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Abstract: In this paper we propose a new class of nonlinear time series models,

the threshold variable driven switching autoregressive models. It is a hierarchical

model that combines two important nonlinear time series models, the threshold

autoregressive (AR) models and the random switching AR models. The underlying

time series process switches between two (or more) different linear models. The

switching dynamics relies on an observable threshold variable (up to certain es-

timable parameters) as used in a threshold model, hence reveals the true nature of

the switching mechanism. It also allows certain randomness in the switching proce-

dure similar to that in a random switching model, hence provides some flexibility.

Furthermore, we propose a model building procedure that concentrates on a fast

determination of an appropriate threshold variable among a large set of candidates

(and linear combinations of them). This procedure is applicable to the new models

as well as the classical threshold models. A simulation study and two data examples

are presented.

Key words and phrases: Model selection, posterior BIC, switching AR models,

threshold AR models.

1. Introduction

Since the seminal paper of Tong and Lim (1980) on the threshold autore-

gressive (TAR) model, there have been a number of successful applications of

the TAR model in various fields, such as economics, finance, biology, epidemi-

ology, meteorology, and astronomy (Tong (1983), Chen (1995), Tong (1990),

Watier and Richardson (1995), Montgomery, Zarnowitz, Tsay and Tiao (1998)

and Tsay (1998)). TAR models provide a simple yet elegant approach to non-

linear time series (Tong (1990), Moeanaddin and Tong (1988) and Tsay (1989)).

Various extensions of the TAR model have been proposed, including the threshold

MA model (Gooijer (1998)), the threshold integrated MA model (Gonzalo and

Mart́ınez (2004)), the threshold ARMA model (Sáfadi and Morettin (2000)), the

threshold ARCH model (Li and Lam (1995) and Li and Li (1996)), the thresh-

old GARCH model (Zakoian (1994)), the threshold stochastic volatility model
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(So, Li and Lam (2002)), and the smooth transition autoregressive model (Chan

and Tong (1986), Teräsvirta (1994) and van Dijk, Teräsvirta and Franses (2002)).

A more general class of models is proposed by Huerta, Jiang, and Tanner (2003),

termed hierarchical mixture time series models.

Consider a (generalized) two-state TAR model

Yt =







φ
(1)
0 + φ

(1)
1 Yt−1 + · · · + φ

(1)
p Yt−p + ε

(1)
t if Zt ≥ 0,

φ
(2)
0 + φ

(2)
1 Yt−1 + · · · + φ

(2)
p Yt−p + ε

(2)
t if Zt < 0,

where Zt is the threshold variable that determines the dynamic switching mech-

anism of the model. Many different choices of threshold variables have been used

in applications. Particularly, in the standard self-exciting AR models, Zt is as-

sumed to be Yt−d − c, where Yt−d is a lag variable of the observed time series.

In open-loop threshold models (Tong (1990)), Zt takes the form Zt = Xt−d − c.

That is, the current mode of Yt is determined by an exogenous time series Xt.

Other choices include linear combinations of the lag variables or exogenous vari-

ables (Chen and So (2006) and Tsay (1998)) and nonlinear combinations of the

form Zt = f(Xt−d1
, Xt−d2

) (Chen (1995)).

A special case of the TAR model is the switching autoregressive (SAR) model,

as first proposed in Tong and Lim (1980), subsequently formalized by Hamilton

(1989), and used by McCulloch and Tsay (1994b). This model uses a random

latent (unobservable) indicator as the threshold variable. Specifically, a two-state

SAR model can be written as:

Yt =







φ
(1)
0 + φ

(1)
1 Yt−1 + · · · + φ

(1)
p Yt−p + ε

(1)
t if It = 1,

φ
(2)
0 + φ

(2)
1 Yt−1 + · · · + φ

(2)
p Yt−p + ε

(2)
t if It = 2,

where It is the hidden state variable, or the “switching indicator”. The switching

mechanism can be either an independent process characterized as P (It = 1) = p

and Ii, Ij independent for i 6= j, or a Markovian dependent process charac-

terized as P (It = j | It−1 = i) = pij for i, j = 1, 2. Hamilton (1989) and

McCulloch and Tsay (1994a) used this model for analyzing the U.S. GNP series

and identifying the “contraction” and “expansion” states of the economy.

TAR models assume that the state switching is deterministically controlled

by an observable threshold variable. This observable threshold completely speci-

fies the states of the process in the immediate future, hence produces a uni-modal

predictive distribution. Also, the procedure to identify the threshold variable

may reveal the possible relationship between the target series and other time

series, which is helpful in understanding the underlying dynamics of the time

series. However, this assumption is sometimes restrictive in cases. In practice
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we often encounter situations that an TAR model works well except around the

boundary between the two regimes. The smooth-transition TAR model (e.g.,

Chan and Tong (1986) and Teräsvirta (1994)) often helps. But when the states

are mixed, there are no clear solutions. On the other hand, SAR models do not

require an explicit observable threshold variable and enjoy a certain flexibility in

the switching mechanism. However, it also has its limitations, especially when

it is used for prediction. A two-state SAR model has a bi-modal predictive dis-

tribution, which results in a wide prediction interval. Further, in practice, it is

often difficult to justify that the state switching mechanism is completely driven

by a random process that does not depend on anything else.

To enjoy the strong information provided by an observable threshold variable,

and to allow certain randomness in the switching mechanism at the same time, we

introduce a combination of TAR and SAR models, termed as the threshold vari-

able driven switching AR models (TD-SAR). Furthermore, we propose a model

building procedure that concentrates on a fast determination of an appropri-

ate threshold variable among a large set of candidates (and linear combination of

them). It starts with classification (clustering) of observations into two (or more)

classes. This preliminary classification forms the basis for fast searching. Once a

small number of threshold variable candidates are identified, the full models are

estimated, and model selection is carried out via certain criteria. This procedure

is applicable to the new models as well as the threshold models.

The rest of the paper proceeds as follows. In Section 2 we formally introduce

the TD-SAR model and propose a general strategy for the model building proce-

dure, specially the procedure of threshold variable determination. This strategy

can also be used for building standard TAR models. In Sections 3 to 5 we pro-

vide details on the three steps in the model building procedure. In Section 6 we

study the empirical properties of this model and the modeling procedure through

simulation. Section 7 contains two data examples and Section 8 presents a brief

summary. Some technical details are contained in the Appendix.

