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The effect of hydrogen treatment on the threshold switching property in a

Ag/amorphous Si based programmable metallization cells was investigated for

selector device applications. Using the Ag filament formed during motion of Ag

ions, a steep-slope (5 mV/dec.) for threshold switching with higher selectivity (∼105)

could be achieved. Because of the faster diffusivity of Ag atoms, which are inside

solid-electrolytes, the resulting Ag filament could easily be dissolved under low

current regime, where the Ag filament possesses weak stability. We found that the

dissolution process could be further enhanced by hydrogen treatment that facilitated

the movement of the Ag atoms. C 2015 Author(s). All article content, except where

otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4938548]

Resistive random access memory (RRAM) is one of the most promising emerging nonvola-

tile memories owing to its excellent scalability, fast operation, low power consumption, and rela-

tively simple fabrication process.1 For ultra-high integration density, passive cross-point array is

the most attractive architecture. In this architecture, however, it is essential to suppress the sneak

current from the neighboring cells that can reduce the readout sense margin, increase the power

consumption and limit the array size.2 One way to suppress the sneak current is to use RRAMs

with self-rectification property as one resistor (1R) configuration since the rectifying characteris-

tics can significantly reduce the leakage current flowing through a reverse-biased RRAM cell, and

various types of rectifying RRAM devices have been demonstrated.3–5 An alternative method is to

connect a nonlinear circuit element such as a selector device to each RRAM cell as one selector

and one resistor 1S-1R configuration. Several selector devices such as tunneling didoes,6 bidirec-

tional varistors,7 mixed-ionic-electronic-conduction (MIEC),8 Ovonic threshold switching (OTS)9

and metal-insulator transition (MIT) have been proposed.10 However, these selector devices cannot

sufficiently suppress the leakage current, which is required for achieving high density RRAM inte-

gration. To solve this high leakage current problem, a bipolar threshold switching selector device

was reported that had selectivity >107, ultra-low off current <100 pA, and steep turn-on slope

<5 mV/decade.11 However, important information about the selector device such as materials and

operating mechanism of the device were not disclosed.

In this study, we show that threshold switching behaviors with desired properties such as

ultra-low off current of <100 pA and steep turn-on slope of 5 mV/decade can be obtained in a

carefully engineered Ag/amorphous Si (a-Si) based programmable metallization cell (PMC) device.

The mechanism of PMC device invovles formation and rupture of metal filaments in an electrolyte

owing to the electrochemical reactions. By adopting Ag-Si system where the Ag atoms have high

diffusivity, we can reduce the stability of the metal filament and hence obtain threshold switching

characteristics at higher Icomp, which has been normally reported at low Icomp as ≤100 nA.12,13 In

addition, by enhancing diffusivity of the Ag atoms and removing leakage paths in the a-Si film of

the device through hydrogen doping of the a-Si layer, we can induce a faster dissolution of the metal

filament and lower down the off current of the device.

aAuthor to whom correspondence should be addressed. Electronic mail: hwanghs@postech.ac.kr
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FIG. 1. (a) A schematic digram of Ag/a-Si/Pt stacked 250 nm via-hole selector device. Compliance current dependent

(b) memory switching and (c) threshold switching characteristics of Ag/a-Si based selector device. (d) Read resistances

following SET/ON operation at various compliance currents.

We fabricated an Ag/Silicon-based PMC device with a via-hole structure, as illustrated in

Fig. 1(a). A 100-nm-thick SiO2 layer was deposited on a Pt bottom electrode (BE) substrate through

plasma-enhanced chemical vapor deposition for the isolation layer. Subsequently, 250 nm via holes

were patterned using lithography and reactive ion etching processes. Then, a 10-nm-thick amor-

phous Si layer and a 5-nm-thick Ag top electrode (TE) layer was deposited by sputtering system

under pure Ar ambient gas in a sequence at room temperature.

