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Abstract—With continued scaling of NAND flash memory process 

technology and multiple bits programmed per cell, NAND flash reliability 

and endurance are degrading. Understanding, characterizing, and 

modeling the distribution of the threshold voltages across different cells in 

a modern multi-level cell (MLC) flash memory can enable the design of 

more effective and efficient error correction mechanisms to combat this 

degradation. We show the first published experimental measurement-

based characterization of the threshold voltage distribution of flash 

memory. To accomplish this, we develop a testing infrastructure that uses 

the read retry feature present in some 2Y-nm (i.e., 20-24nm) flash chips. 

We devise a model of the threshold voltage distributions taking into 

account program/erase (P/E) cycle effects, analyze the noise in the 

distributions, and evaluate the accuracy of our model. A key result is that 

the threshold voltage distribution can be modeled, with more than 95% 

accuracy, as a Gaussian distribution with additive white noise, which shifts 

to the right and widens as P/E cycles increase. The novel characterization 

and models provided in this paper can enable the design of more effective 

error tolerance mechanisms for future flash memories. 

Index Terms— NAND Flash, Memory Reliability, Memory Signal 

Processing, Threshold Voltage Distribution, Read Retry  

I. INTRODUCTION  

During the past decade, the capacity of NAND flash memory has 

increased more than 1000 times as a result of aggressive process 

scaling and multi-level cell (MLC) technology. This continuous 

capacity increase has made flash economically viable for a wide variety 

of applications, ranging from consumer electronics to primary data 

storage systems. However, as flash density increases, NAND flash 

memory cells are more subject to various device and circuit level noise, 

leading to increasingly worse reliability and endurance. The P/E cycle 

endurance of MLC NAND flash memory has dropped from ~10k for 

5x nm flash to around ~3k for current 2x nm flash [1]. The reliability 

and endurance are expected to continue to decrease when 1) more than 

two bits are programmed per cell, and 2) flash cells scale beyond 20nm 

technology generations. This trend is forcing flash memory designers 

to apply even stronger error correction codes (ECC) to tolerate the 
increasing error rates. 

In NAND flash memory, the logical value a memory cell stores is 

determined by the voltage window in which the cell's threshold voltage 

lies. As cell size is scaled down and more bits per cell are stored, the 

threshold voltage window used to represent each value becomes 

smaller, leading to increased error rates in determining a cell's value. 

This is because process variations become more prevalent when the 

amount of charge stored in a flash cell reduces with feature size, 

leading to the threshold voltages of different cells storing the same 

value becoming significantly different. Hence, deciding what logical 
value a cell's threshold voltage corresponds to is increasingly difficult. 

The most commonly-employed ECC mechanisms in flash memory 

today, BCH codes [2][3], make a hard decision on what value a 

threshold voltage corresponds to, i.e. they are hard-decoding error 

codes. This limits the scalability of such codes as the threshold voltage 

window used to represent values becomes smaller and the amount of 

charge stored in each flash cell reduces with smaller feature sizes. As 

recent research has shown, the error correction capability of BCH 

codes is diminishing to tolerate the raw bit error rate of flash cells, 

which increases exponentially with not only the technology generation 
but also the number of Program/Erase (P/E) cycles performed [4][5]. 

Flash designers are therefore examining the applicability of much 

more powerful ECC mechanisms. One promising alternative is soft-

decoding codes that represent the value stored in a cell as a probability 

distribution, e.g. low density parity check (LDPC) codes [6] that are 

employed in hard disks and that are known to reach near-Shannon-limit 

error correction capability [7][8]. LDPC and other similar soft-

decoding codes can provide much stronger correction capability in the 

presence of significant noise (variation) in signals (threshold voltages) 

used to represent values present in different cells. The development of 

such strong ECC requires a strong understanding, characterization, and 

modeling of the distribution of threshold voltages across different cells 

in flash memory, which does not exist today. Such a characterization 

can also enable other potential improvements in flash memory 

reliability and lifetime. Unfortunately, to our knowledge, no such real-

measurement-based characterization of flash memory threshold voltage 
distribution exists in public literature. 

