from the set {11, . . . , n1, . . . ,

1s, . . . , ns}. Denote the set

Ck
i1j1,...,ikjk = {CF | (fi1j1+ci1j1 , ..., fikjk+cikjk) is a balanced function from Fns

2 to Fk
2}.
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Then consider the set

C =
⋂
k

⋂
i1j1,...,ikjk

Ck
i1j1,...,ikjk .

Theorem 2 The function F + CF is a bijection if and only if CF ∈ C.

Proof (Sufficient condition) By the definition of C, for any function CF ∈ C, the
function F + CF is such that for any k ∈ {1, . . . , ns} and for any tuple (i1j1, ..., ikjk),
from {11, . . . , n1, . . . , 1s, . . . , ns} the vectorial sub-function (fi1j1 + ci1j1 , ..., fikjk +
cikjk) is balanced. Hence, it follows from the lemma that the function F + CF =
(f11 + c11, ..., fn1 + cn1, ..., f1s + c1s, ..., fns + cns) is a bijection.

(Necessary condition) Let the function F + CF be a bijection. Then for any
k ∈ {1, . . . , ns}, for any tuple (i1j1, ..., ikjk) from the set {11, . . . , n1, . . . , 1s, . . . , ns},
the vectorial function (fi1j1 + ci1j1 , ..., fikjk + cikjk) is balanced. Hence, the func-

tion CF belongs to the set Ck
i1j1,...,ikjk by construction. Therefore, due to the

arbitrariness of k and (i1j1, ..., ikjk), the function CF belongs to the set C =⋂
k

⋂
i1j1,...,ikjk

Ck
i1j1,...,ikjk . ut

This theorem allows us to use the following algorithm to search for a TI for
the permutation F = (f1, ..., fn) s.t. F : Fn

2 → Fn
2 .

Input: Direct sharing F = (f11, ..., f1s, ..., fn1, ..., fns) of F with s shares
Fi = (f1i, ..., fni) and the sets Jk containing all k-tuples (i1j1, ..., ikjk), from
{11, . . . , n1, . . . , 1s, . . . , ns} for 1 ≤ k ≤ ns.

Output: The set C s.t. for each function CF ∈ C the sharing
F ′1 = (f11 + c11, ..., fn1 + cn1), ..., F ′s = (f1s + c1s, ..., fns + cns) is uniform.

for k = 1 to ns do
while Jk 6= ∅ do

Choose a tuple of indices (i1j1, ..., ikjk) ∈ Jk.
Assign Jk := Jk\(i1j1, ..., ikjk).
Construct the set
Ck

i1j1,...,ikjk
= {CF | (fi1j1 + ci1j1 , ..., fikjk + cikjk ) is balanced function}.

C :=
⋂

k

⋂
i1j1,...,ikjk

Ck
i1j1,...,ikjk

.

if C 6= ∅ then
break;

end

end
if C = ∅ then

break;
end

end

With this algorithm, we can conclude that there does not exist a TI with
correction terms if C = ∅, which is likely to happen faster than the exhaustive
search. Observe also that for any k, if the set Ck

i1j1,...,ikjk = ∅ then C = ∅. Moreover,
since the goal is to satisfy C 6= ∅ for k = ns, we can start the for loop from any k

s.t. 1 ≤ k ≤ ns. If for any k, we have C 6= ∅ at the end of the while loop, it implies
that C 6= ∅ for all k′ < k.

We consider the permutation F = (xy+yz+xz, x+y+xy+yz, x+z+yz) from the
class Q3

3 and applied the above algorithm with initialization of k = 4. We choose
the tuple of indices as (11, 12, 13, 21) ∈ Jk and construct the set C1 = C4

11,12,13,21.



Threshold Implementations of Small S-boxes 11

We obtaine that the set C1 is empty. Therefore, the set C from the theorem is
empty, hence, there is no uniform sharing for the given permutation. The algorithm
terminated after a computation with complexity 235. This proves the following:

Corollary 1 There does not exist a uniform sharing with 3 shares for permutations

from Q3
3.

Recall that by Lemma 3, the class Q3
3 corresponds to the class Q4

300. Moreover,
if there is no uniform sharing for 3-bit permutations from a class, then there does
not exist a uniform sharing for 4-bit permutations from the corresponding class.

Corollary 2 There does not exist a uniform sharing with 3 shares for permutations

from Q4
300.

Recall that with a direct sharing, we could not find a uniform sharing for
many classes. However by using CT and sharing linear and quadratic terms as in
Equation 3, we found sharings for classes Q3

2, Q4
12, Q4

293 with three shares.

F (x, y, z) = x+ yz

gives:

F1 = x3 + z2y2 + z2y3 + z3y2

F2 = x1 + z3y3 + z3y1 + z1y3 (3)

F3 = x2 + z1y1 + z1y2 + z2y1.

So all 3 and 4-bit quadratic classes except Q3
3 and Q4

300 have a TI with 3 shares.

3.3 Sharing Using Decomposition

In case we can not find a uniform sharing for a given S-box with a particular
number of shares, one option to satisfy the uniformity property is to re-mask the
output of the S-box as proposed by Moradi et al. [36]. That is, given F (x, y, . . .),
its sharing F = (F1, F2, F3) that is not uniform and two random masks m1,m2, the
sharing F’ provided in Equation 4 is uniform. This re-masking can be extended
to any number of shares to generate uniform sharings when it is not possible
to find uniform sharings otherwise. However, this should not be considered as a
straight-forward approach since generation of good masks can be a burden.

F ′1 = F1 +m1

F ′2 = F2 +m2 (4)

F ′3 = F3 +m1 +m2.

Another option is to increase the number of shares. However, the area require-
ments of an implementation of a cryptographic algorithm increase with the number
of shares, therefore it is desirable to keep the number of shares as low as possible.
To overcome these issues, we can decompose an S-box into other S-boxes that have
uniform sharings and/or lower degree. Examples of such decompositions have been
presented for NOEKEON [39,40] and for PRESENT [43]. These three realizations
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decompose the S-box with algebraic degree three into two permutations with alge-
braic degree two. For the PRESENT S-box, decompositions S(x) = F (G(x)) with
G(0) = 0 have been found [43] where F (x) and G(x) are quadratic permutations.
By varying the constant term G(0) the authors found all possible decompositions
of S(X) = F (G(X)). Both S-boxes, F (x) and G(x), have been shared with direct
sharing with 3 shares, (F1, F2, F3) and (G1, G2, G3), that are correct, non-complete
and uniform. Moreover, the output of G is stored in the registers before it is taken
as input to F to force the non-completeness property when the functions are cas-
caded as discussed in 2.3. Figure 1 illustrates this approach.

F1

F2

F3

R1

R2

Rs

G1

G2

G3

S G F

shared quadraticquadraticcubic

Fig. 1: Decomposition approach

Now we consider all 4-bit permutations, and investigate when a cubic permuta-
tion from S16 can be decomposed as a composition of quadratic permutations. We will
refer to the minimum number of quadratic permutations in such a decomposition
as decomposition length.

