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Thresholding Neural Network for Adaptive Noise
Reduction

Xiao-Ping ZhangMember, IEEE

Abstract—in this paper, a type of thresholding neural network  component because both of them may have similar appearance
(TNN) is developed for adaptive noise reduction. New types of soft jn spectrum. Also, the FIR (finite impulse response) filter based
and hard thresholding functions are created to serve as the ac- gige reduction techniques in the transform domain have been

tivation function of the TNN. Unlike the standard thresholding . tigated [11. [21. H . the t f fi d
functions, the new thresholding functions are infinitely differen- investigated [1], [2]. However, since the transformation use

tiable. By using the new thresholding functions, some gradient- 1S usually linear, the overall filtering is equivalent to a linear
based learning algorithms become possible or more effective. The filter. The convergence speed of the adaptive linear filter may

optimal solution of the TNN in a mean square error (MSE) sense pe improved in the transform domain, however, the optimal

is discussed. It is proved that there is at most one optimal solu- gise yeduction performance is the same as the conventional
tion for the soft-thresholding TNN. General optimal performances . - L
time domain linear filtering.

of both soft and hard thresholding TNNs are analyzed and com- )
pared to the linear noise reduction method. Gradient-based adap- ~ Recently, wavelet thresholding methods proved to be pow-
tive learning algorithms are presented to seek the optimal solu- erful tools for denoising problems [3]-[12]. The main purpose
tion for nPiSS Leiuﬁtilon- The a'QOYitﬁlmS include Sgper\éised and of these methods is to estimate a wide class of functions in some
unsupervised batch learning as well as supervised and unsuper- i

vised stochastic learning. It is indicated that the TNN with the sto- Smoothn.ess spaces, such a.S.Besov Sp"?‘ce an.d T”ebel. space, etc.,
chastic learning algorithm scan be used as a novel nonlinear adap- from their corrupted (by_ additive Gal_JSS|an noise) ver5|or_15. The
tive filter. It is proved that the stochastic learning algorithmis con- Main wavelet thresholding scheme is the soft-thresholding [5].
vergent in certain statistical sense in ideal conditions. Numerical This technique is effective because the energy of a function
results show that the TNN is very effective in finding the optimal ~ with some smoothness is often concentrated on few coefficients
solutions of thresholding methods in an MSE sense and usually while the energy of noise is still spread in all coefficients in

outperforms other noise reduction methods. Especially, it is shown - \ -
that the TNN-based nonlinear adaptive filtering outperforms the the wavelet domain. The Donoho’s wavelet soft-thresholding

conventional linear adaptive filtering in both optimal solution and ~Method achieves asymptotically near optimal in the meaning
learning performance. of minimax mean square error (MSE) over a wide range set
Index Terms—Adaptive noise reduction, image denoising, of functions with certain.smoothness. However, it oftgn tends
mean square error (MSE), optimal estimation, thresholding, t0 oversmooth the function and thus remove some important
thresholding neural network (TNN), wavelet transforms. high-frequency components. In many signal processing appli-
cations, we need to search for the optimal minimum MSE so-
lution usinga priori information for a specific signal. The op-
timal minimax solution often has only theoretical meaning in
OISE reduction is a traditional problem in signal prosuch cases because it may be far from the optimal solution for a
cessing as well as many applications in the real worldpecific practical problem. Another natural thresholding scheme
Conventional linear system adaptive filtering techniques hagglled the hard-thresholding has also been tested and reported to
been widely used in adaptive noise reduction problems. Howave better MSE performance in some simulations [7].
ever, because of the linearity of the operation, the filter cannotThe questions are: 1) What are the optimal solutions of
change the intrinsic property of the original noised signathresholding methods in an MSE sense? i.e., what is the best
such as regularity, etc., Indeed, the linear filter is a kind efchievable noise reduction performance of the thresholding
linear manipulation of the spectrum of a signal because theethods? 2) In what situation, can the thresholding noise
complex exponential function’= is the eigenfunction of a reduction methods perform better than linear filter-based
linear system. Therefore, it is difficult to suppress the noisaethods? 3) How can the optimal solutions of thresholding
and keep the signal using linear filters when the spectrum ofiethods be achieved in real applications? It is noted that all the
signal is somewhat wideband and nonstationary, which is tberrent thresholding methods cannot completely adapt to the
usual case. For example, some transient impulses can caysimal solution for a given specific signal.
wideband components in the signal. The linear filter tendsIn this paper, a new type of thresholding neural network
to eliminate or keep both noise and this type of importaftNN) for noise reduction in various applications is developed.
New types of smooth soft-thresholding and hard-thresholding
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methods are investigated. Subsequently, the gradient-based Standard Thresholding Functions
learning algorithms of TNNs are presented to seek the optimal ' - ’ .
solution in various situations and applications. It is also shown — Soft-Thresholding |
that the presented TNN can be used in real-time time-scale or ||~ Hard_ThreShOIdmg

