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Abs t rac t .  In this paper, we are going to combine the idea of the (t, n) 
threshold signature scheme with the multisignature scheme and propose 
a new type of signature scheme, called the (t, n) threshold-multisignature 
scheme. In the (t, n) threshold-multisignature scheme, at least t share- 
holders of a specific group have to cooperate to generate a valid group 
signature and suspected forgery implies traceabihty of adversarial share- 
holders. The validity of that signature for the specific group can be ver- 
ified without knowing the membership of the signers to that group. 

1 I n t r o d u c t i o n  

Digital signature is very important  in the modern electronic data processing 
systems. The signer of the conventional digital signature schemes is usually a 
single user. However, the responsibility of signing messages needs to be shared 
by a set of signers from time to time. The (t, n) threshold signature schemes [1][2] 
and the multisignature schemes [5][8][9][10][11] are used to solve these problems. 

In the (t, n) threshold signature schemes, t or more shareholders of the group 
cooperate to generate a valid group signature and the verifier can verify the 
validity of the group signature without identifying the identities of the signers. 
However, as being pointed out in [4], if t or more shareholders act in collude 
(assuming that  they do not open their keys in public,) then they can impersonate 
any other set of shareholders to forge signatures. In this case, the malicious set of 
signers does not have to take any responsibility for the forged signatures and thus 
encourages collusion. Consider the setting that  assumes there is a log of input 
messages for signing. If the system recognizes that  a certain message was never 
an input of that  log but  was signed, then the identities of the signers have to be 
uncovered. Unfortunately, with the (t, n) threshold signature schemes proposed 
so far, this problem cannot be solved. 

On the other hands, in the multisignature schemes, the signers of a mul- 
tisignature are identified in the begining and the validity of the multisignature 
has to be verified together with the identities (or public keys) of the signers. 
Under this model, it is indeed unnecessary to put a threshold value to restrict 
the number of signers to generate a valid multisignature. However, consider the 
other setting where a group of anonymous members would have to generate a 
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multisignature. The members  of this group use pseudonyms as their identities in 
the public directory. Wha t  the verifier concerns most is that  a message is signed 
by at least t members  and they indeed come from that  group. But the verifier 
has no way to verify whether a user is in fact a member  in that  group because 
of the anonymity  of the membership.  In this case, the multisignature schemes 
cannot solve this problem, however, the threshold schemes do. 

In reality, there are many  applications that  simultaneously belong to both 
settings described above. From the point of view of the signing group, what  the 
group concerns is the t r a c e a b i l i t y  of the signing set. On the other hand, from 
the verifier's point of view, whether the signature is indeed from tha t  group 
and signed by at  least t members  (not the membership of the members  in tha t  
group) is concerned most.  Both the (t, n) threshold signature schemes and the 
multisignature schemes cannot independently solve this problem. 

In this paper, we are going to combine the idea of (t, n) threshold signature 
schemes with the multisignature schemes and propose a new type of signature 
scheme, called the (t, n) threshold-multisignature scheme, to solve this problem. 
The new schemes, one requires a trusted share distribution center (SDC) to 
determine the group secret keys and all shareholders '  secret shares while the 
other does not, are based on t ta rn ' s  (t, n) threshold signature scheme [2] and 
Yen-Laih's digital signature scheme [7]. 

The structure of this paper  is as follows. In the next section, we propose a 
(t, n) threshold-multisignature scheme with a trusted SDC and discuss its secu- 
rity. Section 3 proposes the other (t, n) threshotd-multisignature scheme without  
the assistance of a trusted SDC. Finally, we conclude this paper  in Section 4. 