Our goal in this work is to characterize, analyze, and develop models 

for the threshold voltage distribution in flash memory cells. To 

accomplish this, we have developed a testing infrastructure that uses 

the read retry feature present in 2Y-nm (i.e., 20-24nm) flash chips, for 

the first time, to accurately identify the voltage associated with a value 

stored in a flash cell. Using a large number of such measurements of 

threshold voltages and rigorous statistical techniques to analyze the 

observed threshold voltages, we devise a model of threshold voltage 

distributions, which also takes into account the changes that happen to 

the distributions as the number of Program/Erase (P/E) cycles increase. 

We analyze the P/E-cycle dependence of the threshold voltage 

distributions, analyze the distortions and noise in the distributions due 

to P/E cycle dependence, and rigorously evaluate the accuracy of our 

models that predict the distortions. Developing new ECC techniques 

that leverage our characterization, understanding, and models is out of 

the scope of this paper, but we expect this to be an important area of 
future work. 

To our knowledge, this is the first work that provides a real-

measurement-based characterization of threshold voltage distribution 

of flash memory. Some previous flash modeling works [9][10] 

assumed particular threshold voltage distributions (based on intuition), 

but the characterization we provide in this work shows these assumed 

distributions do not accurately represent distributions obtained from 

real flash memories. Other works [4][11] have analyzed patterns in bit 

errors but did not characterize threshold voltage distributions, and are 

therefore complementary to this paper. 

The major new empirical observations of this paper are: 

1) The threshold voltage distribution of flash cells that store the same 

value can be approximated, with reasonable accuracy, as a 

Gaussian distribution, although a Beta distribution is a better fit on 

average (Section IV-A). The threshold voltage distributions of 

flash cells in different locations are independent of each other 

whereas the distribution for the same memory cell is dependent on 

the past distributions for the same cell (Section IV-B).  

2) Under ideal wear leveling, the flash cell can be modeled as an 

AWGN (Additive White Gaussian Noise) channel that takes the 

input (i.e., programmed) threshold voltage signal and outputs a 

threshold voltage signal with added Gaussian white noise (Section 
IV-C). 

3) The threshold voltage distribution of flash cells that store the same 

value gets distorted (shifts to right and widens around the mean 

value) as the number of P/E cycles increases. This distortion can 
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be accurately modeled and predicted as an exponential function of 
the P/E cycles, with more than 95% accuracy (Section V). 

We hope the new observations, characterization, and models 

provided in this paper will serve as building blocks that enable more 
effective error tolerance mechanisms for future flash memories. 

II. SYSTEM IMPLEMENTATION FOR FLASH MEMORY 

THRESHOLD VOLTAGE CHARACTERIZATION  

A. Read Retry Operation in Modern NAND Flash Memory 

Background: For n-bit multi-level cell (MLC) NAND flash memory, 

the threshold voltage of each cell can be programmed to 2n separate 

states. Each state corresponds to a non-overlapping threshold voltage 

window. Cells programmed to the same n-bit value have their threshold 

voltages fall into the same window, but their exact threshold voltages 

could be different. The non-overlap space between the windows is 

called the distribution margin. For an n-bit MLC NAND flash memory, 

we use 2n-1 predefined read reference voltages to discriminate between 

the 2n possible cell states. These read reference voltages are located in 

the non-overlapping regions (i.e., distribution margins) of the threshold 

voltage windows. Each threshold voltage window is determined by an 

upper and a lower bound read reference voltage. During read operation, 

the cell’s threshold voltage is iteratively compared to predefined read 

reference voltages until the upper and lower bound read reference 

voltages are identified, thus determining the stored n-bit value. 

