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Abstract: Selecting the threshold variable is a key step in building a generalized

threshold autoregressive (TAR) model. This paper proposes a semi-parametric

method for this purpose that is based on a single-index functional coefficient model.

The asymptotic distribution of the estimator is obtained. A simple algorithm is

given and its convergence is proved. Some simulations are reported. Two data

sets are analyzed, one of which gives strong statistical support for ratio-dependent

predation in Ecology.
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1. Introduction

The threshold autoregressive (TAR) model is one of the popular models in

nonlinear time series. As a generalized nonlinear TAR model, a semi-parametric

single-index functional coefficient model has the form

yt = g0(θ
T
0 Zt) + g1(θ

T
0 Zt)xt,1 + · · · + gp(θ

T
0 Zt)xt,p + εt, t = 1, 2, . . . , (1.1)

where (Xt, Zt, yt) are R
p, R

q, and R-valued random variables respectively, with

Xt = (xt,1, . . . , xt,p)
T ; θ0 ∈ Θ = {θ : |θ| = 1} is an unknown parameter vec-

tor, called a single-index direction; gk(·), k = 0, . . . , p, are unknown coefficient

functions and E(εt|Xt, Zt) = 0 almost surely. We further assume that the first

element of θ0 is positive for model identification. Model (1.1) is a generalized

semi-parametric threshold autoregressive model if we take Xt and Zt to be the

lagged-variables of yt. The model is also a single-indexing version of the vary-

ing functional coefficient model proposed by Hastie and Tibshirani (1993) under

an IID setting, and the functional coefficient model proposed by Chen and Tsay

(1993) under a time series setting. The model has been investigated by Xia and Li

(1999) and Fan, Yao and Cai (2003). Model (1.1) can give sensible approxi-

mate relations between variables due to the single-indexing construction; see

Xia and Li (1999) and Fan et al. (2003). Moreover, the model can be used to
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select the threshold variable θT
0 Zt in a generalized threshold model; see Tong

(1990), Chen and Tsay (1993) and Xia and Li (1999). The estimation of the

threshold variable is, generally speaking, non-trivial even under parametric set-

ting; see, e.g., Chen (1995) and Chan and Tong (1986). The difficulty results

from the flexible form of the varying coefficient functions. Fortunately, the semi-

parametric approach can cope with such a flexibility.

Another motivation of this research is related to a recent debate in ecol-

ogy about ratio-dependent predation; see, e.g., Bohannan and Lenski (1999),

Abrams and Ginzburg (2000) and Jost and Ellner (2000). Ecologists try to use

functional responses to describe prey-predator interactions and the complex dy-

namics. The term “prey-dependent” means that the consumption rate of each

single predator is only a function of prey density, and a “predator-dependent”

functional response is one in which both predator and prey densities affect the

per-predator consumption rate. “Ratio dependence” means that consumption

is a function of the ratio of prey to predator density. Theoretical studies have

shown that the dynamics of models with predator-dependent functional response

can differ considerably from the dynamics of correspondingly structured mod-

els with prey-dependent functional response; see Rogers and Hassell (1974) and

Kuang and Beretta (1998). The protozoan predator-prey system of P.aurelia

and D.nastum is a classic in population ecology. The three pairs of time series in

Figure 1 are the longest time series reported in Rao (1973) (cf., Jost and Ellner

(2000)) using a refined protozoan predator-prey system under three different

conditions. The mechanism of the interactions between the prey and predator

populations, denoted by Yt and Rt respectively, can be described as

dRt

dt
=f1(Rt−τ1 , Yt−τ1)Rt;

dYt

dt
=f2(Rt−τ2 , Yt−τ1)Yt + f3(Rt−τ3 , Yt−τ1)Rt, (1.2)

where f1, f2 and f3 are functional responses and τk, k = 1, 2, 3, are time-delays.

The classic functional responses are set to be some nonlinear functions up to

some unknown parameters. For example f(u, v) = a(1+bu)−1u (Holling type II),

f(u, v) = a(v+bu)−1u (ratio-dependent II) and f(u, v) = a(vm+bu)−1u (Hasssell-

Varley type II). Simply speaking, the above debate is about whether fk, k =

1, 2, 3, are functions of u only as in Holling type II functional response or functions

of u/vm for some m > 0 as in the ratio-dependent II or Hasssell-Varley type II

functional responses. Note that all the cases can be written as functions of linear

combinations θ1 log(u) + θ2 log(v). Correspondingly, the functional response can

be written as f(u, v) = f̃(θk1 log(u) + θk2 log(v)) or f̃(θk1U + θk2V ), where U =

log(u) and V = log(v). Using this approach and taking Zt−τ1 = log(Yt−τ1) and

St−τ1 = log(Rt−τ1), the functions in (1.2) can be written as fk(Rt−τ1 , Yt−τ1) =
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f̃k(θk1St−τ1 + θk2Zt−τ1), k = 1, 2, 3. If we approximate the differential quotients

by differences Rt+1−Rt and Yt+1−Yt, respectively, we have the statistical model

Rt+1 = (f̃1(θ11St−τ1 + θ12Zt−τ1) + 1)Rt + εt+1,

Yt+1 = (f̃2(θ21St−τ2 + θ22Zt−τ2) + 1)Yt + f̃3(θ31St−τ3 + θ32Zt−τ3)Rt + εt+1.

These are special cases of (1.1). Statistically, the above debate is equivalent to a

testing problem: θk2 = 0 vs θk2 6= 0, k = 1, 2, 3.
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Figure 1. Original predator-prey data sets with different conditions under

which they were run. Diamonds are the prey measurements and stars are

the predator abundances.

The above discussion motivates us to investigate the estimation of the single-

index in (1.1) and therefore the model. Xia and Li (1999) studied the estimation

of model (1.1) following the method of Härdle, Hall and Ichimura (1993). The

estimation method is very hard to implement. Fan et al. (2003) proposed another

estimation method, but the asymptotic properties are unknown. Note that the

estimation of model (1.1) is strongly related to the estimation of the single-index

model y = g(θT
0 X) + ε; see Härdle et al. (1993). For the single-index model

there are numerous estimation methods; see, for example, Härdle and Stoker

(1989), Li (1991), Härdle et al. (1993), Carroll, Fan, Gijbels and Wand (1997),

Hristache, Juditsky and Spokoiny (2001), Xia, Tong, Li and Zhu (2002) and the

references therein. However, none of these methods can be used directly here

and there are concerns with these methods, which we briefly summarize. (1)
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Heavy computational burden: see, for example, Härdle et al. (1993), Carroll et al.

(1997) and Xia and Li (1999); these methods entail complicated optimization

techniques and no simple algorithm is available to-date. (2) Strong restrictions on

link functions or designs of covariates: Li (1991) required strong restrictions on

the distributions of the covariates; Härdle and Stoker (1989) and Hristache et al.

(2001) needed a non-symmetric structure of the link function, i.e., |Eg ′(θT
0 X)|

is away from 0; if these conditions are violated, their methods cannot obtain

useful estimators. (3) Under-smoothing: Most of the methods mentioned above

require under-smoothing the link function in order to achieve root-m consistency

for the parameter estimators; see Härdle and Stoker (1989) and Hristache et al.

(2001), Hall (1989) and Carroll et al. (1997) among others. More discussion on

the selection of bandwidth for the partially linear model can be found in Linton

(1995). In this paper we use the newly introduced minimum average variance

estimation (MAVE) method (Xia et al. (2002)) to address the above concerns.

2. Estimation

For ease of exposition, rewrite x0 ≡ 1 and, by an abuse of notation, X =

(x0, . . . , xp)
T . Let G(θT z) = (g0(θ

T z), g1(θ
T z), . . . , gp(θ

T z))T . If G(·) is known,

then the single-index direction θ0 minimizes

E
[

y −G(θTZ)TX
]2
. (2.1)

The conditional variance given ξ = θTZ and θ is σ2
θ(θ

TZ) = E[{y−G(θTZ)TX}2 |
θTZ = ξ]. It follows that E[y−G(θTZ)TX]2 = Eσ2

θ(θ
TZ). Therefore, minimizing

(2.1) is equivalent to minimizing, with respect to θ,

Eσ2
θ(θ

TZ) subject to θT θ = 1. (2.2)

We call the estimation procedure the minimum average (conditional) variance

estimation (MAVE) method; see Xia et al. (2002). Because gk, k = 0, . . . , p,

are unknown, we may use a local linear function to approximate them. Let

{(Xi, Zi, yi), i = 1, . . . , n} be a sample from (1.1). For any z, a local linear

expansion of gk(θ
T
0 Zi) at θT

0 z is

gk(θ
T
0 Zi) = gk(θT

0 z) + g′k(θ
T
0 z)θ

T
0 Zi0 +OP {(θT

0 Zi0)
2}, k = 0, . . . , p,

where Zi0 = Zi − z. Let G′(θT
0 z) = (g′0(θ

T
0 z), . . . , g

′
q(θ

T
0 z))

T . For Zi close to z, we

have

yi −XT
i G(θT

0 Zi) ≈ yi −XT
i G(θT

0 z) −XT
i G

′(θT
0 z)Z

T
i0θ0.
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Following the idea of Nadaraya-Watson kernel estimation, we estimate σ2
θ(θ

T z)

by

σ̂2
θ(θ

T z) = min
a,d

n
∑

i=1

{

yi −XT
i a−XT

i dZ
T
i0θ

}2
wi0. (2.3)

Here, wi0 ≥ 0, i = 1, . . . , n, are some weights, typically centered at z. Note that
∑n

i=1wi0 = 1 is needed in (2.3). For simplicity, we remove this restriction in the

following context. Write aj = (aj0, . . . , ajp)
T and dj = (dj0, . . . , djp)

T . By (2.2)

and (2.3), our estimation procedure is to minimize

n−1
n

∑

j=1

I(w̄j)

n
∑

i=1

{

yi −XT
i aj −XT

i djZ
T
ijθ

}2
wij (2.4)

with respect to (aj , dj), j = 1, . . . , n, and θ, where Zij = Zi − Zj, w̄j =

n−1
∑n

i=1wij and I(·) is a bounded weight function employed to handle the

boundary points of the observations. The trimming function I(·) is adopted here

for technical simplicity; see Härdle et al. (1993) and Powell, Stock and Stoker

(1989). In our proofs, we take I(v) ≥ 0 to be any function with a bounded

third order derivative and I(v) = 0 if v ≤ c0, where c0 is a small constant.

Theoretically, c0 can tend to 0 as n → ∞ at a slow rate, but this will compli-

cate the proof and benefit us with no more than the fixed c0 in practice. The

smoothness of I(v) is needed for ease of proofs. In practice, we can further take

I(·) ≡ 1; or I(v) = 1 if v ≥ c0, 0 otherwise. Note that we obtain the solution

of θ and aj simultaneously with just a single cost function, namely (2.4). This

is different from existing estimation methods; see, e.g., Carroll et al. (1997) and

Härdle et al. (1993).

Minimizing (2.4) is a quadratic problem that is easily solved. A simple

algorithm to implement (2.4) is as follows. Let

(

aj

dj

)

=

{

n
∑

i=1

wij

(

Xi

ZT
ijθXi

)(

Xi

ZT
ijθXi

)T
}−1 n

∑

i=1

wij

(

Xi

ZT
ijθXi

)

yi, (2.5)

θ=
{

n
∑

j=1

I(w̄j)

n
∑

i=1

wij(X
T
i dj)

2ZijZ
T
ij

}−
n

∑

j=1

I(w̄j)

n
∑

i=1

wijX
T
i djZij(yi−XT

i aj), (2.6)

where {·}− denotes the Moore-Penrose inverse of a matrix. The minimization

in (2.4) can be solved by iterating (2.5) and (2.6) until convergence; in each

iteration θ is replaced by sign1(θ)θ/|θ|, where θ is the latest value given by (2.6)

and sign1(θ) is the sign of the first element of θ. The final value of sign1(θ)θ/|θ|
is our estimator of the single-index direction θ0.
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The choice of weight wij plays an important role for different estimation

methods; see Hristache et al. (2001) and Xia et al. (2002). In this paper, we

use two sets of weights. Suppose H(·) and K(·) are a q-variate and a univari-

ate density function, respectively. We first use weight wij = Hb,i(Zj), where

Hb,i(z) = b−qH(Zi0/b) and b is a bandwidth, a multivariate dimensional kernel

weight. Let θ̃ be the final value of iterating (2.5) and (2.6). Because of the

so-called “curse of dimensionality” in nonparametrics, the estimate θ̃ based on

this kind of weight is not efficient. However, θ̃ is an appropriate initial esti-

mate of θ0. To refine the estimation, we further use a single-index kernel weight

wθ
ij = Kθ

h,i(θ
TZj), where Kθ

h,i(v) = h−1K{(θTZi−v)/h}, h is the bandwidth and

θ is the latest estimate of θ0. Let θ̂ be the final value of θ in the iterations. We

estimate θ0 by θ̂.