2. Threshold Variable Driven Switching AR Models

2.1. The model

For a time series Yt, t = 1, . . . , n, a k-state TD-SAR(p) model can be ex-

pressed as

Yt = Yt−1φ
(It) + ε

(It)
t , t = p + 1, . . . , n, (1)

where Yt−1 = (1, Yt−1, . . . , Yt−p), and It ∈ {1, . . . , k}. The general form of the

switching mechanism is given by

P (It = i) = gi(X1t, . . . , Xmt,βi), i = 1, . . . , k, (2)
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where X1t, . . . , Xmt are observable variables (lag variables, exogenous variables,

or their transformations) and βi is a set of unknown parameters.

The link function gi(·) in (2) is flexible. A natural choice would be the logistic

link function. For a two-state switching model, we can use

P (It = 1) =
eZt

1 + eZt

, (3)

where Zt = β0 +β1X1t + · · ·+βmXmt. For a three-state switching model, it may

take the form of

P (It =1)=
eZ1t

eZ1t +eZ2t +1
, P (It =2)=

eZ2t

eZ1t +eZ2t +1
, P (It =3)=

1

eZ1t +eZ2t +1
,

where

Zit = β
(i)
0 + β

(i)
1 X1t + · · · + β(i)

m Xmt, i = 1, 2. (4)

We call Zt (or Zit) the threshold variables. They are observable, given the pa-

rameters β.

Remark 1. The standard TAR and SAR models are special cases of this general

model. It simplifies to a TAR model if the function g has g1(Zt) = I(Zt − c ≥ 0)

and g2(Zt) = 1 − g1(Zt). When g1(Zt) = p and g2(Zt) = 1 − p, it becomes a

two-state independent SAR model. When the threshold variable is taken as the

latent variable Zt = It−1, and the link function is set as g1(·) = pi1, where pij

(i = 1, 2 and j = 1, 2) is the transition probability P (It = j | It−1 = i), then we

obtain the hidden Markovian SAR model.

Remark 2. The TD-SAR models have an extra layer of complexity compared to

the standard TAR and SAR models. This additional complexity makes it possible

to take the advantage of having an observable switching driving force enjoyed by

the TAR model, and of having the flexibility of the switching mechanism enjoyed

by the SAR model. Often the extra benefit outweighs the extra complexity of

the model, as we demonstrate in the examples. This extra layer is specified by

m extra parameters in a two-state model, and (k − 1)m extra parameters in a

k-state model. In order to control the complexity and the tendency toward over-

parametrization, a careful model determination procedure is required so that the

number of extra parameters can be small.

Remark 3. The link function gi in (2) is flexible. In this paper we choose

the logistic function for its simplicity. It is commonly used to handle binary

responses. In practice model assumption should always be checked, Note that
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(4) includes a constant term that is to be estimated, There are no restrictions on

the forms of the candidate variables.

Remark 4. The link function gi in (2) can be multi-dimensional to accom-

modate multi-threshold situations. Multi-threshold models has been studied by

Gonzalo and Pitarakis (2002) and Chong and Yan (2005). In this paper we focus

on the single threshold case.

Remark 5. Note that a sufficient condition for the process (1) to be ergodic

is that the AR model in each state be stationary, and that the Zt process be a

finite order stationary Markov chain. This can be easily proved using the tools

in Tweedie (1975) and Tjostheim (1990). However, weaker conditions can be

obtained in some cases. For example, if the threshold variable Zt is independent

of Xt and follows a discrete finite order stationary Markov chain taking values

in Ω, then a sufficient condition for the ergodicity of the Xt process is

max
z∈Ω

{
k
∑

i=1

pi(z)||Φ(i)||} < 1,

where pi(z) = P (It = 1 | Zt = z) in (2),

Φ(i) =













φ
(i)
1 φ

(i)
2 · · · φ(i)

p−1 φ
(i)
p

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0













and ||A|| is the Euclidean norm. For example, for the AR(1) case, the process is

ergodic if

max{p∗1φ(1)2 + (1 − p∗1)φ
(2)2, (1 − p∗2)φ

(1)2 + p∗2φ
(2)2} < 1,

where p∗1 = maxz∈Ω p1(z) and p∗2 = maxz∈Ω p2(z). More complicated cases

are out of the scope of this paper. Tools used by Cline and Pu (1999) and

Boucher and Cline (2007) can be used. For structural change between station-

ary and nonstationary time series, see Chong (2001).

2.2. Model building procedure

In practice it is always a difficult task to determine an appropriate thresh-

old variable for a TAR model. TD-SAR model cannot avoid this difficulty ei-

ther. To find the threshold variable, a commonly used method is to traverse

all combinations of the possible threshold variables and threshold values, fit all
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the corresponding models, and find the best one according to model selection

criteria such as the Bayesian Information Criterion (BIC) or out-sample predic-

tion performance (Tsay (1989)). This direct approach is only feasible for simple

threshold variables such as lag variables or univariate exogenous variables. Re-

cently researchers have started to consider linear combinations of several variables

as the threshold variable (Chen (1995), Tsay (1998) and Chen and So (2006))

successfully. However, the traditional trial-and-error method is not sophisticated

enough to handle even the linear combination of two variables. Here we propose

a new approach to determine an appropriate threshold variable. It is fast, and

has the capability to search among a large set of candidate variables and their

linear combinations.

The approach is a reversed strategy. In TAR models, the threshold variable

is used to determine the state It for each observation. Conversely, if the state

is given, then an appropriate threshold variable should provide a close match

to the state. It is much easier to check how well a variable agrees with the

state indicator It than to use it directly in fitting the original model. Since It is

usually unknown, we can estimate It first through a classification step. With the

estimated It, we can then efficiently search for an appropriate threshold variable

among a large set of candidates. Usually a small number of threshold variable

candidates is retained and a full model is fit to each of them. The final model is

selected by with model selection criteria.

We summarize our model building procedure as a three-stage algorithm.

1. Classification. Estimate the states It or the probabilities of the states P (It =

i). This step is essentially fitting a SAR model, with or without the Markovian

structure in the switching mechanism. Following McCulloch and Tsay (1994a)

and Chen (1995), we adopt a Bayesian approach in this step.

2. Searching. With the estimated Ît or p̂it = P̂ (It = i), i = 1, . . . , k, we

search or construct the threshold variables that provide the best fit of Ît

or p̂ti under certain criteria. Here we propose to use CUSUM, minimum

misclassification obtained via Support Vector Machine (SVM) algorithm, and

the SVM-CUSUM (a combination of SVM and CUSUM) criterion.

