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Abstract: Selecting the threshold variable is a key step in building a generalized
threshold autoregressive (TAR) model. This paper proposes a semi-parametric
method for this purpose that is based on a single-index functional coefficient model.
The asymptotic distribution of the estimator is obtained. A simple algorithm is
given and its convergence is proved. Some simulations are reported. Two data
sets are analyzed, one of which gives strong statistical support for ratio-dependent
predation in Ecology.
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1. Introduction

The threshold autoregressive (TAR) model is one of the popular models in
nonlinear time series. As a generalized nonlinear TAR model, a semi-parametric
single-index functional coefficient model has the form

ye = 9000 Z0) + 1 0L Z)wp s + -+ + gp(0F Zi)wyp + &0, t=1,2,..., (1.1)

where (X¢, Zt,y) are RP, RY, and R-valued random variables respectively, with
Xy = (241, ,21) 5 6o € © = {0 : |§] = 1} is an unknown parameter vec-
tor, called a single-index direction; gi(-), K = 0,...,p, are unknown coefficient
functions and E(g| Xy, Z;) = 0 almost surely. We further assume that the first
element of 6y is positive for model identification. Model ([T]) is a generalized
semi-parametric threshold autoregressive model if we take X; and Z; to be the
lagged-variables of y;. The model is also a single-indexing version of the vary-
ing functional coefficient model proposed by Hastie and Tibshirani (1993) under
an IID setting, and the functional coefficient model proposed by [Chen and Tsay
(1993) under a time series setting. The model has been investigated by Xia_and Li
(1999) and [Fan, Yao and Cai (2003). Model ([Il) can give sensible approxi-
mate relations between variables due to the single-indexing construction; see
Xia_and 11 (1999) and [Fan_et all (2003). Moreover, the model can be used to
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select the threshold variable Gg Z¢ in a generalized threshold model; see [Tong
(1990), [Chen_and Tsay (1993) and Xia_and Ii (1999). The estimation of the
threshold variable is, generally speaking, non-trivial even under parametric set-
ting; see, e.g., IChen (1995) and IChan and Tong (1986). The difficulty results
from the flexible form of the varying coefficient functions. Fortunately, the semi-
parametric approach can cope with such a flexibility.

Another motivation of this research is related to a recent debate in ecol-
ogy about ratio-dependent predation; see, e.g., [Bohannan and Lenski (1999),
Abrams and Ginzburg (2000) and Llost_and Ellnen (2000). Ecologists try to use
functional responses to describe prey-predator interactions and the complex dy-
namics. The term “prey-dependent” means that the consumption rate of each
single predator is only a function of prey density, and a “predator-dependent”
functional response is one in which both predator and prey densities affect the
per-predator consumption rate. “Ratio dependence” means that consumption
is a function of the ratio of prey to predator density. Theoretical studies have
shown that the dynamics of models with predator-dependent functional response
can differ considerably from the dynamics of correspondingly structured mod-
els with prey-dependent functional response; see [Rogers and Hassell (1974) and
Kuang and Berettal (1998). The protozoan predator-prey system of P.aurelia
and D.nastum is a classic in population ecology. The three pairs of time series in
Figure 1 are the longest time series reported in [Rag (1973) (cf., LJost._and Ellner
(2000)) using a refined protozoan predator-prey system under three different
conditions. The mechanism of the interactions between the prey and predator
populations, denoted by Y; and R; respectively, can be described as

dR,

T = fi(Ri—r,, Yi—r, )Ry

Ot Fa(Rirs, Yoo )Yit fs(Rny Yier) Ry (12
where f1, fo and f3 are functional responses and 71,k = 1,2, 3, are time-delays.
The classic functional responses are set to be some nonlinear functions up to
some unknown parameters. For example f(u,v) = a(1+bu) " 'u (Holling type IT),
fu,v) = a(v+bu)~tu (ratio-dependent II) and f(u,v) = a(v™+bu) ™ tu (Hasssell-
Varley type II). Simply speaking, the above debate is about whether fy,k =
1,2, 3, are functions of u only as in Holling type II functional response or functions
of u/v™ for some m > 0 as in the ratio-dependent II or Hasssell-Varley type II
functional responses. Note that all the cases can be written as functions of linear
combinations 0 log(u) + 62 log(v). Correspondingly, the functional response can
be written as f(u,v) = f(0k1log(u) 4 Oz log(v)) or f(Bx1U + Ox2V), where U =
log(u) and V' = log(v). Using this approach and taking Z; ., = log(Y;—-,) and
St—7r, = log(R¢—r, ), the functions in (C2) can be written as fr(Ri—r,,Yi—r,) =
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fk(lest_n + Ok2Zi—7 ),k = 1,2,3. If we approximate the differential quotients
by differences Ry+1 — Ry and Y11 — Y%, respectively, we have the statistical model

Riv1 = (fi(011Si—r, +012Z1—7) + )Ry + €441,
Yit1 = (f2(0215t—ry + 02221 1,) + 1)Ys + f3(0515t—7; + 0322y ) Rt + €141

These are special cases of ([LT]). Statistically, the above debate is equivalent to a
testing problem: €z =0 vs O £ 0, k =1,2,3.

| |
0 5 10 15 20 25 30
time(days)

Figure 1. Original predator-prey data sets with different conditions under
which they were run. Diamonds are the prey measurements and stars are
the predator abundances.

The above discussion motivates us to investigate the estimation of the single-
index in (CT)) and therefore the model. [Xia_and Li (1999) studied the estimation
of model () following the method of [Hiirdle, Hall and Ichimura (1993). The
estimation method is very hard to implement. [Fan_et.all (IZD.O.Ei) proposed another
estimation method, but the asymptotic properties are unknown. Note that the
estimation of model ([CTJ) is strongly related to the estimation of the single-index
model y = g(87' X) + ¢; see Hirdle et all (1993). For the single-index model
there are numerous estimation methods; see, for example, [Ha
(1989), T (1991), [Frdle et all (1994), Carroll, Fan, Gijhels and Wand (1997),
IHnsLa.gh.e,_leJLsk;Lan.d_S.pQKnn.yl (2001), Xia, Tong, Li and Zhu (2009) and the

references therein. However, none of these methods can be used directly here
and there are concerns with these methods, which we briefly summarize. (1)
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Heavy computational burden: see, for example, Hirdle et all (Il9.9j), Carroll_ef. all
) and [Xia and Li (1999); these methods entail complicated optimization
techniques and no simple algorithm is available to-date. (2) Strong restrictions on

link functions or designs of covariates: E (IEEH') required strong restrictions on
the distributions of the covariates; Hardle and Stoker (1989) and [Hristache et. al)

) needed a non-symmetric structure of the link function, i.e., |[Eg’ (6 X)|
is away from 0; if these conditions are violated, their methods cannot obtain
useful estimators. (3) Under-smoothing: Most of the methods mentioned above
require under-smoothing the link function in order to achieve root-m consistency

for the parameter estimators; see Hzrdle and Stoken (1989) and [Hristache et. all
(2001), Hall (1989) and [Carroll et all (1997) among others. More discussion on
the selection of bandwidth for the partially linear model can be found in m
(@) In this paper we use the newly introduced minimum average variance
estimation (MAVE) method (Xia et all (2009)) to address the above concerns.

2. Estimation

For ease of exposition, rewrite o = 1 and, by an abuse of notation, X =
(20, ... xp) L. Let G(0T2) = (90(072), g1 (07 2),...,g,(672))T. If G(-) is known,
then the single-index direction 6y minimizes

Ely - G(HTZ)TX] ’ (2.1)

The conditional variance given £ = 07 Z and 0 is 02 (07 Z) = E[{y—G(0T Z)T X }? |
077 = €. Tt follows that Ely—G(072)T X|? = Ec2(07 Z). Therefore, minimizing
(20 is equivalent to minimizing, with respect to 6,

Eo2(0TZ) subject to 76 = 1. (2.2)

We call the estimation procedure the minimum average (conditional) variance
estimation (MAVE) method; see Xia.ef. all (IZ0.0j) Because gr, k = 0,...,p,
are unknown, we may use a local linear function to approximate them. Let
{(Xi,Zi,yi), i« = 1,...,n} be a sample from ([CI). For any z, a local linear
expansion of gx (08 Z;) at 68 2 is

908 Z:) = gr (08 2) + g}, (08 2)08 Zio + Op{(68 Zin)*}, k=0,...,p,

where Zijo = Z; —z. Let G'(6]'2) = (90(65 2). ... g,(65 )" For Z; close to z, we
have

yi — X[ G(0§ Z;) =~ yi — X G(65 2) — X[ G/ (65 2) Z .
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Following the idea of Nadaraya-Watson kernel estimation, we estimate o3 (672)
by

n
2
63(072) = ngidn E {yl —XTa - XZ-TdZZ%H} Wjo. (2.3)
=1

Here, w;o > 0,7 =1,...,n, are some weights, typically centered at z. Note that
> wip = 1 is needed in (Z3). For simplicity, we remove this restriction in the
following context. Write a; = (ajo,...,a;p)’ and d; = (djo,...,d;)T. By @2
and (Z3]), our estimation procedure is to minimize

i=1

nt ZH:I(IT)J') Zn: {yz - X[aj — dej256}2wij (24)
j=1

with respect to (aj,d;), j = 1,...,n, and 6, where Z;; = Z; — Z;, w; =
n~13S°"  w;; and Z(-) is a bounded weight function employed to handle the
boundary points of the observations. The trimming function Z(-) is adopted here
for technical simplicity; see [Hérdle et all (1993) and [Powell, Stock and Stoker
(1989). In our proofs, we take Z(v) > 0 to be any function with a bounded
third order derivative and Z(v) = 0 if v < ¢p, where ¢y is a small constant.
Theoretically, ¢y can tend to 0 as n — oo at a slow rate, but this will compli-
cate the proof and benefit us with no more than the fixed ¢y in practice. The
smoothness of Z(v) is needed for ease of proofs. In practice, we can further take
I(-)=1;0or I(v) = 1if v > ¢p, 0 otherwise. Note that we obtain the solution
of # and a; simultaneously with just a single cost function, namely (EZ4]). This
is different from existing estimation methods; see, e.g., [Carroll et all (1997) and
Hirdle et all (1993).