Suppose {(Xi, Zi, yi), i = 1, . . . , n} is a set of observations. We make the

following assumptions on the stochastic nature of the observations, the coefficient

functions and the kernel functions. Let Xi(`) and Zi(`) be the `th elements of Xi

and Zi, respectively, and take ξ
(ι)
i = Xk1

i(`1)X
k2
i(`2)Z

k3
i(`3)Z

k4
i(`4) with ι = k1 + k2 +

k3 + k4.

(C1) {(Xi, Zi, yi)} is a strictly stationary (with the same marginal distribution

as (X,Z, y)) and α−mixing sequence with a geometrically decaying mixing

rate α(k).

(C2) With probability 1, Z is distributed in a compact region D; the density

functions f of Z and fθ of θTZ have bounded continuous derivatives and fθ

is Lipschitz continuous in θ ∈ Θ.

(C3) gk, k = 0, . . . , p, has a bounded, continuous third order derivative; for all

ι ≤ 2r with some r > 2; the conditional expectations E(ξ (ι)|Z = z) and

E(ξ(ι)|θTZ = v) have bounded continuous derivatives and the latter is Lip-

schitz continuous in θ ∈ Θ; E(|ξ(ι)
` ||ξ(ι)

1 | | Z1 = z1, Z` = z`) is bounded by a

constant for all ` > 0, z1, z` and x1.

(C4) supx,z E(ε2|X = x,Z = z) < ∞, Eεr < ∞ and E{εi|(Xj , Zj), j ≤ i} = 0

almost surely, where r is the same as in (C3).

(C5) E(XXT |Z) is positive definite; P (G′T (θT
0 Z)X = 0) = 0.

(C6) H and K are symmetric density functions with compact supports {z : |z| ≤
a′0} and {v : |v| ≤ a0}, respectively, for some a0, a

′
0 > 0. The Fourier

transform of K is absolutely integrable.

The mixing rate in (C1) can be relaxed to be algebraic, i.e., α(k) = O(k−ρ).

Suppose the bandwidth h ∼ n−δ. Then the mixing rate satisfying the following

equation is sufficient.

∞
∑

n=1

n−{ 1

2
− 1

r
−δ( 1

2
+ 1

r
)}ρ+2q+1+ 1

r
+( 1

2
+ 1

r
)δ(log n)

ρ
2 <∞. (2.7)
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The first part of (C2) is a common assumption on density functions of kernel

smoothers when uniform convergence rate is needed. See, e.g., Linton (1995).

Our results can be extended to the case that Z is not bounded provided high

order moments of Z exist. The Lipschitz condition on the density function can

be fulfilled under some mild conditions on the density function f , see Hall (1989).

The third order derivative in (C3) is needed for higher order expansion. Actually,

existence of a second order derivative is sufficient for root-m consistency if we

confine the bandwidth to a smaller range. The restriction on the expectation

conditioned on cross-product terms over time is needed for the consistency of es-

timators when the observations are dependent. If E{εi|(Xj , Zj , yj), j < i} 6= 0 in

(C4) then our asymptotic results still hold, but the distribution will have a more

complicated variance matrix depending on the structure of the stochastic process

of the observations. Assumption (C5) is imposed to ensure that the proposed al-

gorithm has an attractor with a single direction. As discussed in Fan et al. (2003),

there are identifiability problems if X ≡ Z. We can assume that the gk(·) are not

all linear when X ≡ Z for the identification of the single-index, but we need some

further constraints for the identification of the coefficient functions. For example,

we can confine the conditional mean functions to g1(θ
T
0 X)x1 + · · · + gp(θ

T
0 X)xp

or g0(θ
T
0 X) + g1(θ

T
0 X)x1 + · · · + gp−1(θ

T
0 X)xp−1 if θ0p 6= 0.

In this paper, we only employ kernel functions with compact support as in

(C6). We further assume that κ2
∆
=

∫

K(u)u2du = 1 and H2
∆
=

∫

H(z)zzT dz =

Iq×q; otherwise we take K(u) =: K(u/
√
κ2)/

√
κ2 and H(z) =: H(H−1/2

2 z)

(det(H2))
−1/2.

Lemma 1. Suppose that (C1)−(C6) hold and {z : f(z) ≥ c0} is non-empty,

b → 0 and nbq+2/ log n → ∞. Let θ̃ be the estimator based on the multi-kernel

weight. If we start the iteration with θ such that θT θ0 6= 0, then θ̃ − θ0 = oP (1).

Let µθ(z) = E(Z|θTZ = θT z), πθ(z) = E(XXT |θTZ = θT z), Vθ(z) =

E[{XT G′(θT
0 z)}X ZT

i0|θTZ = θT z],

U0 = E[Iθ0

f (Z){G′(θT
0 Z)X}2E{(Z − µθ0

(Z))(Z − µθ0
(Z))T |θT

0 Z}],

Wk = E
[

Iθ0

f (Z){G′(θT
0 Z)X}2{Z − µθ0

(Z)}{Z − µθ0
(Z)}T εk

]

, k = 0, 2,

Iθ0

f (z) = I(fθ0
(θ0

T z))fθ0
(θ0

T z) and W1 = W0 +U0−E[Iθ0

f (Z)V T
θ0

(Z){πθ0
(Z)}−1

Vθ0
(Z)].

Theorem 1. Suppose that (C1)−(C6) hold and {z, fθ(θ
T z) ≥ c0} is non-empty

for all θ ∈ Θ, h ∼ n−δ with 1/6 < δ < 1/4. If we start the estimation procedure

with single-index kernel weight and θ = θ̃, then n1/2{θ̂−θ0} D→ N(0,W−
1 W2W

−
1 ).



272 YINGCUN XIA, WAI-KEUNG LI AND HOWELL TONG

Theorem 1 still holds if we start with any consistent estimate θ. The proof

of Theorem 1 is given in Section 4. The convergence of the algorithm is also

implied in the proof. For statistical inference, we further give an estimator for

the variance and covariance matrix in the asymptotic distribution, as follows.

Take f̂j = n−1
∑n

i=1Kh(θ̂>Zij), µ̂j = (nf̂j)
−1

∑n
i=1Kh(θ̂>Zij)Xi and

π̂(Zj) = (nf̂j)
−1

n
∑

i=1

Kh(θ̂>Zij)XiX
>
i , V̂j = (nf̂j)

−1
n

∑

i=1

Kh(θ̂>Zij)X
T
i djXiZ

T
ij ,

Ŵ1 = n−2
n

∑

i=1

n
∑

j=1

I(f̂j){d>j Xi}2Kh(θ̂>Zij)ZijZ
>
ij − n−1

n
∑

j=1

I(f̂j)f̂jV̂
T
j π̂

−1
j V̂j,

Ŵ2 =

n
∑

j=1

I(f̂j)f̂j(d
T
j Xj)

2{Zj − µ̂j}{Zj − µ̂j}T (yj − aj)
2.

Remark 1. In Xia and Li (1999), their estimator has the same distribution

but with variance matrix W−
0 W2W

−
0 . By Schwarz’s Inequality, we have that

W1 −W0 is a semi-positive definite matrix. Hence, W−
0 W2W

−
0 −W−

1 W2W
−
1 is a

semi-positive definite matrix and the proposed estimation method in this paper

is more efficient than that in Xia and Li (1999) for (1.1).

Remark 2. Note that the bandwidth with rate n−1/5 satisfies the requirement.

This property confirms that many existing bandwidth selection methods can be

employed here.

Remark 3. In Theorem 1, a consistent initial estimator θ̃ based on the multi-

dimension kernel is used. However, when the dimension of Z is high, we have

the risk of suffering from a poor initial estimator θ̃. To reduce this risk, we

use the idea of elliptical kernels as proposed by Hristache et al. (2001) by taking

wij = Kh(|(θθT + 2−kI)Zij |) in step k of the iterations. Given a set of weights

wij (or wθ
ij), we need several iterations between (2.5) and (2.6) to obtain a better

approximation of the solution of (2.4). Therefore, for the single-index kernel

weights, we suggest fixing θ in weight wθ
ij for several iterations before replacing

it by the latest value of θ.

Remark 4. In the proof of the theorem, we further show that the algorithm

has a very fast convergence rate. Let θ̂k be the value of θ after k′th iteration, see

(2.5) and (2.6). Then we have |θ̂k − θ0| ≤ ∆k|θ̂k−1− θ0|, where maxk ∆k < 1 as n

is large enough. In other words, the algorithm has a geometric convergence rate.

After obtaining the estimate of θ0, we can further estimate the coefficient

functions with θ0 replaced by θ̂. Because θ̂ is root-m consistent, we immediately

have the following result; see Xia and Li (1999) and Cai, Fan and Yao (2000).
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Corollary 1. Suppose the assumptions of Theorem 1 hold and that the density

function fθ0
of θT

0 Z is positive at v and the derivative of E(XXT ε2|θT
0 Z = v)

exists. Then

(nh)
1

2 {Ĝ(v)−G(v)− 1

2
G′′(v)h2} D→N(0, f−1

θ0
(v)Σ−1

0 (v)Σ2(v)Σ
−1
0 (v)

∫

K2(u)du),

where Σk(v) = E(XXT |ε|k | θT
0 Z = v), k = 0, 2.

3. Simulation Study

In this section, we use simulations to demonstrate the performance of our

method for finite data sets. Some practical problems are addressed and some

observations are made. Bandwidth selection is always an important practical

issue for nonparametric kernel smoothing. Note that the optimal bandwidth for

the estimation of the regression function, in the sense of minimizing the mean

integrated squared error, can be used in our procedure. There are many methods

available to estimate the optimal bandwidth. In our calculations, we use the

cross-validation bandwidth selection method as follows. Corresponding to (2.5),

calculate

(

ah,j

dh,j

)

=
{

n
∑

i=1

i6=j

Kθ
h,i(θ

TZj)

(

Xi

ZT
ijθXi

)(

Xi

ZT
ijθXi

)T
}−1

n
∑

i=1

i6=j

Kθ
h,i(θ

TZj)

(

Xi

ZT
ijθXi

)

yi.

We take c0 to be very small, such that all points are assigned to have weight

I(w̄j) = 1 in (2.4). When θ = θ0, ah,j is actually a kernel estimate of G(θT
0 Zj)

with the observation (Xj , Zj , yj) deleted. Our bandwidth for each iteration is

chosen to be

hθ = arg inf
h

n
∑

j=1

I(w̄j){yj − aT
h,jXj}2.

When |θ − θ0| = OP (n−1/2), it can be shown that hθ ∼ n−1/5 under some mild

conditions. In the calculations, the stopping rule is that |θT
k θk+1| do not change

for several consecutive iterations (3, in our calculations), where θk is the value of

kth iteration.

Example 3.1. Consider the simulated model from Fan et al. (2003):

yi = 3 exp{−(θT
0 Zi)

2} + 0.8{θT
0 Zi}xi1 + 1.5 sin(πθT

0 Zi)xi3 + σεi, (3.1)

where Xi = Zi = (xi1, xi2, xi3, xi4)
T , i = 1, . . . , n, are independent random vec-

tors uniformly distributed on [−1, 1]⊗4, {εi} is a sequence of independent stan-

dard normal random variables, and θ0 = (1/3, 2/3, 0, 2/3)T . Besides estimating
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the model, we also consider the hypotheses testing, at significant level α = 0.05,

of

H10 : θ01 = 0 v.s. H11 : θ01 6= 0,

H30 : θ03 = 0 v.s. H31 : θ03 6= 0,

based on the asymptotic distributions. We use |θ̂T θ0| to measure the estimation

accuracy of θ̂. We take initial value θ = (1, 0, 0, 0)T in all the calculations. With

sample size 50, 100, 200 and 400 and noise magnitude σ = 0.5, 1 and 2, our

simulation results of 200 replications for every combination of sample size and

noise magnitude are shown in Figure 2. Some statistics are also listed in Table 1.

With reasonable signal-noise ratio, the proposed method can estimate θ0 quite

well. Compared with Fan et al., (2003, Figure 3b), the distributions of the values

in Figure 2 are much closer to 1 than theirs, suggesting better performance by

our method for this model. We found that more extensive overlapping of Zi and

Xi worsen the estimation. If we take Xi = (xi1, xi3)
T , the estimation results will

improve substantially.