The as-fabricated devices with Ag/a-Si/Pt stack were in the high resistance state (HRS) with

an extremely low current level near 100 pA at a read voltage of 0.1 V, and the current-voltage

(I–V) characteristics showed memory switching at 100 µA, as illustrated in Fig. 1(b). As the

positive voltage bias was swept to ∼0.8 V, the HRS current suddenly increased from 100 pA to

Icomp.(100 µA) and changed to a low resistance state (LRS), which corresponds to the SET oper-

ation. This LRS was retained even after the removal of the applied bias. When the voltage was

swept to a negative polarity, a dramatic current drop was observed at ∼ –0.3 V that corresponds

to the RESET operation. On the contrary, threshold switching was observed at a lowered Icomp. of

10 µA, which is shown in Fig. 1(c). When the voltage bias higher than a certain voltage called

threshold voltage (±Vth ± 0.8 V) was applied, the initially low current (100 pA) abruptly jumped to

Icomp. (10 µA) and the device suddenly switched to the ON state. However, compared to the device

operating at 100 µA, this device could not remain in the ON state such that when the applied bias

was decreased back to a certain value called hold voltage (±VH � ±0.1 V), the device readily went

back to HRS (OFF state). This observed transition from memory switching to threshold switching

with decrease of the current was also confirmed by comparing the resistances at 0.1 V before and

after SET/ON operation at various compliance currents, as shown in Fig. 1(d).

The observed behaviors in the Ag/a-Si based PMC device are schematically described in Fig. 2.

When a positive bias was applied, Ag ions can be ionized from the Ag TE as an ion source, and then

the Ag ions can migrate toward the BE. As a result, the metallic filament whose size is dependent on
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FIG. 2. Schematic diagrams explaining switching characteristics of Ag/a-Si based PMC device at different current com-

pliances. (a) Stable thick filament formed at high Icomp(>100 uA) results in memory switching. (b) Unstable thin filament

formed at low Icomp (≤10 uA) and (c) high diffusivity of the Ag atoms in a-Si result in spontaneous rupture of the filament

and hence the threshod switching.

Icomp values was formed by electrochemical reaction.14 Under high Icomp as >100 µA, the formation

of thicker filament was preferred because of the supplied large amount of Ag ions from the TE, as

shown in Fig. 2(a). This thick filament was stable because it had plenty of metal-metal bonds that

strongly tied the Ag atoms composing the filament together.15 Therefore, the state of filament can be

maintained even after the removal of the voltage bias, thereby showing memory switching behavior.

On the other hand, when the set Icomp was lowered down to ≤10 µA, a smaller size of filament

composed of a few Ag ions was formed, which is illustrated in Fig. 2(b). Because this reduced size

of filament consisted of less metal bonds, the force to tie the metal atoms together was diminished.

Therefore, when the voltage bias was removed, the Ag atoms composing the filament became easier

to be moved by diffusion through defect sites, which is schematically described in Fig. 2(c). The

atomistic diffusion of the Ag atoms outside its original position in the filament indicates its disso-

lution. Thus, if the metal atoms have high diffusivity in the electrolyte, fast dissolution of the metal

filament (that resulted by fast diffusion of the surface atoms) can occur, thereby exhibiting threshold

switching behavior. The diffusivity of the metal atoms in an amorphous matrix can be explained

by an interstial diffusion equation following Arrhenius law because most transition metals mainly

diffuse through interstial sites.16 The interstial diffusion equation is as follows

D∗
i
= D∗

i,0exp[−(HM

i
+ HB

it )/kT]

The quantities D∗
i
,D∗

i,0
, HM

i
and HB

it
represent the effective interstitial diffusivity, pre-exponential

factor, migration enthalpy for the interstitial atoms, and binding enthalpy of traps which capture

diffusing metal atoms, respectively. According to the equation, metal atoms can diffuse out fast

if their migration enthalpy and number of the traps in electrolytes is small. In case of Ag/a-Si

based PMC device, Ag atoms had high diffusivity in a-Si layer because of their low migration

enthalpy in the electrolyte and thus threshold switching was resulted in the device.17 In addition,

switching to the ON state in the negative polarity was possible in this device because the Ag metal

deposited by sputtering system penetrated into the Si layer during the fabrication process. To prove

the incorporation of Ag into the a-Si layer, we used HR-TEM based images and Energy Dispersive

Spectroscopies (Not shown here). The amount of Ag inside the a-Si layer was calculated to be about

5.80 atomic % according to the EDS anaylsis. This injected Ag atoms can be served as ion sources

which result in the bi-directional switching behavior of the device.