Fig. 1 shows the mapping between the programmed logic values and 

the corresponding threshold voltage distributions for the 2-bit MLC 

2Y-nm (i.e., 20-24 nm) NAND flash memory used in our 

characterization. The flash cell states can be classified as either erased 

(lowest threshold voltage, P0:11, indicating that the logical value is 11) 

or programmed (electrons present on the floating gate, P1:10, P2:00, 

P3:01). Note that the mapping of logical values to the cell states could 

be different between different flash manufacturers and product 

generations. The figure shows that the cells in a given programmed 

state (e.g., P1, which indicates a logical bit value of 10) have threshold 

voltages that fall into a distinct threshold voltage window (e.g., 
threshold voltage values between REF1 and REF2).   

 
Fig. 1 Read retry feature of NAND flash memory 

Read Retry: In past flash generations, the read reference voltage 

values were fixed at design time. However, when the threshold voltage 

distributions are distorted (e.g., due to P/E cycling, charge loss over 

time, or program interference from the programming of neighboring 

cells), the distributions can shift and distribution tails can enter the 

previously non-overlapping distribution margin regions, crossing the 

fixed read reference voltage levels [11]. As a result, a cell that stored 

one logical value can be misread as storing a different logical value 

(called a read error [4][11]).  To combat such errors, a mechanism 

called read retry has been implemented in some flash memories below 

30nm [12][13]. Read retry allows the read reference voltages to be 

dynamically adjusted to track changes in distributions. The basic idea is 

to retry the read with the adjusted reference levels such that read errors 

are decreased or even eliminated. Section II.B describes this in more 

detail and shows how we implement the read retry techniques in our 

FPGA-based testing system. 

B. System Implementation 

Read retry requires the implementation of two additional controller 

commands: Set REF and Get REF. Set REF sets the read reference 

voltage to a new value. Get REF checks the set value of the read 

reference voltage. We implemented these two commands in our FPGA-

based flash testing framework [14]. The controller finite state machine 
is shown in Fig. 2 with the new commands highlighted in red. 

 
Fig. 2 NAND flash controller with read retry commands implemented 

Using read retry, we can characterize the threshold voltage 

distribution of flash memory cells. As the read reference voltage can be 

finely tuned, the threshold voltage state window can be divided into 

many small bins. Each bin corresponds to one or a few tunable read 

reference voltage step sizes, as shown in Fig. 1. The read out value 

would be different when the read reference voltage is changed. For 

example, when we set REF3 to the default value (i.e., Vth(i) in Fig. 1), 

the cells with threshold voltage in the bin of [Vth(i), Vth(i+1)] will be 

read as 01. When we increase REF3 from Vth(i) to Vth(i+1), these cells 

will be read as 00 instead of 01. By checking for changes in read 

values, we can identify all the flash memory cells whose threshold 

voltages are within the region of [Vth(i), Vth(i+1)]. Similarly, when 

REF3 is increased from Vth(i+1) to Vth(i+2), the cells with threshold 

voltage in the bin of  [Vth(i+1), Vth(i+2)] will be identified. We can 

continue increasing REF3 until all the cells programmed as 01 will be 

read as 00.  Thus, the threshold voltage distribution of P3 state can be 

characterized. Using the same methodology, threshold voltage 

distribution of the P2 state and the P1 state can also be identified. We 

implemented this methodology as a software module in the host 

computer. Fig. 3 shows the main flow of the algorithm implemented in 

this software module to collect data that is later analyzed to identify the 

threshold voltage distributions of each programmed state. 

 
Fig. 3 Threshold voltage characterization methodology 

 
Fig. 4 Observed threshold voltages of cells in the three programmed states 

Since, in this paper, our goal is to investigate the threshold voltage 

distribution of flash cells under P/E cycling, we need to ensure our 

characterization is not affected by either program interference or 

retention error mechanisms (these are described in detail in our 

previous work [4]). We isolate our characterization from program 

interference by not programming the neighbors of the cells that are 

under investigation. To ensure our characterization is not affected by 

retention errors, we scan the threshold voltage immediately after the
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Fig. 5 Threshold voltage probability distribution estimation using non-parametric kernel density estimator 

cells finish programming, which ensures that charge loss in the 

programmed cells is kept to a minimum. Due to limitations in the 

flash chips we test, we cannot set the read reference voltage to 

negative values and thus the threshold voltage of cells in erased state 

cannot be characterized. An example of our measured threshold 

voltage data is shown in Fig. 4. 