Table 1. Mean and standard deviation (in parentheses) of |θ̂>θ0| and the

rejection rates of H10 [in square brackets] and H30 {in braces}.
σ n = 50 n = 100 n = 200 n = 400

0.5 0.8280 (0.1809) 0.9240 (0.1134) 0.9760 (0.0633) 0.9978 (0.0155)

[0.775] {0.285} [0.920] {0.115} [0.995] {0.055} [1.000] {0.035}
1.0 0.7380 (0.2191) 0.8706 (0.1464) 0.9297 (0.0996) 0.9850 (0.0474)

[0.675] {0.440} [0.670] {0.335} [0.815] {0.070} [0.980] {0.040}
2.0 0.5385 (0.2766) 0.7009 (0.2395) 0.8034 (0.1800) 0.8985 (0.1106)

[0.500] {0.495} [0.560] {0.385} [0.635] {0.220} [0.880] {0.115}

PSfrag replacements

-1

-2

-3

-4

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.8

-1.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.0

1.5

3.5

4.5

5.5

6.5

0

1

2

3

4

5

6

7

10

15

20

25

30

35

40

505050

60

80

100100100 200200200

300

400400400

600

R(t), Y (t)

time(days)

(a)

(b)

(c)

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)

In
n
e
r.

p
ro

d
u
c
t

sample size

g1, g2

θT

0
Z

g1

g2

g3

Figure 2. Simulation results for Example 3.1. The three sets of boxplots

of the absolute inner products θ̂T θ0 for models (3.1) for σ =0.5, 1, 2 with

sample size n = 50, 100, 200 and 400 for each σ, respectively.
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Example 3.2. We consider the SETAR time series model

yt = (Φ(−vzt) − 0.5)yt−1 + (Φ(2vzt) − 0.6)yt−2 + εt, (3.2)

where zt = yt−1 + yt−2 − yt−3 − yt−4, and {εt} is a sequence of independent

standard normal random variables. (To ensure that the conditions in Theorem 1

are satisfied, we may further truncate to εt =: εtI|εt|≤4; this truncation actually

does not affect the sampling for finite samples). The parameter v is employed here

to control the difference between the TAR model and the SETAR model; see the

first panel of Figure 3. Here, Xt = (yt−1, yt−2)
T , Zt = (yt−1, yt−2, yt−3, yt−4)

T ,

and θ0 = (1, 1,−1,−1)T /2. We take initial value θ = (1, 2, 0, 0)T /
√

5 in the

calculations. With sample size 50, 100, 200 and 400, our simulation results based

on 200 replications for each combination of sample size and v are shown in Figure

3. Some statistics are listed in Table 2. Because θ0 is a global parameter, it can be

estimated well even when some of the coefficient functions are estimated poorly.

Similar to the results under the parametric setting, the estimation accuracy tends

to increase as the coefficient function becomes steeper; see Chen (1995) for more

details under parametric settings.

Table 2. Mean and mean squared deviation (in parentheses) of the inner

products of the estimates for model (3.2).

v n = 50 n = 100 n = 200 n = 400

0.5 0.8058(0.2091) 0.9266(0.1120) 0.9770(0.0278) 0.9922(0.0079)

1.0 0.8984(0.1439) 0.9626(0.0719) 0.9869(0.0152) 0.9955(0.0044)

5.0 0.8864(0.1470) 0.9720(0.0279) 0.9894(0.0104) 0.9953(0.0051)
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Figure 3. Simulation results for Example 3.2. The left panel are the coeffi-

cient functions in model (3.2); the decreasing lines are g1 and the increasing
lines are g2. From flat to steep, the lines correspond to coefficient functions

with v = 0.5, 1 and 5 respectively. In the right panel, there are three sets of

boxplots of |θ̂T θ0| for models (3.2) for v = 0.5, 1 and 5 , respectively, and

sample size n = 50, 100, 200, 400 for each v.
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4. Data Analysis

In this section, we return to our motivating problems with two data sets. For

the first one, we use our estimation method to search for a threshold variable and

build a TAR model. For the second data set, we answer a question in ecology.
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Figure 4. Data set of the Old Faithful Geyser. (a): the waiting time between
the eruptions. (b): the histogram of the waiting time. (c): the duration of
eruptions. (d): the histogram of the duration of eruptions.

Example 4.1.(The Old Faithful Geyser data set). There are two series in the

data set: duration of eruption (xt, in minutes) and waiting time (yt, in minutes).

They are shown in Figures 4(a) and (b), which also show the histograms. Here

our primary focus is the series yt. Note that the histogram shows two modes,

suggesting the possibility of a mixture of distributions, perhaps due to a hidden

threshold variable. Is it possible to find a reasonable proxy of the hidden variable?

To this end, we use the following single-index coefficient regression model after

standardization:

yt = g0(θ
TZt) +

5
∑

i=1

gi(θ
TZt)yt−i + εt,

where Zt = (xt−1, xt−2, xt−3, xt−4, xt−5)
T . Using our estimation procedure, we

estimate θ as

θ̂ = (0.6328, 0.6785, 0.3622, 0.0490, 0.0744)T .

(0.085) (0.082) (0.068) (0.052) (0.046)
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Where the values in the parentheses are the corresponding standard errors of

the estimates. The residual sum of squares is 0.5905. Note that the last two

elements are quite small (and their t-values are less than 2). To simplify, we now

take Zt = (xt−1, xt−2, xt−3)
T and consider

yt = g0(θ
T
0 Zt) + g1(θ

T
0 Zt)yt−1 + g2(θ

T
0 Zt)yt−2 + g3(θ

T
0 Zt)yt−3 + g4(θ

T
0 Zt)yt−4

+g5(θ
T
0 Zt)yt−5 + εt. (4.1)

We estimate θ0 as θ̂ = (0.6355, 0.6758, 0.3732)T (with corresponding standard

errors of 0.0899, 0.0885 and 0.0782, respectively). The residual sum of squares

is 0.6140. The coefficient functions are shown in Figure 5. It seems reasonable

to approximate most of them by step functions with a common jump at about

0.0. This lends some support to the plausibility of a hidden threshold variable,

a proxy for which might be θ̂TZt, or zt = 0.6355xt−1 + 0.6758xt−2 + 0.3732xt−3.

We can further build the following tentative threshold model for the waiting time

yt:

yt =























0.195 − 0.737yt−1−0.174yt−2+0.126yt−3−0.203yt−5+ε1t, if zt≥−0.07;

(0.097) (0.104) (0.127) (0.104) (0.082)

−0.040 − 0.424yt−1 − 0.245yt−3 − 0.264yt−4 + ε2t, if zt < −0.07,

(0.007) (0.071) (0.084) (0.079)

with Var (ε1t) = 0.6557 and Var (ε2t) = 0.6354, and pooled variance 0.6450. Note

that the variance of ε1t and ε2t are about the same and we may pool them to
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Figure 5. Calculation results for the Old Faithful geyser data in Example

4.1. (a)−(f) are the estimated coefficient functions in model (4.1).
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form εt. We conduct a white noise test for the series using Bartlett’s Kolmogorov-

Smirnov statistic. See, e.g., Fuller (1976). The test statistics for {yt} and {εt} are

0.3691 and 0.0415 respectively. At the significance level α = 0.05, for which the

critical value is 0.1174, {yt} is rejected as a white noise sequence but {εt} is not re-

jected as such. The residual autocorrelations at lag k = 1, . . . , 6 are r1 = 0.0213,

r2 = −0.0208, r3 = 0.0039, r4 = 0.0115, r5 = 0.0288 and r6 = 0.0324. The corre-

sponding standard errors for r1, . . . , r6 are 0.0518, 0.0542, 0.0498, 0.0576, 0.0572,

and 0.0605, respectively. See Li (1992). These values also suggest that {εt} may

be a white noise process.

The previous analysis suggests that the threshold AR model is acceptable, as

constructed, from a statistical point of view. Note that the estimated threshold

variable is zt = 0.6328xt−1 + 0.6785xt−2 + 0.3622xt−3. The “upper regime” of

the threshold AR model we have constructed corresponds to the longer waiting

time, and the “lower regime” the shorter waiting time. Our threshold variable

indicates that longer eruption durations will result in longer waiting time.

Example 4.2.(The protozoan predator-prey system). Now we join the debate

in ecology using our proposed method. The lags are selected to be t − 1, i.e.,

τ1 = τ2 = 1, according to some ecological background of the problem; see

Jost and Ellner (2000). We further simplify the model to

Rt+1 = g1(θ
T
1 Wt)Rt + εt, Yt+1 = g2(θ

T
2 Wt)Yt + g3(θ

T
2 Wt)Rt + εt,

where Wt = (log(Rt−1), log(Yt−1))
T . The estimated parameters are listed in

Table 3. The estimates of the functional responses, i.e., g1, g2 and g3 are shown

in Figure 6.

Note that the signs of θ11 are positive and those of θ12 are negative for all

the data sets in Table 3. Thus, the functions g1 can be written as g̃1(R
b
t−1/Y

a
t−1)

where a, b > 0 and the g̃1(·)’s are increasing functions for all the data sets;

see Figures 6(a), 6(d) and 6(g). For example, a = 0.7948, b = 0.6068 and

g̃1(v) = g1(log(v)) for the first data set. This suggests that the prey (food for

the predator) has a positive effect on the number of predators; the predators at

the previous time point has negative effect on the current number of predator

because of the limited food supply (i.e., the prey). Our results suggest that the

dynamics of predator is typically ratio-dependent. Note that the signs of θ21 and

θ22 are positive and that the functions g2 and g3 are decreasing functions (except

for the estimate in Figure 6(f)) for all the data sets. This suggests that both the

prey population and the predator population at the previous time point have a

negative effect on the dynamics of the prey. A possible reason for this is that

food competition among prey population and predation by predators affect the
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prey population. Thus, our statistical analysis suggests that the dynamics of

prey is typically both prey and predator dependent.

Table 3. Estimates of the single-index (and the standard error) for different
data sets in Example 4.2.

Data set θ11 θ12 θ21 θ22
set 1 0.6068(0.1622) -0.7948(0.2174) 0.9616(0.1563) 0.2745(0.0459)

set 2 0.1842(0.0645) -0.9829(0.1746) 0.4230(0.0642) 0.9061(0.1393)

set 3 0.8411(0.1337) -0.5409(0.0867) 0.4783(0.0679) 0.8782(0.0773)
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5. Proofs

We give only an outline of the proof of Theorem 1. A complete proof, and

those for the lemmas 1 and A.1-A.4 are available at http://stat.sinica.edu.tw/stat-

istica/. A computer code sifc.m in Matlab is also available at http://www.stat.

nus.edu.sg/˜staxyc. The idea of the proof can be stated as follows. Based on

Lemmas A.1−A.3, we obtain uniform consistency rates for the local linear es-

timators of the coefficient functions; see (A.40). Based on the expansions and

(2.6), we then build a recursive formula for the iteration in the algorithm, i.e.,

θk+1 − θ0 = Γk(θk − θ0) + Smaller terms, where θk is the estimator of θ0 after

the kth iteration and maxk |Γk| < 1. See (A.43) for more details. This recursive

formula indicates that the true direction θ0 is the attractor of the algorithm. The

formula is finally used to prove the convergence of the algorithm as well as the

consistency and asymptotic normality of the estimator.

Let δθ = |θ−θ0|. In Θ, δθ is bounded. Let δqn = {log n/(nbq)}1/2, τqn = b2 +

δqn, δn = {log n/(nh)}1/2, τn = h2 + δn and δ0n = (log n/n)1/2. By the condition

h ∼ n−δ with 1/6 < δ < 1/4, we have δ0n � h2 � h−1δn and δn � h. We

use these relations frequently in our calculations. Suppose An is a matrix. An =

O(an) means every element in An is O(an) almost surely. We adopt consistency

in the sense of “almost surely” because we need to prove the convergence of the

algorithm, which theoretically needs infinite iteration. Let c, c1, c2, · · · be a set of

constants. For ease of exposition, c may have different values at different places.

We write Kh(θTZi0) = h−1K(θT (Zi − z)/h) and Hb(Zi0) = h−qH{(Zi − z)/h} as

Kθ
h,i(z) (or Kθ

h,i) and Hb,i(z) (or Hb,i) respectively in the following context, for

simplicity.