3. Full model estimation and model selection. With several threshold

variable candidates found in the searching step, a TD-SAR model fitting al-

gorithm is used to estimate the full model. Again, this step is done with a

Bayesian approach. A posterior BIC criterion is used for model selection.

This three-step algorithm can also be used to build a TAR model, with

slight modification in the last step. Hence it also enhances our ability to use

TAR models in applications.

In the next three sections we provide a more detailed implementation pro-

cedure.
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3. Classification Algorithm

In Stage (I), we adopt the algorithm proposed by McCulloch and Tsay

(1994b) and Chen (1995). For a time series Yt, t = 1, . . . , n, a k-state AR(p)

model is

Yt = Yt−1φ
(It) + ε

(It)
t , t = p + 1, . . . , n, (5)

where Yt−1 = (1, Yt−1, . . . , Yt−p), φ(i) = (φ
(i)
0 , φ

(i)
1 , . . . , φ

(i)
p )T , i = 1, . . . , k, and It

is the state indicator taking values from 1 to k. We assume the noises are inde-

pendent, with possibly different variances for different states: ε
(It)
t ∼ N(0, σ2

It
).

Let φ = (φ1, . . . ,φk), σ2 = (σ2
1 , . . . , σ

2
k) and I = (Ip+1, . . . , In). With

Y1, . . . , Yp given and fixed, the conditional likelihood function of model (5) is

p(Yp+1, . . . , Yn | φ,σ2, Ip+1, . . . , In) ∝
n
∏

t=p+1

1

σIt

exp

(

−(Yt−Yt−1φ
(It))2

2σ2
It

)

. (6)

Given independent priors on φ, σ2 and I, the conditional posterior distri-

bution becomes

p(φ,σ2, I | Yp+1, . . . , Yn) ∝ p(Yp+1, . . . , Yn | φ,σ2, I)p(φ,σ2, I)

∝ p(Yp+1, . . . , Yn | φ,σ2, I)p(φ)p(σ2)p(I).

Here the priors on φ and σ2 can be set as the standard conjugate priors,

namely Gaussian and inverse χ2. The indicator sequence It, t = p + 1, . . . , n

can either be assumed to be independent, with equal probability prior, or be

assumed to follow a first order Markov chain, with unknown transition matrix.

The Markov chain assumption is sometimes reasonable due to the possible auto-

correlation in the underlying threshold variable series. If the Markovian model

is used, one can specify a Dirichilet prior for the transition matrix.

We use the Gibbs sampler (Geman and Geman (1984), Gelfand and Smith

(1990) and Robert and Casella (2004)) to draw samples from the posterior dis-

tribution, see the Appendix. Based on the samples drawn from the posterior

distribution, we obtain the estimate of posterior probability p̂it =P (It = i | Xp+1,

. . . , Xn), i=1, . . . , k, as well as the posterior mode estimator Ît =arg maxi∈{1,...,k}

{p̂it}. The estimated states, or the probabilities, are then fed into the threshold

variable determination procedure.

4. Searching Algorithm

Once the estimated indicators Ît or estimated posterior probability p̂it are

obtained, they can be matched with various candidate variables and their combi-

nations or transformations to determine an appropriate threshold variable. Sim-

ple graphical methods can be used (Chen (1995)). However, graphical methods
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have limitations when searching among a large candidate set. A more automatic

procedure is needed.

Here we propose three quantitative criteria for the evaluation of the poten-

tial candidates as the threshold variables: CUSUM, misclassification via Support

Vector Machine (SVM) and SVM-CUSUM. The CUSUM method is used to eval-

uate one-dimensional candidates; for evaluating linear combinations of multiple

candidates as the threshold variables, we use SVM, which is commonly used as

a supervised learning tool to find the best classification rule in high dimensional

space; SVM-CUSUM is a combination of SVM and CUSUM.

4.1. CUSUM

The CUSUM method originated from control charts in production manage-

ment. It has been used to find change points, e.g., Tong (1990) and Taylor (2000).

Here we use it to measure the agreement between the preliminary classification

p̂it = P̂ (It = i) (or Ît) and a threshold variable candidate. The idea is that, if a

variable Zt is indeed the correct threshold variable for a two-state TAR model,

then there is a threshold value c such that for all Zt < c, p̂1t = P̂ (It = 1) are

below (above) 0.5, and for all Zt > c, p̂1t are above (below) 0.5. Then if we

cumulatively add (p1t − 0.5) in the ascending order of Zt, the cumulative sum

will reach its minimum (or its maximum) around Zt = c. On the other hand,

when Zt is not the correct threshold variable, it does not provide any meaningful

order for the p̂1t. Hence the resulting partial sum would be small because of the

cancelation of the negative and positive deviations of (p̂1t − 0.5). Specifically, in

a k-state problem, we set p0 = 1/k and perform the following procedure.

1. For each state i, (i = 1, . . . , k), sort p̂it according to the increasing order of

Zt. This forms a new series p̂it∗ . Define CUSUM for state i for the variable

Zt as

CUSUMi(Zt) = max
t1

t1
∑

s=1

(p̂is∗ − p0) − min
t2

t2
∑

s=1

(p̂is∗ − p0).

2. Define CUSUM for variable Zt as

CUSUM(Zt) =

k−1
∑

i=1

CUSUMi(Zt). (7)

Figure 1 demonstrates the CUSUM measure. It plots the estimated proba-

bility P (It = 1)−0.5 against a wrong threshold variable X1 (left) and the “true”

threshold variable X2 (right). The “true” threshold variable provides a clear

separation between the two states. Figure 2 shows the partial cumulative sum,

corresponding to CUSUM(X1) = 21, and CUSUM(X2) = 112.
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Figure 1. The effects of threshold variable. The classification probabili-

ties are plotted against a wrong threshold variable and a correct threshold

variable in the left and right panels, respectively.
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Figure 2. The CUSUM measure. The cumulative sums are plotted using a

wrong threshold variable (dashed line) and a correct one (solid line).

4.2. SVM

The Support Vector Machine (SVM) (Vapnik (1998), Cristianini and Shawe-

Taylor (2000) and Hastie, Tibshirani and Friedman (2001)) is a powerful tool for

supervised classification. The original SVM finds the direction in the feature

space that provides the largest separating margin between the data in the two

classes. For our purpose, we concentrate on the inseparable case in relatively

lower dimensional spaces, due to the concern of over-parametrization. The fol-

lowing is a simplified version from Hastie, Tibshirani and Friedman (2001), but

tailored to our applications.
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We first consider two-state cases. For a set of m variables {X1t, . . . , Xmt}, we

consider a possible linear combination Zt =
∑m

j=1 θjXjt as our threshold variable.