Lemma 6 If a permutation S can be decomposed into a sequence of t quadratic per-

mutations, then all permutations which are affine equivalent to S can be decomposed

into a sequence of t quadratic permutations.

Proof Let S be a cubic permutation which can be decomposed as a composition of
quadratic permutations Q1 ◦Q2 ◦ . . .◦Qt−1 ◦Qt with length t. Let W be a permuta-
tion which is affine equivalent to S. By definition, there exist affine permutations
A and B s.t. W = B ◦S ◦A, therefore W = B ◦Q1 ◦Q2 ◦ . . .◦Qt−1 ◦Qt ◦A. Now, by
defining two quadratic permutations Q′1 = B ◦Q1 and Q′t = Qt ◦A we obtain that
W = Q′1 ◦ Q2 ◦ . . . ◦ Qt−1 ◦ Q′t has a decomposition with quadratic permutations
and that its length is t. ut

Lemma 7 All 4-bit quadratic permutations belong to the alternating group A16.

Proof Since all affine permutations are in the alternating group (Lemma 1), two
permutations which are affine equivalent, are either both even or both odd. We
have taken one representative of each of the 6 quadratic classesQ4

i for i ∈ {4, 12, 293,
294, 299, 300} [21] and have verified that their parities are even. ut

Now we investigate which permutations we can generate by combining the
affine and the quadratic permutations. We start with the following lemma.
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Lemma 8 Let Qi be 6 arbitrarily selected representatives of the 6 quadratic classes

Q4
i (hence i ∈ {4, 12, 293, 294, 299, 300}). Then all cubic permutations S that have

decomposition length 2, are affine equivalent to one of the cubic permutation that can

be written as

S̃i×j = Qi ◦A ◦Qj , (5)

where A is an affine permutation and i, j ∈ {4, 12, 293, 294, 299, 300}.

Proof Assume that S = Qa ◦Qb. Then we know that there are affine permutations
Aa, Ba, Ab, Bb such that S = (Ba◦Qi◦Aa)◦(Bb◦Qj◦Ab), where Qi, Qj are two of the
representatives defined above. We choose A = Aa ◦Bb and S̃i×j = Ba

−1 ◦S ◦Ab
−1.

ut

It follows that we can construct all cubic classes of decomposition length 2
by running through the 36 possibilities of i × j and the 322560 invertible affine
transformations in Equation (5). This approach produces 30 cubic classes. In the
remainder, we will denote the permutations S̃i×j by i × j and refer to them as
the simple solutions. Table 15 in the Appendix lists the simple solutions for all 30
decompositions with length 2. Note that if Qi◦A◦Qj = S, i.e. S can be decomposed
as a product of i×j, then Q−1

j ◦A
−1◦Q−1

i = S−1. Since for n = 4 all quadratics are

affine equivalent to their inverse, it follows that S−1 is decomposed as a product
of j × i. Thus any self-inverse class has decomposition i× j and j × i as well. For
the pairs of inverse classes we conclude that if i× j belongs to the first class then
j × i belongs to the second class.

To obtain all decompositions with length 3 we use similar approach as for
length 2 but the first permutation Qi is cubic (instead of quadratic) and belongs
to the already found list of cubic classes decomposable with length 2. It turns out
that we can generate in this way the 114 remaining elements of A16.

Summarizing, we can prove the following Theorem and Lemma (stated without
proof in [22]).

Theorem 3 A 4-bit permutation can be decomposed using 4-bit quadratic permutations

if and only if it belongs to the alternating group A16 (151 classes).

Proof (⇒) Let S be a permutation which can be decomposed with quadratic per-
mutations say Q1 ◦Q2 ◦ . . . ◦Qt. Since all Qi ∈ A16 (Lemma 7) and the alternating
group is closed it follows that S ∈ A16.
(⇐) Lemma 6, Lemma 8 and the discussion following it imply that we can generate
all elements of the alternating group using quadratic permutations. ut

The left-hand-side columns of Table 2 list the number of classes with a decom-
position from a given length for all 4-bit permutations. Theorem 3 implies that
the classes which are not in the alternative group i.e. in S16 \ A16, cannot be de-
composed as a product of quadratic classes. Now we make the following simple
observation:

Lemma 9 Let S̃ be a fixed permutation in S16 \A16 then any cubic permutation from

S16 \A16 can be presented as a product of S̃ and a permutation from A16.

Proof By definition, all permutations in S16 \ A16 are odd permutations, and if
S̃ ∈ S16 \A16, then S̃−1 ∈ S16 \A16. Since the product of two odd permutations is
even, we have: ∀S ∈ S16\A16 : S◦S̃−1 ∈ A16. It follows that ∃T ∈ A16 : S◦S̃−1 = T ,
i.e. S = T ◦ S̃. ut
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In [29], Kutzner et al. introduce factorization instead of decomposition in order
to enable 3-share TI for the invertible 4x4 S-boxes not belonging to A16. In fact
factorization uses a combination of decomposition and XOR of quadratic permu-
tations. Although keeping three shares appears to be an interesting approach, the
authors did not note the cost of their approach. When a single permutation is
considered, the factorization method with 3 shares requires more registers than
the 4-share approach for the permutations in S16 \ A16. Implementations in [11]
show that in certain cases it can be even more efficient to use 4 or 5-share TI
instead of 3-share TI. In this paper we will not use the factorization approach.

Now that we know the possible decompositions of 3 and 4-bit permutations, we
can try again to find TIs for these permutations by using less shares trading off with
the decomposition length. However, this problem is more restrained than the basic
problem, since we can use only the quadratic permutations for which we already
have a uniform sharing. It turns out that the decompositions for Q3

3 are 1× 2 and
2 × 1, i.e., we obtain a sharing with 3 shares for Q3

3 at the cost of decomposition
length two (instead of length one). Similarly Q4

300 can be decomposed as 4 × 12,
4× 293, 12× 4, 12× 294, 293× 4, 293× 294, 294× 12 and 294× 293. So, again we
obtain a sharing with 3 shares with length two. With this result, we find TI for
all 3 and 4-bit quadratic permutations with 3 shares.

F (x, y, z) = x+ yz + xyz

gives:

F1 = x2 + (y2 + y3 + y4)(z2 + z3 + z4)

+ (x2 + x3 + x4)(y2 + y3 + y4)(z2 + z3 + z4)

F2 = x3 + y1(z3 + z4) + z1(y3 + y4) + y1z1 + x1(y3 + y4)(z3 + z4)

+ y1(x3 + x4)(z3 + z4) + z1(x3 + x4)(y3 + y4) + x1y1(z3 + z4) (6)

+ x1z1(y3 + y4) + y1z1(x3 + x4) + x1y1z1

F3 = x4 + y1z2 + y2z1 + x1y1z2 + x1y2z1 + x2y1z1 + x1y2z2 + x2y1z2

+ x2y1z1 + x1y2z4 + x2y1z4 + x1y4z2 + x2y4z1 + x4y1z2 + x4y2z1

F4 = x1 + x1y2z3 + x1y3z2 + x2y1z3 + x2y3z1 + x3y1z2 + x3y2z1.