Lemma A.1. Suppose ϕ(θ) is a measurable function of (X,Z, y), such that

supθ,ϑ∈Θ | ϕ(θ)−ϕ(ϑ)| < M(X,Z, y)|θ−ϑ| a.s. with EM r(X,Z, y) < c; supθ∈Θ,v

E(|ϕ(θ)|r | θTZ = v) < c for some r ≥ 3. Let ϕi(θ) be the corresponding

value of ϕ(θ) at (Xi, Zi, yi). Assume that supθ∈Θ,u,v E(|ϕi(θ)ϕ1(θ)| | θTZ1 =

u, θTZi = v) < c for all i > 1. Let g(v) be any function with continuous second

order derivative, m(u, v) = g(u) − g(v) − g ′(v)(u − v) − g′′(v)(u − v)2/2 and

ζk,`
i = m(θT

0 Zi, θ
T
0 z)x

k
i (θ

TZi0)
`, where xi is any component of Xi, k = 0, 1 and

` = 0, 1. If (C1) holds, then

sup
θ∈Θ

∣

∣

∣

1

n

n
∑

i=1

ϕi(θ) −Eϕi(θ)
∣

∣

∣
= O(δ0n),

sup
|θ−θ0|<an

∣

∣

∣

1

n

n
∑

i=1

{ϕi(θ) − ϕi(θ0)} −E{ϕi(θ) − ϕi(θ0)}
∣

∣

∣
= O(anδ0n),
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where an → 0 as n → ∞. If further (C2) and (C6) hold, h ∼ n−δ with 0 < δ <

1 − 2/r, then

sup
θ∈Θ

z∈D

∣

∣

∣

1

n

n
∑

i=1

{Hb,iϕi(θ) −E(Hb,iϕi(θ))}
∣

∣

∣
= O(δqn),

sup
θ∈Θ

z∈D

∣

∣

∣

1

n

n
∑

i=1

{Kθ
h,iϕi(θ) −E(Kθ

h,iϕi(θ))}
∣

∣

∣
= O(δn),

sup
|θ−θ0|<an

z∈D

∣

∣

∣

1

n

n
∑

i=1

{Kθ
h,iζ

k,`
i −E(Kθ

h,iζ
k,`
i )}

∣

∣

∣
= O{δnh`(a2

n + h2)}.

For any measurable function A(ξ, η), let EkA(ξi, ηk) = E{A(v, ηk)}|v=ξi
.

Lemma A.2. Let ξ(θ) be a measurable function of (X,Z, y). Suppose E{ξ(θ)
| θTZ} = 0 for all θ ∈ Θ and |ξ(θ) − ξ(ϑ)| ≤ |θ − ϑ|ξ̃ with Eξ̃r < ∞ for some

r > 2. Let ϕi be defined as in Lemma A.1. If (C1) and (C6) hold, then

sup
θ∈Θ

∣

∣

∣

1

n2

n
∑

i=1

n
∑

j=1

{

Kθ
h,i(Zj)ϕj(θ) −Ej(K

θ
h,i(Zj)ϕj(θ))

}

ξi(θ)
∣

∣

∣
= O(δ2n).

Let d(z,Dc) = minz′∈Rq−D |z−z′|, J0(z) and Jθ(v) be any bounded functions

such that J0(z) = 0 if d(z,Rq−D) > b and Jθ(θ
T z) = 0 if d(θT z, θT (Rq−D)) > h.

By definition, we have

1

n

n
∑

j=1

J0(Zj) = O(b),
1

n

n
∑

j=1

Jθ(Zj) = O(h). (5.1)

Let r(v1, v2, x) = GT (v1)x−GT (v2)x− {G′T (v2)x}(v1 − v2) − {G′′T (v2)x}(v1 −
v2)

2/2. To cope with the boundary points, we give the following nonuniform

rates of convergence.

Lemma A.3. Suppose assumptions (C2), (C3) and (C6) hold. Then

EHb,i{
θTZi0

b
}k{ϑTZi0/b}` = vθ,ϑ

k,` f(z) + J0(z) +O(b),

EKθ
h,i{

θTZi0

h
}` = τ`fθ(θ

T z) + Jθ(z) +O(h),

EKθ
h,i{θTZi0}r(θT

0 Zi, θ
T
0 z,Xi) = O{h(h + Jθ(z))(δ

2
θ + h2)},

uniformly for θ, ϑ ∈ Θ with θ ⊥ ϑ and z ∈ D, where vθ,ϑ
k,` =

∫

Rq H(U)(θTU)k(ϑTU)`

dU and τ` =
∫

K(u)u`du.
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Lemma A.4. Under assumptions (C2) and (C5), we have that W0 is a semi-

positive matrix with rank q − 1.

For ease of exposition, we abbreviate supz∈D,θ∈Θ |An(z, θ)| = O(an) as An(z,

θ) = O(an) in the following context.

Proof of Theorem 1. By Taylor expansion, write

yi =
(

GT (θT
0 z), G

′T (θT
0 z)

)

(

Xi

θTZi0Xi

)

+R(Zi, Xi, z, θ) + εi,

where R(Zi, Xi, z, θ) = G′T (θT
0 z)XiZ

T
i0(θ0 − θ)+G′′T (θT

0 Z
∗
i )Xi{θT

0 Zi0}2/2. Note

that this expansion is unique under the assumptions even X ≡ Z with the as-

sumption before Lemma 1. Let (aT , dT ) be the value on the right hand side of

(2.5), with Zj replaced by z and

Cn(z) = n−1
n

∑

i=1

Hb,i

(

Xi

ZT
i0θXi

)(

Xi

ZT
i0θXi

)T

. (5.2)

We have
(

a

d

)

=

(

G(θT
0 z)

G′(θT
0 z)

)

+ C−1
n (z)n−1

n
∑

i=1

Hb,i

(

Xi

ZT
i0θXi

)

{R(Zi, Xi, z, θ) + εi}. (5.3)

Let

R(Xi, Zi, z, θ) = G′T (θT
0 z)XiZ

T
i0(θ0 − θ) +

1

2
G′′T (θT

0 z)Xi{θT
0 Zi0}2

+r(θT
0 Zi, θ

T
0 z,Xi).

Write

yi =
(

GT (θT
0 z), G

′T (θT
0 z)

)

(

Xi

θTZi0Xi

)

+R(Xi, Zi, z, θ) + εi.

Let Cθ,n(z) be the value of Cn(z) in (A.29) with Hb,i(Zj) replaced by Kθ
h,i(Zj)

and
(

aθ

dθ

)

=

(

G(θT
0 z)

G′(θT
0 z)

)

+ C−1
θ,n(z)

n
∑

i=1

Kθ
h,i

(

Xi

ZT
i0θXi

)

{R(Xi, Zi, z, θ) + εi}.

By Lemma A.1, we have Rθ
3n(z) = O(δn) and Rθ

4n(z) = O(δn). On Dθ,

aθ =G(θT
0 z) +

1

2
G′′(θT

0 z)h
2 + π−1

θ (z)Vθ(z)(θ0 − θ) +Rθ
3n(z)

+O{(h+ Jθ(z))δθ + h2(h+ Jθ(z) + δn) + δ2θ},
dθ =G′(θT

0 z) + h−1Rθ
4n(z) +O{τn + h−1(δn + Jθ(z))δθ}, (5.4)
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where

Rθ
3n(z) =

1

n

n
∑

i=1

Kθ
h,i(z)Xiεi, Rθ

4n(z) =
1

n

n
∑

i=1

Kθ
h,i(z){

θTZi0

h
}Xiεi.

Let aθ,j and dθ,j be the values above with z replaced by Zj . Write

yi − aT
θ,jXi = (dT

θ,jXi)Z
T
ijθ0 + ∆

(θ,0)
i,j + ∆

(θ,1)
i,j + ∆

(θ,2)
i,j + rij −XT

i R
θ
3n(Zj) + εi,

where ∆
(θ,0)
i,j = XT

i π
−1
θ (z)Vθ(z)(θ − θ0), ∆

(θ,1)
i,j = {G′(θT

0 Zj) − dθ,j}TXi{θT
0 Zij},

∆
(θ,2)
i,j = {G′′(θT

0 Zj)}TXi{(θT
0 (Zi − Zj))

2 − h2}/2 and |rij | ≤ c{|θT
0 Zij|3 + (h +

Jθ(Zj))δθ + h2(h + Jθ(Zj) + δn) + δ2θ}|Xi|. Note that by Lemmas A.1 and A.3,

supz∈D |f̂θ(z) − fθ(z) − Jθ(z)| = O(h + δn), where f̂θ(z) = n−1
∑n

i=1K
θ
h,i(z).

Therefore

sup
z∈D

|I(f̂θ(z)) − I(fθ(z)) − Jθ(z)| = O(b+ δn). (5.5)

Write I(f̂θ(z)) as Iθ
nj. We have

θ = θ0 +D+
θ,n

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zij{∆(θ,0)

i,j + ∆
(θ,1)
i,j + ∆

(θ,2)
i,j + rij

−XT
i R

θ
3n(Zj) + εi}, (5.6)

where Dθ,n = n−2
∑n

j=1 Iθ
nj

∑n
i=1(d

T
θ,jXi)

2Kθ
h,i(Zj)ZijZ

T
ij . By (A.40), we have

dθ = G′(θT
0 z)+O{h−1δn+(1+h−1Jθ(z))δθ}. Exchanging the order of summation

we have, by Lemma A.1,

Dθ,n =
1

n2

n
∑

i=1

n
∑

j=1

Iθ
nj{dT

θ,jXi}2Kθ
h,i(Zj)ZijZ

T
ij

=
1

n

n
∑

i=1

Iθ
f (Zi){G′T (θT

0 Zi)Xi}2{Zi − µθ(Zi)}{Zi − µθ(Zi)}T

+
1

n

n
∑

i=1

Iθ
f (Zi){G′T (θT

0 Zi)Xi}2E{(Zi − µθ(Zi))(Zi − µθ(Zi))
T }

+O(h−1δn + h+ δθ)

=W0 + U0 +O(h−1δn + h+ δθ),
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where Iθ
f (z) = I(fθ(z))fθ(z). By Lemmas A.1 and A.3, we have

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zij∆

(θ,0)
ij = E{Iθ

f (Z)Vθ(Z)π−1
θ (Z)Vθ(Z)}(θ − θ0)

+O(h−1τnδθ + δ2θ),

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zij∆

(θ,1)
ij = O(h−1τnδθ + hτn + δ2θ).

For any d and d′, by Lemmas A.1 and A.3,

1

n

n
∑

i=1

dTXiX
T
i d

′Kθ
h,iZi0(θ

T
0 Zi0)

2 = ψθ(z)h
2 +O{h2(Jθ(z) + τn) + hδθ + δ2θ},

1

n

n
∑

i=1

dTXiX
T
i d

′Kθ
h,iZi0 = ψθ(z) +O{Jθ(z) + τn},

where ψθ(z) = fθ(z)E(dTXiX
T
i d

′Zi0|θTZ = θT z). Therefore

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zij∆

(θ,2)
ij = O{h3 + hδθ + δ2θ},

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zijrij = O{h3 + δ2θ + hδθ + hδn}.

Let Ṽθ(z) = Iθ(z){G′(θT
0 Zi)}TXi{µθ(Zi) − z}. Note that

1

n

n
∑

j=1

Iθ
nj(d

T
θ,jXi)K

θ
h,i(Zj)Zij = Ṽθ(Zi)+

1

n

n
∑

j=1

{Iθ
nj(d

T
θ,jXi)K

θ
h,i(Zj)Zij−Ṽθ(Zi)}.

Exchanging the order of the summation, by Lemmas A.1 and A.2 we have

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zijεi =

1

n

n
∑

i=1

Ṽθ(Zi)εi+O(h3+h−1δ2n+h−1τnδθ)

=
1

n

n
∑

i=1

Ṽθ0
(Zi)εi+O(h3+h−1δ2n+h−1τnδθ).

Similarly, we have

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)ZijX

T
i R

θ
3n(Zj) = O(h3 + h−1δ2n + h−1τnδθ).
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Therefore

θ = θ0 + {W0 + U0}−E{Iθ
f (Z)Vθ0

(Z)π−1
θ0

(Z)Vθ0
(Z)}(θ − θ0)

+n−1{W0 + U0}−
n

∑

i=1

Ṽθ0
(z)εi +O(h3 + h−1δ2n + h−1τnδθ + δ2θ).