time-frequency adaptive noise reduction. Several numerical
examples are given. The results show that the presented TNN
and its learning algorithms are very effective in finding the
optimal solutions of thresholding methods in an MSE sense in |
various noise reduction applications.

This paper is organized as follows. Section Il reviews the
basic concepts and results of thresholding methods. In Sec- -tf
tion Ill, the thresholding neural network (TNN) and new types
of thresholding functions are presented. The optimal solutions
of the thresholding methods are discussed in Section IV. The
learning algorithms for different applications are introduced in
Section V. Section VI presents several numerical examples to
demonstrate our methods. Finally, Section VII concludes tif@. 1. The standard soft and hard thresholding functions.
paper.

th

—t 0 t

is nonlinear. The thresholding methods use nonlinear opera-
[I. SOFT-THRESHOLDING AND HARD-THRESHOLDING tions to reduce the noise. The most commonly used thresholding
functions are the soft-thresholding function and the hard-thresh-

i ) olding function. The standard soft-thresholding function is de-
The general noise reduction problem can be formulated @seq as

follows. Assuming the real signal is and the observed signal ett @< —t
y = x + n, wheren is the noise, we can obtain an estimate (2, 8) 2 san(x)(|z] — )y =4 0 ’ <t ()
Z = f(y) of the real signak from the observed signgl. The (%, 1) = SeITUE] = Hy = =
Lo . L .Y z—t, x>t
objective of noise reduction is to reduce the noisg amd make
the estimaté as close tar as possible. The commonly used criwheret > 0 is the threshold. And the standard hard-thresh-
teria to measure the closeness is the error engligy— z||?, ~olding function is defined as
i.e., mean square error (MSE). Note that in the above formula- .
tion the signak: can be a finite data sample set, or an infinite nn(z,t) = z, o] > (5)
: i 0, |z|<t
data sample set generated by a real-time stochastic process. In
the later case, a real-time adaptive estimation method mayfifese two functions are shown in Fig. 1.
necessary. o . In thresholding methods, the observed data samples with
For simplification of analysis, first we consider the formegmaller (thant) values are suppressed and the samples with
case, i.e, the signal is a finite data sample set, denoted bjager (thant) values are kept. Therefore, when the smaller

A. Noise Reduction Problem and Thresholding Methods

vectorz = [zo, 21, .. -, zn-1]", and then the observed signakamples are dominated by noise components, the thresholding
Is operation can suppress the noise in observed data samples.
y=z+n (1)  B. Wavelet Thresholding
ie., Recently, soft-thresholding in the wavelet transform domain
. has been studied in statistical estimation problems and proved
yi=wi+n, i=0,...,N—1 (2)  to have many good mathematical properties [5]. There are three

wheren is a noise data vector. Gaussian white noise with distﬁ:[eps in the stand_ard wavelet thresholding method [5].
bution N (0, o?) is commonly assumed for. In the following 1) Apply the discrete wavelet transform (DWT) to the ob-

discussion, we will first stick to these simplifications and then ~ Served data vectarand obtain the empirical wavelet co-
show that our results can be generalized to the general stochastic  efficients.

process. 2) Apply the nonlinearity—soft-thresholding to the empir-
The obijective of noise reduction is to estimate the real signal ¢l wavelet coefficients, where a universal threshiote
z from y to minimize the MSE risk oy/2log(N)/N is chosen.