Minimizing (Z4)) is a quadratic problem that is easily solved. A simple
algorithm to implement (24 is as follows. Let

n Ty -1 p
<dj> = {;’wu <Zw9Xz> <ZZJJ“9XZ> } ;wm <Zw9Xz> Yi, (25)

92{Zf(wj)zwij(Xdej)ZZing}_ > T(w)> wi X[ d; Zij(yi— X aj), (2.6)
j=1 i=1 j=1 i=1

where {-}~ denotes the Moore-Penrose inverse of a matrix. The minimization
in (Z4]) can be solved by iterating () and (Z8) until convergence; in each
iteration 6 is replaced by sigm (6)6/]6], where 6 is the latest value given by (28
and sigm (6) is the sign of the first element of #. The final value of sign; (0)60/|6
is our estimator of the single-index direction 6.
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The choice of weight w;; plays an important role for different estimation
methods; see [Hristache et all (2001) and Xia_et all (2002). In this paper, we
use two sets of weights. Suppose H(-) and K(-) are a g-variate and a univari-
ate density function, respectively. We first use weight w;; = H;;(Z;), where
Hyi(z) = b"9H(Zi/b) and b is a bandwidth, a multivariate dimensional kernel
weight. Let 6 be the final value of iterating () and ([Z8). Because of the
so-called “curse of dimensionality” in nonparametrics, the estimate 6 based on
this kind of weight is not efficient. However, 0 is an appropriate initial esti-
mate of 8. To refine the estimation, we further use a single-index kernel weight
wfj = Kﬁi(HTZj), where K,@L’i(v) = h 'K{(0T Z; —v)/h}, h is the bandwidth and
0 is the latest estimate of 6y. Let 6 be the final value of @ in the iterations. We
estimate 6y by 0.

Suppose {(X;, Zi,yi), ¢ = 1,...,n} is a set of observations. We make the
following assumptions on the stochastic nature of the observations, the coefficient
functions and the kernel functions. Let X;) and Z;) be the /th elements of X;

and Z;, respectively, and take §Z-( X@l)Xf(%z)Zféa)Zlf(‘{l) with ¢ = k1 + ko +

ks + k4.

(C1) {(X;,Z;,y;)} is a strictly stationary (with the same marginal distribution
as (X, Z,y)) and a—mixing sequence with a geometrically decaying mixing
rate (k).

(C2) With probability 1, Z is distributed in a compact region D; the density
functions f of Z and fy of 7 Z have bounded continuous derivatives and fg
is Lipschitz continuous in 6 € ©.

(C3) gk, k = 0,...,p, has a bounded, continuous third order derivative; for all
¢ < 2r with some 7 > 2; the conditional expectations E(¢()|Z = z) and
E(£W|0T Z = v) have bounded continuous derivatives and the latter is Lip-
schitz continuous in 0 € ©; E(|£§L)||§1L)| | Z1 = z1,Zy = z) is bounded by a
constant for all £ > 0, z1, z; and x7.

(C4) sup, , E(e*|X = 2,Z = z) < o0, Be" < o0 and E{e[(X}, Z;),j < i} =0
almost surely, where r is the same as in (C3).

(C5) E(XXT|Z) is positive definite; P(G'T (67 Z2)X = 0) = 0.

(C6) H and K are symmetric density functions with compact supports {z : |z| <
ap} and {v : |v| < ag}, respectively, for some ag,a;, > 0. The Fourier
transform of K is absolutely integrable.

The mixing rate in (C1) can be relaxed to be algebraic, i.e., a(k) = O(k~°).
Suppose the bandwidth & ~ n~°. Then the mixing rate satisfying the following
equation is sufficient.

Zn 5_; % )}p+2q+1+ +( +5 ) (logn)g < 0. (27)
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The first part of (C2) is a common assumption on density functions of kernel
smoothers when uniform convergence rate is needed. See, e.g., [Linton (1995).
Our results can be extended to the case that Z is not bounded provided high
order moments of Z exist. The Lipschitz condition on the density function can
be fulfilled under some mild conditions on the density function f, see [Hall (1989).
The third order derivative in (C3) is needed for higher order expansion. Actually,
existence of a second order derivative is sufficient for root-m consistency if we
confine the bandwidth to a smaller range. The restriction on the expectation
conditioned on cross-product terms over time is needed for the consistency of es-
timators when the observations are dependent. If E{¢;|(X;, Z;,v;),j < i} # 0 in
(C4) then our asymptotic results still hold, but the distribution will have a more
complicated variance matrix depending on the structure of the stochastic process
of the observations. Assumption (C5) is imposed to ensure that the proposed al-
gorithm has an attractor with a single direction. As discussed in [Fan_et_all (2003),
there are identifiability problems if X = Z. We can assume that the gj(-) are not
all linear when X = Z for the identification of the single-index, but we need some
further constraints for the identification of the coefficient functions. For example,
we can confine the conditional mean functions to g1 (6f X)z1 + -+ + g,(0F X)z,
or go(0FX) + g1 (0 X)z1 + - + gp—1(0F X)xp—1 if Oop # O.

In this paper, we only employ kernel functions with compact support as in
(C6). We further assume that ro 2 [ K(u)u?du = 1 and Ho 2 [H(2)zzTdz =
Iyxq; otherwise we take K(u) =: K(u/\/k2)/\/R2 and H(z) =: H(Hz_l/zz)
(det(Hso))~ /2.

Lemma 1. Suppose that (C1)—(C6) hold and {z : f(z) > co} is non-empty,
b — 0 and nb972/logn — oo. Let  be the estimator based on the multi-kernel
weight. If we start the iteration with 6 such that 670y # 0, then § — 0y = op(1).

Let po(z) = E(Z|0TZ = 072), mp(2) = BE(XXT|0TZ = 072), Vo(z) =
E{XT G'0F2)yx ZL|6TZ = 67 2],

Up = BITP(Z){G' (05 )X Y E{(Z = ay(2))(Z = 110, (2))" 165 2},
Wi = E |IP(2}G 03 2)XY{Z = noo(2)HZ — nao(2)Y7] . ki =0.2,
TP (2) = Z(fo, (00" 2)) fo, (00" z) and Wy = Wy +Up — E[Z7(2)ViE (Z){me,(Z)} "

Voo (Z)]-

Theorem 1. Suppose that (C1)—(C6) hold and {z, fo(072) > co} is non-empty
for all® € ©, h ~n=% with 1/6 < § < 1/4. If we start the estimation procedure

with, single-index kernel weight and 6 = 0, then n'/2{6— 6y} 2 N, W, WoWy ).
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Theorem 1 still holds if we start with any consistent estimate 6. The proof
of Theorem 1 is given in Section 4. The convergence of the algorithm is also
implied in the proof. For statistical inference, we further give an estimator for
the variance and covariance matrix in the asymptotic distribution, as follows.
Take f; =n~' 30, Kn(07 Zij), iy = (nfy) ™' S0y Kn(07 Zij) X; and

#(Z;) = (nf)) ™Y Kn(0' Zi) XX Vy = (nfy) 7Y K07 Zig) XT d; Xi 2

15

o1 i=1

Wi =n"2Y N T(f{d] XV Kn(0' Zy) 2 25 — 0~ Y T(f) V] 7575,
i=1 j=1 j=1

Wo =Y T(f) f3(d] X;){Z; — i 125 — i1} (s — ay)*.

j=1

Remark 1. In [Xia and Ii (1999), their estimator has the same distribution
but with variance matrix W, WoW,;. By Schwarz’s Inequality, we have that
Wi — Wy is a semi-positive definite matrix. Hence, Wy WoW, — W WoW| is a
semi-positive definite matrix and the proposed estimation method in this paper
is more efficient than that in Xia_and Li (1999) for ().

Remark 2. Note that the bandwidth with rate n~1/® satisfies the requirement.
This property confirms that many existing bandwidth selection methods can be
employed here.

Remark 3. In Theorem 1, a consistent initial estimator 6 based on the multi-
dimension kernel is used. However, when the dimension of Z is high, we have
the risk of suffering from a poor initial estimator #. To reduce this risk, we
use the idea of elliptical kernels as proposed by [Hristache et _all (2001) by taking
wij = K (|(00T +27%1)Z;;]) in step k of the iterations. Given a set of weights
wj (or wfj), we need several iterations between (E23) and (EZ6]) to obtain a better
approximation of the solution of (E4l). Therefore, for the single-index kernel
weights, we suggest fixing 0 in weight wiej for several iterations before replacing

it by the latest value of 6.

Remark 4. In the proof of the theorem, we further show that the algorithm
has a very fast convergence rate. Let ), be the value of § after k’th iteration, see
(23) and ). Then we have |ék — 6| < Ak|ék_1 — 6|, where max; A < 1 asn
is large enough. In other words, the algorithm has a geometric convergence rate.
After obtaining the estimate of 6y, we can further estimate the coefficient
functions with 6y replaced by 6. Because 6 is root-m consistent, we immediately
have the following result; see Xia_and Li (1999) and |Cai, Fan_and Yad (2000).
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Corollary 1. Suppose the assumptions of Theorem 1 hold and that the density
function fo, of 08 Z is positive at v and the derivative of E(XXT2|0FZ = v)
exists. Then

(0h)H{G0) - Glo)— 56" (I} 2N (0, 15 (055 (0)22(0)55" o) [ K2 (i),
where Y1, (v) = E(XXT el |08 Z = v),k =0,2.

3. Simulation Study

In this section, we use simulations to demonstrate the performance of our
method for finite data sets. Some practical problems are addressed and some
observations are made. Bandwidth selection is always an important practical
issue for nonparametric kernel smoothing. Note that the optimal bandwidth for
the estimation of the regression function, in the sense of minimizing the mean
integrated squared error, can be used in our procedure. There are many methods
available to estimate the optimal bandwidth. In our calculations, we use the
cross-validation bandwidth selection method as follows. Corresponding to (E2I),
calculate

g Sk o7z ( N X\ KO 072 (
2 2

We take ¢y to be very small, such that all points are assigned to have weight

Z(wj) = 1 in (2.4). When 6 = 6y, ay ; is actually a kernel estimate of G(6% Z;)

with the observation (Xj,Z;,y;) deleted. Our bandwidth for each iteration is

chosen to be

hg = arg i%le-(wj){yj - a?f,ij}2-
j=1

When [0 — 6y| = Op(n~1/?), it can be shown that hy ~ n~'/5 under some mild
conditions. In the calculations, the stopping rule is that |0£9k+1| do not change
for several consecutive iterations (3, in our calculations), where 6}, is the value of
kth iteration.