Let D = (W0 + U0)
−1/2E{Iθ

f (Z)Vθ0
(Z)π−1

θ0
(Z)Vθ0

(Z)}(W0 + U0)
−1/2. By the

Schwarz inequality, we have that W0 + U0 − E{Iθ
f (Z)Vθ0

(Z)π−1
θ0

(Z)Vθ0
(Z)} is a

semi-positive matrix. We have, by Lemma A.4, the eigenvalues of D are less

than 1, say 1 > λ1 ≥ · · · ≥ λq−1 ≥ 0, so take an orthogonal matrix Γ such that

D = Γdiag(λ1, . . . , λq−1, 0)Γ
T . Let βk = (W0 + U0)

−1/2(θk − θ0) so that

βk+1 = Γdiag(λ1, . . . , λp+q−1, 0)Γ
Tβk + n−1{W0 + U0}−

1

2

n
∑

i=1

Ṽθ0
(z)εi

+O(h3 + h−1δ2n + h−1τn∆k + ∆2
k), (5.7)

where ∆k = |βk|. It follows that

∆k+1 ≤ λ1∆k + δ0n + c(∆k + h−1τn)∆k + c(h3 + h−1δ2n)

= δ0n + {λ1 + c∆k + c(h+ h−1δn)}∆k + c(hτn + h−1δ2n) (5.8)

almost surely, where c is a constant. We can further take c > 1. For sufficiently

large n, we may assume that

c(h+ h−1δn) ≤ 1 − λ1

3
, δ0n + c(hτn + h−1δ2n) ≤ (1 − λ1)

2

9c
. (5.9)

By Lemma 1, ∆1 → 0 almost surely, and we may assume

∆1 ≤ 1 − λ1

3c
. (5.10)

Therefore, it follows from (A.44), (A.45) and (A.46) that

∆2 ≤ {λ1 +
2

3
(1 − λ1)}

1 − λ1

3c
+

(1 − λ1)
2

9c
=

1 − λ1

3c
. (5.11)

From (A.44), (A.45) and (A.47), we have ∆3 ≤ (1 − λ1)/(3c). By induction,

∆k ≤ (1 − λ1)/(3c) for all k. Therefore we have from (A.44) that ∆k+1 ≤
λ0∆k + δ0n + c(hτn + h−1δ2n) almost surely, where 0 ≤ λ0 < (2 + λ1)/3 < 1. It

follows that

∆k ≤ λk
0∆1 + {δ0n + c(hτn + h−1δ2n)}

k
∑

j=1

λj
0 = O(δ0n + hτn + h−1δ2n),
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for sufficiently large k. By (A.43), we have

{W0 + U0}
1

2 (θ̂ − θ0) =D(θ̂ − θ0) + n−1{W0 + U0}−
1

2

n
∑

i=1

Ṽθ0
(z)εi

+O(h3 + h−1δ2n). (5.12)

It follows from (A.48) that W1(θ̂−θ0) = n−1
∑n

i=1 Ṽθ0
(z)εi +O(h3 +h−1δ2n), and

we have completed the proof of the first part of Theorem 1.
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Appendix. Proofs

The idea of proofs can be stated as follows. We first develop some Lemmas

(Lemmas A.1−A.3) to obtain uniform consistency rates for the local linear esti-

mators of the coefficient functions; see equation (5.40). Based on the expansions

and equation (2.6), we then build a recursive formula for the iteration in the

algorithm, i.e.,

θk+1 − θ0 = Γk(θk − θ0) + Smaller term,

where θk is the estimator of θ0 after the kth iteration and ||Γk|| ≤ 1. See (5.7) for

more details. This recursive formula indicates that the true direction θ0 is the

attractor of the algorithm. The formula is finally used to prove the convergence

of the algorithm as well as the consistency and asymptotic normality of the

estimator.

Let δθ = |θ − θ0|. In Θ, δθ is bounded. Let δqn = {log n/(nbq)}1/2, τqn =

b2 + δqn, δn = {log n/(nh)}1/2, τn = h2 + δn and δ0n = (log n/n)1/2. By the

condition h ∼ n−δ with 1/6 < δ < 1/4, we have δ0n � h2 � h−1δn and δn � h.

We shall use these relations frequently in our calculations. Suppose An is a

matrix. An = O(an) means every element in An is O(an) almost surely. We

adopt the consistency in the sense of “almost surely” because we need to prove

the convergence of the algorithm, which theoretically needs infinite iterations.

Let c, c1, c2, · · · be a set of constants. For ease of exposition, c may have different

values at different places. We abbreviate Kh(θTZi0) = h−1K(θT (Zi − z)/h) and

Hb(Zi0) = h−qH{(Zi−z)/h} asKθ
h,i(z) (orKθ

h,i) andHb,i(z) (orHb,i) respectively

in the following context for simplicity.

Lemma A.1. Suppose ϕ(θ) is measurable function of (X,Z, y) such that supθ,ϑ∈Θ

|ϕ(θ)−ϕ(ϑ)| < M(X,Z, y)|θ−ϑ| a.s. with EM r(X,Z, y) < c; supθ∈Θ,v E(|ϕ(θ)|r |
θTZ = v) < c for some r ≥ 3; Let ϕi(θ) be the corresponding value of ϕ(θ) at
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(Xi, Zi, yi). Assume that supθ∈Θ,u,v E(|ϕi(θ)ϕ1(θ)| | θTZ1 = u, θTZi = v) < c

for all i > 1. Let g(v) be any function with continuous second order derivative,

m(u, v) = g(u)− g(v)− g′(v)(u−v)− g′′(v)(u−v)2/2 and ζk,`
i = m(θT

0 Zi, θ
T
0 z)x

k
i

(θTZi0)
` where xi is any component of Xi, k = 0, 1 and ` = 0, 1. If (C1) holds,

then

sup
θ∈Θ

∣

∣

∣

1

n

n
∑

i=1

ϕi(θ) −Eϕi(θ)
∣

∣

∣
= O(δ0n),

sup
|θ−θ0|<an

∣

∣

∣

1

n

n
∑

i=1

{ϕi(θ) − ϕi(θ0)} −E{ϕi(θ) − ϕi(θ0)}
∣

∣

∣
= O(anδ0n),

where an → 0 as n → ∞. If further (C2) and (C6) hold, h ∼ n−δ with 0 < δ <

1 − 2/r, then

sup
θ∈Θ

z∈D

∣

∣

∣

1

n

n
∑

i=1

{Hb,iϕi(θ) −E(Hb,iϕi(θ))}
∣

∣

∣
= O(δqn),

sup
θ∈Θ

z∈D

∣

∣

∣

1

n

n
∑

i=1

{Kθ
h,iϕi(θ) −E(Kθ

h,iϕi(θ))}
∣

∣

∣
= O(δn),

sup
|θ−θ0|<an

z∈D

∣

∣

∣

1

n

n
∑

i=1

{Kθ
h,iζ

k,`
i −E(Kθ

h,iζ
k,`
i )}

∣

∣

∣
= O{δnh`(a2

n + h2)}.

Proof. The proofs of Lemma A.1 are quite standard; see, e.g., Härdle, Janssen

and Serfling (1988) and Xia and Li (1999). We here give the details for the last

two equations. Note that Θ ⊗ D ⊂ R
2q is bounded. There are n2q balls Bnk

centered at (θnk
, znk

), 1 ≤ k ≤ n2q, with diameter less then cn−1/2h3/2(> c/n),

such that Θ ⊗D ⊂ ∪1≤k≤n2qBnk
. Then

sup
z∈D,θ∈Θ

∣

∣

∣

1

n

n
∑

i=1

{Kθ
h,i(z)ϕi(θ) −E(Kθ

h,i(z)ϕi(θ))}
∣

∣

∣

≤ max
1≤k≤n2q

∣

∣

∣

1

n

n
∑

i=1

[

K
θnk

h,i (znk
)ϕi(θnk

) −E{Kθnk

h,i (znk
)ϕi(θnk

)}
]
∣

∣

∣

+ max
1≤k≤n2q

sup
(θ,z)∈Bnk

∣

∣

∣

1

n

n
∑

i=1

[

{Kθ
h,i(z)−K

θnk

h,i (znk
)}ϕi(θ)+{ϕi(θ)−ϕi(θnk

)}Kθnk

h,i (z)

−E{Kθ
h,i(z) −K

θnk

h,i (znk
)}ϕi(θ) −E{ϕi(θ) − ϕi(θnk

)}Kθnk

h,i (z)
]∣

∣

∣

∆
= max

1≤k≤n2q
|Rn,k,1| + max

1≤k≤n2q
sup

(θ,z)∈Bnk

|Rn,k,2|. (A.1)
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By assumption (C6), we have

max
1≤k≤n2q

z∈D

sup
(θ,z)∈Bnk

|Kθ
h,i(z) −K

θnk

h,i (znk
)| ≤ max

1≤k≤n2q

z∈D

sup
(θ,z)∈Bnk

ch−2(|θ−θnk
|+|z−znk

|)

≤ c(nh)−
1

2 ,

max
1≤k≤n2q

sup
θ∈Bnk

|ϕi(θ) − ϕi(θnk
)| ≤M(Xi, Zi, yi)n

− 1

2h
3

2 .

By the strong law of large numbers for dependent observations (see, e.g., Rio
(1995)), we have

max
1≤k≤n2q

sup
(θ,z)∈Bnk

|Rn,k,2| ≤ c(nh)−
1

2

1

n

n
∑

i=1

{|ϕi(θ)| +M(Xi, Zi, yi)} = O(δn).(A.2)

Write ϕ(θnk
) as ϕi for simplicity. More clearly, we write h as hn. Let T` =

{`/(h` log(`))}κ, where κ = 1/(2r − 2). Let ϕo
i,` = ϕiI{|ϕi| ≥ T`} and ϕI

i,` =

ϕi − ϕo
i,`. We have

Rn,k,1 =
1

n

n
∑

i=1

[

Kθ
h,i(z)ϕ

o
i,i −E{Kθ

h,i(z)ϕ
o
i,i}

]

+
1

n

n
∑

i=1

ξnk,i, (A.3)

where ξnk,i = K
θnk

h,i (znk
)ϕI

i,i −E{Kθnk

h,i (znk
)ϕI

i,i}.
It is easy to check that

∞
∑

`=1

(
`

h`
)−

1

2E|ϕo
`,`| ≤

∞
∑

`=1

(
`

h`
)−

1

2T−r+1
` E|ϕ`|r <∞.

Therefore (cf., Rao (1973, p.111))

∞
∑

`=1

(
`

h`
)−

1

2 |ϕo
`,`| <∞

almost surely. By the Kronecker lemma, we have

1

n

n
∑

`=1

E|ϕo
`,`| = O{(n

h
)−

1

2 }, 1

n

n
∑

`=1

|ϕo
`,`| = O{(n

h
)−

1

2 }.

Note that |ϕo
`,n| ≤ |ϕo

`,`| for all ` ≤ n, and |Kθnk

h,i (z)| < ch−1 by (C6). We have

max
1≤k≤n2q

1

n

n
∑

i=1

E|Kθnk

h,i (z)ϕo
i,n| = O{(nh)− 1

2 }, (A.4)

max
1≤k≤n2q

1

n

n
∑

i=1

|Kθnk

h,i (z)ϕo
i,n| = O{(nh)− 1

2 }. (A.5)
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Next, we shall show

max
1≤k≤n2q

Var(
n

∑

i=1

ξnk,i) ≤
c1n

h
. (A.6)

By stationarity in (C1), we have

Var(

n
∑

i=1

ξnk,i) = nVar(ξnk,i) + 2

n
∑

i=2

(n− i)Cov(ξnk,1, ξnk ,i). (A.7)

Let ϕ̃(u) = E(|ϕ(θnk
)|` | θT

nk
Z = u) and ϕ̃(u, v|i) = E(|ϕ1ϕi| | θT

nk
Z1 =

u, θT
nk
Zi = v). By the conditions about ϕ in Lemma A.1 and assumption (C2),

we have

L(`)
∆
= E{(Kθnk

h,i (znk
))`|ϕi|`} = E{(Kθnk

h,i (znk
))`E(|ϕi|` | θT

nk
Zi)}

= h−`

∫

(Kh(u− θT
nk
znk

))`ϕ̃θnk
(u)fθT

nk
Z(u)du

= h−`+1

∫

(K(u))`ϕ̃θnk
(θT

nk
znk

+ hu)fθT
nk

Z(θT
nk
znk

+ hu)du

≤ ch−`+1, 0 ≤ ` ≤ r,

M(i)
∆
= E

{

K
θnk

h,1 (znk
)K

θnk

h,i (znk
)|ϕ1ϕi|

}

≤ E
{

K
θnk

h,1 (znk
)K

θnk

h,i (znk
)E

(

|ϕ1ϕi| | θT
nk
Z1, θ

T
nk
Zi

)

}

= h−2

∫

K{
u−θT

nk
znk

h
}K{

v−θT
nk
znk

h
}ϕ̃θnk

(u, v|i)fθT
nk

Z1,θT
nk

Zi
(u, v)dudv

=

∫

K(u)K(v)ϕ̃θnk
(θT

nk
znk

+ hu, θT
nk
znk

+ hv|i)

×fθT
nk

Z1,θT
nk

Zi
(θT

nk
znk

+ hu, θT
nk
znk

+ hv)dudv

≤ c

∫

K(u)K(v)ϕ̃θnk
(θT

nk
znk

+hu, θT
nk
znk

+hv|i)dudv ≤ c, i = 2, 3, . . . ,

where fθT
nk

Z and fθT
nk

Z1,θT
nk

Zi
are the density functions of θT

nk
Z and (θT

nk
Z1, θ

T
nk
Zi)

respectively. It follows that

Var(ξnk,i) ≤ L(2) ≤ c

h
. (A.8)

By the Davydov’s lemma (Hall and Heyde (1980, Corollary 2)),

|Cov(ξnk,1, ξnk ,i)| ≤ 8{α(i − 1)}1− 2

r (E|ξnk ,1|r)
2

r

≤ 8{α(i − 1)}1− 2

r {L(r)} 2

r

≤ ch−2+2/r{α(i − 1)}1− 2

r . (A.9)
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Let N1 = INT (h(−1+2/r)/(2q)), where INT (v) denotes the integer part of v. From

(A.7)−(A.9) and assumption (C1), we have

Var(
n

∑

i=1

ξnk,i) = nVar(ξnk,i) + 2
(

N1
∑

i=2

+
n

∑

i=N1+1

)

(n− i)Cov(ξnk,1, ξnk,i)

≤ cn

h
+ 2cn

N1
∑

i=2

M(i) + 2cnh−2+ 2

r

n
∑

i=N1+1

{α(i − 1)}1− 2

r

≤ cn

h
+ 2cnN1 + 2cnh−2+ 2

rN−2q
1

n
∑

i=N1+1

i2q{α(i − 1)}1− 2

r

≤ cn

h
.