3) Use the inverse DWT on thresholded wavelet coefficients
and obtain the estimated function vector

The basic idea of the wavelet thresholding method is that
the energy of a signal (with some smoothness) is often concen-
wherez = f(y). trated on few coefficients while the energy of noise is spread

For linear noise reduction, the estimatds a linear com- among all coefficients in the wavelet domain. Therefore, the
bination of observed data samplgs The estimation operator nonlinear soft-thresholding function tend to maintain few
f(-) is linear. For nonlinear noise reduction, the opergtp) larger coefficients representing the signal while reducing the

N-1
) 1 1 )
J@a)=5ElE—ol =5 3 Bai— ) @)
=0
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noise coefficients to zero in the wavelet domain. It is proved Xo X Xy
[5] that the above soft-thresholding based wavelet thresholding T T --------- T
der_10|smg metho_d achieves a “noise free” prpperty Q.e., the Tnverse Linear Orthogonal
estimated signal is at least as smooth as the original signal) and Transform
is asymptotically near optimal in the meaning of minimax MSE
over a wide range of smoothness classes. A universal threshold Vo vy V-
is intuitively expected to uniformly remove the noise since the
white noise still has the same variance over different scales in n<t) 1) B @
the transform domain. Error J(£) x
Scale-dependent thresholds can be used in Step 2) of the ", u
wavelet thresholding scheme so that the denoising result can
adapt to the local smoothness of the function. A scale-depen- Linear Orthogonal Transform
dent threshold selection procedure called $ueeShrink3] is
proposed based o8tein’s Unbiased Risk Estima(SURE). T T _________ T
It proved to be smoothness-adaptive in a near minimax sense. Yo Wi YN
However, SureShrinkno longer has a “noise free” property
since SURE risk is just an estimation of the MSE. Fig. 2. The structure of thresholding neural network (TNN).
Note that the MSE is the most commonly used criteria in
signal processing applications. In wavelet thresholding researghltilayer neural network. In TNNs, a fixed linear transform
for function estimation, it is also often used as the criteria i6 used and the nonlinear activation function is adaptive, while
select the threshold [6], [7BureShrinkapproach uses MSE asin conventional multilayer neural networks, the activation func-
the risk of estimation. Therefore, in this paper, we use the M3@n is fixed and the weights of the linear connection of input
to evaluate the noise reduction performance. signal samples are adaptive. We use the term “neural network”
From the basic idea of the thresholding method, we can rd¥cause the TNN has some basic elements similar to a conven-
sonably infer that the thresholding method can reduce noisetipnal neural network, i.e., interconnection of input signal sam-
a transform domain, as long as the transform can concentr@l@s, nonlinear activation functions, and adaptivity to a specific

the signal energy but spread the noise energy in the transfdfut, etc. In addition, it is possible to change the fixed linear
domain. transform in Fig. 2 to an adaptive linear transform. In this way,

both the weights of linear connections of input signal samples
and the nonlinear activation function are adaptive, and then the
conventional multilayer neural network techniques may be in-
A. Neural Network Structure corporated. This will be a meaningful exploration we are going