Recall that one can find decompositions into quadratic permutations for cubic
permutations in the alternating group. Therefore these permutations have a TI
with 3 shares. However the permutations outside the alternating group do not
have a TI with three shares. By using Lemma 9 and Equation 3 or 6 (cubic term
when necessary), we obtain a TI with 4 shares for all 4-bit permutations. The total
length of the sharing depends on the class we use (C41 , C43 , C413 and C4301) and also
on the class from the alternating group, which is used for the decomposition. For
example, class C47 can be decomposed using C41 with length four but with classes
C43 and C413 it can be decomposed with length three. Note also that the number of
solutions differs. We have found 10, 31 and 49 solutions when using C41 , C43 and C413
classes, correspondingly. Unfortunately, we could not present the decompositions
for all 4-bit permutations, which are provided in [10], in this paper due to page
limitations. Table 2 summarizes these results.
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Table 2: Overview of the numbers of classes of 4-bit permutations that can be
decomposed and shared using 3 shares, 4 shares and 5 shares uniformly. The
numbers are split up according to the decomposition length of the permutations
(1, 2, 3, or 4), respectively their shares.

unshared 3 shares 4 shares 5 shares remark
1 2 3 1 2 3 4 1 2 3 1

6 5 1 6 6 quadratics

30 28 2 30 30 cubics in A16

114 113 1 114 114 cubics in A16

– – 4 22 125 151 cubics in S16\A16

An open question is why for all 4-bit permutations, the TIs with 4 shares do
not improve the results significantly compared to 3 shares and suddenly with 5
shares we can share all classes uniformly with length 1.

Recall that for the PRESENT S-box, decompositions S(x) = F (G(x)) have
been found in [43]. The authors also made an observation that exactly 3

7 shar-
ings out of the decompositions automatically satisfy the uniformity condition (i.e.
without any correction terms). Recall that with the direct sharing method without
CT we (as well as the authors of [43]) were able to share only 3 quadratic classes:
Q4

4, Q4
294 and Q4

299. The Present S-box belongs to C4266 and has 7 simple solutions
(see Table 15) but only 3 of them can be shared uniformly with direct sharing,
namely 294× 299, 299× 294, 299× 299, which explains the authors’ observation.

In Tables 9–12, the column Sharing describes the length of the found TI with
3 and with 4 shares, separated by a comma. Since all classes can be shared with
5 shares uniformly with length 1 we omit this fact in these tables. Recall that for
the permutations in S16 \A16 no solution with 3 shares exist which is indicated in
the table by a −.

4 Permutations of Size n = 5, 6

S-boxes of size 5×5 and 6×6 have also been used in cryptographic primitives. One
important example of a 5-bit S-box is the Keccak S-box [5], which has algebraic
degree two. It has been shown in [7] that the direct sharing with 3 shares of this S-
box does not satisfy the uniformity condition of a TI. Unfortunately, even with the
algorithm provided in Section 3.2, it is not feasible to search through all possible
CT to find a uniform sharing. On the other hand, TI with three shares with 4-bit
extra fresh randomness per round or with four shares and CT is possible [7].

There are approximately 261 (resp. 2215) distinct affine equivalent classes of
5-bit (resp. 6-bit) permutations [21]. The set of almost bent permutations and
almost perfect nonlinear permutations are the most well studied since they have
a particular importance in cryptography.

Definition 2 ([17]) The permutation S is said to be almost perfect nonlinear (APN)

if all the equations

S(x) + S(x+ a) = b, a, b ∈ GF (2n), a 6= 0,



16 Begül Bilgin et al.

have either 0 or 2 solutions.

Definition 3 ([17]) The permutation S is said to be almost bent (AB) if the num-
bers

µS(a, b) =
∑

x∈GF (2n)

(−1)〈b,S(x)〉+〈a,x〉 ∈ Vm, a 6= 0,

are equal to either 0 or ±2
m+1

2 when a, b ∈ GF (2n) and (a, b) 6= (0, 0).

It is known that all AB permutations are also APN. An APN permutation pro-
vides optimum resistance only against differential cryptanalysis. While an AB per-
mutation provides optimum resistance against both differential and linear crypt-
analysis [17]. However, AB permutations exist only when n is odd [17].

Up to affine equivalence there are only four AB permutations of dimension five.
All can be represented as a power function [15]. A representative of each class is
provided in Table 3. AB4 and AB3 are the inverse of AB1 and AB2, respectively.

Table 3: Representatives of AB permutations in GF (25) [15].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
AB1 0 1 2 4 3 8 16 28 5 10 25 17 18 23 31 29 6
AB2 0 1 2 4 3 8 16 28 5 10 26 18 17 20 31 29 6
AB3 0 1 2 4 3 8 13 16 5 17 28 27 30 14 24 10 6
AB4 0 1 2 4 3 8 13 16 5 11 21 31 23 15 19 30 6

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 deg. pow.
AB1 20 13 24 19 11 9 22 27 7 14 21 26 12 30 15 2 x3

AB2 21 24 12 22 15 25 7 14 19 13 23 9 30 27 11 2 x5

AB3 19 11 20 31 29 12 21 18 26 15 25 7 22 23 9 3 x7

AB4 28 29 9 24 27 14 18 10 17 12 26 7 25 20 22 3 x11

Similar to the case of Keccak S-box, with our current methods it is not
feasible to find a TI with 3 shares for AB1 and AB2 even though they have
algebraic degree two. However, it is possible to find TIs with 4 shares with CT for
those permutations. The 4-share implementation for linear and quadratic terms
are provided in Equation 6. Unfortunately, for AB3 and AB4, which have algebraic
degree 3, with our current methods it is not feasible to find a uniform sharing up
to five shares. However it is possible to have TIs with 4 shares with the cost of
re-masking.

Up to affine equivalence, there is only one known APN permutation of dimen-
sion six [24]. Dillon shows in [24] that this APN permutation which has algebraic
degree four, can be decomposed into two permutations of degree three and two. An
example of an APN permutation with the decomposition APN = F (G(x)), where
F has degree three and G has degree two is provided in Table 4. Unfortunately,
with our current methods it is not feasible to find uniform sharing for F and G.
However, with this decomposition, it is possible to have a 4-share implementation
with re-masking.

As the S-box becomes bigger and more complicated, we observe that finding
a uniform sharing becomes much more difficult and the search for CT becomes
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unfeasible. At this point, we leave the problem of finding TI for APN permutations
of size six and AB permutations of degree three of size five as an open question.