Note that c does not depend on k. Therefore (A.6) follows.

LetN2 = INT (n1/2−1/rh1/2+1/r(log n)−1/2) andN3 = INT (n/(2N2)). Then

n = 2N2N3 +N0 and 0 ≤ N0 < 2N2. We write

Wnk
(j) =

j·N2
∑

i=(j−1)N2+1

ξnk,i, j = 1, . . . , 2N2.

Then

n
∑

i=1

ξnk,i =

N3
∑

j=1

Wnk
(2j − 1) +

N3
∑

j=1

Wnk
(2j) + ST

n,0 , (A.10)

where ST
n,0 is the residual and has less than 2N2 terms. Its contribution is negli-

gible.

For every η > 0, we use the strong approximation theorem of Bradley

(1983) to approximate the random variables Wnk
(1),Wnk

(3), . . . ,Wnk
(2j − 1)

by independent random variables W ∗
nk

(1),W ∗
nk

(3), . . . ,W ∗
nk

(2j − 1) defined as

follows. By enlarging the probability space if necessary, introduce a sequence

(U1, U2, · · · ) of independent uniform [0, 1] random variables that are independent

of {Wnk
(1), . . . ,Wnk

(2j − 1)}. Define W ∗
nk

(0) = 0,W ∗
nk

(1) = Wnk
(1). Then for

each j ≥ 2, there exists a random variable W ∗
nk

(2j − 1) which is a measurable

function of Wnk
(1),Wnk

(3), . . . ,Wnk
(2j − 1) and Uj such that W ∗

nk
(2j − 1) is in-

dependent of W ∗
nk

(1), . . . ,W ∗
nk

(2j−3), has the same distributions as Wnk
(2j−1)

and satisfies

P (|W ∗
nk

(2j − 1) −Wnk
(2j − 1)| > η) ≤ 18(

|Wnk
(2j − 1)|∞
η

)
1

2α(N2), (A.11)
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where | · |∞ is the sup-norm. It follows from the definition of W ∗
nk

(2j − 1) and

(A.6) that,

EW ∗
nk

(2j−1)=0,

max
k,j

Var(W ∗
nk

(2j − 1))≤c2n
1

2
− 1

rh−
1

2
+ 1

r (log n)−
1

2 ∆=N4. (A.12)

By the condition in Lemma A.1, we have h−r(n/ log n)−r+2 → 0. Hence

max
1≤k≤n2q

|ξnk,i| ≤ ch−1Tn = c{ n

h log n
} 1

2 {h−r(
n

log n
)−r+2}κ

≤ c3{
n

h log n
} 1

2
∆
= N5. (A.13)

Let N6 = c4(nh
−1 log n)1/2. By the Bernstein’s inequality, we have from (A.12)

and (A.13)

P
(
∣

∣

∣

N3
∑

j=1

W ∗
nk

(2j − 1)
∣

∣

∣
> N6

)

≤ exp

( −c24nh−1 log n

2(N3N4 +N5N6)

)

≤ exp{−c24 log
n

c2 + 2c3c4
}

≤ c5n
−2q−2. (A.14)

The last inequality holds if we choose c4 sufficiently large. By (A.11), if (i)

N6/N3 ≤ |W ∗
nk

(2j − 1)|∞, we have

Pr(|Wnk
(2j − 1) −W ∗

nk
(2j − 1)| > N6

N3
) ≤ 18

(N2N5
N6

N3

)
1

2

α(N2)

≤ c6(
n

log n
)

1

2α(N2); (A.15)

if (ii) N6/N3 > |W ∗
nk

(2j − 1)|∞, take η = |W ∗
nk

(2j − 1)|∞ in (A.11), we have

Pr(|Wnk
(2j − 1) −W ∗

nk
(2j − 1)| > η) ≤ 18α(N2) ,

which is smaller than the right hand side of (A.15) as n→ ∞. Therefore,

Pr(|
N3
∑

j=1

{Wnk
(2j − 1) −W ∗

nk
(2j − 1)}| > N6)

≤
N3
∑

j=1

Pr(|Wnk
(2j − 1) −W ∗

nk
(2j − 1)| > N6

N3
)

≤ c7N3(
n

log n
)

1

2α(N2). (A.16)



THRESHOLD VARIABLE SELECTION USING NONPARAMETRIC METHODS S45

From (A.14) and (A.16), we have

Pr( max
1≤k≤n2q

|
N3
∑

j=1

Wnk
(2j − 1)| ≥ 2N6)

≤
n2q
∑

k=1

Pr(|
N3
∑

j=1

W ∗
nk

(2j−1)|≥N6)+

n2q
∑

k=1

Pr(|
N3
∑

j=1

|Wnk
(2j−1)−W ∗

nk
(2j−1)| ≥ N6)

≤ n2q{c5n−2q−2 + c7N3(
n

log n
)

1

2α(N2)}.

By (2.7), it follows that

∞
∑

n=1

Pr( max
1≤k≤n2q

|
N3
∑

j=1

Wnk
(2j − 1)| ≥ 2N6) <∞.

By the Borel-Cantelli lemma, we have

max
1≤k≤n2q

|
N3
∑

j=1

Wnk
(2j − 1)| = O(N6). (A.17)

Similarly, we can show

max
1≤k≤n2q

|
N3
∑

j=1

Wnk
(2j)| = O(N6). (A.18)

Combining (A.4), (A.5), (A.10), (A.17), (A.18) and (A.3), we have

max
1≤k≤n2q

|Rn,k,1| = O(δn). (A.19)

Therefore, the fourth part of Lemma A.1 follows from (A.1), (A.2) and (A.19).

Note that the key steps in the proof above are the continuity of the related

functions and bounded variance in (A.6). To prove the last part of Lemma A.1,

it is sufficient to show

sup
|θ−θ0|≤an,z∈D

E(Kθ
h,iζ

k,`
i )τ ≤ chτ`−τ+1(a2τ

n + h2τ ), 2 ≤ τ ≤ r. (A.20)

Write θ0 = bnθ + enϑ, where ϑ ⊥ θ and θ, ϑ ∈ Θ. It is easy to see that |bn| < c

and |en| ∼ an when |θ − θ0| < an. Let (θ, ϑ,Γ) be an orthogonal matrix. Let

f̃(v, u1, u2, . . . , up) and f̃(v, u1, u2) be the density functions of (x, θTZ, ϑTZ,ΓTZ)
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and (x, θTZ, ϑTZ) respectively. We have

E(Kθ
h,iζ

k,`
i )τ

=

∫

(Kh(u1 − θT z))τ (u1 − θT z)τ`vτkmτ (bnu1 + enu2, bnθ
T z + enϑ

T z)

×f̃(v, u1, u2 . . . , up)dvdu1du2 · · · dup

= hτ`−τ+1

∫

(K(v1))
τvτ`

1 v
τkmτ (bnv1h+ bnθ

T z + enu2, enθ
T z + bnϑ

T z)

×f̃(v, θT z + hv1, u2, . . . , up)dvdv1du2 · · · dup

= hτ`−τ+1

∫

(K(v1))
τvτ`

1 v
τkmτ (bnv1h+ bnθ

T z + enu2, bnθ
T z + enϑ

T z)

×f̃(v, θT z + hv1, u2)dvdv1du2.

Note that |m(u, v)| ≤ c(u− v)2. Therefore by (C2)

E(Kθ
h,iζ

k,`
i )τ

≤ chτ`−τ+1

∫

(K(v1))
τvτ`

1 v
τk(b2τ

n v
2τ
1 h2τ + e2τ

n )f̃(v, θT z + hv1, u2)dvdv1du2

= O{hτ`−τ+1(a2τ
n + h2τ )}.

The equations in Lemma A.1 still hold if we replace |θ − θ0| < an with

|θ + θ0| < an. The latter is needed for the proof of Theorem 1 when θ̃T θ0 < 0.

For any measurable function A(ξ, η), let EkA(ξi, ηk) = E{A(v, ηk)}|v=ξi
.

Lemma A.2. Let ξ(θ) is a measurable function of (X,Z, y). Suppose E{ξ(θ) |
θTZ} = 0 for all θ ∈ Θ and |ξ(θ) − ξ(ϑ)| ≤ |θ − ϑ|ξ̃ with Eξ̃r < ∞ for some

r > 2. Let ϕi be defined in Lemma A.1. If (C1) and (C6) hold, then

sup
θ∈Θ

∣

∣

∣

1

n2

n
∑

i=1

n
∑

j=1

{

Kθ
h,i(Zj)ϕj(θ) −Ej(K

θ
h,i(Zj)ϕj(θ))

}

ξi(θ)
∣

∣

∣
= O(δ2n).

Proof. Let ∆n(θ) be the value in the absolute symbols. By the continuity of

Kθ
h,i in θ, there are n1 < cn2q points θn,1, . . . , θn,n1

in Θ such that ∪n1

k=1{θ :

|θ − θn,k| < h2δ2n} ⊃ Θ and

max
1≤k≤n1

sup
|θ−θn,k|<h2δ2

n

∣

∣

∣
∆n(θ) − ∆n(θn,k)

∣

∣

∣
= O(δ2n). (A.21)

The Fourier transform φ(s) =
∫

exp(isv)K(v)dv will be used in the following,
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where i is the imaginary unit. Thus K(v) =
∫

exp(−isv)φ(s)ds. We have

∆n(θn,k) =
1

n2
h−1

n
∑

j=1

n
∑

i=1

∫

[

exp{−isθT
n,k

Zij

h
}ϕj(θn,k)

−Ej{exp(−isθT
n,k

Zij

h
)ϕj(θn,k)}

]

φ(s)dsξi(θn,k)

= h−1

∫

1

n

n
∑

i=1

exp(−isθT
n,k

Zj

h
)ξi(θn,k) ·

1

n

n
∑

j=1

[

exp(isθT
n,k

Zj

h
)ϕj(θn,k)

−E{exp(isθT
n,k

Zj

h
)ϕj(θn,k)}

]

φ(s)ds.

Following the same steps leading to (A.19), we have

max
1≤k≤n1

| 1
n

n
∑

i=1

exp(−isθT
n,k

Zi

h
)ξi(θn,k)| ≤ c8δ0n,

max
1≤k≤n1

∣

∣

∣

1

n

n
∑

j=1

[

exp(isθT
n,k

Zi

h
)ϕj(θn,k) −E{exp(isθT

n,k

Zi

h
)ϕj(θn,k)}

]∣

∣

∣
≤ c9δ0n

almost surely, where c8 and c9 are constants which do not depend on s. Hence

max
1≤k≤n1

∣

∣

∣
∆n(θn,k)

∣

∣

∣
≤ h−1

∫

c8δ0nc9δ0n|φ(s)|ds=O(h−1δ20n)=O(δ2n). (A.22)

Note that

sup
θ∈Θ

|∆n(θ)| ≤ max
1≤k≤n1

∣

∣

∣
∆n(θn,k)

∣

∣

∣
+ max

1≤k≤n1

sup
|θ−θn,k|<h2δ2

n

∣

∣

∣
∆n(θ)−∆n(θn,k)

∣

∣

∣
. (A.23)

Therefore, the second part of Lemma A.2 follows from (A.21), (A.22) and (A.23).