III. METHODOLOGY FOR DISTRIBUTION CHARACTERIZATION 

Using the new platform discussed in section II, we can characterize 

the threshold voltage of flash cells in their various programmed states. 

Learning the threshold voltage distribution can be formulated as a 

density estimation problem in machine learning. We consider both 

nonparametric and parametric approaches for density estimation in this 
section. 

A. Non-parametric Methodology 

Histogram Density Estimation: The threshold voltage of flash 

memory cells can be modeled as a continuous random variable x. 

Standard histograms simply partition x into distinct bins of widths ∆i 

and then count the number of observations ni of x falling into the i-th 

bin. In order to turn this count into a normalized probability density, 

we simply divide it by the total number N of observations and by the 

width ∆i of the bins to obtain probability density value for each bin, 

given by pi= ni/(N∆i). Here, the bins are of the same width, which is 

one or a few step size(s) of the tunable read reference voltage in our 

testing. The resulting histogram gives a model for the density p(x) that 

is constant over the width in each bin. However, the estimated density 

has discontinuities that are due to the bin edges rather than any 
property of the underlying distribution that generates the data. 

Kernel Density Estimation: To obtain a smoother density model, we 

choose a smoother kernel function by using the Gaussian kernel to 

estimate the probability density function. This approach is widely used 

in the machine learning domain. The kernel density estimation of the 
probability density function can be expressed as: 
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Here, h represents the standard deviation of the Gaussian kernel. N 

is the total number of observed experimental data (threshold voltage) 

samples and xn is just the threshold voltage of the n-th sample cell. The 

density model is obtained by placing a Gaussian kernel function over 

each data point and then adding up the contributions over the whole 

data set, dividing by N so that the density is normalized. In Fig. 5, we 

apply this model and optimize h to fit the experimental threshold 

voltage data set of 2Y-nm flash memory. For the rest of the paper, we 

will use kernel density estimation to obtain a quick visualization of the 
threshold voltage distribution unless otherwise mentioned. 

B. Parametric Methodology 

Despite high accuracy, kernel density estimation requires the entire 

training data set to be stored, leading to expensive computation and 

storage overhead for modeling large data sets. As we can see in 

equation (1), all the testing data samples {xn} and the smoothing 

parameter h are needed for the density function. On the other hand, 

parametric probability distributions have closed form functions, which 

are governed by only a small number of parameters whose values can 

be estimated by the training data set. Generally, the parametric 

distribution can be expressed as p(x|η), where η is a vector of statistic 

parameters, and x is a scalar or vector of threshold voltages of the flash 

memory cells in this paper. Given the tested data set, the parameter 

vector η can be estimated using the maximum likelihood estimation 

(MLE) criteria as: 
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Here, we assume that the data samples of {x1, x2, …, xN} are 

independent and identically distributed. η is chosen so that the 

likelihood function is maximized given the observed testing data. One 

possible limitation of parametric approach is that the chosen density 

might be a poor model of the true distribution that generates the data, 

which can result in poor predictive performance. Thus, the fitness of 

parametric distributions needs to be evaluated.  

IV. THRESHOLD VOLTAGE DISTRIBUTION CHARACTERIZATION 

A. Evaluation of Fitness of Various Distributions 

In this section, we select five widely used distributions and evaluate 

their fitness for modeling the experimental flash data.  Here, we only 

investigate one-dimensional probability density functions (PDFs) for 

all distributions, as the threshold voltage random variable x has one 

dimension. All five distributions are listed in Table I, with the closed 

form expression in the second column and the mean/variance 

calculation using the parametric vector in the third column. Note that 

only the Gaussian distribution’s parameters are the mean and variance, 

while the parameters of the other distributions do not have specific 
physical meaning.  
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Το evaluate the fitness of various distributions, we take the 

following steps. (1) We assume that the flash threshold voltage 

follows a certain distribution p(x|η), which is listed in Table I. (2) We 

apply the maximum likelihood estimation (MLE) methodology to 

estimate the distribution parameter vector η that best fits the 

experimental data (observed threshold voltages). (3) We evaluate the 

root mean square error  (RMSE) between the probability density 

function (PDF) curve of the estimated distribution using the best fit 

parameter calculated in step 2 and the PDF curve of the distribution 

estimated using the non-parametric kernel density method. We try the 
above three steps for all five distributions.  