Table 4: Representative of the known APN permutation in GF (26).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
APN 0 16 60 54 17 14 23 59 29 62 63 10 39 8 49 51

F 0 13 63 50 2 15 48 61 54 58 22 26 38 42 11 7
G 0 48 37 8 19 18 41 42 39 21 2 45 26 40 17 33

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
APN 45 37 61 48 47 5 12 20 36 57 40 46 26 56 43 55
F 46 49 14 17 33 62 12 19 24 6 39 57 5 27 55 41
G 32 60 7 6 51 28 22 59 43 27 61 16 11 57 46 30

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
APN 11 31 24 6 27 13 53 19 15 30 1 4 33 34 28 35
F 45 51 1 31 34 60 3 29 8 23 59 36 21 10 43 52
G 14 35 24 25 29 1 56 23 5 53 34 62 20 36 49 50

48 49 50 51 52 53 54 55 56 57 58 9 60 61 62 63
APN 21 52 58 3 9 7 18 32 25 22 41 50 44 2 38 42
F 16 28 35 47 18 30 44 32 53 56 25 20 37 40 4 9
G 44 47 9 38 63 15 52 55 58 10 31 3 54 4 12 13

The only known examples of using AB permutation of size five or APN permu-
tation of size six are the authenticated encryption algorithms FIDES [6] (AB1 and
APN) and PRIMATEs [2] (AB1), which are designed to provide provable security
against first-order side-channel analysis attacks.

Another example of using S-boxes with 6-bit inputs is the Data Encryption
Standard (DES) [23]. A 6×4 S-box used by DES can be implemented as four 4×4
invertible S-boxes followed by a cubic selection function (4-to-1 multiplexer). The
selection function can be implemented uniformly with direct sharing with 4 shares
and we have TI for all 4 × 4 invertible S-boxes. However, the distribution of the
input of the selection function, which combines the outputs of 4×4 S-boxes as input
is not necessarily uniform. To avoid first-order leakage, the input of the selection
function should be checked carefully and should be re-masked when necessary.

5 Hardware Implementations

Our aim is to provide a fair comparison and prediction what the cost (ratio of
area to a NAND gate referred to as GE) is for a TI of a permutation in a specified
library. For our investigations we use the open cell library NANGATE [37] and
the Synopsis development tool. We used compile ultra command to optimize each
component function (resp. unshared function) then combined these to get the cost
of TI (resp. permutation).

The area results listed consider a set of input or output registers. The cost
of a permutation is the cost of the combinational logic required to calculate the
(shared) permutation, the cost of the pipelining registers if it is required (i.e. if it
is decomposed) as described in Section 3.3 and the cost of the n-bit (resp. n×s-bit
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if shared) register. The formulas for 3 shares are generated using the Equations 2
and 3. For 4 shares, we used a variation of the same equations for quadratic
functions. For cubic permutations with 4 shares and for all permutations with 5
shares, we used a variation of the Equation 6.

For 3-bit permutations, we choose a permutation randomly from each class
and observed the cost as shown in Table 5. We observe that for these small per-
mutations, the sharing used has a big effect on area. That is why 4-share imple-
mentations that use the Equation 3 are bigger than the 5-share implementations
that use the Equation 6 even though they require less registers.

Table 5: Area comparison for randomly selected quadratic permutations in S16

3-bit Sharing Unshared Shared
Permutations Length Original Decomp. 3 shares 4 shares 5 shares

Class # (L) 1 reg L reg L reg 1 reg 1 reg

Q3
1 1 23 - 120 189 176

Q3
2 1 24 - 129 193 184

Q3
3 2 24 67 243 196 190

Since the wide-range of S-boxes used in cryptography are from the set of 4-
bit permutations, we deepen our research for these permutations. Moreover, since
we use quadratic or cubic classes with length 1 for the decompositions, we con-
centrated our efforts on these classes and implemented 1000 permutations chosen
randomly per each class. Area distributions in Figure 2 and the average areas in
Table 6 show that it is advantageous to use permutations from Q4

4 and avoid using
permutations from Q4

299 if possible for a more area efficient implementation.

A similar argument can also be made for cubic permutations with decompo-
sition length 1 with 4 shares. Namely, by Figure 3 and Table 6, we can conclude
that it is more efficient to use C41 especially compared to C4301 where the difference
becomes more visible.

For classes with decomposition length more than one (Table 7), we randomly
select a class representative i.e. a permutation. Then we implement the smallest
amongst all possible decompositions of this permutation, namely the one which
gives minimum GE. We saw that, classes Q3

3, Q4
300, C4150, C4151, C4130, C4131, C424,

C4204, C4257 and C4210 give relatively small results when implemented as 2×1, 12×4,
12×293, 293×12, 12×4×299, 299×12×4, 299×12×4×299, 3×294, 3×12 and
3×293×12 respectively. Observe that we use permutations fromQ4

299 to decompose
permutations from C4130, C4131 and C424 since there does not exist a decomposition
with the same length that does not require a permutation from Q4

299. On the other
hand, several possibilities for decomposing a permutationQ4

300 exist as described in
Section 3.3 and the smallest decomposition we find also matches with the findings
in Figure 2.

Table 7 also shows that depending on the decomposition length and the per-
mutation class, a 5 share TI can give smaller results than a 3 or 4 share TI if only
the S-box is considered. The optimal invertible S-boxes used in cryptography have
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Fig. 2: Area (x-axis) distribution of permutations from Q4
4 (—), Q4

12 (- -), Q4
293

(..), Q4
294 (—), Q4

299 (- -) with unshared (top, left), 3-share TI (top, right), 4-share
TI (bottom, left) and 5-share TI (bottom, right) where y-axis refers to the number
of permutations.

decomposition lengths (2,2), (3,3) or (-,3) for which an estimation can be deduced
from the same table.

Remember that we cannot find a TI for cubic 5-bit AB permutations with four
shares. Therefore we chose to implement only the quadratic AB permutations. For
each of the class we randomly select a representative to implement. We observe
that TI cost is a little bit over four times the cost of the unshared version.

On the other hand, we implement the APN permutation in Table 4 with the
given decomposition even though the sharing is not uniform since that is the only
known class. Therefore for that implementation, an extra cost of re-masking should
be calculated. We observe that even the unshared implementation cost is high as
a result of the high degree and with decomposition this cost might reduce. This 4-
share implementation is 3, 5 times the cost of the unshared version. We summarize
the results for permutations of size five and six in Table 8.

6 Extensions

In the basic approach of TI, the number of input and output shares and variables
are the same. In this section, we propose two extensions to the basic approach.
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Table 6: Average area comparison for quadratic permutations in A16 and cubic
permutations in S16\A16 which have decomposition length 1 with 3 and 4 shares
respectively.

4-bit Permutations Original Shared
Class # S-box 3 shares 4 shares 5 shares

Q4
4 31 131 165 199

Q4
12 32 151 182 223

Q4
293 34 176 182 244

Q4
294 33 159 191 233

Q4
299 36 190 216 259

C41 31 - 254 322

C43 33 - 291 361

C413 34 - 285 349

C4301 36 - 298 360
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Fig. 3: Area (x-axis) distribution of permutations from C4
1 (—), C4

3 (- -), C4
13 (—),

C4
301 (- -) with unshared (top), 4-share TI (bottom, left) and 5-share TI (bottom,

right) where y-axis refers to the number of permutations.