Let d(z,Dc) = minz′∈Rq−D |z − z′|, and J0(z) and Jθ(v) be any bounded

functions such that J0(z) = 0 if d(z,Rq−D) > b and Jθ(θ
T z) = 0 if d(θT z, θT (Rq−

D)) > h. By definition, we have

1

n

n
∑

j=1

J0(Zj) = O(b),
1

n

n
∑

j=1

Jθ(Zj) = O(h). (A.24)

Let r(v1, v2, x) = GT (v1)x−GT (v2)x− {G′T (v2)x}(v1 − v2) − {G′′T (v2)x}(v1 −
v2)

2/2. To cope with the boundary points, we give the following nonuniform

rates of convergence.
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Lemma A.3. Suppose assumptions (C2), (C3) and (C6) hold. Then

EHb,i{θT Zi0

b
}k{ϑT Zi0

b
}` = vθ,ϑ

k,` f(z) + J0(z) +O(b),

EKθ
h,i{θT Zi0

b
}` = τ`fθ(θ

T z) + Jθ(z) +O(h),

EKθ
h,i{θTZi0}r(θT

0 Zi, θ
T
0 z,Xi) = O{h(h+ Jθ(z))(δ

2
θ + h2)}

uniformly for θ, ϑ∈Θ with θ⊥ϑ and z ∈ D, where vθ,ϑ
k,` =

∫

RqH(U)(θTU)k(ϑTU)`

dU and τ` =
∫

K(u)u`du.

Proof. We here only give the details for the first and the third parts. If

d(z,Dc) > a0b, we define J0(z) = 0. From (C6), we have

∫

D
Hb(U − z){θ

T (U − z)

b
}k{ϑ

T (U − z)

b
}`f(U)dU

=

∫

Rq

H(U){θTU}k{θTU}`f(z + hU)dU = vθ,ϑ
k,` f(z) +O(b).

If d(z,Dc) < a0b, we have by (C3)

J0(z)
∆
=

∫

D
Hb(U − z)|θ

T (U − x)

b
|k|ϑ

T (U − x)

b
|`f(U)dU

≤
∫

Rq

H(U)|θTU |k|ϑTU |`f(z + hU)dU = O(1).

Therefore, the first part of Lemma A.3 follows.

Let θT z = v0, θ
T
0 z = v′0. Write θ0 = bnθ + enϑ, where 1 − bn ∼ δθ and

en ∼ δθ. Let Dθ be the positive support of fθ(v). Note that

|r(θT
0 Zi, θ

T
0 z,Xi) ≤ c|Xi| · |θT

0 Zi0|3 ≤ c|Xi|{δ3θ + |θTZi0|3}. (A.25)

If |θT z −Dc
θ| < a′0h, then by (A.25)

E|Kθ
h,i{θTZi0}r(θT

0 Zi, θ
T
0 z,Xi)| ≤ chE{Kθ

h,i|θT Zi0

h
||Xi|(δ3θ + |θTZi0|3)}

= O{hJθ(z)(δ
3
θ + h3)}. (A.26)

Let X (v1, v2) = E(X|θTZ = v1, ϑ
TZ = v2) and r0(v1, v2, v

′
0) = {G(v1)−G(v′0)−

G′(v′0)(v1 − v0) −G′′(v′0)(v1 − v′0)
2/2}TX (v1, v2). We have

∂r0
∂v1

= {G′(v1) −G′(v′0)−G′′(v′0)(v1−v′0)}X (v1, v2)+r0(v1, v2, v
′
0)

∂

∂v1
X (v1, v2),

∂r0
∂v2

= {G(v1) −G(v′0) −G′(v′0)(v1 − v0) −G′′(v′0)
(v1 − v′0)

2

2
} ∂

∂v2
X (v1, v2).
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By (C2) and (C3), it follows that

f̃(v0 + hv1, v2) = f̃(v0, v2) +O(h),

|r0| ≤ c|v1 − v′0|3, |∂r0
∂v1

| ≤ c|v1 − v′0|2, |∂r0
∂v2

| ≤ c|v1 − v′0|3.

Note that Z is bounded. We have

|r0(bnv0 + env2 + bnv1h, v0 + hv1, v
′
0)f̃(v0 + hv1, v2)

−r0(bnv0 + env2, v0, v
′
0)f̃(v0, v2)|

≤ c{(δθ + h)2h}, (A.27)

where f̃(v1, v2) is the density function of (θTZ, ϑTZ). If |θT z − Dc
θ| > a′0h, we

have
∫

K(v1)v1r0(bnv0 + env2, v0, v
′
0)f̃(v0, v2)dv1dv2 = 0. Hence

|EKθ
h,i{θTZi0}r(θT

0 Zi, θ
T
0 z,Xi)|

= |h
∫

f(v1)v1r0(bnv0 + env2 + bnv1h, v0 + hv1, v
′
0)f̃(v0 + hv1, v2)dv1dv2|

≤ h

∫

K(v1)|v1|r0(bnv0 + env2, v0, v
′
0)f̃(v0, v2)dv1dv2 +O{h2(δθ + h)2}

= O{h2(δθ + h)2}.

Therefore the third part of Lemma A.3 follows from the above equation and

(A.26).

Lemma A.4. Under assumptions (C2) and (C5), we have that W0 is a semi-

positive matrix with rank q − 1.

Proof. Note that θT
0 [G′(θ0

TZ)X{Z−µθ0
(Z)}] = 0 almost surely. It follows that

the rank of W0 is not greater than q−1. To complete the proof, we need to show
that for any vector ϑ ∈ Θ such that ϑT θ0 = 0,

ϑTW0ϑ > 0. (A.28)

If ϑTW0ϑ = 0, i.e., E[{G′(θT
0 Z)X}2{ϑTZ−ϑTµθ0

(Z)}2] = 0, we have {G′(θT
0 Z)T

X}{ϑTZ −ϑTµθ0
(Z)} ≡ 0 almost surely. Because P (G′(θT

0 Z)X = 0) = 0 as
assumed in (C5), we have ϑTZ − ϑTµθ0

(Z) ≡ 0 almost surely, which contradicts

with the existence of the density function of Z in assumption (C2). Therefore
(A.28) follows.

For ease of exposition, we abbreviate supz∈D,θ∈Θ |An(z, θ)| = O(an) as An(z,
θ) = O(an) in the following context.

Proof of Lemma 1. By Taylor expansion, write

yi =
(

GT (θT
0 z), G

′T (θT
0 z)

)

(

Xi

θTZi0Xi

)

+R(Zi, Xi, z, θ) + εi,
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where R(Zi, Xi, z, θ) = G′T (θT
0 z)XiZ

T
i0(θ0 − θ)+G′′T (θT

0 Z
∗
i )Xi{θT

0 Zi0}2/2. Note

that this expansion is unique under the assumptions even X ≡ Z with the as-

sumption before Lemma 1. Let (aT , dT ) be the value on the right hand side of

(2.5) with Zj replaced by z, and

Cn(z) = n−1
n

∑

i=1

Hb,i

(

Xi

ZT
i0θXi

)(

Xi

ZT
i0θXi

)T

. (A.29)

We have
(

a

d

)

=

(

G(θT
0 z)

G′(θT
0 z)

)

+C−1
n (z)n−1

n
∑

i=1

Hb,i

(

Xi

ZT
i0θXi

)

{R(Zi, Xi, z, θ)+εi}. (A.30)

Let π(z) = E(XXT |Z = z)f(z). For any ϑ, it follows from Lemmas A.1, A.3

and assumption (C1)-(C3) that

1

n

n
∑

i=1

Hb,iXiX
T
i {θTZi0}k{ϑTZi0}`

=















π(z)(θTϑ)kbk+` +O{bk+`(τqn + J0(z))}, k = ` = 0, 1,

π(z)bk+` +O{bk+`(τqn + J0(z))}, k + ` = 2, k 6= 1

O(bk+`+1 + bk+`(τqn + J0(z))}, k + ` = 1, 3.

It follows that on {f(z) ≥ c0}

1

n

n
∑

i=1

Hb,i

(

Xi

ZT
i0θXi

)

R(Zi, Xi, z, θ0)

=

(

O{b(b+ J0(z))}
b2θT (θ0 − θ)π(z)G′(θT

0 z) +O{b2(b2 + J0(z))}

)

, (A.31)

and

{Cn(z)}−1 =

(

π−1(z)+O{τqn+J0(z)} O{b2 + b−1(δqn + J0(z))}
O{b2+b−1(δqn+J0(z))} b−2{π−1(z)+J0(z)+O(δqn)}

)

. (A.32)

By Lemma A.1 and assumption (C4), we have

1

n

n
∑

i=1

Hb,i

(

Xi

ZT
i0θXi

)

εi =

(

O(δqn)

O(bτqn)

)

. (A.33)

It follows from (A.30)−(A.33) that on {z : f(z) > c0},
(

a

d

)

=

(

G(θT
0 z)

G′(θT
0 z)

)

+

(

O{τqn + bJ0(z)}
{θT (θ0 − θ)}G′(θT

0 z) +O{b−1τqn + J0(z)}

)

. (A.34)
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Write ri0 = {G(θT
0 z) − a}TXi + {G′(θT

0 z) − d}TXi{θT
0 Zi0} and rij the value of

ri0 with z replaced by Zj . By (A.34), we have

ri0 = O(τqn + bJ0(z))|Xi| − {θT (θ0 − θ)}G′T (θT
0 z)XiZ

T
i0θ0

+O(b−1τqn + J0(z))|Xi| · |Zi0|.
By Lemma A.1, for any d and d′, we have

1

n

n
∑

i=1

(dTXiX
T
i d

′)Hb,iZi0Z
T
i0 = b2dTπ(z)d′f(x)I +O(b2τqn + b2J0(z)), (A.35)

1

n

n
∑

i=1

(dTXi)Hb,iZi0|Xi| = O(b),
1

n

n
∑

i=1

(dTXi)Hb,iZi0|Xi| · |Zi0| = O(b2),

1

n

n
∑

i=1

(dTXi)Hb,iZi0|Zi0|2 = O(b3),
1

n

n
∑

i=1

(dTXi)Hb,iZi0εi = O(bδqn), (A.36)

where I is the identity matrix. Thus

1

n

n
∑

i=1

(dTXi)Hb,iZi0ri0

= −b2dTπ(z)G′(θ0
T z)θT (θ0 − θ)θ0 +O(bτqn + b2J0(z)). (A.37)

Note that by Lemmas A.1 and A.3,

sup
z∈D

|n−1
n

∑

i=1

Hb,i(z) − f(z) − J0(z)| = O(b+ δqn).

Therefore

sup
z∈D

|I(w̄j) − I(f(z)) − J̃0(z)| = O(b+ δqn), (A.38)

where J̃0(z) = I(f(z)+J0(z))−I(f(z)) satisfies (A.24). Write I(w̄j) as Inj. By
(A.34), (A.35), (A.36), (A.37) and (A.38), we have

1

n2

n
∑

j=1

Inj

n
∑

i=1

(dT
j Xi)

2Hb,i(Zj)ZijZ
T
ij = b2(θT θ0)

2C0I +O(b2τqn + b3),

1

n2

n
∑

j=1

Inj

n
∑

i=1

(dT
j Xi)Hb,i(Zj)Zijrij = b2θT θ0θ

T (θ0 − θ)C0I +O(bτqn),

1

n2

n
∑

j=1

Inj

n
∑

i=1

(dT
j Xi)Hb,i(Zj)Zij |Zij |2 = O(b3),

1

n2

n
∑

j=1

Inj

n
∑

i=1

(dT
j Xi)Hb,i(Zj)Zijεi = O(bδn),
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where C0 = E{I(f(Z))f(Z)G′T (θT
0 Z)X}2. By (C3), write yi − aT

j Xi = (dT
j Xi)

ZT
ijθ0 + rij + O(|Zij |2|Xi|) + εi. By (2.6) and the foregoing four equations, if

θT θ0 6= 0, we have

θ̃ = θ0 +
{

n
∑

j=1

Inj

n
∑

i=1

Hb,i(Zj)(X
T
i dj)

2ZijZ
T
ij

}+

×
n

∑

j=1

Inj

n
∑

i=1

Hb,i(Zj)(X
T
i dj)Zij{rij + εi}

= θ0 − {θ
T (θ0 − θ)

(θT θ0)
}θ0 +O(b−1τqn) = (θT θ0)

−1θ0 +O(b−1τqn).

It follows that

θ̃ =:
sign1(θ)θ

|θ| = θ0 +O(b−1τqn). (A.39)

The proof of Lemma 1 is now completed.