2 (t,n) Threshold-Mult is ignature Scheme with A 
Trusted S D C  

We assume that  there is a trusted SDC for determining the group secret pa- 
rameters and all shareholders '  secret shares. Let A ([A[ : n) be the set of all 
shareholders, B be any subset in A of size t ([B[ = t). The new scheme is 
described as follows: 

P a r t  1: G r o u p  S e c r e t  K e y  a n d  S e c r e t  S h a r e s  G e n e r a t i o n  P h a s e  

First of all, the trusted SDC selects : 

* a collision free one-way hash function H [12]; 
* a prime modulous p, where 2511 < p < 2512 ; 
�9 a prime q, where q is a divisor of p -  1 and 2159 < q < 216~ ; 
�9 a number  a ,  where c~ -- h(p-1)/q mod  p, h is a random integer with 1 < h < 

p - 1 such tha t  a > 1; (a  is a generator of order q in GF(p) . )  
�9 a polynomial f ( x )  = ao + a l x  + . . .  + a t - i x  ~-1 mod q, such tha t  each hi, 

for i = 0 , . . . , t  - 1, is a random integer with 0 < ai < q. 



196 

{H, p, q, a} are the group public parameters, and the polynomial f ( z )  must 
be kept secret. It is noted here that  if a is a generator of order q in GF(p), then 
we have a r rood p = ar  ,nod q mod p, for any non-negative integer r [6]. 

The SDC determines the group secret key as f(0) and computes the group 
public key, y, as 

y = trl(0) mod p. 

Then, the SDC computes the secret share ui for each shareholder i, i E A, as 

Ui = gi  "4" f ( x i )  mod q, 

where zi is the public value associated with each shareholder i, and gi is a 
random integer with 0 < gi < q. The SDC also needs to compute public keys, 
Yi,  z i ,  a s  

c~ =' mod p, ( =  aa,+l(=,) modq mod p) (1) Yi 

zi = a g' mod p, 

for each shareholder i, i E A. 

Part 2: Partial Signature Generation and Verification Phase  

To create the group signature for the message m, each shareholder i, i E B, will 
randomly select an integer ki ,  ki E [ 1 , q -  1], and compute a public value, r/, as 

r i  = c~ k '  mod p. 

Then each shareholder i, i E B, makes ri publicly available through a broadcast 
channel. Once all ri, i E B, are available, each shareholder i in B computes the 
product R and a hash value E as 

R =  H ri mod p, (=  a ~ , e -  ~' mod q mod p) (2) 
iEB  

E = H ( m ,  R )  mod q. 

Then, shareholder i uses his secret keys, ui and ki ,  to calculate the partial 
signature si as 

si = ui " - -  + ki " E modq .  (3) 
xi  - z j  

Each shareholder i in B sends the values, {m, s i } ,  to a designated combiner D C  

who takes the responsibility to collect and verify each partial signature and then 
produces a group signature. We should note that  there is no secret information 
associated with the DC. 

D C  can verify the partial signature {m, ri, si} by the following: 
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a "  -- yl x �9 r f  mod p. 

If the above equation holds, then the partial signature {m, ri, si} for shareholder 
i is valid. 

Part  3: Group Signature  Generat ion  and Verification P h a s e  

Once these t partial signatures are verified, the D C  can compute an S by 

S = E si mod q. 
iEB 

{B, R, S} is the group signature of m. 
To verify the validity of the group signature {m, B, R, S, }, the verifier needs 

to compute a verification value T and the hash value E as 

( n , .  o--, 
T = H z,." '* '  *'-*J / mod p, (4) 

iEB 

E = H ( m ,  R )  mod q. 

Then, the verifier uses the group public key y to check 

a s ~ y . T .  R E mod p. (5) 

If the Eq. (5) holds, the group signature {m, B, R, S} is valid. 
It should be obvious that  the group size, (IAI = n), of the new scheme can be 

increased by assigning the new public keys, zj ,  yj and zj, and the secret share, 
uj ,  to a new shareholder j without affecting the secret shares of the others. 
T h e o r e m  1 : If a s - y .  T .  R E mod p, then {B, R, S, } is the group signature 
o f  m .  