Example 3.1. Consider the simulated model from [Fan et _all (2003):
yi = 3exp{—(08 Z;)*} + 0.8{6% Z;} oy + 1.5sin(wb Z)) iz + 04, (3.1)

where X; = Z;, = (mi1,$i2,$i3,$i4)T, 1 =1,...,n, are independent random vec-
tors uniformly distributed on [—1,1]%%, {g;} is a sequence of independent stan-
dard normal random variables, and 6y = (1/3,2/3,0,2/3)T. Besides estimating
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the model, we also consider the hypotheses testing, at significant level o = 0.05,
of

H10 : 901 =0 V.S. H11 : 901 75 0,
Hg() : 903 =0 V.S. H31 : 903 75 0,

based on the asymptotic distributions. We use ]éTQO\ to measure the estimation
accuracy of 6. We take initial value 6 = (1,0,0,0)7 in all the calculations. With
sample size 50, 100, 200 and 400 and noise magnitude ¢ = 0.5,1 and 2, our
simulation results of 200 replications for every combination of sample size and
noise magnitude are shown in Figure 2. Some statistics are also listed in Table 1.
With reasonable signal-noise ratio, the proposed method can estimate 6y quite
well. Compared with [Fan_et.all, (2003, Figure 3b), the distributions of the values
in Figure 2 are much closer to 1 than theirs, suggesting better performance by
our method for this model. We found that more extensive overlapping of Z; and
X; worsen the estimation. If we take X; = (x;1, l‘ig)T, the estimation results will
improve substantially.

Table 1. Mean and standard deviation (in parentheses) of |67 6| and the
rejection rates of Hyg [in square brackets] and Hso {in braces}.

o n =50 n = 100 n = 200 n = 400

0.5 | 0.8280 (0.1809) 0.9240 (0.1134) 0.9760 (0.0633) 0.9978 (0.0155)
[0.775] {0.285} [0.920] {0.115} [0.995] {0.055} [1.000] {0.035}
1.0 |0.7380 (0.2191) 0.8706 (0.1464) 0.9297 (0.0996) 0.9850 (0.0474)
[0.675] {0.440} [0.670] {0.335} [0.815] {0.070} [0.980] {0.040}
2.0 | 0.5385 (0.2766) 0.7009 (0.2395) 0.8034 (0.1800) 0.8985 (0.1106)
[0.500] {0.495} [0.560] {0.385} [0.635] {0.220} [0.880] {0.115}

T

T T T T T T T T T T T
50 100 200 400 50 100 200 400 50 100 200 400
sample size

I

|
.

(17 10—
FHEE e

L

Inner.product
o
[=}
!

024 —

Figure 2. Simulation results for Example 3.1. The three sets of boxplots
of the absolute inner products 676, for models 1) for ¢ =0.5, 1, 2 with
sample size n = 50, 100, 200 and 400 for each o, respectively.
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Example 3.2. We consider the SETAR time series model
Yr = (®(—v2e) — 0.5)yi—1 + (®(2v2) — 0.6)y1—2 + &1, (3.2)

where z; = y4—1 + yt—2 — Y1—3 — Yt—4, and {&;} is a sequence of independent
standard normal random variables. (To ensure that the conditions in Theorem 1
are satisfied, we may further truncate to e; =: £¢1|.,|<4; this truncation actually
does not affect the sampling for finite samples). The parameter v is employed here
to control the difference between the TAR model and the SETAR model; see the
first panel of Figure 3. Here, X; = (yi—1,%:—2)", Zt = (Yt—1,YVi—2,Ye—3,Yi—4) ",
and 6y = (1,1,—1,—1)T /2. We take initial value § = (1,2,0,0)7/+/5 in the
calculations. With sample size 50, 100, 200 and 400, our simulation results based
on 200 replications for each combination of sample size and v are shown in Figure
3. Some statistics are listed in Table 2. Because 0 is a global parameter, it can be
estimated well even when some of the coefficient functions are estimated poorly.
Similar to the results under the parametric setting, the estimation accuracy tends
to increase as the coefficient function becomes steeper; see IChen (1995) for more
details under parametric settings.

Table 2. Mean and mean squared deviation (in parentheses) of the inner
products of the estimates for model [B2).

v n =50 n = 100 n = 200 n = 400
0.5 | 0.8058(0.2091) 0.9266(0.1120) 0.9770(0.0278) 0.9922(0.0079)
1.0 | 0.8984(0.1439) 0.9626(0.0719) 0.9869(0.0152) 0.9955(0.0044)
5.0 | 0.8864(0.1470) 0.9720(0.0279) 0.9894(0.0104) 0.9953(0.0051)

0.6 1.01 T = = E T = f = =
0.4 Sos! | = - T = T -
° = = =
0 0.2 S = = £
< 2. 0.6 = = =
s 0 g - — _
0.2 5047 — -
-0.4 0.2 — - ;
-0.6 = _
0.01
-3 -2 -1 0 1 2 3 — — —
OS“Z 50 100200400 50 100 200400 50 100 200 400

sample size
Figure 3. Simulation results for Example 3.2. The left panel are the coeffi-
cient functions in model B2); the decreasing lines are g7 and the increasing
lines are go. From flat to steep, the lines correspond to coefficient functions
with v = 0.5,1 and 5 respectively. In the right panel, there are three sets of
boxplots of |9T90| for models B2) for v = 0.5, 1 and 5 , respectively, and
sample size n = 50, 100, 200, 400 for each v.
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4. Data Analysis

In this section, we return to our motivating problems with two data sets. For
the first one, we use our estimation method to search for a threshold variable and
build a TAR model. For the second data set, we answer a question in ecology.

100
60
80
40
) | ) HHHH H
40 ‘ ‘ 0 H ] [
0 100 200 300 50 100
(a) b
6
60
4
40
2 1 20 H H
0 0 HMHH
0 100 200 300 2 4 6

() (d)

Figure 4. Data set of the Old Faithful Geyser. (a): the waiting time between
the eruptions. (b): the histogram of the waiting time. (c): the duration of
eruptions. (d): the histogram of the duration of eruptions.

Example 4.1.(The Old Faithful Geyser data set). There are two series in the
data set: duration of eruption (x;, in minutes) and waiting time (y;, in minutes).
They are shown in Figures 4(a) and (b), which also show the histograms. Here
our primary focus is the series y;. Note that the histogram shows two modes,
suggesting the possibility of a mixture of distributions, perhaps due to a hidden
threshold variable. Is it possible to find a reasonable proxy of the hidden variable?
To this end, we use the following single-index coefficient regression model after
standardization:

5
ye = 900" Z0) + > 6i(0" Z)yi i + e,
i=1
where Z; = (q:t_l,xt_g,xt_g,act_4,act_5)T. Using our estimation procedure, we
estimate 6 as

6 = (0.6328, 0.6785, 0.3622, 0.0490, 0.0744)7 .
(0.085) (0.082) (0.068) (0.052) (0.046)
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Where the values in the parentheses are the corresponding standard errors of
the estimates. The residual sum of squares is 0.5905. Note that the last two
elements are quite small (and their t-values are less than 2). To simplify, we now
take Z; = (241,42, 24 3)" and consider

ye = 9008 Zy) + 9108 Z)ye—1 + 92(08 Z)yi—2 + 93008 Z)yi—3 + 9a(02F Z4)ys—a
+gs(eth)yt—5 + &¢. (4.1)

We estimate 6y as § = (0.6355, 0.6758, 0.3732)7 (with corresponding standard
errors of 0.0899, 0.0885 and 0.0782, respectively). The residual sum of squares
is 0.6140. The coefficient functions are shown in Figure 5. It seems reasonable
to approximate most of them by step functions with a common jump at about
0.0. This lends some support to the plausibility of a hidden threshold variable,
a proxy for which might be éTZt, or zz = 0.6355x;_1 + 0.6758x;_o + 0.3732x;_3.
We can further build the following tentative threshold model for the waiting time

Yt

0.195 — 0.737ys_1 —0.174y;_o+0.1265;_5 —0.203y,_5 +c1g,  if 20> —0.07;
(0.097) (0.104)  (0.127)  (0.104)  (0.082)

Yt
—0.040 — 0.424y,—1 — 0.245y;_3 — 0.264y;—_4 + €24, if z; < —0.07,

(0.007)  (0.071)  (0.084)  (0.079)

with Var (e1;) = 0.6557 and Var (e9;) = 0.6354, and pooled variance 0.6450. Note
that the variance of €1; and e9; are about the same and we may pool them to

0.5 : : ‘
WA S T e
: 0.4 SN : ‘
/ \ R
0 / . K : K
. 0.6 . d N . \
: \——\// > | A
- 3 : -0.6 :
0.5 ‘ 0.8 ‘ :
-2 0 2 2 0 2 2 0 2
(a) (b) (c)
0.1 0.1
0.2 [’ﬁ\\‘ 0 , ~. 0 . \
ol i 0.1 ! Tl ooaf \
K] * o~ ; . :
02f * /’ 02" S 02 \_'
. ' : -0.3 :
' -0.3 : .
-2 0 2 2 0 2 2 2
(d) (e) ()

Figure 5. Calculation results for the Old Faithful geyser data in Example
4.1. (a)—(f) are the estimated coefficient functions in model EII).
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form €;,. We conduct a white noise test for the series using Bartlett’s Kolmogorov-
Smirnov statistic. See, e.g., [Fulled (1976). The test statistics for {y;} and {e;} are
0.3691 and 0.0415 respectively. At the significance level o = 0.05, for which the
critical value is 0.1174, {y;} is rejected as a white noise sequence but {£;} is not re-
jected as such. The residual autocorrelations at lag k = 1,...,6 are r; = 0.0213,
ro = —0.0208, r3 = 0.0039, 4 = 0.0115, r5 = 0.0288 and rg = 0.0324. The corre-
sponding standard errors for rq,...,rg are 0.0518,0.0542,0.0498,0.0576,0.0572,
and 0.0605, respectively. See [Li (1992). These values also suggest that {;} may
be a white noise process.