We construct a type of thresholding neural network (TNNJP pursue in the future.
to perform the thresholding in the transform domain to achieve , ,
noise reduction. The neural network structure of the TNN - Newsoft and Hard Thresholding Functions
shown in Fig. 2. Itis well known that it is very important for a neural network
The transform in TNNs can be any linear orthogonal tran# have good learning algorithms [13]. Most learning algorithms
form. The linear transform performed on observed data sanf-a neural network employ the gradients and higher deriva-
ples can change the energy distribution of signal and noise sdives of the network activation function. In addition, high-order
ples. By thresholding, the signal energy may be kept while tlddferentiable activation functions make a neural network have
noise is suppressed. For a specific class of signal, the apgvetter numerical properties. Itis desired that the activation func-
priate linear transforms may be selected to concentrate sigtiah of a neural network can be differentiated and has high-order
energy versus noise, and then a good MSE performance carbgvatives so that the gradient-based learning algorithms can
achieved. Here the thresholding functions are employed as nba- developed. However, the standard soft-thresholding func-
linear activation functions of the neural network. The inverg#on is only weakly differentiated and does not have any high-
transform is employed to recover the signal from the noise-rerder derivative. The standard hard-thresholding function is a
duced coefficients in the transform domain. Specifically, sinaiscontinuous function and cannot be differentiated at all. The
most signals have some kinds of regularities and the wavedetthor’s previous work presented a new type of soft-thresh-
transform is a very good tool to efficiently represent such chastding function which has second order weak derivatives and
acteristics of the signal, the wavelet transform is often a suitalgeoved to be useful [14]. In the following, we will present new
linear transform in TNNs. types of smooth soft-thresholding and hard-thresholding func-
Note that there are several orthogonal channels in the tratiens which are infinitely differentiable.
form domain. We denote the set of coefficients at charirasd The new type of soft-thresholding function is constructed as
I;. The different thresholds; are used in different orthogonalfollows:
channels and they are independent, i.e., the thresholds of dif- 1
ferent orthogonal channels can be optimized independently. )=z 45 (\/(x —OP A=V o+ )‘) (©)
It is also worth pointing out that although the term “neuralvheret is the threshold and > 0 is a user-defined (fixed)
network” is used, the TNN is different from the conventiondiunction parameter. Obviously, the soft-thresholding functions

I1l. THRESHOLDING NEURAL NETWORK
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nst(z,t) have all higher order derivatives far > 0. Note that New Soft-Thresholding Functions n_(x.2)
when A = 0, n.(z,t) is just the standard soft-thresholding : : :
functionn,(z,t). The new thresholding functions with different 5 5
parameterA are shown in Fig. 3(a). It can be seen that the
new thresholding functions perform the operations similar to the
standard soft-thresholding function. Therefore, similar thresh
olding effects of the estimate using the new thresholding func
tions can be expected.

The new type of hard-thresholding function is motivated by
the sigmoid function [13]. It is constructed as follows:

1 1
1+exp{%ﬂ't} 1+exp{%b_t}

me(z,t) = +1)x

(1)
wheret is the threshold angs > 0 is a user-defined (fixed)
function parameter. It is also easy to see that the new harc
thresholding functions have all higher order derivativesfor
0. Wheny — 0, mui(z,t) is just the standard hard-thresh-
olding functionsy, (x,t), i.e.,lim, o e (x,t) = m(z,t). The
new hard-thresholding functions with different parametare
shown inFig. 3(b). It can be seen that the new hard-thresholdin
functions also have the thresholding effect similar to the stan
dard hard-thresholding function. However, by using new hard
thresholding functionsy.:(x,¢), it becomes possible to con-
struct a gradient-based learning algorithm for the TNN. Fur-
thermore, the SURE risk, which employs the second deriva
tives of the estimate, can be utilized in unsupervised learnin
of the TNN by using the new type of hard-thresholding func-
tion. These will be shown in Section V-B1.

When the gradient of the thresholding functions with respec
to the threshold is employed in the learning algorithm, new
soft-thresholding functions have better adjustability since the'
have nonzero derivatives for all The standard soft-thresh-
olding function does not have adjustability whign < ¢ since
it has zero function values and derivatives fof < ¢. This is
one reason why the new type of thresholding function has bette
numerical properties than the standard thresholding function i
adaptive learning processes.

Apparently, the larger are the function parameteesd;: in
(6) and (7), t_he more adlustablhty the ne_W threShC)ldmg fun%Tg. 3. New thresholding functions. (a) New soft-thresholding functions. (b)
tions have, since they will have larger derivatives whan< ¢.  New hard-thresholding functions.