A valid threshold variable should group Ît according to the sign of Zt − c, which

is equivalent to using
∑m

j=1 θjXjt − c to separate the It. The SVM is designed

to find the optimal linear combination θ = (θ1, . . . , θm)T . Based on this, the

misclassification rate can be calculated and the optimal threshold variable can

be identified.

Assume the classification sequence is Ît ∈ {1, 2}, Let Î∗t = 2(Ît − 1.5) ∈
{−1,+1}. Given inseparable data (features) X t = (X1t, . . . , Xmt), t = 1, . . . , n,

and their classification (or state) indicator Î∗t , the linear classification problem is

expressed as:

min
θ,c,ζt

‖ θ ‖2 s.t. ζt ≥ 0,

n
∑

t=1

ζt ≤ K, Î∗t (X tθ − c) ≥ 1 − ζt for t = 1, . . . , n,

where X tθ − c = 0 is the hyperplane separating the two classes. Since there

is no clear separation in the data, slack variables ζt are defined to tolerate the

wrong classifications. The tuning parameter K sets the total budget for the

error. The dual problem of this optimization problem can be solved efficiently

with quadratic programming. Based on the optimal separating hyperplane, the

classification is estimated by Ĩt = sign(X tθ − c).

The misclassification rate is derived by comparing this estimate with the

classification Î∗t , t = 1, . . . , n. For the cases with more than two states, one

can obtain the optimal separation for each state (vs. all other states), hence

obtaining k − 1 different separating hyperplanes. The overall performance of the

candidate is the sum of the individual performances. It is possible, though more

complicated, to require the separating hyperplanes to be parallel. Since we have

an additional step for refinement, we choose to use the simpler procedure.

4.3. SVM-CUSUM

For a set of m variables {X1t, . . . , Xmt}, we can evaluate the selected optimal

linear combination Zt (from SVM) either by the misclassification rate r, or by a

CUSUM measure CUSUM(Zt) as defined in (7) using the estimated probability

P̂ (It = i). SVM uses the hard-decision estimate Ît and every sample is treated

with equal weight. However, the samples with extreme probabilities, say 0.1 or

0.9, should be more informative than those with probabilities around 0.5 for a

two-state problem. This can be solved by combining SVM with CUSUM measure.

We call this combined method SVM-CUSUM.
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These three methods can significantly reduce the size of potential candidate
pool of threshold variables. The remaining few candidates are further examined
in the third step.

5. TD-SAR Model Estimation and Model Selection

In the final step, TD-SAR model is fitted to a small number of threshold
variable candidates selected from the searching step, and the final model is chosen
based on a model selection criterion.

5.1. TD-SAR Model Estimation

Consider the two-state TD-SAR model in (1). Suppose the threshold variable
candidate selected from the previous stage is in the form of Zt =

∑m
i=0 βiXit, and

assume the switching mechanism is the logistic model (3). Let Y = (Y1, . . . , Yn)T ,
X = (1, X1t, . . . , Xmt), φ = (φ(1),φ(2)), σ2 = (σ2

1 , σ
2
2)

T , I = (Ip+1, . . . , In)T , and
β = (β0, . . . , βm)T . Then the joint posterior distribution is

p(φ,σ2, I ,β | Y ,X) ∝ p(Y | φ,σ2, I)p(I | β,X)p(φ)p(σ2)p(β),

where p(Y | φ,σ2, I) is the same as in (6), and

p(I | β,X) =

n
∏

t=p+1

k
∏

i=1

gi(X t,β)I(It=i),

where gi(·) is defined in (3). Again, standard conjugate priors can be used for
p(φ), p(σ2) and p(β). We use the MCMC algorithm to draw samples from the
above posterior distribution. Detailed implementation is given in the Appendix.

5.2. Model Selection

Under likelihood-based inference, model selections for TAR models are usu-
ally done with information criteria such as AIC and BIC (Tong (1990)). Gonzalo
and Pitarakis (2002) introduced inference-based model selection procedure for
simple and multiple threshold models. For SAR models, Smith, Naik and Tsai
(2006) proposed model selection criteria using Kullback-Leiber divergence.

Under the Bayesian framework we have adopted here, model selections are of-
ten based on the Bayes factor (Kass and Raftery (1995) and Berger and Pericchi
(1998)) or the posterior probability of each possible model under consideration
(e.g., Robert and Casella (2004) and the references therein). Due to the large
number of candidate threshold variables and model choices under consideration.,
we use a Posterior BIC (PBIC) for model selection. PBIC is defined as the
average BIC value under the posterior distribution of the parameters:

E(BIC(φ,σ2,β) | Y ,X) =

∫

BIC(φ,σ2,β)p(φ,σ2,β | Y ,X)dφ dσ2 dβ.
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For a two state model, we have

BIC(φ,σ2,β) = −2
n
∑

t=p+1

log (p1tCt1 + p2tCt2) + k log (n − p),

in which,

p1t =
exp(Xtβ)

1 + exp(X tβ)
, p2t =

1

1 + exp(X tβ)
,

Cti =
1√
2πσi

exp

(

−(Yt − Y t−1φ
(i))2

2σ2
i

)

, i = 1, 2,

and k is the number of the parameters in the model. This can be easily obtained

by averaging the BIC values for all the samples of (φ,σ2,β) generated from the

Gibbs sampler, i.e.,

PBIC =
1

N

N
∑

i=1

BIC(φ(i),σ2(i),β(i)).

Other model comparison procedures, such as out-sample forecasting com-

parison, can also be used. Such procedures are not automatic, hence might be

used when the number of candidate models is greatly reduced. Bayesian model

averaging (e.g., Hoeting et al. (1999)) can be used as well.

6. Simulation

In this section we present some simulation results to demonstrate the effec-

tiveness of the proposed algorithms. The factors under consideration include the

number of states, the number of threshold variable candidates, and the charac-

teristics of the candidates.

6.1. Experimental Design

Following are the components used for the simulation.

1. AR model. Three models are considered.

(a) M2W: Two-state model with εit ∼ N(0, σ2
i ), σ2

1 = 0.1, σ2
2 = 0.05.

Yt =

{

−0.5 − 0.1Yt−1 + 0.4Yt−2 + ε1t It = 1,

0.5 + 0.5Yt−1 − 0.5Yt−2 + ε2t It = 2.

(b) M2N: Two-state model with εit ∼ N(0, σ2
i ), σ2

1 = 0.1, σ2
2 = 0.05.