The previous analysis suggests that the threshold AR model is acceptable, as
constructed, from a statistical point of view. Note that the estimated threshold
variable is z; = 0.6328x;_1 + 0.6785z;_o + 0.3622x;_3. The “upper regime” of
the threshold AR model we have constructed corresponds to the longer waiting
time, and the “lower regime” the shorter waiting time. Our threshold variable
indicates that longer eruption durations will result in longer waiting time.

Example 4.2.(The protozoan predator-prey system). Now we join the debate
in ecology using our proposed method. The lags are selected to be t — 1, i.e.,
71 = T = 1, according to some ecological background of the problem; see
Jost.and Ellner (2000). We further simplify the model to

Rip1 = g1(0] Wy) Ry + &, Yir1 = g2(0IW)Y; + g3(03 W) Ry + €4,

where W; = (log(R;_1), log(Y;—1))¥. The estimated parameters are listed in
Table 3. The estimates of the functional responses, i.e., g1, g2 and g3 are shown
in Figure 6.

Note that the signs of 817 are positive and those of #15 are negative for all
the data sets in Table 3. Thus, the functions g1 can be written as g1 (RY_,/Y,2,)
where a,b > 0 and the §;(-)’s are increasing functions for all the data sets;
see Figures 6(a), 6(d) and 6(g). For example, a = 0.7948, b = 0.6068 and
g1(v) = g1(log(v)) for the first data set. This suggests that the prey (food for
the predator) has a positive effect on the number of predators; the predators at
the previous time point has negative effect on the current number of predator
because of the limited food supply (i.e., the prey). Our results suggest that the
dynamics of predator is typically ratio-dependent. Note that the signs of 57 and
99 are positive and that the functions go and g3 are decreasing functions (except
for the estimate in Figure 6(f)) for all the data sets. This suggests that both the
prey population and the predator population at the previous time point have a
negative effect on the dynamics of the prey. A possible reason for this is that
food competition among prey population and predation by predators affect the
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prey population. Thus, our statistical analysis suggests that the dynamics of
prey is typically both prey and predator dependent.

Table 3. Estimates of the single-index (and the standard error) for different
data sets in Example 4.2.

Data set 911 912 6‘21 922
set 1 0.6068(0.1622) -0.7948(0.2174) | 0.9616(0.1563) 0.2745(0.0459)
set 2 | 0.1842(0.0645) -0.9829(0.1746) | 0.4230(0.0642) 0.9061(0.1393)
set 3 | 0.8411(0.1337) -0.5409(0.0867) | 0.4783(0.0679) 0.8782(0.0773)
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Figure 6. The estimation results for Example 4.2. (a)—(c) correspond to the
first data set; (d)—(f) correspond to the second data set; (g)-(i) correspond
to the third data set. The central lines in (a), (d) and (g) are the estimated
g1 for the three corresponding data sets. The central lines in (b), (e) and (h)
are the estimated go for the three corresponding data sets. The central lines
in (c), (f) and (i) are the estimated gs for the three corresponding data sets.
The upper and lower dashed lines are the corresponding 95% symmetric
pointwise confidence intervals. The distribution of the single-indexes 67 Z,
and 6% Z; are shown at the bottom of the panels.
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5. Proofs

We give only an outline of the proof of Theorem 1. A complete proof, and
those for the lemmas 1 and A.1-A.4 are available at http://stat.sinica.edu.tw /stat-
istica/. A computer code sifc.m in Matlab is also available at http://www.stat.
nus.edu.sg/ staxyc. The idea of the proof can be stated as follows. Based on
Lemmas A.1—A.3, we obtain uniform consistency rates for the local linear es-
timators of the coefficient functions; see ([A40). Based on the expansions and
24), we then build a recursive formula for the iteration in the algorithm, i.e.,
Ox11 — 0p = Tk(0r — Oy) + Smaller terms, where 6}, is the estimator of 6y after
the kth iteration and maxy |T'x| < 1. See [AZ3) for more details. This recursive
formula indicates that the true direction 6 is the attractor of the algorithm. The
formula is finally used to prove the convergence of the algorithm as well as the
consistency and asymptotic normality of the estimator.

Let 8g = |0 —6p|. In ©, dy is bounded. Let §,,, = {logn/(nb?)}/2, 1, = b* +
Sqns On = {logn/(nh)}Y/2, 1,, = h2 + 6, and 6y, = (logn/n)'/2. By the condition
h ~ n~% with 1/6 < § < 1/4, we have &y, < h? < h™'§, and §, < h. We
use these relations frequently in our calculations. Suppose A,, is a matrix. A, =
O(ay,) means every element in A,, is O(a,) almost surely. We adopt consistency
in the sense of “almost surely” because we need to prove the convergence of the
algorithm, which theoretically needs infinite iteration. Let ¢, c1,co, -+ be a set of
constants. For ease of exposition, ¢ may have different values at different places.
We write K5, (07 Zi) = h" K (07 (Z; — 2)/h) and Hy(Z;0) = h"1H{(Z; — z)/h} as
Kﬁvi(z) (or K}(il) and H,;(z) (or Hp,;) respectively in the following context, for
simplicity.

Lemma A.1. Suppose ©(0) is a measurable function of (X,Z,y), such that
Supppce | 9(0) — 99| < M(X, Z,)|0— 0] a.s. with EM"(X, Z,3) < ¢; suppeo.,
E(le@)|" | 672 = v) < ¢ for some r > 3. Let @;(0) be the corresponding
value of ¢(0) at (X;,Zi,y;). Assume that supgeg .., E(|0i(0)p1(0)] | 072 =
u,0TZ; = v) < ¢ for all i > 1. Let g(v) be any function with continuous second
order derivative, m(u,v) = g(u) — g(v) — ¢'(v)(u — v) — ¢"(v)(u — v)?/2 and
CZW = m(0F Z;, 08 2)xF (01 Zip)t, where x; is any component of X;, k = 0,1 and
¢=0,1. If (C1) holds, then

sup | Z @i(0 Esoi(e)( = O(on),

Z{% —¢i(0o)} — E{pi(0) — ¢i(00)}| = Olandon),

sup
‘9—90|<an
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where ap, — 0 as n — oo. If further (C2) and (C6) hold, h ~ n™° with 0 < § <
1—2/r, then

n

1
sup | — Z{Hb,iSDi(e) - E(Hb,igpi(e))}‘ = O(6yn),
9€S =1

1 n
et = YKL i(6) = B 12,(0))} | = O(6n),
ng =1

n

1
up [ 1S URDCH — B(RL G = 00 (a3 + 1),
l0-6g|<an ' TV =]

ze€D

For any measurable function A(§,7), let EyA(&, nx) = E{A(v, nk) Ho=¢, -
Lemma A.2. Let £(0) be a measurable function of (X, Z, y).~Suppose E{£(0)

| 072} = 0 for all 6 € © and |£(A) — (V)] < |0 — I|€ with EE™ < oo for some
r > 2. Let @; be defined as in Lemma A.1. If (C1) and (C6) hold, then

sup |55 35" {KL(Z))65(6) — Bi(KD,(Z)05(6)) }ei(6)| = 0(82).

n
R

Let d(z,D¢) = min,cra_p |2— 2’|, Jo(z) and Jy(v) be any bounded functions
such that Jo(2) = 0if d(z,R?—D) > band Jg(07 2) = 0if d(67 2,607 (R —D)) > h.
By definition, we have

IS H(Z) =00), > () = 0. (5.1)
=1 j=1

Let 7(v1,v2,2) = GT (v1)z — GT (va)a — {G'T (v2)x}(v1 — v2) — {G"T (va)a} (v —
v2)?/2. To cope with the boundary points, we give the following nonuniform
rates of convergence.

Lemma A.3. Suppose assumptions (C2), (C3) and (C6) hold. Then

T 7.

BH, { LY 0 Zig 0} = 0T (2) + () + O),
T 7.

K] (Y = 11y (072) + (=) + O,

EK} {0" Zi}r (05 Z;, 00 2, X;) = O{h(h + Jy(2))(65 + h*)},

uniformly for 0,9 € © with 6 L ¥ and z € D, where vz:?:qu HU)(OTU)F(9TU)*
dU and 7o = [ K(u)u‘du.
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Lemma A.4. Under assumptions (C2) and (C5), we have that Wy is a semi-
positive matrixz with rank q — 1.

For ease of exposition, we abbreviate sup,cp geo [An(2,0)] = O(an) as An(z,
) = O(ay,) in the following context.

Proof of Theorem 1. By Taylor expansion, write

— (G766 ) (o ) + R X204 2

where R(Z;, X, z,0) = G'T (07 2) X, Z21(00 — 0) + G (0T Z2) X {0F Ziv}2 /2. Note
that this expansion is unique under the assumptions even X = Z with the as-
sumption before Lemma 1. Let (a”,d”) be the value on the right hand side of
E3), with Z; replaced by z and

n T
_ X; X;
i=1 i v i ¢

We have

(2) - (S8 om0 42359

0

Let
1
R(Xi, Zi,2,0) = G (0T 2) X, 215 (0 — 0) + 50’”(93 2)Xi{68 Zin)?
+r(0F Z;, 08 2, X3).
Write

— (G767, a7 67) (2N )+ R(Xi, Zi,2,0) + 5.
07 7.0 X,

Let Cp,(2) be the value of Cy(z) in (A29) with Hy,(Z;) replaced by Kfm.(Zj)
and

()= (S9) e 3ot ) (k. zm .

By Lemma A.1, we have RY, (2) = O(,) and RY,(2) = O(5,). On D?,

=GB 2) + 3G (672 + 73" (2)Val) (0o — 6) + R, (2)

+O{(h + Jg(2))0 4+ R2(h + Jo(2) + 6,) + 63},
do=G'(0F2) + h 'R, (2) + O{r + h ™1 (60 + Jo(2))ds}, (5.4)
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where

0 Zzo

R} (2) ZK,” )X;ei, RO (2 ZK,” — 2 X
i=1

Let ag ; and dy ; be the values above with z replaced by Z;. Write
yi — ag; Xi = (df ;X)) 2500 + A + A%V 4 A% o — XTRS(Z)) + e,

where ADY = XTmy (2)Vo(2) (0 — 00), A" = {G' (03 2) — do ;YT Xi{05 233},
AP = {G"(9TZ W XA(05(Zi — Z;))? — 1*}/2 and |ry;] < {167 Zi;* + (h +
Jg( )00 + h2(h + Jo(Z;) + 6,) + 62} X;|. Note that by Lemmas A.1 and A.3,
sup.ep | fo(2) = fo(2) = Jo(2)| = O(h + 6,), where fy(z) = n™' 37| K ,(2).