However, the thresholding ability of the new functions decreases
when andy are too large. Actually, wheR, ;i — oo, the new .  ieyed? These are natural questions when we evaluate a
thresholding functions become a linear function and they haye hod since the best performance defines all the potential of
no thresholding ability at all. We suggest selecting a sthathd fetho Dest perorma . P

. ) ._the method, and it is our objective to achieve the best perfor-
u so that the new thresholding functions are good approxim

. X : ; Aance of the method in practice. In this section, the optimal
tions of the standard thresholding functions and practically kegglution of the TNN and i[t)s properties will be discussedp The
all good properties of standard thresholding techniques. :

learning algorithms of the TNN to achieve the optimal solution
will be presented in the next section.

Since the orthogonal linear transform used in the TNN pre-
serves the signal energy, the MSE of the estimation in the trans-
form domain is equal to the MSE of the estimation in the time

For any method dealing with the noise reduction problerdpmain. Furthermore, since the thresholds of different orthog-
we want to get the bottom line of its performance. That ignal channels are independent and the thresholds of different
we want to ask the questions: What is the best performanceosthogonal channels can be optimized independently, we will
this method? What are the properties of the optimal solutiamly analyze the optimal solution of one channel in the trans-
of the method? How can the optimal solution of the methddrm domain in the following, without loss of generality.

(b)

IV. ON OPTIMAL PERFORMANCE OF THETHRESHOLDING
NEURAL NETWORK
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A. The Optimal Solution of the Soft-Thresholding As can be seen, for both thresholding methods,
In many nonlinear optimization problems, such as trainirT&l(t) = 2_; J(t|z;). Forsoft-thresholdingl; () = 3_; J,(t|x:)
of an artificial neural network, a very troublesome issue is thf€ré we will use subscript to represent different activation

there may be more than one local optimum. This often makigictions), where

it difficult to find the global optimal solution of the problem. 1, (t|%) :EE {62|$}
However, in the following, we will prove that when using the 2 ¢
standard soft-thresholding function as the activation function, _1 [/Oo (€ — )2 pn(€)de
the TNN has only global optimal solution. 2L/, "
Theorem 1: Supposer; are signal samples,; are Gaussian , [T
white noise samples with i.i.d. distributiaN (0, 52) and the +x / pn(8§)dg
observed noise corrupted signal samplesiare z; + n;, i = _t_;t_’”
0,...,N — 1. Let &; be the noise reduction output using the +/ (£+t)2pn(£)d£}
standard nonlinear soft-thresholding method, i.e., —o0
Z; = ns(yi, t) ®) _1) e FE2 4 (22— 02— )
wheret > 0. Define the risk function to be the MSE, i.e., 2
L > _g)— F(—t— )]+ -
sy = {Z } © X [F(t )~ F(—t = 2] + 7
with £; = Z; — z;, and denote the optimal solution < | (t + 2) exp [_ (t+ at)2:|
t* = argminJ(¢). (20) 202
t

There exists at most one optimal solutign> 0 and¢* = 0 if (t ) (t — )2
and only if the noise levet = 0. TEx)exp | =5
See Appendix A for proof.

Remarks: B \/jot [exp [_(t +x)2}
1) Theorem 1 shows that if there is an optimal threshold solu- 4 207
tion for MSE risk./(¢), then it is unique. There is no local (t — )2
minima problem when the gradient-based optimization al- + exp [— 92 H } (11)
gorithms are used.

2) The results in Theorem 1 hold for the thresholding of th@hereF'(z) = [*__ p,(¢)d¢ is the distribution function of the
data at one channel in the transform domain of the TNNdditive Gaussian noise
Since the threshold parameters at different channels in thesimilarly, for hard-thresholding activation function (5),
transform domain are adjusted independently as we ment) = >, Ju(tlz;), where
tioned before, Theorem 1 also holds for the whole TNN. 1
3) Note that the conclusion in Theorem 1 is not a trivial re-  J(t[z) == E {£}|z}
. . . 2
sult of convexity. Althoughy,(x,t) is convex with respect 1r oo P
to¢ > 0, the risk function/(¢) is not convex. The properties == [ Epn(&)de + / Epn(6)de
of .J(¢) depend on the distribution of the noise, i.e., the con- 2
clusion does not hold for any distribution. It is still an open
guestion to verify the validity of the Theorem 1 for some
other commonly used noise distributions. 1
4) The conclusion in Theorem 1 is derived from the standard == {02 + (2% — D[F(t — z) — F(—t — z)]
. X . . . 2
piecewise soft-thresholding function. Since the new soft-