Fig. 5 shows one example of the distributions fitting the histogram 

of observed threshold voltages. The tested data is characterized at 

1000 P/E cycles, which is within the nominal lifetime of the 

experimental flash memory. The distributions of all three 

programmed states are far away from each other, and there is a large 

margin between neighboring states. We can also see that non-

parametric kernel density estimation captures the peak of the 

histogram and fits the experimental data better than any parametric 

distribution. Fig. 6 shows the RMSE between the five parametric 

distribution models and the observed experimental data for three 

programmed states. Note that the RMSE is averaged over 10 
randomly selected locations. We make several observations. 

 
Fig. 6 Comparison of the fitness (RMSE) of different distributions 

First, observing the average RMSE across all programmed cell 

states, the best-fit distributions for the threshold voltage data are Beta, 

Gamma, Gaussian, Log-normal and Weibull. Second, the Gaussian 

distribution ranks in the middle among all the distributions, and its 

RMSE percentage is only about 22% compared to the best fitting non-

parametric distribution. However, a Gaussian distribution fits all three 

programmed states almost equally, while the fitness of the other 

distributions varies significantly among the three programmed states. 

Thus, we conclude that a Gaussian distribution is a decent model for 

flash cell threshold voltage distributions. In addition, a Gaussian 

distribution has closed form expressions for use in memory signal 

processing (MSP) and ECC algorithms, such as soft information 

estimation for LDPC codes [9]. Applying such algorithms to flash 

memory requires less effort if threshold voltage distributions can be 

modeled as Gaussian.  

We conclude that, in general, although the threshold voltage 

distribution of our experimental flash memory is not strictly Gaussian, 
we can roughly model it as Gaussian, with decent accuracy. 

B. Independence Analysis of Threshold Voltage Distribution 

To evaluate the space correlation of threshold voltages of flash 

memory cells in different locations, we randomly select 50 locations 

inside the flash chip, which have endured the same number of P/E 

cycles. For each location, we tested the threshold voltage of 1024 

cells to form one threshold voltage vector. We calculate the 

correlation coefficient matrix over all vectors and show the absolute 

value of the matrix in Fig. 7. Note that the correlation coefficient is a 

number between 0 and 1, which evaluates the correlation between 

random variables. A larger number means higher correlation and 0 

means no correlation. We can see that the correlation between cell 

vectors in different locations is low, below 0.05. Only the diagonal of 

the correlation matrix reaches 1, because it is the correlation between 

the threshold voltage vectors at the same locations. This means that 

that the threshold voltages of cells in different locations are almost 

independent to each other. 

 
Fig. 7 Correlation of the threshold voltages of flash cells in different locations 