Therefore

sup [Z(fo(2)) — Z(fo(2)) — Jo(2)| = O(b+ bn). (5.5)

z€D

Write Z(fy(z)) as Igj. We have

0=ty + Df Z S X KD(Z) 200 1 ALY L A0
i=1
_X2TR3n(Z]) + Ei}v (56)
where Dy, = n~2 Z?lezj Z?:l(d;;F’in)2Kg7i(Zj)ZijZ£. By (A40), we have

dog = G' (08 2) +O{h™16,+(1+h~1Js(2))dg}. Exchanging the order of summation
we have, by Lemma A.1,

Do = 222 J{d Xi}ng,i(Zj)Zing;

=1 j=1

= % ZI"( Z){G (08 Z) XY Zi — 110(Z0) M Zi — 1o (Z:)}T

4o Zzﬂ WG (0 Z) XV E{(Zi — 1o(Z))(Zi — po(Z:)) T}

+O(h 15n + h + &)
=Wo+Uy+Oh ™16, + h+ ),
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where I](i(z) =Z(fo(2))fo(z). By Lemmas A.1 and A.3, we have

0, _
o Z S LXK (2 2500 = BTN 2V 2y (2 2))60 — 0
=1
+O(h™ 7,89 + 62),
= Z ST XO)KE (2) 2 A0 = O(h™ 189 + b + 63).
=1
For any d and d’, by Lemmas A.1 and A.3,
1 n
- S dTX XTd K] Zio(0F Zio)? = to(2)h? + O{h*(Jp(2) + ) + hdg + 55},
i=1

1
E Z dTXiXde/K}GL,iZiO = 2;Z)G('Z) + O{JG('Z) + Tn}v
1=1

where 1g(2) = fo(2)E(d? X; X d' Z;o|0T Z = 67 2). Therefore

n

0)
— foiy S (df X Kf(27) 25 AP = O{h® + hdp + 63},
=1
n2 Z Z )Kh Z(Zj)ZijTij = 0{h3 + 53 + hdg + hdp }.
=1

Let Vy(z) = Z°(2){G" (08 Z:)}" Xi{po(Z;) — z}. Note that
_Zzg] d Kh z( ) ZJ_V:Q Z{Igj d Kh z( )ZZJ %(Zl)}
Exchanging the order of the summation, by Lemmas A.1 and A.2 we have

HQZ 3> (dg  X) K7 ((Z) Zijei = — ZVg Z)ei+O(h3+h~162 +h"17,80)
i=1

:_ZVGO DeitORP+h 162 +h17,50).

Similarly, we have

n

n2 ZIZJ > (d§ i Xi) K}y 1(Z)) Zi X RS, (Z5) = O(h® + h™"6p + h™ ' 7,8p).
=1
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Therefore

0 = 60 + {Wo + U}~ E{THZ)Va, (2)75 (Z) Ve (Z)}(6 — 6o)

+n W+ T}~ D Ve (2)ei + OB + 17160 + b~ rda + 63).
i=1
Let D = (Wo + Up) V2 E{ZHZ)Vao(Z)my, (Z) Ve (Z)}(Wo + Up)~'/2. By the
Schwarz inequality, we have that Wy + Uy — E{I?(Z)Vgo (Z)W(;Ol(Z)VgO(Z)} is a
semi-positive matrix. We have, by Lemma A.4, the eigenvalues of D are less

than 1, say 1 > Ay > --- > A\;_1 > 0, so take an orthogonal matrix I' such that
D =T diag(A, ..., \—1,0)TT. Let B = (Wo + Up)~/2(8), — 6p) so that

. _ _1 T
Brs1 = diag(M1, -« Apage1, OTT B+ {Wo + Uo} 2 > Vg, (2)e
i=1
+O(h* + b7 162 + h i A + A7), (5.7)

where Ay = |Bg|. It follows that

A1 S M AL+ Son + (A + 7)) AL + ¢(h® + h7162)
= Oon 4+ { M+ cAp 4 c(h + h716,) Ay + c(hr, + h7162) (5.8)

almost surely, where ¢ is a constant. We can further take ¢ > 1. For sufficiently
large n, we may assume that

1—A 1—Ap)?
e(h+h7"5,) < — L Gon + c(hmn + h7162) < (Tl) (5.9)
By Lemma 1, A; — 0 almost surely, and we may assume
1—XM
A < . 5.10
i (5.10)
Therefore, it follows from ([AZ4)), (AZH) and ([A4G) that
2 T—XA  (I1—=X)?% 1-X)
Ag <{ N+ =(1—-X = . A1
2 < g =A==+ g 3¢ (5:11)

From (A44), (AZD) and ([(AZD), we have Ag < (1 — A1)/(3¢). By induction,
Ar < (1 —X1)/(@Bc) for all k. Therefore we have from ([AZ4) that Ay <

XA + 6o + c(hT, + h™162) almost surely, where 0 < A\g < (2+A1)/3 < 1. It
follows that

k
A S AGAL+ {Oon + c(hrn + BT 62)E D M) = O(bon + hr + h7'57),
j=1
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for sufficiently large k. By ([AZ3), we have

{W() + Uo}%(é — 90) = D(é —6y) + n_l{Wo + U()}_% Z ‘790 (Z)E,'
=1
+O(h® 4+ h™162). (5.12)

It follows from (AZR) that Wi (0 —0p) = n~ ' 321, Vg, (2)e; + O(h +h~162), and
we have completed the proof of the first part of Theorem 1.
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Appendix. Proofs

The idea of proofs can be stated as follows. We first develop some Lemmas
(Lemmas A.1—A.3) to obtain uniform consistency rates for the local linear esti-
mators of the coefficient functions; see equation (5.40). Based on the expansions
and equation (2.6), we then build a recursive formula for the iteration in the
algorithm, i.e.,

01 — 0o = T (0 — Oo) + Smaller term,

where 0, is the estimator of 0y after the kth iteration and ||T'x|| < 1. See (5.7) for
more details. This recursive formula indicates that the true direction 6 is the
attractor of the algorithm. The formula is finally used to prove the convergence
of the algorithm as well as the consistency and asymptotic normality of the
estimator.

Let 69 = |0 — 6y]. In ©, & is bounded. Let d,, = {logn/(nd®)}'/?, 7, =
W + Sgn, 0n = {logn/(nh)}'/2, 7, = h% + 6, and &y, = (logn/n)'/2. By the
condition h ~ n~% with 1/6 < 6 < 1/4, we have dp, < h? < h™14, and §, < h.
We shall use these relations frequently in our calculations. Suppose A,, is a
matrix. A, = O(a,) means every element in A, is O(a,) almost surely. We
adopt the consistency in the sense of “almost surely” because we need to prove
the convergence of the algorithm, which theoretically needs infinite iterations.
Let ¢, cq,co, - be a set of constants. For ease of exposition, ¢ may have different
values at different places. We abbreviate Ky (07 Zy) = h "' K (07 (Z; — 2)/h) and
Hy(Zio) = h"9H{(Z;—z)/h} as K! .(2) (or K ;) and H},;(z) (or Hp ;) respectively
in the following context for simpliéity. 7

Lemma A.1. Suppose () is measurable function of (X, Z,y) such that supg yco
‘90(0)_S0(19)| < M(X7 Za y)w_ﬁ‘ a.s. with EMT(X7 Zv y) <¢ Sup&e@,v E(’SD(H)‘T ‘
07Z = v) < ¢ for some v > 3; Let p;(0) be the corresponding value of p(0) at
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(Xi, Zi,yi). Assume that supgeg ., E(li(@)1(0)] | 6721 = u,07Z; = v) < ¢
for all i > 1. Let g(v) be any function with continuous second order derivative,
m(u,0) = g(u) — g(v) — ¢ (v) (u—v) — g (v) (u—0)?/2 and ¢ = m(6F Z,, 67 )"
(07 Z;0)t where x; is any component of X;, k= 0,1 and £ = 0,1. If (C1) holds,
then

sup | Z @i(0 Esoi(e)( = O(on),

Z{% — #i(0)} — E{pi(0) — »i(6o)}| = O(andon),

sup
‘9—00|<an

where ap, — 0 as n — oo. If further (C2) and (C6) hold, h ~ n™° with 0 < § <
1—2/r, then

n
sup

up 1 > {Hyi(0) — E(H@icpi(@))}‘ = O(b,n),

2€D i=1

Z{ 42:(0) = B(K] i4(0)}| = O(n),

sup |—

6co
z€D

| S DG - (K] (Y| = O(6ah* (a2 + h)}.

[6—0g|<an n .
zeD =1

Proof. The proofs of Lemma A.1 are quite standard; see, e.g., Hardle, Janssen
and Serfling (1988) and Xia_and Li (1999). We here give the details for the last
two equations. Note that © ® D C R?? is bounded. There are n?? balls By,
centered at (O, ,2n, ), 1 < k < n%, with diameter less then cn™'/2h%2(> ¢/n),
such that © @ D C Uj<j<p20 By, Then

ap |1 Z{Km 2)pi0) = B(KT ()0 ()}

2€D,0cO
17,0 0
< max, |- K Gn)@ilOn) — UKL ()00}

i=1
0

1 — - g
b s |23 [0~ K G b O+ 0) =BV )

i=1
—B{K{ () = Kyt () }oi(0) = B{@i(0) = a0 )} (2)]|
é max ’Rn k 1‘ + max sup ’Rmk,Q‘. (A‘l)

1<k<n24a 1<k<n24¢ (0,2)€Bn,
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By assumption (C6), we have

0
max  sup \K,@H(z) — K,/ (2p,)] £ max  sup ch™2(|0—0n, | +|2— 20, |)
1<k<n?1 (0,2)€Bn,, 1Sk<n?0 (9,2)€ B,

< c(nh)_%,

i i(Ony )| < M(X5, Zi, yi)n™
T, S |0 (6) — (B )| < M( yi)n

[SI[oY

hz.