As abovementioned, the diffusivity of Ag atoms, the driving force to dissolve the filament,

can be further increased by reducing the number of trapping sites in the amorphous electrolyte.

Therefore, to induce even faster dissolution of the filament, we doped the amorphous Si layer using

hydrogen, which is one of the methods to remove traps in the a-Si film.18 The hydrogen doping of

the amorphous Si layer was performed by replacing pure Ar ambient gas to Ar + H2 forming gas

with 5% hydrogen ratio in the Si sputtering process. Hydrogen contained in the forming gas can be

incorporated into the a-Si film with the assist of plasma during the sputtering process.19 Fig. 3(a)

shows the I–V charactersitics of the hydrogen doped Ag/a-Si (Ag/a-Si:H) system of the device.

Compared to the previous device (VH ∼ ±0.1 V), a remarkable increase in the | ± Vhold| was clearly
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FIG. 3. (a) Comparison of I-V charateristics of Ag/a-Si with and without hydrogen doping process. (b) FT-IR plot of two

samples; red curve is for a sample with hydrogen doping and black curve is for a sample without hydrogen doping.

observed in the hydrogen doped device (VH ∼ ±0.5 V). Moreover, a decreased off state current

and thus an increased selectivity from 105 to 107 were observed. We believed that the hydrogen

treatment contributed to the changes in the electronic characteristics of the device, and the effect of

hydrogen on the Si film was analyzed by Fourier Transform Infrared (FTIR) spectroscopy. Fig 3(b)

shows FTIR spectra of two samples, one deposited without hydrogen doping (black) and one with

the hydrogen doping (red). In the spectroscopy, a peak difference was clearly detected at 2080 cm−1.

This result indicates that the hydrogen-doped device has Si film passivated by hydrogen because a

peak at 2080 cm−1 denotes the presence of hydrogen-Si bondings in the film.19

The observed changes in the characteristics of the Ag/a-Si:H system of device can be explained

as follows. Intrinsic dangling defects existing in the amorphous Si film of the device worked as traps

in terms of atomic diffusion and thus impeded their diffusion, which is schematically demonstrated

in Fig. 4(a).16 Because the hydrogen atoms bonded to Si dangling defects, trapping of the metal

atoms were prevented, and therefore an uninterrupted fast diffusion was resulted, as schematically

described in Fig. 4(b).20 Faster diffusion of the metal atoms composing the filament led to its

faster dissolution. This faster diffusion of metal atoms can be indirectly confirmed by checking the

change of VH. Not only VH was increased but the overall resistance of the selector device was also

increased, because of the removal of the defects that caused leakage paths.20 Thus, the off-state

current of the device could be further lowered to ∼1 pA level, which can expand the maximum array

size in the cross-point memory array.

The newly fabricated Ag/a-Si:H system of the device showed good endurance along with excel-

lent switching uniformity. Fig. 5 indicates distribution data based on 100 DC cycles operated in this

device. Tight distribution of the off-state current read at 1/2 Vth, shown in Fig. 5(a), proves good

switching uniformity of the device. Moreover, ensured voltage margin of about 1.4 V was noted in

Fig. 5(b) where distribution data of Vth and VH is shown.

FIG. 4. Schematic diagrams demonstrating (a) impeded diffusion of metal atoms by trapping of Si dangling defects in

amorphous Si film and (b) uninterrupted fast diffusion in hydrogen passivated Si layer.
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FIG. 5. (a) Cumulative probability of current levels read at half Vth. Inset shows typical I-V characteristics of Ag/a-Si:H

based threshold selector device (100 DC cycles). (b) Cumulative probability of Vth and Vhold.

We have demonstrated a threshold switching selector device with a steep turn-on slope and a

high ON current obtained by adopting Ag/a-Si system, where the Ag atoms have high diffusivty,

which led to fast dissolution of the metal filament. In addition, through hydrogen doping, we could

induce faster dissolution of the metal filament and could lower down off-state current of the de-

vice because the doped hydrogen atoms passivated traps in the a-Si film. We hope that this novel

approach helps in achieving the future cross-point array applications.
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