Yt =

{

−0.15 − 0.1Yt−1 + 0.4Yt−2 + ε1t It = 1,

0.15 + 0.5Yt−1 − 0.5Yt−2 + ε2t It = 2.
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Compared with the model M2W, the current one has a narrower margin

on the constant items, and therefore it is harder to classify.

(c) M3: Three-state model with εit ∼ N(0, σ2
i ), σ2

1 = 0.1, σ2
2 = 0.3, σ2

3 = 0.05.

Yt =











−0.3 − 0.1Yt−1 + 0.4Yt−2 + ε1t It = 1,

−0.5Yt−1 + 0.7Yt−2 + ε2t It = 2,

0.3 + 0.3Yt−1 − 0.3Yt−2 + ε3t It = 3.

2. Threshold variable candidates. Two models are used to generate the true

threshold variable candidates:

(a) T1: IID Standard Normal distribution X1,t ∼ N(0, 1);

(b) T2: AR(1) Model, which is X2,t = 0.6X2,t−1 + 0.8εj .

The threshold candidate set considered also includes 28 more variables listed

in Table 1, with Xt being the true threshold variable used.

Table 1. Candidate variables used in the simulation.

(1) 5 U(0,1) (2) N(0,1) (3) 5 N(0,1)

(4) Xt + N(0,1) (5) Xt + 5 N(0,1) (6) X2
t

+ Xt

(7) X2
t + 0.5 Xt (8) X2

t + 0.2 Xt + U(0,1) (9) Xt−1

(10) Xt−2 (11) Xt−3 (12) Xt−4

(13) Xt−5 (14) Xt−6 (15) Xt−1 + N(0,1)

(16) Xt−2 + N(0,1) (17) Xt + Xt−1 (18) Xt + 0.5 Xt−1 + N(0,1)

(19) Xt−1 + 0.5 Xt−2 (20) Xt - Xt−2 (21) Xt−1 + 2 Xt−2

(22) X2
t−1 (23) X2

t−2 (24) X2
t−3

(25) X2
t−1 + 0.5 Xt−1 (26) X2

t−2 + Xt−2 (27) X2
t−1 + 0.5 Xt−1

(28) X2
t−2 + Xt−1

3. Switching mechanism. Three logistic models are considered.

(a) L1: Binomial logistic model with a one-dimensional covariate; parameters

(with intercept) are β = (−1, 4)T .

(b) L2: Binomial logistic model with a two-dimensional covariate; parameters

are β = (−1, 4, 2)T .

(c) L3: Three-state logistic model with a one-dimensional covariate; parame-

ters β = (β1, β2) are β1 = (−1, 3)T and β2 = (−2,−4)T .

We consider eight different settings. In each simulation, we record the best

five candidates according to the CUSUM values, the SVM classification rates,

and the SVM-CUSUM values. If the true threshold variable is identified among

the top five candidates, we mark it as a “success”. In the third step, the TD-SAR

model is applied on the best five candidates individually and their PBIC values

are also calculated.
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6.2. Results

Tables 2 and 3 summarize the results of the method for one-dimensional and

two-dimensional settings, respectively.

Table 2. Simulation results for the one-dimensional settings.

Setting Stage I CUSUM 2nd best PBIC 2nd best SVM 2nd best PBIC 2nd best

(%) (%) (%) (var) (%) (%) (var) (%) (%) (var) (%) (%) (var)

M2W, T1, L1 88 100 90 (9) 100 60 (9) 100 60 (7) 100 60 (9)

M2W, T2, L1 89 100 50 (20) 100 80 (20) 100 60 (20) 100 90 (20)

M2N, T1, L1 76 100 40 (9) 100 20 (9) 100 30 (20) 100 40 (7)

M2N, T2, L1 76 100 40 (20) 100 30 (21) 100 30 (20) 100 30 (21)

M3, T1, L3 65 100 65 (10) 100 40 (9) 88 50 (9) 88 40 (10)

M3, T2, L3 70 100 55 (10) 100 60 (20) 83 35 (9) 83 45 (9)

Table 3. Simulation results for the two-dimensional settings.

Setting Stage I SVM 2nd best PBIC 2nd best S-C 2nd best PBIC 2nd best

(%) (%) (%) (var) (%) (%) (var) (%) (%) (var) (%) (%) (var)

M2N, (T1,T1), L2 88 88 35 (2,10) 88 35 (2,24) 95 30 (2,24) 95 35 (2,24)

M2N, (T1,T2), L2 89 93 25 (2,16) 93 30 (2,16) 95 15 (2,21) 95 20 (2,16)

Compared to the “true” state for each data point, the average classification

rate in Stage (I) (classification stage) for the 40 data sets is shown in the second

column of Tables 2 and 3. It is seen that the first stage provides a reasonable

starting point for further analysis. In Table 2, column 3 shows the percentage

of times the CUSUM algorithm includes the true threshold variable (or the two

variables whose linear combination makes up the true threshold variables) among

the top five variables. Column 4 shows the most frequently chosen variable (other

than the true threshold variable) in the top five and the percentage of times it was

chosen. The number in parentheses refers to the variable number listed in Table 1.

This reveals what would happen if the true threshold variable were not included

in the candidate set. From the results it seems that the search procedure tries to

find a proxy variable that is highly correlated to the true threshold variable. But

the choice is not persistent as the percentage is relatively low. Column 5 presents

the percentage of times PBIC correctly identifies the true threshold variable in

the final stage, based on the five candidates that CUSUM procedure identified in

step 2. Column 6 shows the second best variable. Columns 7 to 10 are the same

as columns 3-6, except the SVM is used as the search method. Table 3 reads the

same way, where S-C denotes the SVM-CUSUM measure in Column 7.

Overall, the simulation shows that the CUSUM method works for checking

one-dimensional variables. As expected, the SVM-CUSUM is slightly better than
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the simple SVM. Another observation in our experiment is that the PBIC is a

good model selection criterion.

7. Real Examples

We present two examples of U.S. economic indicators: nonfarm payroll num-

bers and the unemployment rate. The data are from the Bureau of Labor Statis-

tics (www.bls.gov). The first series runs from January, 1939 to March, 2004, the

second from January, 1948 to March, 2004. Both are seasonally adjusted.