We also evaluate the correlation of the threshold voltages of the 

same flash memory cells observed at different P/E cycles (ranging 

from 3k up to 50k). Each testing sample forms one threshold voltage 

vector to express the threshold voltage random variable at certain P/E 

cycles (the same cells are programmed to the same value at every P/E 

cycle). Then, we calculate the correlation coefficients of the vectors 

between different P/E cycles and show the results in Fig. 8. Here, the 

x-axis is the P/E cycle gap between two testing samples and y-axis is 

the correlation coefficient between the observed threshold voltages in 

the two testing samples. When the P/E cycle gap is small between the 

two samples, correlation of threshold voltages of the two samples is 

high, indicating that the threshold voltage distribution stays similar at 

similar age (i.e., number of P/E cycles) for the same set of flash 

memory cells. As the P/E cycle gap increases between the two 

threshold voltage distribution samples, the correlation coefficients 

decrease, indicating that the threshold voltage distribution of the same 

programmed value gets distorted as the same flash cells age. This is 

because each P/E operation causes defects in a flash memory cell, and 

the cell’s properties change with P/E cycles. However, we note that 

the correlation of threshold voltage distributions with a gap of ~5k 

P/E cycle operations, is still about 0.4, indicating that the threshold 

voltage distribution of the same cells gets distorted slowly with P/E 

cycles. Note that the correlation coefficient of different cells under the 

same P/E cycles is below 0.05. 

 
Fig. 8 Correlation of threshold voltages at the same location under P/E cycles  

Thus, we can conclude that: (1) the threshold voltage distribution is 

almost independent for flash cells in different locations; (2) the 

threshold voltage distribution is correlated with that which was 

observed on the same flash memory cells previously at an earlier age 

(i.e., number of P/E cycles).  

C. Flash Cell as a Channel: Noise Evaluation 

Ideally, when flash memory cells are programmed to the same 

target data value (ideally, the same target threshold voltage), the cells’ 

observed threshold voltages should be the same. However, the 

observed threshold voltage signal is actually the signal to be 

programmed mixed with noise. In fact, the flash cell can be thought 

of as a communication channel that takes an input program signal (i.e., 

a target threshold voltage) and outputs an observed signal (i.e., 

observed threshold voltage). We can decouple the Vth of the flash 
memory cell into two parts: signal and additive noise: 
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The signal can be extracted as the mean of the observed Vth 

distribution, while the residual part of the Vth distribution after the 

mean is subtracted amounts to noise with mean value equal to zero. 

The power spectral density (PSD) function describes how the 

energy of the signal under investigation is distributed over frequency. 

We show the PSD of the program noise in Fig. 9. We can see that the 

PSD of the noise is flat over the whole frequency domain and 

contains similar power (<20dB range) within a fixed bandwidth at any 

center frequency. We also show the auto-correlation function of the 

program noise in Fig. 10. We can see that there is a high spike at zero. 

The flatness of the power spectral density function and the high spike 

at zero for the auto-correlation function indicate that the program 
noise is just white noise.  

 
Fig. 9 Power spectral density function of program noise in frequency domain 

 
Fig. 10 Auto correlation function of program noise in time domain 

In summary, if we consider the flash memory cell as a 

communication channel that passes a signal (i.e., the threshold voltage 

the cell is to be programmed to), we find that the program noise is 

additive to the signal and is white noise, which follows a Gaussian 

distribution. With ideal wear leveling, the program operation on a 

flash memory cell can be modeled as a program signal passing 

through an additive white Gaussian noise (AWGN) channel. With 

ideal wear leveling, the data that is programmed in a cell is logically 

independent of the data previously programmed in the cell (because 

ideal wear leveling ensures that the same logical address does not get 

mapped to the same physical address). As a result, the flash cell can 

be modeled as a memoryless channel, i.e. one in which the output 

threshold voltage is only dependent on the most recent input voltage 

and independent of past input/output threshold voltages. However, if 

data is repeatedly programmed to the same location, the flash cell 

cannot be modeled as AWGN channel as the output of the channel is 

no longer independent of the channel’s history of use (i.e., the channel 

has memory). 

V. P/E-CYCLING NOISE MODELING AND PREDICTION 

Threshold Voltage Distributions under P/E Cycling: The 

threshold voltage distributions of flash memory cells under various P/E 

cycles are shown in Fig. 11. Due to hardware limitations, we cannot set 

the read reference voltage to be negative to test the threshold voltage of 

cells in the erase state from the flash controller. Thus, we just show the 

distributions of cells in the three programmed states. Note that the 

nominal lifetime endurance of the tested flash memory is only 3k P/E 

cycles, and we explore the distributions up to 45k P/E cycles, which is 
about 15 times the flash lifetime. Several observations are in order. 