[N

By the strong law of large numbers for dependent observations (see, e.g., [Ric
(1995)), we have

max su R, < c¢(nh)” 3= ()] + M(X;, Zi,y; 0 A2
0y S0b [ Finkal < < ;{w )|+ M(Xi, Zi, i)} = O(30)-(A.2)

Write ¢(6,,) as ¢; for simplicity. More clearly, we write h as h,. Let T; =
{€/(helog(€))}™, where k = 1/(2r — 2). Let 7, = pil{|¢i| > T;} and gpi{g =
Y — gof’z. We have

n

ank,l = %Z [Kfez,z(z)@f,z - E{Kh K 807, K ] Zgnk,u (A3)

i=1
Where gnk i — Khnk (znk)(pzj,z - E{Khzk (znk)(pz{z}
It is easy to check that

>0 X 0
S G Bl < () Bl < o
= = 't

Therefore (cf., Rad (1973, p.111))

e / 1
Z(h—) 2] ] < o0
=1 "t

almost surely. By the Kronecker lemma, we have
1< o n,_1 1
EZE‘W,Z’:O{(E) 2}, _2’9066’—0{ —)7 2}
=1
Note that |¢7,,| < [¢7,| for all £ < n, and ]Kh”f (2)| < ch™! by (C6). We have

max ZErKZ’;w )2 | = O{(nh) 3}, (A.4)

1<k<n2a n

1
K ()00, | = -1, A
1%2352(1 n Z | hi 747”| O{(nh’) 2} ( 5)
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Next, we shall show

" cin
1&12};% Var(iZ:: Enpi) < - (A.6)
By stationarity in (C1), we have
Var(z ny,i) = nVar (&, i) + 2 Z(n —1)Cov(&n,.1,Enp i) (A.7)
i=1 1=2

Let ¢(u) = B(lp0,)|" | 05,Z = u) and ¢(u,0li)) = Bllprpi| | 05,21 =
U, H,fk Z; = v). By the conditions about ¢ in Lemma A.1 and assumption (C2),
we have

L(0) 2 By (o) oil'} = BUELS o) Bl | 67,200}
—pt /(Kh(u - egkznk))égéenk (u)fegsz(u)du

_ ot / (K ()" B, (0, 2y, + ) oz (00 20y, + hut)du

<ch™™0<i<r,
N A On On
M(i) £ B { K} () Ky () eroil

On On
<E {K k(znk)Kh,ik(znk)E (|80190z| | 67, Zl,GTkZz‘)}

=i | K{“_"gf"’c V(IR 5 a0l g, v, 20,0
/K 0)Pp,, (oF znk+hu9 . Zny, T holi)
xf(;:r 7.0, Z.(anznk + hu,&nkznk + hv)dudv

< c/K V)0, (anznk—khu, Gnkznk—l—hv\i)dudv <e 1=2,3,...,

where fyr , and fyr 5 gr 5 are the density functions of H,ka and (9T AR Zi)
nk nk ) 7Lk 7
respectively. It follows that

Var(é,,.1) < L(2) < % (A.8)

By the Davydov’s lemma (Hall and Heydd (1980, Corollary 2)),

|Cov(Enets &y )] < 8{a(i — )} (Blén, a|")?
<8{a(i — DI H{L()}
< ch 22 {a(i — 1)} 7 (A.9)
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Let Ny = INT(h(=1+2/7)/(9)) where INT(v) denotes the integer part of v. From
(A7) — [A9) and assumption (C1), we have

n

Var Z Enpi) = nVar(&n, i) + 2(2 + Z )(n —1)Cov(&ny,15€ny i)

=2 i=N1+1

N1 n
< % +2en S M) +2enh™2t S {a(i - 1)}
=2 i=N1+1
cn o429 N agp 1-2
< "’ +2cnNy 4 2enh™“T 7 Ny Z i“Ha(i — 1)} 7
i=N1+1
cn
< —.
~ h

Note that ¢ does not depend on k. Therefore ([AZG) follows.
Let Ny = INT (n/>=Y/7rp1/241/7 (log n)~/2) and N3 = INT(n/(2N3)). Then
n=2NoN3+ Ny and 0 < Ng < 2No. We write

J-N2
Wi, (4) = Z §npis J=1,...,2Ns.
i=(j—1)N2+1
Then
n N3 N3
D i =Y Wi (27 = 1)+ Y Wi (24) + S (A.10)
=1 j=1 j=1

where S,:’; o is the residual and has less than 2/N3 terms. Its contribution is negli-
gible.

For every n > 0, we use the strong approximation theorem of [Bradley
(1983) to approximate the random variables W, (1), W,,(3),..., Wy, (25 — 1)
by independent random variables Wy (1), W (3),..., W} (2j — 1) defined as
follows. By enlarging the probability space if necessary, introduce a sequence
(U1,Us, -+ ) of independent uniform [0, 1] random variables that are independent
of {Wy, (1),...,Wn, (2§ — 1)}. Define Wy (0) = 0, Wy (1) = Wy, (1). Then for
each j > 2, there exists a random variable W (2j — 1) which is a measurable
function of Wy, (1), Wy, (3), ..., Wy, (25 — 1) and U; such that Wy (25 —1) is in-
dependent of Wy (1),..., W (25 —3), has the same distributions as W,,, (2j —1)
and satisfies

(Wi (27 = Dloo

; )Za(Ns), (A.11)

P(IWp (27 — 1) = Wy, (2] — 1)[ > n) < 18(
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where | - | is the sup-norm. It follows from the definition of W (2j — 1) and
([A0) that,
EW;: (2j—1)=0,

max Var(W,, (2] — 1)) <cz nz-

L < h_%+%(logn)_% A= Ny. (A.12)
7-]

By the condition in Lemma A.1, we have h_r(n/ logn)~"*2 — 0. Hence
max_ |&,, i <ch !

(e
1<k<n24 h

n 1A
S C3{h10g }2 = N5. (A13)

) r+2}/i

log n

Let Ng = c4(nh~logn)'/2. By the Bernstein’s inequality, we have from (AI)

and ([(A13)
201
((Z = 1| > No) <exp <2<Ni,4z$f T Jlsfz@))

co + 20364}
< ez, (A.14)

< exp{—c}log

The last inequality holds if we choose ¢4 sufficiently large. By ([AII), if (i)
No/N3 < [W;, (2] — 1)|oo, we have

Pu((Wi (2 — 1) ~ Wy, 2 = )| > 1) < 18(52) o)
N3
< CG(IOgn)%a(Nz); (A.15)

if (i) No/N3 > [W; (25 — 1) oo, take = |W)¥, (2j — 1)|oo in (BT, we have
Pr(|Wn, (2) — 1) = W, (2 = 1)| > n) < 18a(N2) ,

which is smaller than the right hand side of ([A-TH]) as n — oco. Therefore,

|Z{Wnk 1) = Wy, (2j = D} > No)
N3 N
< D Pr(Wa (2 = D) = Wi 25 = 1| > )
j=1
< 7 N3(——)3a(Ny). (A.16)

logn
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From ([A14) and ([(ATG), we have

N3
Pr( max | Wy, (2j — 1)| > 2Ne)

1<k<n2d

n24

<ZP1"|Z (2j—1)|>Ng) +ZPr|Z|Wnk 2j—1)—Wy (2j—1)| > Ng)

k=1 7j=1
< n2q{C5n_2q_2 + C7N3(logn)%a(N2)}.

By (2.7), it follows that

1<k<n24

N3
ZPr max ZWnk(Qj —1)] > 2Ng) < o0
=1

By the Borel-Cantelli lemma, we have

N3
(27 = 1)] = O(Ng). Al
Jnax, 1 W, (2] = 1)) = O(Ne) (A.17)

Similarly, we can show

N3
max_ | Z Wi, (25)] = O(Ne). (A.18)

1<k<n24

Combining (A.d), (A.5), (A.10), (A.T7), (A.I8) and (A.3), we have

. Al

\ nax, B g1 = O(0n) (A.19)

Therefore, the fourth part of Lemma A.1 follows from (A1), (A2) and [AT3).
Note that the key steps in the proof above are the continuity of the related

functions and bounded variance in ([AZ6). To prove the last part of Lemma A.1,

it is sufficient to show

sup E(K} Z-Cz-k’z)T < ch™ T2 + B2, 2< T < (A.20)
|0—60|<an,2€D ’
Write 6y = b,0 + e, 0¥, where 9 L 6 and 6,9 € O. It is easy to see that |b,| < ¢

and |e,| ~ a, when |0 — 6y| < a,. Let (0,9,T) be an orthogonal matrix. Let
f(v,u1,us,...,u,) and f(v,u1,uz) be the density functions of (x, 07 Z, 97 Z, 17 Z)
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and (x,07 Z,97 Z) respectively. We have

B(KG G
= /(Kh(ul — HTz))T(ul — HTZ)TEUTka(bnul + enug, bpdl 2 + enﬁTz)
xf(v, ug, ug ..., up)dvdurdug - - - duy,
= prtTHl /(K(vl))TvTZkam (bpvih 4 0T 2 + epus, €07 2 + b, 07 2)
x f(v,07 2 4+ hvy, ug, . .. s up)dvdvuydug - - - duy,
= prtTH /(K(vl))TvIZkam (bpvrh + 0,07 2 + epug, bp,07 2 + €,07 2)

xf(v, 07z + hoy, ug)dvdvy dus.
Note that |m(u,v)| < c(u — v)2. Therefore by (C2)

B¢
< chmtTH! /(K(Ul))TvTZka(bffv%Th% + e2M) f(v, 07z + hvy, up)dvdvy dusg

— O{hTZ—T—&—l(a%LT + h27)}.

The equations in Lemma A.1 still hold if we replace |6 — 6y| < a, with
|0 + 0y| < a,. The latter is needed for the proof of Theorem 1 when 679, < 0.
For any measurable function A(§,7), let EyA(&, mk) = E{A(v, nk) Ho=¢, -

Lemma A.2. Let £(0) is a measurable function of (X, Z,y). Suppose E{£(0) |
0TZ} = 0 for all 6 € © and |£(8) — £(9)] < |0 — 9|E with EE™ < oo for some
r > 2. Let @; be defined in Lemma A.1. If (C1) and (C6) hold, then

up | 575 {KL(Z)05(6) ~ Bi(K(Z)65(0) } ()| = 052

2
n
0O ==

Proof. Let A, (f) be the value in the absolute symbols. By the continuity of
Kgi in 0, there are n; < cn®? points Oy, 1,...,0h,, in © such that UpL {6 :

10 — 0, < 262} D © and

max sup

AL (0) — Ap(0, )| = O(62). A.21
A LR »|=02) (A.21)

The Fourier transform ¢(s) = [ exp(isv)K (v)dv will be used in the following,
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where i is the imaginary unit. Thus K (v) = [ exp(—isv)¢(s)ds. We have
A (On, —h ! 0 n
(61.1) 2122/ exp {507, 20 1 (0

—Ej{exp(—isb,, kZ}; ) (O, k)}] ¢(5)ds&;(On 1)

Zexp 0L )6 (00) D [explistT ) (0,
h n h

j=1
~ B{exp(is0L, )5 (62)} | o(5)ds.