7.1. U.S. nonfarm payroll numbers

Nonfarm payroll number is an important economic series. Its unexpected

change is linked with large market volatility. First we transformed the original

monthly data to quarterly differences:

Qt =
P3(t−1)+1 + P3(t−1)+2 + P3(t−1)+3

3
, and Yt =

Qt − Qt−1

500, 000
,

for t = 1, . . . , 260. Here, Pt is the monthly payroll number, Qt represents the

quarterly average, and Yt represents the quarterly difference. We let the unit of

Yt be 500,000. The series Yt is shown in Figure 3.
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Figure 3. The states estimated for the U.S. nonfarm payroll numbers in the

first stage (“o”: State 1; “x”: State 2).

For the sake of comparison, we fit the data with a linear ARMA model.

Analysis suggests an AR(2) model Yt = φ0 + φ1Yt−1 + φ2Yt−2 + et. The MLE

estimates and their standard errors (in parentheses) are φ̂0 = 0.2233(0.0396),
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φ̂1 = 1.0054(0.0530), and φ̂2 = −0.3100(0.0537). It can be verified that the

estimated model is stationary. The sum of the squared error (SSE) is 93.13.

After trying several model settings, we considered a two-state TD-SAR model

with AR(2) in both states, and a logistic link function for the threshold driving

mechanism. Specifically,

Yt =







φ
(1)
0 + φ

(1)
1 Yt−1 + φ

(1)
2 Yt−2 + ε1 It = 1,

φ
(2)
0 + φ

(2)
1 Yt−1 + φ

(2)
2 Yt−2 + ε2 It = 2,

P (It = 1) =
eZt

1 + eZt

,

where Zt = β0 + β1X1t + · · · + βmXmt.

In this study, we limited the threshold variable candidate set to eight lag

variables and their squares. We considered linear combination up to three vari-

ables in the candidate set, resulting totally 696 possible candidates. We also

considered other economic indicators such as GDP, short-term Treasury rates

and inflation rates, but did not find any of them to be good candidates.

Classification step: In the first classification step, 20,000 samples from the

posterior distribution are obtained with the Gibbs sampler, with the first 10,000

samples discarded to reduce the effect of initial values. The posterior means of the

AR coefficients are φ̂
(1)
0 = 0.1356, φ̂

(1)
1 = 1.0535, φ̂

(1)
2 = −0.1953, φ̂

(2)
0 = 0.2873,

φ̂
(2)
1 = 1.9842, and φ̂

(2)
2 = −0.4259.

In Figure 3 we show the estimated states Ît, labeled by ‘o’ and ‘x’. It does

not show a clear pattern, though most of the small Yt’s corresponds to State 1.

We calculate two goodness-of-fit measures.

1. Hard SSE:
∑n

t=p+1(Yt − Y t−1φ̂
(Ît)

)2, where Ît = 1, if p̂t1 ≥ 0.5.

2. Soft SSE:
∑n

t=p+1

(

p̂t1(Yt − Y t−1φ̂
(1)

)2 + p̂t2(Yt − Y t−1φ̂
(2)

)2
)

.

For our first stage classification, the hard SSE is 80.77 and the soft SSE is

87.71.

Searching for an appropriate threshold variable: CUSUM is used to eval-

uate all one-dimensional candidates. Simple SVM and SVM-CUSUM are used

to search and evaluate all linear combinations of up to three variables in the

candidate set. Table 4 shows the best three candidates for each setting, with

their corresponding CUSUM, SVM or SVM-CUSUM.

Full model estimation and model selection: Using each of the 16 different

combinations in Table 4, we fit the corresponding TD-SAR models. Column 6

in Table 4 shows their PBIC values. The model using Y 2
t−1 as the threshold

candidate was not stable, hence its PBIC is missing. The minimum PBIC is
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reached with the linear combination of (Yt−2, Y
2
t−3). The posterior means and

the posterior standard deviations (in parentheses) of the parameters are: φ̂
(1)
0 =

−0.31(0.15), φ̂
(1)
1 = 0.93(0.12), φ̂

(1)
2 = −0.95(0.19), σ̂2

1 = 0.52(0.11), φ̂
(2)
0 =

0.32(0.10), φ̂
(2)
1 = 0.97(0.08), φ̂

(2)
2 = −0.29(0.08), and σ̂2

2 = 0.24(0.04).

Table 4. Three selection methods applied to the U.S. payroll data (The

TD-SAR model does not converge for Candidate 6).

No. Dim. Methods Candidates Target value PBIC

1 1 CUSUM (Yt−1) 8.86 498.55

2 (Yt−2) 8.80 478.04

3 (Yt−4) 8.49 490.17

4 1 Misclassification (Yt−1) 0.3294 498.55

5 (Yt−2) 0.3254 478.04

6 (Y 2
t−1) 0.3294 –

7 2 Misclassification (Yt−1, Y
2
t−2) 0.3175 497.97

8 (Yt−2, Y
2
t−1) 0.3175 491.86

9 (Yt−4, Y
2
t−1) 0.3175 491.63

10 2 SVM-CUSUM (Yt−2, Y
2
t−3) 9.59 476.42

11 (Yt−2, Y
2
t−4) 9.93 490.49

12 (Yt−4, Yt−8) 9.90 493.82

13 3 Misclassification (Yt−2, Y
2
t−1, Y

2
t−8) 0.3016 478.90

14 (Yt−1, Yt−5, Y
2
t−4) 0.3016 504.28

15 (Yt−3, Yt−4, Y
2
t−1) 0.3056 530.95

16 3 SVM-CUSUM (Yt−1, Y
2
t−4, Y

2
t−6) 10.86 485.28

17 (Yt−2, Yt−5, Y
2
t−4) 11.44 478.77

18 (Yt−2, Yt−8, Y
2
t−4) 10.48 486.93

The threshold variable driven mechanism is

P (It = 1) =
exp(β0 + β1Yt−2 + β2Y

2
t−3)

1 + exp(β0 + β1Yt−2 + β2Y
2
t−3)

, (8)

where the posterior mean of the coefficient is β = (β0, β1, β2)
T = (2.6315,−4.4887,

−3.3738)T . Hence the estimated threshold variable is Zt = 2.6315−4.4887Yt−2 −
3.3738Y 2

t−3. We plot the probability P (It = 1) = exp(Zt)/(1 + exp(Zt)) vs Zt in

Figure 4. It can be seen that the switching is relatively sharp, with randomness

in a very narrow range.