First, the threshold voltage distribution shifts to the right 

systematically as P/E cycles increase. This can be explained from the 

intrinsic properties of flash programming operation. Flash memory 

cells are programmed using the incremental step pulse programming 

(ISPP) operation iteratively [15]. Before programming, ISPP sets 

certain target threshold voltages for the cells to be programmed based 

on the target programming data. ISPP can be divided into several 

sequential program-and-verify steps. In each step, ISPP programs a 

certain amount of electrons into the floating gates to increase the 

threshold voltage and then verify whether the programmed threshold 

voltage is above the target. This process continues iteratively until the 

first time ISPP detects that the programmed threshold voltage is above 

the target level and then the iteration stops. Thus, ISPP can guarantee 

the threshold voltages of flash cells to be above the target level. The 

gap between the final programmed threshold voltage and the target 

level is controlled by the last iteration of ISPP. To keep the distribution 

narrow and reserve enough margins between neighboring states, ISPP 

must accurately control the number of electrons to be programmed in 

the last iteration so that the threshold voltage of the flash cells is not 

too far away from the target level. However, each P/E cycle operation 

will apply a strong electric field (at the level of a few million volts per 

centimeter) on the tunnel oxide between the floating gate and the 

substrate to allow electrons to tunnel through. Each time electrons pass 

through the tunnel oxide, some defects will remain due to electron 

trapping and de-trapping. As P/E cycles increase, more defects 

accumulate on the tunnel oxide of the flash memory cell and thus the 

properties of the oxide change. More electrons can be programmed 

into the floating gates at higher P/E cycles due to trap-assisted 

tunneling [16], given the same program pulse voltage. Threshold 

voltage control of ISPP at high P/E cycles is therefore not as accurate 

as that at low P/E cycles. The flash cells tend to be over-programmed 

at high P/E cycles, and we can see that the threshold voltage 

distribution shifts to the right (i.e., toward higher threshold voltages) 
systematically as P/E cycles increase.  

Second, the threshold voltage distributions disperse and become 

wider as P/E cycles increase. This can be due to two potential reasons. 

First, due to process variation effects, different flash cells’ properties, 

e.g., tunnel oxide characteristics, are different. These properties can 

also get affected differently for different cells as the P/E cycles 

increase. As a result, each cell’s tolerance to defects that are caused by 

increased P/E cycles is different, leading to increased variation in 

threshold voltage across cells with increasing P/E cycles. Second, 

different flash cells are programmed with different data patterns 

(because we program random data to different flash cells in these 

experiments), which could cause different cells’ properties to get 

affected differently as P/E cycles increase, leading to increased 
variance in threshold voltage levels.  

As P/E cycles increase, the margin between neighboring 

distributions (of different programmed states) decreases and eventually 

the distributions start overlapping. The cells with threshold voltage 

programmed in the overlapping range of the neighboring distributions 

could be misjudged as being programmed to a value other than the 

original targeted value and thus cause read errors. We can see in Fig. 

11 that the distribution for the P2 state extends to the region that 
belongs to the distribution for the P3 state after 20k P/E cycles. 

Modeling of P/E-Cycling Noise: To understand distribution 

changes with P/E cycles in a quantitative way, we show the correlation 

of distribution means and standard deviations with P/E cycles in Fig. 

12 and Fig. 13 respectively. The mean and standard deviation of 

threshold voltage distributions are highly correlated with P/E cycles. If 

we explore up to 45k P/E cycles, which is 15 times longer than the 

nominal flash endurance (i.e., 3k), the distribution mean and standard 
deviation can be modeled to increase exponentially with P/E cycles: 