Following the same steps leading to ([A_19]), we have

1£}€<n1 n ZGXP 1s9nk n )fz( nk)’ < ¢80,

max

1< Z; o Zi
- N <
|ax | g [exp(lan F )(p](é?n k) — E{exp(lan’k . )i (an)}] ‘ < 9o,

almost surely, where cg and cg are constants which do not depend on s. Hence

max
1<k<ni

An(en,k)‘ < h_l/6850n6950n’¢(3)’d82O(h_la(%n):O(érzL)' (A22)

Note that

sup |A,(0)] < max

pirs | ax An(Qn,k)‘+ max sup A (0)—Ap(0n k). (A.23)

1<k<ni |0, ,|<h252

Therefore, the second part of Lemma A.2 follows from (A221]), (A22) and ([(A23).

Let d(z,D°) = mingere—_p |z — 2|, and Jy(z) and Jp(v) be any bounded
functions such that Jo(2) = 0if d(2,R9—D) > band Jy(07 2) = 0if d(67 2, 67 (RI—
D)) > h. By definition, we have

% S (%) = O(b), % S Jol(Z;) = O(h). (A.24)
j=1 j=1

Let 7(v1, v, ) = GT(v1)z — GT (vg)z — {G'T (vg)a} (01 — va) — {G"T (vg)z} (v1 —
v2)?/2. To cope with the boundary points, we give the following nonuniform
rates of convergence.
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Lemma A.3. Suppose assumptions (C2), (C3) and (C6) hold. Then

Z 7

EHy {07 =2y 07 =2 = 0p 0 f(2) + Jo(2) + O(0),
Zi

BE) {0772V = 1fo(072) + Jo(2) + O(h),

b
EK} {0 Zio}hr (03 Zi, 05 2, Xi) = O{h(h + Jo(2)) (55 + h*)}

uniformly for 8,9€© with § L9 and z € D, where UZZ?:quH(U)(HTU)k(ﬁTU)Z
dU and 7y = [ K (u)u‘du.

Proof. We here only give the details for the first and the third parts. If
d(z, D) > apb, we define Jy(z) = 0. From (C6), we have

T — 2 T —
[ i - e =y oya
D
_ /R HUN{OTUYOTUY F (2 + BU)AU = ol £ () + O(b).
If d(z, D) < agb, we have by (C3)

F(U)av

T(U — ¢ T — ¢
a2 [ oG =)

< / HO)6TU 97U L f (2 + hU)dU = O(1).
Ra

Therefore, the first part of Lemma A.3 follows.
Let 07z = wy, ng = v). Write 6y = b,0 + e, ¥, where 1 — b, ~ §y and
en ~ 0p. Let Dy be the positive support of fy(v). Note that

(05 Zi, 00 2, Xi) < | Xil - 100 Ziol® < | Xil {65 + 107 Zio |} (A.25)
If |67z — Dg| < aph, then by ([(AZH)

Z;
E|K}, {07 Zio}r (0§ Z:, 08 2, X;)| < ChE{Kﬁ,¢|9TTO||Xi|(53 + 107 Zio?)}

= O{hJy(2)(65 + h>)}. (A.26)

Let X (v1,v2) = E(X|07Z = v1,97Z = vy) and ro(v1,v2,v)) = {G(v1) — G(v)) —
G'(vh)(v1 — vo) — G" (vh) (v1 — vh)?/2}T X (v1,v9). We have

0 0

0 = G (01) — G (uh) ~ G (vh) (01— 0h) } X (1, 02) 7 (v, v, 1) 7 — X (v, 02),
8’U1 8v1

or vy — )2, 0

20 — {Glwn) — Gloh) — G )1 = v0) = G (o) Gy ).
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By (C2) and (C3), it follows that
f(UO + h’Ul,'U2) = fN(UOa’U2) + O(h)a

rol < clvy —vgf*, |

v =
Note that Z is bounded. We have
|70 (bpvo + enve + byuih, vy + hvl,vo)f(vo + hvy,v2)
—70(bpvo + enva, vo, vp) f (v, v2)|
< ¢{(s + h)*h}, (A.27)

where f(vy,v2) is the density function of 0T Z,977). If |02 — D§| > aph, we
have [ K (v1)v170(bnvo + €02, v0, vg) f (vo, v2)dvidvg = 0. Hence

\EK], 407 Zio (08 Zi, 08 2, X))

= |h/f(U1)U1To(bnvo + env2 + byv1h, v + hvt, vp) f(ve + hur, ve)dvrdus|

< h/K(vl)\vllro(bnvo + env2, 00, 1)) f (vo, v2)dvydvg + O{h*(J9 + h)*}

= O{h*(0g + h)?}.
Therefore the third part of Lemma A.3 follows from the above equation and
([(A.24).
Lemma A.4. Under assumptions (C2) and (C5), we have that Wy is a semi-
positive matriz with rank q — 1.

Proof. Note that 0 [G' (00" Z)X{Z — pg,(Z)}] = 0 almost surely. Tt follows that
the rank of Wy is not greater than ¢ — 1. To complete the proof, we need to show
that for any vector ¥ € © such that 976y = 0,

ITWod > 0. (A.28)
If 9T Wy = 0, ice., E{G"(0F Z) X }2 {97 Z — 9T 1y, (2)}?] = 0, we have {G" (6% Z)T
XHITZ —9T g, (Z)} = 0 almost surely. Because P(G'(0Z)X = 0) = 0 as

assumed in (C5), we have 97 Z — 97T yp,(Z) = 0 almost surely, which contradicts
with the existence of the density function of Z in assumption (C2). Therefore

([A28) follows.

For ease of exposition, we abbreviate sup,cp geg |An(2,0)] = O(an) as An(z,
) = O(ay,) in the following context.

Proof of Lemma 1. By Taylor expansion, write

Xi
= (GT(Q(:)F,Z), G/T(ggz)) <9TZioXi> + R(Z;, Xi,2,0) + €4,
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where R(Z;, X, z,0) = G'T (07 2) X, Z21(60 — 0) + G (0T Z:) X {0F Ziv}2 /2. Note
that this expansion is unique under the assumptions even X = Z with the as-
sumption before Lemma 1. Let (a”,d”) be the value on the right hand side of
(2.5) with Z; replaced by z, and

. X; X, \"
i=1 7 7 7 )

We have

(2) <g/((99T ))>+C ‘IZHM(Z%X >{R(Zz,Xl,z 6)+ei}. (A.30)

Let n(2) = BE(XXT|Z = 2)f(2). For any 9, it follows from Lemmas A.1, A.3
and assumption (C1)-(C3) that

LS Hy X XT 107 Zig) (07 Zig)!
n
=1
7(2)(0T9)FOF+E + O{bF+ (1,0 + Jo(2))}, k=£=0,1,
= w(2)FH 4+ 0L (g0 + Jo(2)) ), k+0=2k#1
O + b (7, + Jo(2))}, k+0=1,3.

It follows that on {f(z) > co}
1< X;
n ;Hb’i <Z£0Xi> R(Z;, Xi, z,0)

_ Ofb(b + o))}
= <b29T(90 — Q)W(Z)G/(egz)0+ O{bg(bQ + J(](Z))}) ) (A31)

and

(2)+O0{rgn+Jo(2)}  O{b? + b~ (0yn + Jo(2))}
e S G I K R TR
)

By Lemma A.1 and assumption (C4), we have

_ ( O(qn)
n Z <Z£9X > 5 (O(qun)> ' (A.33)
It follows from ([(A30)—([A33) that on {z: f(2) > co},

a\ [ GOFz) Ofrgn + bJo(2)}
<d> B (G/(@?z)) + ({QT(HO —0)}G' (O 2) + O{b~ 7 + Jo(z)}> . (A34)
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Write 70 = {G(08 2) — a}TX; + {G' (0% 2) — d}T Xi{0¢ Zio} and r;; the value of
ri0 with z replaced by Z;. By (A3), we have
ri0 = O(1gn + bJo(2))|Xi| — {67 (80 — 0)}G'T (03 2)X: 264
+O(b_l7'qn + J()(Z))|XZ‘ : ’ZZ()‘
By Lemma A.1, for any d and d’, we have

1 n
- S (d" XX d)Hy i Zin Zi = 0 d"wn(2)d f(2)] + OB 7gn + b°Jo(2)), (A.35)

1 < 1<
n ;(dTXi)Hb,z’ZiO\Xi\ =0®), -~ ;(dTXi)Hb,iZiO\Xi! | Zio] = O(b*),
%Zn:(dTXi)HMZiO\ZiOF = 0(b%), %Zn:(dTXi)HMZioai = O(bdgn), (A.36)
i=1 =1
where [ is the identity matrix. Thus
% Zn:(dTXi)Hb,iZiOTiO
i=1
= b2 d"w(2)G (60" 2)07 (B — 6)00 + O(bTyn + b2 Jo(2)). (A.37)
Note that by Lemmas A.1 and A.3,

sgg\n ZHM - — Jo(2)] = O(b+ 4n).
Therefore
sup IZ(w;) — Z(f(2)) = Jo(2)| = O(b+ b4n), (A.38)

where Jo(2) = Z(f(2) + Jo(2)) — Z(f(2)) satisfies (A24). Write Z(w;) as Z,,;. By
(IBE) ((A.30), ([A.34), (A37) and ([A38), we have

Tl2 ZITL] Z d X 2Hb Z(ZJ)ZZJZZJ; = b2(0T00)2COI + O(b2an + bg)v
i=1

nZ ZIng Z dj X;)Hyi(Z;) Zijrij = b*07 006" (6 — 0)CoI + O(b7gn),
=1

2 ZImZ df X;)Hyi(Z5)Zij| Zi5|* = O(b°),
i=1

— ZIM Z db X;)Hy1(Z;) Zije; = O(bSy),
=1
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where Co = E{Z(f(2))f(2)G' (6{ Z)X}2. By (C3), write y; — a? X; = (df X;)
ZZ?;-GO + rij + O(1Zi;1?1X5]) + €i- By (2.6) and the foregoing four equations, if
676y # 0, we have

6=0+ { > Ty ZHb,i(Zj)(Xdej)2ZijZ£}+
=1 =1

n n
x> Tn; ¥ Hyi(Z)(X]d)) Zi{ri; + i}
j=1 =1

o7 (0y — 0)

=0y —{ (67%0) 1o+ O 1) = (0760) 100 + O(b 7).