The left panel in Figure 5 shows the classification on the scatter plot of

Yt−2 and Yt−3, along with “optimal” (0.5 probability) linear combination that

separates the classes. The right panel in Figure 5 shows the final estimated states

for the payroll numbers. It can be seen that State 1 mainly includes those points
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with small values (on the bottom) and the following upward curves, while State

2 mainly includes those points with large values (on the top) and the following

downward curves. It is noted that the current classification is quite different from

that in Figure 3, showing the effect of the threshold variable.
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Figure 4. U.S. nonfarm payroll numbers: the switching driving mechanism

as a logistic regression.
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Figure 5. U.S. nonfarm payroll results. Left Panel: The estimated states

and the threshold variable (“o”: State 1; “x”: State 2). The solid line is the

0.5 probability line. Right Panel: The estimated states in the original time

series. (“o”: State 1; “x”: State 2).

Model comparison: Table 5 shows the hard and soft SSE for five different

models, including the linear AR model, the standard TAR model, the TAR model

with a threshold in the form of a linear combination, the standard SAR model,

and the TD-SAR model. The smallest hard SSE for a TAR model comes from

the one with the quadratic threshold. And it shows a large improvement over the
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linear AR model. When using the SAR(2) model, the hard SSE is also reduced.

Due to its bi-modal character, the soft SSE is calculated for the SAR model.

The TD-SAR model further reduces the hard SSE and soft SSE, compared to

the TAR(2) model and the SAR(2) model.

Table 5. Model comparison for nonfarm payroll numbers.

Model Threshold Variable Hard SSE Soft SSE

AR(2) - 93.13 -

TAR(2) Zt = Yt−2 − c 80.55 -

TAR(2) Zt = β0 + β1Yt−2 + β2Y
2
t−3 77.05 -

SAR(2) It IID 80.77 87.71

TD-SAR(2) Equation (8) 64.37 75.08

7.2. U.S. unemployment rate

Montgomery et al. (1998) used a Markov Chain SAR model and a TAR

model to analyze the U.S. unemployment rate series. Here we apply the proposed

modeling procedure and the TD-SAR model to the same series (slightly longer).

Following Montgomery et al. (1998), we obtain the quarterly differences (as with

the nonfarm payroll series). Figure 6 shows the transformed series.
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Figure 6. The states estimated for the U.S. unemployment rate in the first

stage (“o”: State 1; “x”: State 2).

Again, following Montgomery et al. (1998), we use a two-state TD-SAR

model with AR order p = 2 for both states. The threshold variable candi-

date set includes lag 1 to lag 8 of the observed series, their squares and linear

combinations, resulting in a total of 136 candidates.
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Classification step. We fit a two-state independent SAR(2) model. The poste-

rior means of the AR coefficients are φ̂
(1)
0 = −0.0617, φ̂

(1)
1 = 0.3471, φ̂

(1)
2 = 0.0029,

φ̂
(2)
0 = 0.0567, φ̂

(2)
1 = 1.0169, and φ̂

(2)
2 = −0.2680. The states of the samples (see

Figure 6) and the probabilities of the states are also estimated. The hard SSE is

14.58, and soft SSE is 14.59.

Searching for an appropriate threshold variables. The searching results

are shown in Table 6. There are 11 different candidates emerging in this stage.

Table 6. Three selection methods applied on the U.S. unemployment rate data.

No. Dim. Methods Candidates Target value PBIC

1 1 CUSUM (Yt−1) 10.19 111.78
2 (Yt−2) 10.63 105.32

3 (Y 2
t−4) 9.93 108.17

4 1 Misclassification (Yt−4) 0.3472 112.13

5 (Y 2
t−4) 0.3241 108.17

6 (Y 2
t−7) 0.33.80 117.59

7 2 Misclassification (Yt−1, Y
2
t−4) 0.3148 101.93

8 (Yt−4, Y
2
t−4) 0.3102 114.50

9 (Yt−4, Y
2
t−7) 0.3148 113.66

10 2 SVM-CUSUM (Yt−1, Yt−2) 11.25 104.98

11 (Yt−1, Y
2
t−2) 11.16 111.85

12 (Yt−2, Y
2
t−1) 11.84 107.52

Table 7. Model comparison for U.S. unemployment rate data.

Model Threshold Var. Hard SSE Soft SSE

TAR(2) Zt = Yt−2 − c 17.57 -

TAR(2) Zt = β0 + β1Yt−1 + β2Yt−2 17.12 -

TAR(2) Zt = β0 + β1Yt−1 + β2Y
2
t−4 18.27 -

SAR(2) It IID 14.74 14.59

TD-SAR(2) Logistic pt (on Yt−2) 14.30 18.09

TD-SAR(2) Logistic pt (on Yt−1, Yt−2) 14.98 17.22

TD-SAR(2) Logistic pt (on Yt−1, Y
2
t−4) 17.28 17.99

Full model estimation and model selection. Using these different combina-

tions, we fit the TD-SAR model. Column 6 in Table 6 shows their PBIC values.

The attractive models are associated with (Yt−1, Y
2
t−4), (Yt−1, Yt−2), and Yt−2 as

threshold variables. The hard SSE and soft SSE for the related models are shown

in Table 7. Although the variable pair (Yt−1, Y
2
t−4) has the least PBIC, its SSEs

are not satisfying. Instead, the variable pair (Yt−1, Yt−2) has the second least BIC,

and both of its SSEs are better than the first candidate. Therefore we choose the
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threshold variable as Zt = β0 + β1Yt−1 + β2Yt−2, and estimate the final model.

The posterior means and the posterior standard deviation (in parentheses) of

the parameters are φ̂
(1)
0 = −0.03(0.02), φ̂

(1)
1 = 0.51(0.11), φ̂

(1)
2 = 0.03(0.11),

σ̂(1) = 0.05(0.007), φ̂
(2)
0 = 0.32(0.17), φ̂

(2)
1 = 0.75(0.19), φ̂

(2)
2 = −0.68(0.24), and

σ̂(2) = 0.21(0.06). The logistic model driven mechanism is:

P (It = 1) =
exp(β0 + β1Yt−1 + β2Yt−2)

1 + exp(β0 + β1Yt−1 + β2Yt−2)
,

and the estimated threshold variable Zt = 2.0604− 4.0579Yt−1 − 4.1071Yt−2. We

plot the probability P (It = 1) = exp(Zt)/(1 + exp(Zt)) vs Zt in Figure 7. The

classification by Yt−1, Yt−2 is shown in the left panel of Figure 8. The hard SSE
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is 14.98, and the soft SSE is 17.22. The right panel in Figure 8. shows the

estimated states for the unemployment numbers. States 1 and 2 are labeled with

“o” and “x”. It can be seen that State 2 corresponds to those observations with

value larger than 0.45, and the subsequent downward curves.