 
PEcycleCstdmean

th eBAPEcycleV ××+=)(,
 (4) 

where A, B and C are constant coefficients and the exact numbers are 

different for the three programmed states. PEcycle is the number of 

program/erase operations (in the unit of thousand P/E cycles) that the 

flash memory has endured before the distributions are tested. For the 

P1, P2 and P3 state, the average accuracy of the exponential model for 

mean value is 97.9%, 97.6% and 96.5%, while the accuracy for the 

standard deviation is 97.8%, 97.5% and 98.1% respectively. If we only 

explore 8 times longer P/E cycles than the nominal flash endurance 
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(i.e., up to 25k P/E cycles), the distribution mean and standard 
deviation can be modeled to increase linearly with P/E cycles: 

 PEcycleEDPEcycleV stdmean

th ×+=)(,
 (5) 

where D and E are constant coefficients. The average accuracy of the 

linear model for the mean value is 89.4%, 93% and 92%, and for the 

standard deviation it is 95.9%, 94.5% and 89.1%. The linear model is 

not as accurate as the exponential model, but it is much simpler and 
can still achieve > 89% accuracy. 

 
Fig. 11 Threshold voltage distribution under various P/E cycles using non-

parametric kernel density estimation  

 
Fig. 12 Mean value (µ) of voltage distributions vs. P/E cycles  

 

Fig. 13 Standard deviation value (σ) of voltage distributions vs. P/E cycles  

The standard deviations for all three programmed states are close to 

each other at 3k P/E cycles, which is just at the end of flash nominal 

lifetime endurance. This means that ISPP is carefully designed to 

guarantee equal distribution width for all states within the nominal 

flash endurance. However, the rates of increase in both mean and 

variance beyond the nominal flash endurance vary among different 

programming states. The mean and variance change over P/E cycles 

for the distribution for the P1 or P2 states is much larger than the mean 

and variance change over the same number of P/E cycles for the P3 

State. In other words, the voltage distribution of a state with a lower 

threshold voltage gets distorted much more with P/E cycles (this effect 

can be observed in Fig. 11 as well, which shows the distributions for 

states P1 and P2 shifting and widening much more than that for state 

P3 as P/E cycles increase). This is because a flash cell in the state with 

a higher threshold voltage has more electrons on the floating gate and 

the effective electric field across the tunnel oxide is smaller compared 

to a cell in a state with a low threshold voltage. Thus, given the same 

condition for the last iteration of ISPP, a cell with a high threshold 

voltage (i.e., in the P3 state) is less likely to get more electrons 

programmed than a cell with a low threshold voltage (i.e., in the P2 or 
P1 state).  

Signal-to-Noise Ratio Analysis: We can model the 2-bit MLC NAND 

flash programming as 4-state pulse-amplitude modulation (PAM) in 

digital communication [17]. The distance between the mean values of 

neighboring states can be modeled as the signal. The variance of the 

distributions can be modeled as the noise. The noise increases with P/E 

cycles, and as we can see in Fig. 13, the distribution variances (or 

standard deviation) increase with P/E cycles.  An important property of 

communication channels, the signal-to-noise-ratio (SNR) is shown in 

Fig. 14. We can see that the SNR drops linearly as P/E cycles increase. 

From 3k P/E cycles to 45k P/E cycles, the SNR drops from about 11dB 

to 5.5dB.  On average, the SNR inside the flash memory deteriorates 

about 0.13dB every 1k P/E cycles. This information can be used to 

develop adaptive error correction mechanisms that provide higher error 

correction strength with the number of P/E cycles, an idea whose 

exploration we leave for future work. 

 
Fig. 14 Signal-to-noise ratio (SNR) vs. P/E cycles 

VI. CONCLUSIONS 

We have characterized, analyzed, and developed models for threshold 

voltage distributions in state-of-the-art 2Y-nm NAND flash memory, 

with the goal of enabling predictive models that can aid the design of 

more sophisticated error correction methods, such as LDPC codes, in 

future flash memories. Our experimental evaluations show that the 

developed model can accurately predict the changes in the threshold 

voltage distribution as the number of P/E cycles increases. As flash 

memory continues to scale to smaller feature sizes, we hope that the 

characterization, understanding, and models provided in this work 

would enable the design of new and more effective error tolerance 

mechanisms that can make use of the observed characteristics and the 
developed models.  
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