< p r o o f  > With the knowledge of the hash value E and the secret keys, ui and 
ki, shareholder i can generate his partial signature {m, ri, s i }  for message m to 
satisfy 

"," (l-I ~ ~ ' ~  +k,.~ rood, 
a " = a  ~ '  ' -  ~/ m o d p  

-~ j  ] q 
-- Yi ,4 . ri E mod p. (6) 

By mulitiplying a "' for all i 6 B, we have 

H ~ ' '  = H Y' �9 rE mod p. (7) 
ifiB iEB 

According to Eq. (1), Eq. (2) and Eq. (4), we can rewrite the right-hand side of 
Eq. (7) as 
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~ ~o~ 

ifi B 

_ z.o~ 
= jC:t ~: - z j  ] q 

mod p 

�9 H r/E rood p 
lEE 

= a )--'"'es #"I"[~ B' "'-'J " '" " ' ~ / '  * -" / �9 R E mod p 

E.~. ,.I-l, W .-.~: X 3:7 t:s z --'~3 ] = a  . a  

T a ~ ' e B ( I ( = ' ) ' l - I ~  $ ~ rood 
_ . ~ - ~ j ]  q . R E  mod p .  

�9 R E mod p 

(s) 

With the knowledge of t pairs of (zi, f(xi)), the unique (t - 1)-th degree poly- 
nomial, f(z),  can be determined as [3] 

x - z j  ) 
:(-) = E :(-,) II. ,  _., 

iEB ~EB j~t 

,nod q. (9) 

Thus, the Eq. (8) can be further derived as 

r .  a E ' ~  (Jr ~ .  -., j 

= T �9 a l(~ �9 R E mod p 

= y .  T .  R E mod p. 

rood q 
�9 R E m o d  p 

Since S can be expressed as 

S =  E 8 i  
iEB 

rood q, 

we can rewrite the left-hand side of Eq. (7) as 

H ozs ~ aE,E B s, rnod q mod p 

iEB 

-- a s mod p. Q.E.D. 

S e c u r i t y  D i s c u s s i o n :  

According to the Theorem 1, any subset B of t shareholders can generate a 
valid group signature for the set A, however, less than t shareholders cannot�9 
The group signature can also be verified easily by any verifier. Here, we will 
discuss several possible attacks. None of these attacks can successfully break our 
new scheme�9 
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1. Can one retrieve the group secret key f(0) and the secret share ui, i E A, 
from the group public key y and Yi, i E A ? 

Obviously, this difficulty is as same as solving the discrete logarithm 
problem. 

2. Can one retrieve the secret share ui from the Eq. (3) ? 
For a given message and the corresponding signature pair, Eq. (3) involves 

two unknown parameters, ui and ki. For a signature pair of another message 
rn', the unknown parameter is also increased by one. Thus, the number of 
unknown parameters is always larger than the number of available equations. 
This attack cannot work successfully. 

3. Can one retrieve the group secret key f(0) from the following? 

S -  ui . H xl  - x j  + ki " E modq 
�9 $EB 

#get (go_,, = f ( O ) + ~  gi" + ~ k i . E  modq (10) 
i E B  ~ i  - -  2 j  i E B  

3~w 

For a given message and the corresponding group signature pair, the 
. 

Eq. (10) revolves three unknown parameters, f(O), ~'~,-n (g' " [I  , 'B . - ~, 

~ i e B  ki, for any shareholder i. It is noted that  the unknown parameters are 
increased along with the increment of the corresponding group signatures�9 
On the other hand, i f t  or more shareholders act in collude, there are still two 

0_w_/ 
unknown parameters, f(0), ~ i e B  (gi'l-I~e,B ~_~ ,1 ,  involved in Eq. (10). 

For any increment of subset B, the unknown parameter is still increased by 
one. Therefore, the number of unknown parameters is always larger than 
the number of available equations. This attack cannot work successfully. 

4. Can one impersonate a shareholder i, i E B ? 
A forger may try to impersonate a shareholder i, i E B, by randomly 

/ selecting an integer k~ E [1, q -  1] and broadcasting r i = ~ :  mod p. Since 

. (1-I~8 , ) ' mod p, is determined by all t 
% 

the productive value, R' = rj r i 

members and the hash value, E' ,  is obtained by H(m,  R'), without knowing 
the secret share, ui, it is difficult to generate a valid value s' to satisfy the 
verification equation as 

s'  z , - ~ ,  ] rood q ~E' 
ot , -~ y �9 r i m o d  p .  