Proof of Theorem 1. Let

R(Xi, Zi, z, θ) =G′T (θT
0 z)XiZ

T
i0(θ0 − θ) +

1

2
G′′T (θT

0 z)Xi{θT
0 Zi0}2

+r(θT
0 Zi, θ

T
0 z,Xi).

Write

yi =
(

GT (θT
0 z), G

′T (θT
0 z)

)

(

Xi

θTZi0Xi

)

+R(Xi, Zi, z, θ) + εi.

Let Cθ,n(z) be the value of Cn(z) in (A.29) with Hb,i(Zj) replaced by Kθ
h,i(Zj)

and

(

aθ

dθ

)

=

(

G(θT
0 z)

G′(θT
0 z)

)

+ C−1
θ,n(z)

n
∑

i=1

Kθ
h,i

(

Xi

ZT
i0θXi

)

{R(Xi, Zi, z, θ) + εi}.

Let πθ1(z) = fθ(z)π
′
θ(z) − f ′θ(θ

T z)πθ(z). By Lemmas A.1, A.3 and assumptions

(C1)−(C3), we have uniformly on Dθ = {z : fθ(z) > c0},

1

n

n
∑

i=1

Kθ
h,iXiX

T
i = πθ(z)fθ(z) +O(τn + Jθ(z)),

1

n

n
∑

i=1

Kθ
h,i{θTZi0}XiX

T
i = πθ1(z)h

2 +O(hτn + hJθ(z)),
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1

n

n
∑

i=1

Kθ
h,i{θTZi0}2XiX

T
i = πθ(z)fθ(z)h

2 +O(h2τn + h2Jθ(z)),

C−1
θ,n(z) =

(

{πθ(z)fθ(z)}−1 +O(τn + Jθ(z)) πθ2(z) +O(h−1τn + h−1Jθ(z))

πθ2(z) +O(h−1τn + h−1Jθ(z)) h−2{(πθ(z)fθ(z))
−1+O(τn + Jθ(z))}

)

,

where πθ2(z) = {πθ(z)fθ(z)}−1πθ1(z){πθ(z)fθ(z)}−1. Let Vθ(z) is defined before

Theorem 1 and Vθ1(z) = fθ(θ
T z)V ′

θ (z)−f ′θ(θT z)Vθ(z). By Lemmas A.1 and A.3,

we have

1

n

n
∑

i=1

Kθ
h,iXi{G′(θT

0 z)Xi}ZT
i0(θ0 − θ)

= fθ(θ
T z)Vθ(z)(θ0 − θ) +O{(τn + Jθ(z))δθ},

1

n

n
∑

i=1

Kθ
h,iXiG

′′T (θT
0 z)Xi{θT

0 Zi0}2

= fθ(θ
T z)πθ(z)G

′′(θT
0 z)h

2 +O{h2(Jθ(z) + τn) + δ2θ},

1

n

n
∑

i=1

Kθ
h,ir(θ

T
0 Zi, θ

T
0 z,Xi) = O{δ2θ + h3},

1

n

n
∑

i=1

Kθ
h,i{θTZi0}k{(θ0 − θ)TZi0}`XiX

T
i

=

{

h2δ`
θ, k = 2,

hk(h+ Jθ(z) + δn)δ`
θ, k = 1, 3,

1

n

n
∑

i=1

Kθ
h,i{θTZi0}r(θT

0 Zi, θ
T
0 z,Xi)

= O{h(h+ Jθ(z))(δ
2
θ + h2) + hδn(δ2θ + h2)}.

By Lemma A.1 and (C4), we have

1

n

n
∑

i=1

Kθ
h,i

(

Xi

ZT
i0θXi

)

εi =

(

Rθ
3n(z) +O(τnδn)

hRθ
4n(z) +O(hτnδn)

)

,

where

Rθ
3n(z) =

1

n

n
∑

i=1

Kθ
h,i(z)Xiεi, Rθ

4n(z) =
1

n

n
∑

i=1

Kθ
h,i(z){

θTZi0

h
}Xiεi.
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By Lemma A.1, we have Rθ
3n(z) = O(δn) and Rθ

4n(z) = O(δn). We have on Dθ,

aθ =G(θT
0 z) +

1

2
G′′(θT

0 z)h
2 + π−1

θ (z)Vθ(z)(θ0 − θ) +Rθ
3n(z)

+O{(h+ Jθ(z))δθ + h2(h+ Jθ(z) + δn) + δ2θ},
dθ =G′(θT

0 z) + h−1Rθ
4n(z) +O{τn + h−1(δn + Jθ(z))δθ}. (A.40)

Let aθ,j and dθ,j be the values above with z replaced by Zj. Write

yi − aT
θ,jXi = (dT

θ,jXi)Z
T
ijθ0 + ∆

(θ,0)
i,j + ∆

(θ,1)
i,j + ∆

(θ,2)
i,j + rij −XT

i R
θ
3n(Zj) + εi,

where ∆
(θ,0)
i,j = XT

i π
−1
θ (z)Vθ(z)(θ − θ0), ∆

(θ,1)
i,j = {G′(θT

0 Zj) − dθ,j}TXi{θT
0 Zij},

∆
(θ,2)
i,j = {G′′(θT

0 Zj)}TXi{(θT
0 (Zi − Zj))

2 − h2}/2 and |rij | ≤ c{|θT
0 Zij|3 + (h +

Jθ(Zj))δθ + h2(h+ Jθ(Zj) + δn) + δ2θ}|Xi|. Note that by Lemmas A.1 and A.3,

sup
z∈D

|f̂θ(z) − fθ(z) − Jθ(z)| = O(h+ δn),

where f̂θ(z) = n−1
∑n

i=1K
θ
h,i(z). Therefore

sup
z∈D

|I(f̂θ(z)) − I(fθ(z)) − Jθ(z)| = O(b+ δn). (A.41)

Write I(f̂θ(z)) as Iθ
nj. We have,

θ = θ0 +D+
θ,n

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zij{∆(θ,0)

i,j + ∆
(θ,1)
i,j

+∆
(θ,2)
i,j + rij −XT

i R
θ
3n(Zj) + εi}, (A.42)

where Dθ,n = n−2
∑n

j=1 Iθ
nj

∑n
i=1(d

T
θ,jXi)

2Kθ
h,i(Zj)ZijZ

T
ij . By (A.40), we have

dθ = G′(θT
0 z)+O{h−1δn+(1+h−1Jθ(z))δθ}. Exchanging the order of summation,

we have by Lemma A.1

Dθ,n =
1

n2

n
∑

i=1

n
∑

j=1

Iθ
nj{dT

θ,jXi}2Kθ
h,i(Zj)ZijZ

T
ij

=
1

n

n
∑

i=1

Iθ
f (Zi){G′T (θT

0 Zi)Xi}2{Zi − µθ(Zi)}{Zi − µθ(Zi)}T

+
1

n

n
∑

i=1

Iθ
f (Zi){G′T (θT

0 Zi)Xi}2E{(Zi − µθ(Zi))(Zi − µθ(Zi))
T }

+O(h−1δn + h+ δθ)

=W0 + U0 +O(h−1δn + h+ δθ),
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where Iθ
f (z) = I(fθ(z))fθ(z). By Lemmas A.1 and A.3, we have

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zij∆

(θ,0)
ij

= E{Iθ
f (Z)Vθ(Z)π−1

θ (Z)Vθ(Z)}(θ − θ0) +O(h−1τnδθ + δ2θ),

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zij∆

(θ,1)
ij = O(h−1τnδθ + hτn + δ2θ).

For any d and d′ we have by Lemmas A.1 and A.3

1

n

n
∑

i=1

dTXiX
T
i d

′Kθ
h,iZi0(θ

T
0 Zi0)

2 = ψθ(z)h
2 +O{h2(Jθ(z) + τn) + hδθ + δ2θ},

1

n

n
∑

i=1

dTXiX
T
i d

′Kθ
h,iZi0 = ψθ(z) +O{Jθ(z) + τn}.

where ψθ(z) = fθ(z)E(dTXiX
T
i d

′Zi0|θTZ = θT z). Therefore

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zij∆

(θ,2)
ij = O{h3 + hδθ + δ2θ},

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zijrij = O{h3 + δ2θ + hδθ + hδn}.

Let Ṽθ(z) = Iθ(z){G′(θT
0 Zi)}TXi{µθ(Zi) − z}. Note that

1

n

n
∑

j=1

Iθ
nj(d

T
θ,jXi)K

θ
h,i(Zj)Zij

= Ṽθ(Zi) +
1

n

n
∑

j=1

{Iθ
nj(d

T
θ,jXi)K

θ
h,i(Zj)Zij − Ṽθ(Zi)}.

Exchanging the order of the summation, by Lemmas A.1 and A.2 we have,

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)Zijεi

=
1

n

n
∑

i=1

Ṽθ(Zi)εi+O(h3+h−1δ2n+h−1τnδθ)

=
1

n

n
∑

i=1

Ṽθ0
(Zi)εi+O(h3+h−1δ2n+h−1τnδθ).
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Similarly, we have

1

n2

n
∑

j=1

Iθ
nj

n
∑

i=1

(dT
θ,jXi)K

θ
h,i(Zj)ZijX

T
i R

θ
3n(Zj) = O(h3 + h−1δ2n + h−1τnδθ).

Therefore

θ = θ0 + {W0 + U0}−E{Iθ
f (Z)Vθ0

(Z)π−1
θ0

(Z)Vθ0
(Z)}(θ − θ0)

+n−1{W0 + U0}−
n

∑

i=1

Ṽθ0
(z)εi +O(h3 + h−1δ2n + h−1τnδθ + δ2θ).

Let D = (W0 + U0)
−1/2E{Iθ

f (Z)Vθ0
(Z)π−1

θ0
(Z)Vθ0

(Z)}(W0 + U0)
−1/2. By the

Schwarz’s inequality, we have W0+U0−E{Iθ
f (Z)Vθ0

(Z)π−1
θ0

(Z)Vθ0
(Z)} is a semi-

positive matrix. We have, by Lemma A.4, the eigenvalues of D are less than 1.

There are 1 > λ1 ≥ λ2 ≥ · · · , λq−1 ≥ 0 and an orthogonal matrix Γ such that

D = Γdiag(λ1, . . . , λq−1, 0)Γ
T .

Let βk = (W0 + U0)
−1/2(θk − θ0). We have

βk+1 = Γdiag(λ1, . . . , λp+q−1, 0)Γ
Tβk + n−1{W0 + U0}−

1

2

n
∑

i=1

Ṽθ0
(z)εi

+O(h3 + h−1δ2n + h−1τn∆k + ∆2
k), (A.43)

where ∆k = |βk|. It follows that

∆k+1 ≤ λ1∆k + δ0n + c(∆k + h−1τn)∆k + c(h3 + h−1δ2n)

= δ0n + {λ1 + c∆k + c(h+ h−1δn)}∆k + c(hτn + h−1δ2n) (A.44)

almost surely, where c is a constant. We can further take c > 1. For sufficiently

large n, we may assume that

c(h + h−1δn) ≤ 1 − λ1

3
, δ0n + c(hτn + h−1δ2n) ≤ (1 − λ1)

2

9c
. (A.45)

Since by (A.39) ∆1 → 0 almost surely, we may assume

∆1 ≤ 1 − λ1

3c
. (A.46)

Therefore, it follows that from (A.44), (A.45) and (A.46)

∆2 ≤ {λ1 +
2

3
(1 − λ1)}

1 − λ1

3c
+

(1 − λ1)
2

9c
=

1 − λ1

3c
. (A.47)
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From (A.44), (A.45) and (A.47), we have that

∆3 ≤ 1 − λ1

3c
.

Consequently, ∆k ≤ (1 − λ1)/(3c) for all k. Therefore we have from (A.44) that

∆k+1 ≤ λ0∆k + δ0n + c(hτn + h−1δ2n)

almost surely, where 0 ≤ λ0 < (2 + λ1)/3 < 1. It follows that

∆k ≤ λk
0∆1 + {δ0n + c(hτn + h−1δ2n)}

k
∑

j=1

λj
0 = O(δ0n + hτn + h−1δ2n),

for sufficiently large k. By (A.43), we have

{W0 + U0}
1

2 (θ̂ − θ0)

=D(θ̂ − θ0) + n−1{W0 + U0}−
1

2

n
∑

i=1

Ṽθ0
(z)εi +O(h3 + h−1δ2n). (A.48)

It follows from (A.48) that

W1(θ̂ − θ0) = n−1
n

∑

i=1

Ṽθ0
(z)εi +O(h3 + h−1δ2n).

We have completed the proof of the first part of Theorem 1.
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