6.1 Virtual Variables and Virtual Shares

For some Boolean functions with two inputs there is no sharing with three shares
satisfying all TI requirements [38,39]. For example, direct sharing of multiplication
of two variables with three shares does not satisfy the uniformity condition. On
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Table 7: Area comparison for randomly selected quadratic and cubic permutations
in A16 and cubic permutations in S16\A16 which have decomposition more than
one for 3 and 4 shares respectively.

4-bit Sharing Unshared Shared
Permutations Length Original Decomp. 3 shares 4 shares 5 shares

Class # (L, L′) 1 reg (L, L′) reg L reg L′ reg 1 reg

Q4
300 ∈ S16 2, 1 45 63, 41 301 266 314

C4150 ∈ S16 2, 2 38 66, 66 284 408 399

C4151 ∈ S16 2, 2 38 64, 64 267 396 490

C4130 ∈ S16 3, 2 40 88, 65 375 360 506

C4131 ∈ S16 3, 2 43 88, 62 370 404 517

C424 ∈ S16 4, 3 41 126,102 627 678 524

C4204 ∈ S16\A16 -, 2 39 -, 65 - 495 466

C4257 ∈ S16\A16 -, 2 41 -, 67 - 498 492

C4210 ∈ S16\A16 -, 3 38 -, 115 - 750 518

Table 8: Quadratic AB and APN S-boxes sharing

Permutation Sharing Unshared Shared
Length Original Decomposed 4 shares

Class (L) 1 reg L reg L reg

AB1 1 68 - 303

AB2 1 64 - 274

APN 2 224 192 795

the other hand, TI with three shares do exist for all quadratic Boolean functions
with three inputs. This fact leads to an approach where we define extra input
variables, virtual variables for the function that we want to find a sharing for. A
virtual variable is hence an additional input to the function, whose value does not
influence the output of the function. In the implementation however, it must be
ensured that the attacker cannot predict the value of the virtual variable, i.e. it has
to be random. Hence, the approach requires additional randomness as input. For
example, assume that we want to construct a sharing for the function F (x, y) = xy.
By adding a virtual variable z, we can share F (x, y, z) = xy as follows:

F1 = x2y2 + x2y3 + x3y2 + x2z2 + x3z3 + y2z2 + y3z3

F2 = x3y3 + x1y3 + x3y1 + x3z3 + x1z1 + y3z3 + y1z1 (7)

F3 = x1y1 + x1y2 + x2y1 + x1z1 + x2z2 + y1z1 + y2z2.

Without the virtual variable, we can share the product of two variables if we use
four shares [38], hence in total 2×4 = 8 elements. With virtual variable, we obtain
3× 3 = 9 elements, which is in fact not an improvement.

Since z in the previous example F = xy was a virtual variable, its shares z1, z2
and z3 can be called virtual shares. Instead of introducing all the 3 virtual shares,
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we can also introduce fewer of them. Since a virtual share is not related to a ‘real’
input of the function, it does not need to be taken into account when we check the
non-completeness of the sharing. The previous example can be shared using only
one virtual share as:

F1 = x2y2 + x2y3 + x3y2 + z

F2 = x3y3 + x1y3 + x3y1 + x1z + y1z (8)

F3 = x1y1 + x1y2 + x2y1 + x1z + y1z + z.

An alternative way to satisfy the uniformity is re-masking as described in
Equation 4. If we consider the term x1z+y1z in Equation 8 as a second mask, this
equation becomes equivalent to the Equation 4 where we use 8 elements. Therefore,
using virtual variables can also be considered as a clever way of re-masking that
requires only 7 elements. This improvement in the number of elements is very small
when only one multiplication is considered. On the other hand, a cryptographic
algorithm typically use much more than one multiplication.

6.2 Varying the Number of Shares

Until now we have considered the case when the inputs and the outputs of a
function have to be shared with the same number of shares, e.g., s. In fact, it is
possible to generalize the approach, such that the inputs are shared with si shares,
the outputs (i.e., the function) with so shares providing that si ≥ so holds. We will
shortly illustrate this approach by sharing the product xy, such that the input is
shared with 4 shares and the output with 3 shares.

F1 = (x2 + x3 + x4)(y2 + y3) + y4

F2 = (x1 + x3)(y1 + y4) + x1y3 + x4

F3 = (x2 + x4)(y1 + y4) + x1y2 + x4 + y4.

This approach also gives flexibility when several blocks are combined with each
other. An example of varying the number of shares is used in for implementing
the multiplication in GF (24) in the AES S-box [8].

7 Conclusions

We have considered the threshold implementation method, which is a method
to construct implementations of cryptographic functions that are secure against
a large class of side-channel attacks, even when the hardware technology is not
glitch-free.

We have analyzed which basic permutations can be securely implemented us-
ing 3, 4 or 5 shares. We have constructed TIs for all 3 and 4-bit permutations.
Moreover, we showed that 5-bit quadratic almost bent permutations can be im-
plemented with 4 shares. Thus we have extended the threshold implementation
method to secure implementations for any cryptographic algorithm which uses
these permutations as S-boxes. Note that in many block ciphers the mixing layer
of its round function is a linear operation and thus it is trivially shared even with
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2 shares. Finally, we have implemented several of these shared S-boxes in order
to investigate the cost of the sharing as well as the additional cost due to the
pipelining stages separated by latches or registers.

Our results show that such secure implementations can also be efficient. As
expected, the longer length a sharing has, the more costly it becomes (for 3 and 4
shares). Even though, there are several cases when using 5 shares reduces the cost
by up to 25% compared to 3 and 4 shares with longer sharing length, in general 5
shares are about 30% more expensive than 4 shares.

An obvious conclusion is that the cost of the TI method heavily depends on
the class the given S-box belongs to as well as the chosen number of shares and
the associated sharing length. Therefore, in order to minimize the implementation
cost the number of shares have to be carefully chosen.

We leave as an open question the existence of a uniform sharing of 5-bit
quadratic AB S-boxes with 3 shares, cubic AB S-boxes with 4 shares and 6-bit
APN S-box. A SW toolkit, which implements these techniques described in this
paper can be found in [9].
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A Appendix - Tables

Table 9: The 4 classes of 3-bit permutations

Class Truth table Sharing
A3

0 01234567 1,1
Q3

1 01234576 1,1
Q3

2 01234675 1,1
Q3

3 01243675 2,2

Table 10: The 302 classes of 4-bit permutations

Class Truth table Sharing Class Truth table Sharing
A4

0 0123456789ABCDEF 1,1 C436 0123456879CEAFBD 3,3
C41 0123456789ABCDFE -,1 C437 0123456879ACDEFB -,3
C42 0123456789ABCEFD 3,3 C438 0123456879ABDEFC 3,3
C43 0123456789ABDEFC -,1 C439 012345768A9CBEFD -,3
Q4