5. Can one forge a signature {m, B, R, S} based on the Eq. (5) ? 
A forger may randomly select an integer R, and then computes the hash 

value E such that  E = H(m,  R) mod q. Obviously, to compute the integer S 
is equivalent to solving the discrete logarithm problem. On the other hand, 
the forger can randomly select E and S first, and then try to dertermine 
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a value R', that satisfy the Eq. (5) and the equation E = H ( m ,  R ' )  simul- 
taneously, However, according to the propertyof the H function, it is quite 
impossible. Thus, this attack will not be successful. 

6. Can t or more shareholders act in collude to reconstruct the secret polyno- 
mial f(x) ? 

According to the Eq. (9), the secret polynomial f(z)  can be reconstructed 
with the knowledge of any t secret values f ( z i ) ,  i E A.  Anyone who knows 
the polynomial f(z)  can impersonate any shareholder to sign messages with- 
out holding the responsibility to the signatures. Nevertheless, the secret 
share ui, i E A, in our new threshold signature scheme contains the integer 
g~ which is known only by the trusted SDC and has to be removed first be- 
fore reconstructing the polynomial f(z).  A malicious shareholder i may try 
to retrieve the integer gi from the public key zi. However, the difficulty is as 
same as solving the discrete logarithm problem. Thus, any t or more share- 
holders cannot conspire to reconstruct the polynomial f(z)  by providing 
their own secret shares. 

3 (t,n) Threshold-Mult is ignature Scheme without  A 
Trusted SDC 

In this section, we will propose another (t, n) threshold-multisignature scheme 
which does not need the assistance of a trusted SDC. Since there is no trusted 
SDC, each shareholder has to act as a SDC to generate his secret key and 
distribute the corresponding secret shares to other shareholders. The public pa- 
rameters, {H, p, q, a}, should be agreed by all shareholders in advance. 

Part 1: Group Publ ic  Key and Secret Shares Generat ion Phase  

Each shareholder i, i E A, randomly selects a (t - 1)-th degree polynomial, f i ( x ) ,  
and an integer xi,  where zi E [1, q - 1]. Then he computes a corresponding public 
key, Yi, as 

Yi = a/,(0) ,nod q mod p. 

{xi, Yi} are the public keys of the shareholder i, i E A, and the polynomial 
fi(z) is his secret parameter. The group public key y can be determined by all 
shareholders as 

Y =  H y' modp.  (= a ~ , ~  A/'(~ mod q modp)  
iEA 

Since there is no trusted SDC, each shareholder i must act as a SDC to generate 
and distribute following values to the shareholder j ,  j E A , j  ~ i, as : 

uij -~ ffij + f i ( ~ j )  mod q, 

Yij = a u ' i  m o d p , ( = a  g''+/'(=D modq m o d p , )  

zij = a a" mod p 
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where xj is the public key of shareholder j,  and gij is a random integer with 
0 < gij < q. The value of uij is the secret share generated by shareholder i for 
shareholder j ,  and both Yij and zij are shareholder j ' s  public values. 

P a r t  2: Pa r t i a l  S igna tu re  G e n e r a t i o n  and  Verif icat ion Phase  

Similar to the (t, n) threshold-multisignature scheme proposed in the previous 
section, each shareholder i, i E B, randomly selects an integer ki, ki E [1, q -  1], 
and compute a public value, ri, as 

ri : ak, rood p. 

Then each shareholder i, i E B, makes ri publicly available through a broadcast 
channel. Once all ri, i E B, are available, each shareholder i in B computes the 
product R and a hash value E as 

R :  H ri mod p, ( :  c ~ , e  Bk' mod q mod p) 
iEB 

E : H(m,  R) mod q. 

Then, shareholder i uses his secret keys, fi(0), ki and u j i , j  E A , j  ~ B, to 
calculate the partial signature si as 

I]  s, = f,(0) + : =-- 
3 E A  e E B  
j~B e~s 

+ ki �9 E mod q. 

Each shareholder i in B sends the values {rn, si} to the designated combiner, DC. 
As similar to the description in the previous section, the DC firstly computes 
the values of R and E from the broadcast channel, and then he uses shareholder 
i's public keys xi, Yi and Yii, for j E A, j ~ B to verify the validity of the partial 
signature as 

o 

ozS' ~-- Y i "  Y j i  

x~  - x e  too, q) . r: 
mod p. 