It follows that

sign (0)0

0 =:
16l

=0+ O(b~ 7). (A.39)

The proof of Lemma 1 is now completed.

Proof of Theorem 1. Let
1
R(X;, Zi,2,0) = G (07 2) X, Z5 (0, — 0) + 5G”T(ag 2) X {0F Zio}?
+r(68 Z;, 0% 2, X3).
Write

X;
yi = (GT(ng),G/T(GOTz)) <9TZ-0X-> + R(X:, Zi,2,0) + &5,

Let Cyn(2) be the value of Cy(2) in (AZ) with Hyi(Z;) replaced by KJ (%)
and

ag\ [ G(6F>2) 1N X g .
<d9> - <G/(0(1)“Z) +C€,n(2);Kh,i £9Xz {R(X27227270)+52}’
Let mp1(2) = fo(2)m)(2) — £5(012)my(2). By Lemmas A.1, A.3 and assumptions
(C1)—(C3), we have uniformly on DY = {2 : f4(2) > co},
1 n
- S OKf XX =mp(2) fa(2) + O(ma + Jo(2)),
i=1

1 n
- > Kp {07 Ziy Xi X = wo1(2)h? + O(hr + Wy (2)),
=1
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1 n
- S Kf 0T Zio P Xi X = ma(2) fo(2)h? + O(hP7y + 1 Jy(2)),
=1

Conlz) =
<{7T9(2)fe(Z)}‘1 F O+ Jo(2))  Toa(2) + OV + BV Jp(2)) >
mo2(2) + O(h—lrn + h_ljg(z)) 2{(7r9(z)f9(z))—1+0(7n +Jo(2)} )7

where Tg2(2) = {mo(2) fo(2)} mo1(2){mg(2) fo(2)} 1. Let Vpy(z) is defined before
Theorem 1 and Vpy(2) = fp(072)V)(2) — £)(6T2)Vy(z). By Lemmas A.1 and A.3,

we have

1 n
— KX G (00 2)Xi} Zio (00 — )

i=1

= fo(0" 2)Vo(2)(8o — 0) + O{ (70 + Jo(2))5}

1 n
- STKDXG" (08 2) X {08 Zioy?
i=1
= fo(07 2)mo(2)G" (65 2)h* + O{h*(J(2) +70) + 57},

1 n
~ > K} (00 Zi, 00 2, X;) = O{65 + h*},
i=1

1 n
" Z Kz,i{eTZiO}k{(HO — 0" Zi} X, X7
i—1

n2st, k=2,
RE(h o+ Ja(2) + 8a)05, B = 1,3,

% Z Kﬁ,i{HTZio}r(HgZi, 0§z, X;)
=1
= O{h(h + Jg(2))(6% + h?) + hé, (67 + h?)}.

By Lemma A.1 and (C4), we have

Lsnper (X e = () + 0o
n hi\ zEox; )™~ \hRY,(2) + O(h7,5,) )’

where

0 Z
R3n ZKhz X i€, R4n ZKhz 0 }XZ‘SZ‘
=1



S54 YINGCUN XIA, WAI KEUNG LI AND HOWELL TONG
By Lemma A.1, we have R}, (2) = O(5,) and Rf, (z) = O(6,). We have on DY,

1
ap = G(05 2) + 5G" (0 2)h* + 757 (2) V() (60 — 0) + Ry (2)

+O{(h + Jo(2))dg + h2(h + Jo(2) + 6,) + 03},
dog=G'(002) + h™'RY,(2) + O{r + h™ (0, + Jo(2))d }. (A.40)

Let ap ; and dy ; be the values above with z replaced by Z;. Write
yi — ag; Xi = (df ;X)) 2500 + A + A%V 4 A% o — XTRS (7)) + e,

where AW)) XTI (2)Vo(2) (6 — 6), A“ V= {a(072;) — do;}T X {60 Zi5},
AL = {G”wTZ WIXAOF (Z; — 7))? — h?}/z and |ri;| < {03 Zii* + (h +
Jg( )00 + h2(h + Jo(Z;) + 6,) + 63} X;i|. Note that by Lemmas A.1 and A.3,

sup \fo(2) — fo(z) — Jo(2)| = O(h +6,,),

where fp(z) =n~ 13", Kﬁi(z). Therefore

sup | Z(fo(2)) — Z(fo(2)) = Jo(2)] = O(b + 6,). (A.41)

z€D

Write Z(f(2)) as Izj. We have,

0= 90+Dzn2 Zd X) K] (2) Zif{ A% + A%Y
j=1 =1

+A%? oy — XTR(Z)) + b, (A.42)

where Dy, = n=2Y 7 I}, Z?:l(d;;F’in)2Kg7i(Zj)ZijZ£. By ([(A40), we have
= G'(0F2)+O{h™16,+(1+h™1Jy(2))dp}. Exchanging the order of summation,
we have by Lemma A.1

1 n n
DG,n:EZZIzj X}2Kh2( )Z ZT

i=1 j=1

=—Z:f€ Z){G (05 Z0) XY {Zi — po(Z)H Zi — no(Z:)}T

L1 sz WG (0T Z) XV E{(Z: — 10(Z))(Zi — 1o(Z:)T}

+O( 15n +h+8p)
=Wy + Uy +O(h™16, + h + dg),
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where I](i(z) =Z(fo(2))fo(z). By Lemmas A.1 and A.3, we have

n

6,0
’I’L2 Zzzjz )Khz( J)ZZJAEJ )

1=1
:E{If(Z Vo(Z)mg (Z)Va(Z)}(8 — 60) + O(h™ 109 + 7).

n

n? Z Z )Kh (Z )ZZQA(H b = =O0O(h™ Tn59 + ht, + 56)
1=1

For any d and d’ we have by Lemmas A.1 and A.3

S55

1 n
- S dTX XTd' K] Zio(0F Zio)? = ho(2)h* + O{h*(Jo(2) + ) + hdg + 65 },

1=1

1 n
= A"XX[ 'K} Zio = (2) + O{Jp(2) + T}
=1

where 1y(2) = fo(2)E(d? X; XTd' Ziy|0T Z = 67 2). Therefore

- 0,2

— Z 3> XKD (Z)) 25007 = O{h? + hg + 63},
i=1

n2 Z Z )Kh i(Zj)Zigrij = 0{h3 + 53 + hdg + hd, }.
=1

Let Vp(2) = Z0(2){G"(6F Z)Y" Xi{po(Z;) — 2}. Note that

ZIG dj X0 K}, ((Z;) Z:;

= Vo(Zi) + Z{IQ (dg ; Xi) K7 i(Z) Zij — Vo(Zi)}-
j 1

Exchanging the order of the summation, by Lemmas A.1 and A.2 we have,

n2z Y (dg i XKD ((Z) Zije
i=1
:—ZVQ Dei+O(h3+h162 +h~17,,84)

:—ZVQO Dei+ORP+h 162 +h711,80).
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Similarly, we have

1 n n
— IS (df XK (Z) Zig XT RS, (Z5) = OB + 7162 + h™ '),
j=1 i=1

Therefore

0 =60 + {Wo + Uo} ™ E{Z}(2)Va,(2)m5, (Z) Ve, (2)}(6 — 60)

A Wo + T}~ D Ve (2)ei + OB + B 167 + b rnda + 63).
i=1

Let D = (Wo + Uog) Y2 E{ZY(Z2)Vay (Z)7y, (2)Vay (Z)}(Wo + Uo) /2. By the
Schwarz’s inequality, we have W+ Uy — E{IJQ(Z)V(;O(Z)W;()l(Z)‘/'gO(Z)} is a semi-
positive matrix. We have, by Lemma A.4, the eigenvalues of D are less than 1.
There are 1 > Ay > A9 > --- ,\j—1 > 0 and an orthogonal matrix I' such that

D =Tdiag(\1, ..., A\g—1,0)TT.

Let B, = (Wo + Ug)~/2(8), — 6p). We have

: _ v
Bry1 = Ddiag( M, -, Apiq1, 0T By, +n YWy + Up} 2 Z Voo (2)€i

i=1
+O(h* + R 162 + h i A + A, (A.43)
where Ay = |Bk|. It follows that
Akt S MAL 4 on + c(Ag + h717) Ap + e(B® + h7162)
=bon + {1 + A, +c(h+h716,) YA, + (b, + h7162) (A.44)

almost surely, where ¢ is a constant. We can further take ¢ > 1. For sufficiently
large n, we may assume that

1—A 1—X\)?
c(h +h~16,) < 3 L Gon + c(hry +h7182) < %. (A.45)
Since by ([A39) A; — 0 almost surely, we may assume
1-X)
A < . A.46
< (.40
Therefore, it follows that from ([AZZ4)), (A4H) and ([AZ0])
2 I—Xx  (1-X)?2 1-X)
Ay < —(1— = . A4
2= Wt gl = A)f—= 4 5 3¢ (A.47)
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From ([AZZ4), (AZH) and ([AZD), we have that

1_
A; < M
3c

Consequently, A < (1 — A1)/(3¢) for all k. Therefore we have from ([AZ4)) that

Apy1 < XA + bon + (b + h™'67)

almost surely, where 0 < \g < (2+ A1)/3 < 1. It follows that

k
A < MAT + {0on + c(hry + W02} Ny = O(don + b + h 7157,
j=1

for sufficiently large k. By ([AZ3), we have
{Wo + U}z (0 — 6y)

=D(6—6y) +n HWo +Ug} 2 Y Vay(2)ei + O(h® + h™162). (A.48)
i=1
It follows from ([AZ4R) that
Wi(0 —00) =n~' > Vg,(2)ei + O(h* + h7'62).
=1

We have completed the proof of the first part of Theorem 1.
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