t—x —t—x;

s [ e

— o0

thresholding functions in (6) have properties similar to the n o [(t +2)exp [_ (t+ $)2:|

standard soft-thresholding function, it is reasonable to ex- Vor 202

pect that the conclusion in Theorem 1 also holds for the new (t — x)?

type of soft-thresholding function in (6). +(t—x)exp [— 552 } } (12)
5) This conclusion does not hold for hard-thresholding activa- g

tion functions. Itis easy to find a numerical counter-example Then the MSE risk difference between soft-thresholding and

to verify this. hard-thresholding is
B. Soft-Thresholding, Hard-Thresholding, and Linear Ada(t|lz) =ds(t|lx) — Jn(t|z)
Filtering 1 P— [ \/5 .
Unlike linear filtering, it is not tractable to find the analytic =3ttt = Pt — )] =y 2o
optimal solution of the nonlinear thresholding method, as we y 5 ) 5
can see from the proof of Theorem 1. In the following, with the % [exp [_%} + exp [_@” }
help of numerical analysis, the optimal performances of various 20 20

thresholding methods are analyzed and compared. (13)
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Apparently, the MSE risks of soft-thresholding anc Risk for soft-thresholding
hard-thresholding depend on the signal energy distributiona 10 '
the signal-to-noise-ratio (SNR). There is no simple relationsh
between them due to the nonlinearity. Therefore, the gene
properties of these risks are investigated using numeric
methods as follows. Without loss of generality, we assun
the noise leveb? = 1 (i.e., let the signal and threshold level
be normalized by the SNR). The soft-thresholding risk (11
hard-thresholding risk (12) and their difference (13) are shov"
in Fig. 4(a)—(c), respectively. The grayscale in the figure
is normalized according to the MSE risk. In Fig. 4(c), thi
absolute value of the risk difference is shown and the positi\
negative and zero regions are indicated. From the figures
can see that when the threshdlds much larger tha: and

signal x

n, both soft-thresholding and hard-thresholding threshold : 0 5 10 15
data samples to zero, which corresponds to the zero zc threshold ¢

inFig. 4(c). When the signat is relatively larger than the (a)

thresholdt and noiser, the hard-thresholding will have better Risk for hard—thresholding

MSE performance, which corresponds to the positive zone
Fig. 4(c). Generally, the MSE of the estimate of large sign
samples is dominant in whole MSE risk. This can justify th
reported results [7] that in most cases the hard-thresholdi
gives better performance than soft-thresholding, as far as -
optimal solution of the method is concerned.

Note that when the signal power is comparable with the nois
the soft-thresholding method seems to give better MSE ris .
However, in such a case both thresholding methods tend to s
press both signal and noise. In Fig. 5, the optimal threshiold
for conditional MSE risks (11) and (12) are shown. When tt
signal power is comparable with the noise power, the optim
t is large and tends to threshold both signal and noise to ze

signal x

Practically, there is no useful signal after such thresholding. 5
Ho wever, since the hard-thresholding MSE risk function usi threshold ¢
ally has many local minima, it is difficult to find the global (b)

optimal threshold for hard-thresholding methods. In additio
since the standard hard-thresholding function is discontinuo
it is even difficult to find a local minimum for it. In wavelet
thresholding methods [5], it is also proved that the soft-thres
olding method may keep better smoothness of the true sig
than the hard-thresholding method.