8. Summary

In this paper we proposed a new class of switching time series model, the

threshold variable driven switching autoregressive models. It enjoys having an

observable threshold variable (up to a set of unknown but estimable parameters)

as the driving forces of model switching, as in TAR models, yet retains certain

flexibility in the switching mechanism enjoyed by the SAR model. Stationary

properties of the model are studied, estimation procedures are developed under

a Bayesian framework, and a model building procedure is proposed so that the

model is applicable in real practice. Specifically we consider the problem of

threshold variable determination with a large set of candidate variables. A fast

search algorithm is proposed to handle this difficult problem. Though heuristic,

it is shown to perform reasonably well in examples. This search algorithm is

useful for standard TAR model building as well.

Simulation and real examples have shown that the new model is useful in

many cases. It is not clear if there is any ’observable signal’ that can provide

indication when a TD-SAR model should be used in any specific situation. We

rely on model comparison procedures, as described in Section 5.2, to determine

whether the new model, a standard TAR model, or a standard SAR model should

be used. In fact, a standard TAR model or a standard SAR model should always

be considered as a parsimonious alternative to the TD-SAR model. On the other

hand, if a standard TAR or SAR model is considered for modeling a time series,

a TD-SAR model should be considered as well.

In the above approach we have also assumed that the AR order in each state

and the number of states are known. These restrictions can be easily relaxed;

model selection criteria can be used to choose the AR order and the number of

states.
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The appendix is contained in a supplemental document available online at

the Statistica Sinica website: http://www3.stat.sinica.edu.tw/statistica/
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Appendix

A.1. Implementation for the classification step

We illustrate the procedure with a two-state model. The general k-state

models can be treated similarly.

We use the following prior distributions:

1. The coefficient vectors φ(1) and φ(2) follows truncated normal distribution,

i.e., (φ(1),φ(2)) ∼ N(µ
(1)
0 ,Σ

(1)
0 )N(µ

(2)
0 ,Σ

(2)
0 )I(φ

(1)
0 < φ

(2)
0 ). The constraint

on the coefficients φ
(1)
0 and φ

(2)
0 is used to avoid ambiguity. Note that the

model with φ
(1)
∗ = φ(2), φ

(2)
∗ = φ(1) and I∗t = 3 − It is identical to the

original model. Without the constraint, there will be two identical modes in

the posterior distribution.

2. The variance σ2
i follows an inverse χ2 distribution, i.e., σ2

i ∼ χ−2
σ2

0
,γ0

, i = 1, 2.

3. The state It follows a Bernoulli distribution, i.e., P (It = 1) = p0, t = 1, . . . , n.

We use ’nearly’ uninformative priors with the following parameters:

φ0 = 0, Σ0 → ∞, γ0 = 1, σ2
0 → 0 p0 = 0.5, t = 1, . . . , n.

Based on the likelihood function and the priors, standard calculation (e.g., Chen

and Liu (1996)) yields the following conditional distributions:

1. For the coefficient φ:

p(φ(1),φ(2) | σ2, I ,Y ) ∝ p(Y | φ(1),φ(2),σ2, I)p(φ),

∝ N(µ∗
1,Σ

∗
1)N(µ∗

2,Σ
∗
2)I(φ

(1)
0 < φ

(2)
0 ), (9)

where, for i = 1, 2,

µ∗
i =

(

∑

t:It=i

Y T
t−1Y t−1

)−1
∑

t:It=i

Y T
t−1Yt, Σ∗

i = σ2
i

(

∑

t:It=i

Y T
t−1Y t−1

)−1

.
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It is still a truncated multivariate normal distribution.

2. For the variance σ2
i , i = 1, 2:

p(σ2
i | φ, I ,Y ) ∝ p(Y | φ,σ2, I)p(σ2

i ),

∝ χ−2

(

γ0σ
2
0 +

∑n
t=p+1 I(It = i)(Yt − Y t−1φ

(i))2

ni + γ0
, ni + γ0

)

,(10)

in which, ni is the number of the observations in state i. This is still an inverse

χ2 distribution.

3. For the discrete It, t = p + 1, . . . , n, i = 1, 2:

p(It = i | φ, I[−t],Y ) ∝ p(Y | φ,σ2, It = i)p(It = i),

∝ 1

σi

exp

(

−(Yt − Y t−1φ
(i))2

2σ2
i

)

.

We use the posterior means to estimate φ and σ2, use the posterior mode

to estimate I. We run the Gibbs sampler M+N cycles, discard the first M cycles

and keep the results of the last N cycles.

A.2. Implementation for the model estimation step

The assumptions about the priors of φ and σ2 are the same as in the model in

the first stage. Additionally, the prior of the coefficient of the logistic regression β

is assumed to be uninformative normal distribution. The conditional posteriors

are calculated here.

1. For the coefficient φ, p(φ(1),φ(2) | σ2, I,β,Y ,X) ∝ p(φ(1),φ(2) | σ2, I ,Y ),

which is the same as (9).

2. For the variance σ2
i , p(σ2

i | φ, I ,β,Y ,X) ∝ p(σ2
i | φ, I ,Y ), which is the same

as (10).

3. For the coefficients β and the state I , we draw them jointly, using

p(β, I | φ,σ2,Y ,X) ∝ p(I | β,φ,σ2,Y ,X)p(β | φ,σ2,Y ,X).

That is, we draw β first from the marginal distribution, with I integrated

out. Then I is drawn conditional on the sample of β. Specifically,

p(β | φ,σ2,Y ,X) ∝ p(Y | β,φ,σ2)p(β)

∝
n
∏

t=p+1

(

2
∑

k=1

(

p(Yi | φ,σ2, It = k)p(It = k | Xt,β)
)

)

p(β)

∝
n
∏

t=p+1

(Ct1g(X t,β) + Ct2(1 − g(X t,β))) p(β),
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where Cti = φ(Yt;Y t−1φ
(i), σ2

i ), the normal density evaluated at Yt, and

g(X t,β) is the logistic link function (3). Then the independent hidden state

variable I is drawn based on β:

p(I | β,φ,σ2,Y ,X) ∝ p(Y | φ,σ2, I)p(I | X,β).

That is,

p(It = 1 | β,φ,σ2,Y ,X) ∝ Ct1g(X t,β),

p(It = 2 | β,φ,σ2,Y ,X) ∝ Ct2(1 − g(X t,β)).

Similar to the first stage, the distributions of φ,σ2, I are easy to sample. We

use random-walk Metropolis algorithm (e.g., Liu (2001)) to generate the samples

of β.
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