4 0123456789ABDCFE 1,1 C440 012345768A9CBFDE -,2
C45 0123456789ACDBFE -,2 C441 012345768A9CBFED 3,3
C46 0123456789ACBDFE 3,3 C442 012345786ACBED9F -,3
C47 0123456789ACBEFD -,3 C443 012345786ABCF9DE 3,3
C48 0123456789ACDEFB 3,3 C444 012345786AC9BFED 3,3
C49 0123456789ACDEBF -,3 C445 012345786A9CFBDE -,3
C410 0123456789BCAEFD 3,3 C446 012345786ABCDEF9 3,3
C411 0123456789BCEFDA -,2 C447 012345786AC9DEBF -,3
Q4

12 0123456789CDEFAB 1,1 C448 012345786AC9EDFB -,3
C413 0123456789CDEFBA -,1 C449 012345786A9CDEBF 3,3
C414 0123456879CDEFBA 3,3 C450 012345786A9CFDBE 3,3
C415 012345687A9CBEFD -,3 C451 012345786ABCDE9F -,3
C416 012345687A9CDFBE 3,3 C452 012345786ACBDE9F 3,3
C417 0123456879CDEFAB -,2 C453 012345786ACBDFE9 3,3
C418 0123456879ACDBFE 3,3 C454 012345786A9BCEFD -,2
C419 0123456879ACDFBE -,3 C455 012345786AB9CFDE 3,3
C420 0123456879ACDEBF 3,3 C456 012345786AC9BFDE -,3
C421 0123456879ACBDFE -,3 C457 012345786A9CBEFD 3,3
C422 0123456879ACFEDB 3,3 C458 012345786ACFDE9B -,3
C423 0123456879BCEFAD -,3 C459 012345786ACEDFB9 -,2
C424 012345687A9CFBDE 4,3 C460 012345786ACFB9DE 3,3
C425 0123456879ABCEFD -,3 C461 012345786ACFDEB9 3,3
C426 0123456879BCDEFA 3,3 C462 012345786A9CBFED -,3
C427 012345687ABCDEF9 -,3 C463 012345786AC9DEFB 3,3
C428 0123456879BCEAFD 3,3 C464 012345786ABCED9F 3,3
C429 012345687ABCEFD9 -,3 C465 012345786A9CFDEB -,3
C430 012345687ABCE9FD -,3 C466 012345786ACB9EFD 3,3
C431 0123456879ACBEFD 3,3 C467 012345786ACF9DBE 3,3
C432 0123456879ACFBDE -,3 C468 0123457869ACDFEB -,3
C433 0123456879BCEFDA 3,3 C469 0123457869ACDEBF -,3
C434 0123456879BCFEAD 3,3 C470 012345786ACBF9ED 3,3
C435 0123456879CEAFDB -,3 C471 012345786ACEBD9F 3,3
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Table 11: The 302 classes of 4-bit permutations

Class Truth table Sharing Class Truth table Sharing
C472 012345786ACDF9EB -,3 C4126 012345786AC9EDBF 3,3
C473 012345786ACDF9BE 3,3 C4127 012345786ABC9FED 3,3
C474 012345786ACDE9FB 3,3 C4128 0123458A6B9CDE7F -,2
C475 012345786AC9FBED -,3 C4129 0123458A6BC7F9ED -,3
C476 012345786ACEBFD9 3,3 C4130 0123458A6CBDE79F 3,2
C477 012345786A9CEFDB -,3 C4131 0123458A6CE9BDF7 3,2
C478 0123457869ACBEDF 3,3 C4132 0123458A6CBD7E9F -,3
C479 0123457869ACBFDE -,3 C4133 0123458A6C9FBD7E -,3
C480 0123457869ACBEFD -,3 C4134 0123458A69C7DEBF 3,3
C481 0123457869ACEFDB 3,3 C4135 0123458A69CDE7FB -,3
C482 0123457869ACEBDF -,3 C4136 0123458A69C7FBED 3,3
C483 0123457869ACEBFD 3,3 C4137 0123458967CEAFBD -,3
C484 012345786ACF9EBD -,3 C4138 0123458967CEAFDB 3,3
C485 012345786A9CEBDF 3,3 C4139 0123456879BCAEFD -,3
C486 012345786A9CFBED 3,3 C4140 012345687ABC9FDE 3,3
C487 012345786ACD9EFB -,3 C4141 0123458967CEBFDA -,3
C488 012345786ACD9FBE -,2 C4142 012345786ACD9FEB 3,3
C489 012345786ACD9EBF 3,3 C4143 0123458A69CFB7DE -,3
C490 012345786ABCF9ED -,3 C4144 0123458A69CFDEB7 -,3
C491 012345786ACFBD9E -,3 C4145 0123458A69BCF7ED 3,3
C492 012345786ABC9EDF 3,3 C4146 0123458A69CB7FDE -,3
C493 012345786ABC9EFD -,3 C4147 012345786ABCFDE9 3,3
C494 012345786ACED9FB -,3 C4148 012345786ABCE9FD 3,3
C495 012345786A9CDFEB 3,3 C4149 012345786ABCFD9E -,3
C496 012345786A9CEDFB 3,3 C4150 0123458A6BCFDE97 2,2
C497 0123458A6BCEDF97 -,3 C4151 0123458A6BCF97DE 2,2
C498 0123458A6BCF97ED -,3 C4152 0123458A6BCF7E9D -,3
C499 0123458A6BC97FDE 3,3 C4153 0123458A6B9CEDF7 -,3
C4100 0123458A6B9CF7ED -,3 C4154 0123467859CFBEAD 3,3
C4101 0123458A6BCFED79 3,3 C4155 0123467859CFEBDA 3,3
C4102 012345786A9CDBEF -,3 C4156 0123458A69CFE7BD -,3
C4103 0123458A69C7DFEB 3,3 C4157 0123458A69CEFB7D -,3
C4104 0123458A69C7FDBE 3,3 C4158 0123458A6BCF7D9E 2,2
C4105 0123458A697CBEFD -,3 C4159 0123458A6BCED79F 2,2
C4106 0123458A697CBFDE -,3 C4160 0123468B59CED7AF -,3
C4107 0123458A69CE7FDB 3,3 C4161 0123458A6B7CEDF9 3,3
C4108 0123458A6C9FEB7D -,2 C4162 0123458A6B7CDFE9 3,3
C4109 0123458A6CB9F7ED -,3 C4163 0123468C59BDE7AF -,3
C4110 0123458A69CFD7BE 3,3 C4164 0123458A6B7C9FDE 3,3
C4111 0123458A69BC7FDE 3,3 C4165 0123458A6B7C9EFD 3,3
C4112 0123458A6C7EBFD9 -,3 C4166 012345896ABCE7DF -,2
C4113 0123458A6C7FBE9D -,3 C4167 0123458A67BC9EFD -,3
C4114 012345786ACFBDE9 3,3 C4168 0123458A6CBFE7D9 2,2
C4115 012345786ACBE9DF 3,3 C4169 012345786ACFB9ED -,3
C4116 0123458A6C9D7FBE -,2 C4170 012345786ACEB9DF -,2
C4117 0123458A6C9D7EFB -,3 C4171 0123458A6CBF7E9D 2,2
C4118 0123458A6C9FDB7E 3,3 C4172 0123458A6C9DBF7E 2,2
C4119 012345786ACB9FED -,3 C4173 012345786A9CBDFE -,3
C4120 0123458A6C7EBDF9 3,3 C4174 0123458A69CF7EBD 3,3
C4121 0123458A6C7FBD9E 3,3 C4175 012345786ACDE9BF -,3
C4122 0123458A6BCE79FD -,3 C4176 0123457869ACFEBD 3,3
C4123 0123458A69BCE7DF 3,3 C4177 0123457869BCEAFD -,3
C4124 0123458A69CEBDF7 3,3 C4178 0123458A6C7DBFE9 3,3
C4125 0123458A69CB7EFD -,3 C4179 012345786A9CEDBF -,3