If the above equation holds, then the partial signature {m, ri, si} is valid. 
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P a r t  3: G r o u p  S i g n a t u r e  G e n e r a t i o n  a n d  V e r i f i c a t i o n  P h a s e  

Once all these t partial signatures are verified by the D C ,  the D C  can generate 
the group signature for the message m as {m, B, R, S}, where 

S = ~ si mod q. 
i E B  

To verify the validity of the group signature {m,  B,  R , S } ,  the verifier has to 
compute the veirfication value T and the hash value E as 

mod p, 

E = H ( m ,  R)  mod q. 

Then, the verifier uses the group public key y to check 

c~ s ~ y .  T .  R E mod p. 

If the above equation holds, the group signature {m, B, R, S} is valid. 
T h e o r e m  2 : If a s ~ y �9 T .  R E mod p, then the group signature {B, R, S} 
is valid. 
< p r o o f  > This proof is similar to the proof of Theorem 1 and is omitted here. 

Because the shareholders in this section do not truste each others, how can 
shareholder i makes sure that  the secret share, uji, given by shareholder j is cor- 
rectly derived from the secret polynomial f j  (z). This problem may occur in some 
situations. For example, a dishonest shareholder tries to cheat the shareholders 
by giving them fake secret shares. The communication errors (i.e., channel noise) 
can also result in erroneous secret shares. Here, we would like to show that  our 
new scheme can prevent this kind of errors. 
T h e o r e m  3 : The erroneous secret share can be detected by any shareholder. 
< p r o o f  > Let us first examine if the fake secret shares is caused by the com- 
munication noise. We consider that  shareholder i receives a fake secret share, 
u~i , from shareholder j ,  and the corresponding public key is yji = c~u" mod p. 
Obviously, this fake secret share can be easily detected by shareholder i as 

? u t 

Yji -- c~ ~, mod p. 

On the other hand, if a dishonest shareholder j picks up a fake secret share, 
u~i = f~(zi) + gji, and publishes the corresponding public keys as 

U ! Yji = a " mod p, 

zji  = o d -  mod p. 

According to the Eq. (9), a unique (t - 1)-th degree polynomial, f j  (z), can be 
reconstructed with the knowledge of t pairs of (xi, f j  (xi)). Thus, each shareholder 
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i can verify his public keys Yji and zji, which are distributed by shareholder j ,  
by combining with any other t-1 shareholders' public keys to compute 

n (n.-  rood e e B  . . . .  ,] .~ 
HYJ~ ~ m o d p - y j . H z _ j ~  "#' m o d p .  
i E B  i E B  

(13) 
If the Eq. (13) holds false, it must exist some fake public keys in the subset B. 
Then, shareholder i knows that  shareholder j might be dishonest. 

Q.E.D. 
The security analysis of this new scheme is almost the same as the previous 

one proposed in Section 2 (thus is omitted here.) However, this new scheme does 
not need the assistance of a trusted SDC. 

5 C o n c l u s i o n s  

In this paper, we have proposed two (t, n) threshold-multisignature schemes, one 
requires the assistance of a trusted SDC to determine the group secret keys and 
all shareholders' secret shares and the other does not. In the new schemes, the 
designated combiner DC, in fact, can be eliminated and instead the verifier of 
the group signature takes the responsibility to collect and verify each partial 
signature and the group signature. The features of our new schemes can be 
summarized as follows: 

1. The group signature can only be generated by t or more shareholders. 
2. The partial signatures generated by the shareholders can be verified by a 

designated combiner, DC, (or by the verifier) before they be combined into 
a group signature. 

3. The validity of the group signature can be verified without knowing the 
membership of the signers to the group. 

4. Since the system secrets cannot be retrieved by malicious shareholders, the 
signing set of a group signature cannot be impersonted by any other set of 
shareholders and the suspected forgery can be traced and the faulty share- 
holders can be caught in our new schemes. 

5. The group size, IAI, can be dynamically increased without affecting the 
secret shares of the others. 
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