Threshold Implementations of Small S-boxes 29

Table 12: The 302 classes of 4-bit permutations

Class Truth table Sharing Class Truth table Sharing
C4180 0123458A6C9D7FEB 3,3 C4225 0123456879CEBFDA 3,3
C4181 012345896ABC7FDE -,3 C4226 012345786ABC9FDE -,3
C4182 0123458A67BC9FDE -,3 C4227 012345786ACFD9BE -,3
C4183 012345896ACF7BED 3,3 C4228 0123458A69BCEDF7 3,3
C4184 0123458A67CF9BED 3,3 C4229 0123458A6C9DBFE7 -,3
C4185 012345896ACE7BFD -,3 C4230 0123458A6CEB7FD9 -,3
C4186 0123458A67CF9BDE -,3 C4231 0123468B59CEDA7F 3,3
C4187 012345786ACEFB9D 3,3 C4232 0123458A6C9FDBE7 -,3
C4188 012345786ACFEB9D -,3 C4233 0123458A67B9CFDE 2,2
C4189 0123457869CEFBDA 3,3 C4234 012345896AB7CFDE 2,2
C4190 0123458A6C7DBEF9 -,3 C4235 0123458A69B7CEFD -,3
C4191 0123458A6C7FB9DE -,3 C4236 0123458A6B97CFDE 2,2
C4192 0123458A6C7FBED9 3,3 C4237 0123458A69B7CFDE -,3
C4193 0123458A6C7FDB9E -,3 C4238 0123457689CEAFBD 2,2
C4194 012345786ACFED9B 3,3 C4239 0123457689CEAFDB -,3
C4195 0123458A6BC7DE9F -,3 C4240 012345768A9CDEFB 3,3
C4196 0123468C59BDEA7F 3,3 C4241 012345768A9CDEBF -,2
C4197 0123458A6CBDE97F -,3 C4242 012345768A9CDFEB -,3
C4198 0123458A69C7BEFD 3,3 C4243 012345768ACF9BDE 2,2
C4199 0123458A6BCFD9E7 -,2 C4244 012345768ACE9BFD 2,2
C4200 0123458A6BCFD79E -,3 C4245 012345768ACF9BED -,3
C4201 012345786ACB9FDE 3,3 C4246 0123456879BAEFDC -,2
C4202 012345786ACE9DFB 3,3 C4247 012345687AB9DEFC 3,3
C4203 012345786ACF9BDE -,3 C4248 0123456879CEFBDA -,2
C4204 012345786ACE9BFD -,2 C4249 0123458A69CFEB7D 3,3
C4205 012345786ACDB9EF 3,3 C4250 0123458A69CD7FEB -,3
C4206 012345896ABCEDF7 -,3 C4251 0123458A69CEF7DB -,3
C4207 0123458A67BCEDF9 -,3 C4252 0123458A69CEFBD7 2,2
C4208 0123458A69C7BFDE 3,3 C4253 0123458A69CE7FBD -,3
C4209 0123468B59CF7DAE -,3 C4254 0123458A69BCFD7E 3,3
C4210 0123468A5BCF7D9E -,3 C4255 012345786ABCEDF9 -,3
C4211 0123458A69CED7FB 3,3 C4256 012345896ACF7BDE -,3
C4212 0123458A69BC7EFD 3,3 C4257 012345896ABCFD7E -,2
C4213 012345896ABC7EFD -,2 C4258 012345896ACE7BDF 2,2
C4214 0123458A67CEB9FD 2,2 C4259 012345896ACEFDB7 2,2
C4215 012345896ACEB7FD 2,2 C4260 012345896AB7CEFD 2,2
C4216 0123457869CDEFBA -,2 C4261 0123458A69CEB7FD -,3
C4217 012345687ABC9EFD 3,3 C4262 0123458A6C7DB9FE 2,2
C4218 0123457869BCDEFA -,3 C4263 0123458A6BC7EDF9 -,3
C4219 012345786ACF9BED 3,3 C4264 0123458A6C7DFEB9 2,2
C4220 0123468A59CFDE7B -,3 C4265 0123458A6BCDE9F7 -,3
C4221 0123457869CEAFDB 3,3 C4266 0123468A5BCFED97 2,2
C4222 0123467859CFEADB -,3 C4267 012345786ABCE9DF -,3
C4223 0123468A5BCFDE79 2,2 C4268 0123458A69CFBED7 3,3
C4224 0123457869CEBFDA -,3 C4269 0123458A69CEBFD7 -,3
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Table 13: The 302 classes of 4-bit permutations

Class Truth table Sharing Class Truth table Sharing
C4270 0123468B5C9DEA7F 3,3 C4286 0123458967CEFBDA 2,2
C4271 0123468B5C9DAFE7 -,3 C4287 012345768A9CDFBE 3,3
C4272 0123468B5CD79FAE -,3 C4288 0123456789CEFBDA 2,2
C4273 0123458A6C7FEB9D 3,3 C4289 0123456789CEBFDA -,3
C4274 0123458A6BCED97F -,3 C4290 0123456789BCEAFD -,3
C4275 0123458A6CF7BE9D 3,3 C4291 012345768A9BCFED -,3
C4276 0123458A6CF7BD9E -,3 C4292 012345768A9BCEFD 2,2
C4277 0123458A6BC9DE7F 3,3 Q4

293 0123457689CDEFBA 1,1
C4278 0123468B5CD7AF9E 3,3 Q4

294 0123456789BAEFDC 1,1
C4279 0123458A6BC7DFE9 -,3 C4295 0123468C59DFA7BE -,3
C4280 0123457869ACEDBF 3,3 C4296 0123468A5BCF7E9D 2,2
C4281 0123457869ACFBDE 3,3 C4297 0123468A5BCF79DE 2,2
C4282 0123468B5CD7F9EA -,3 C4298 012345687ACEB9FD -,2
C4283 0123468B5C9DE7AF -,3 Q4

299 012345678ACEB9FD 1,1
C4284 0123458A6BCF9D7E -,3 Q4

300 0123458967CDEFAB 2,1
C4285 0123457869CEAFBD -,2 C4301 0123458967CDEFBA -,1
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Table 14: Known S-boxes and their classes

Class Cipher Class Cipher
C439 DESL Row2, DESL Row3 C4203 DESL Row1
C446 DES7 Row3 C4204 DES2 Row2, DES3 Row2
C459 DES7 Row1 C4206 Gost K7
C469 DES3 Row1, DES7 Row0 C4208 Twofish q0 t1
C474 DES6 Row1 C4209 Serpent4, Serpent5, HB2 S2, Opti-

mal G15

C480 DES8 Row2 C4210 Clefia0, Twofish q0 t2, HB1 S0,
HB2 S3, Optimal G14

C485 DES1 Row0, DES1 Row1, DES1
Row2, DES8 Row3

C4220 DES6 Row0

C497 DES8 Row0 C4221 DES5 Row2
C4108 Twofish q1 t1 C4223 Noekeon, Luffa v1, Piccolo, Opti-

mal G8

C4117 DES2 Row0, DES6 Row3 C4229 Twofish q1 t2
C4120 Twofish q0 t3 C4231 JH S0, JH S1, Optimal G13

C4137 DES8 Row1 C4253 Gost K3
C4139 DES3 Row0, DES5 Row0 C4254 DES5 Row1
C4142 Twofish q1 t3 C4257 DES3 Row3
C4145 Gost K6 C4266 Present, Serpent2, Serpent6, Luffa

v2, Hamsi, Optimal G1

C4148 DES5 Row3 C4267 Gost K4
C4153 Twofish q1 t0 C4270 Klein, KhazadP, KhazadQ, Iceberg

G0, Iceberg G1, Puffin, Optimal
G4

C4154 Gost K5 C4272 Optimal G6

C4160 Serpent3, Serpent7, Clefia2, Cle-
fia3, HB1 S1, HB1 S3, HB2 S0, Op-
timal G9

C4275 Gost K2

C4163 Clefia1, HB1 S2, HB2 S1, Optimal
G10

C4278 Optimal G5

C4166 DES2 Row1, DESL Row0 C4279 DES2 Row3, DES4 Row0, DES4
Row1, DES4 Row2, DES4 Row3,
DES7 Row2

C4172 Gost K1 C4281 DES6 Row2
C4177 Gost K8 C4282 Inversion in GF (24), Optimal G3

mCrypton S0,S1,S2,S3
C4184 DES1 Row3 C4283 Optimal G12

C4188 Lucifer S0 C4295 Optimal G11

C4190 Twofish q0 t0 C4296 Serpent1, Optimal G0

C4196 Optimal G7 C4297 Serpent0, Optimal G2

C4197 Lucifer S1
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Table 15: Quadratic decomposition length 2

Class # Quadratic Decomposition length 2: # simple
in A16 quadratic × quadratic solutions
C4130 300× 299 1
C4131 299× 300 1
C4150 12× 293, 293× 300, 300× 12, 300× 300 4
C4151 12× 300, 293× 12, 300× 293, 300× 300 4
C4158 299× 293 1
C4159 293× 299 1
C4168 12× 300, 293× 293, 300× 12, 300× 300 4
C4171 293× 12, 293× 300, 294× 293, 294× 300 4
C4172 12× 293, 293× 294, 300× 293, 300× 294 4
C4214 4× 299, 12× 12, 12× 294, 12× 299, 293× 4, 293× 12, 293× 294, 293× 299,

294× 12, 294× 294, 294× 299, 300× 4, 300× 12, 300× 294, 300× 299 15
C4215 4× 293, 4× 300, 12× 12, 12× 293, 12× 294, 12× 300, 294× 12, 294× 293,

294× 294, 294× 300, 299× 4, 299× 12, 299× 293, 299× 294, 299× 300 15
C4223 12× 293, 293× 293, 293× 294, 294× 293, 294× 294, 299× 12, 299× 299 7
C4233 12× 12, 293× 293, 293× 300, 294× 12, 294× 300, 299× 12, 300× 293,

300× 300 8
C4234 12× 12, 12× 294, 12× 299, 293× 293, 293× 300, 300× 293, 300× 294,

300× 300 8
C4236 12× 12, 293× 293, 293× 294, 293× 300, 294× 293, 294× 294, 299× 299,

300× 293, 300× 300 9
C4238 12× 300, 293× 293, 300× 12, 300× 300 4
C4243 4× 293, 4× 294, 12× 4, 12× 293, 12× 294, 12× 299, 293× 12, 293× 294,

294× 4, 294× 12, 294× 293, 294× 294, 299× 4, 299× 293, 299× 294,
300× 12, 300× 294, 300× 299 18

C4244 4× 12, 4× 294, 4× 299, 12× 293, 12× 294, 12× 300, 293× 4, 293× 12,
293× 294, 293× 300, 294× 4, 294× 12, 294× 293, 294× 294, 294× 299,
294× 300, 299× 12, 299× 300 18

C4252 299× 300, 300× 299 2
C4258 4× 12, 4× 300, 12× 4, 12× 12, 12× 293, 12× 294, 12× 299, 12× 300,

293× 12, 293× 294, 293× 299, 294× 12, 294× 293, 294× 299, 294× 300,
299× 12, 299× 293, 299× 294, 299× 300, 300× 4, 300× 12, 300× 294,
300× 299 23

C4259 4× 12, 4× 300, 12× 12, 12× 293, 12× 294, 12× 299, 12× 300, 293× 4,
293× 12, 293× 294, 293× 299, 294× 4, 294× 12, 294× 293, 294× 294,
294× 300, 299× 12, 299× 293, 299× 294, 299× 300, 300× 12, 300× 294,
300× 299 23

C4260 4× 293, 4× 294, 12× 4, 12× 12, 12× 293, 12× 294, 12× 299, 12× 300,
293× 12, 293× 294, 293× 299, 294× 12, 294× 293, 294× 294, 294× 299,
294× 299, 299× 12, 299× 293, 299× 300, 300× 4, 300× 12, 300× 294,
300× 299 23

C4262 12× 299, 294× 299, 299× 12, 299× 294 4
C4264 12× 294, 293× 293, 293× 300, 294× 12, 294× 300, 299× 299, 300× 293,

300× 294 8
C4266 12× 12, 293× 300, 294× 299, 299× 294, 299× 299, 300× 293, 300× 300 7
C4286 12× 293, 12× 300, 293× 12, 293× 300, 300× 12, 300× 293, 300× 300 7
C4288 12× 12, 293× 300, 300× 293, 300× 300 4
C4292 4× 4, 4× 12, 4× 294, 12× 4, 12× 12, 12× 293, 12× 294, 12× 300, 293× 12,

293× 294, 293× 299, 294× 4, 294× 12, 294× 293, 294× 294, 294× 299,
294× 300, 299× 293, 299× 294, 299× 300, 300× 12, 300× 294, 300× 299 23

C4296 12× 299, 293× 293, 293× 300, 294× 12, 294× 300, 299× 294, 299× 299 7
C4297 12× 294, 293× 293, 294× 299, 299× 12, 299× 299, 300× 293, 300× 294 7
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