Since the nonlinear thresholding methods are used to repl
the linear filter for noise reduction applications, it is of interes
to compare them with a linear operation on the signal in terr
of the optimal MSE risk. For comparison, here we consider t
simplest linear operation for noise reduction, i.e.,

Risk difference

signal x

I =ay (14)

where a is the linear parameter. The conditional MSE risl
Ji(alx) can be written as

. threshold ¢
Ji(alz) = 5 E(ay — o) (15) (c)

It is easy to obtain that the optimal parametefior Ji(a|x) iS  Fig.4. Risks of soft-thresholding and hard thresholding with normalized noise
Aopt = x2/(02 + 332) and the optimal conditional MSE risk is powero® = 1. (a) Soft-thresholding. (b) Hard-thresholding. (c) Risk difference
2 o 2 2 between soft-thresholding and hard-thresholding.
Tiop(alz) = 0%2% /2[(0? + 2%)].
The optimal conditional MSE risk of the above linear oper-
ator is plotted in Fig. 6. For comparison, the numerical optimédvel is still normalized. It can be seen that the optimal condi-
MSE risks of (11) and (12) are also shown in Fig. 6. The nois®nal MSE risk of this simple linear operator is better than both
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10 T T u T 05 —
/ — Hard-thresholding P
---  Soft—thresholding P

8t - 04r [/

i : A o
1 4 o
Z, S0l
£ 6\ Eo3r
s | e i
Té ' 2 ‘:
=] ! g i
= . h
._g 4 ' :g 0.2 H
Q 1 -g !
S 1 5} !
t 3] I R
ot | o1l — Linear operator
| ’ ---  Soft—thresholding
D N 2 Hard—-thresholding
% 2 4 6 8 10 % 2 4 6 2 10
signal x signal x

Fig. 6. Conditional optimal risks for linear operator (solid line),
Fig. 5. Conditional optimal thresholds for hard-thresholding (solid line) angbft-thresholding (dashed line) for a given signal vatueith normalized noise
soft-thresholding (dashed line) for a given signal vatueith normalized noise powero? = 1.
powers? = 1.

V. ADAPTIVE LEARNING ALGORITHMS OF TNNS TOWARD THE
soft-thresholding and hard-thresholding. However, this only in- OPTIMAL SOLUTION
dicates that for a constant signal, the linear operator performs
better. When the signal energy is concentrated on only few sami-
ples, the linear method still keeps the noise on small signal sam!n this section, we discuss the supervised learning algorithms
ples while the thresholding method removes the small sigri¥fithe TNN. In supervised learning, a reference signal serves
samples as well as the noise on them. By nonlinear operati@§,a teacher to evaluate the MSE in the learning process. The
the thresholding method exhibits better MSE performance. TR@IOwing two cases are considered.

can be illustrated by an example in an extreme case as follows!) The Original Signalz is Known: This case seems im-
_ 1 and practical since the original signal is usually unknown in prac-

tice. The objective of the TNN is to estimate the original signal.
However, the scheme can actually be used in two occasions: 1)
s\pll_hen the original signal is used as a reference signal, the TNN
can give us a numerical method to calculate the optimal thresh-
olds. Note that the global optimal thresholds of the thresholding
(No? 42/[2(No? + A?)]. Actually, if a is a vector, ie., a gen- rr_lethod can not be calculated analytically_ b_y clo_se form expres-
gion. 2) When there are some known training signal sequences

eral linear filter is used, the above MSE risk is still optimal whe . i . . )
f a relatively stationary signal, this scheme can be used to train

the signal spectrum is white. This can be proved by using o ! )
timal Wiener filtering [15], [16]. It can be seen that whahis ﬁ:g ;,J\lb,\.i,;;ite?lrt]?J;iirc])\}vhnestir;]gtlazgql\lﬂgnccaelbe used to process

relatively large, the optimal MSE risk of this linear operator is _; : ; . .
S . Since the soft-thresholding functiop (x, t) is weakly dif-
much inferior to the thresholding methods. ferentiable in Stein’s sense [14,,, for (3) can be calculated

From the above analysis, we can infer that, compared fgmerically by a gradient-based optimization algorithm. In

linear methods, the thresholding methods are more effect“g_,%mmg step:, the parametercan be adjusted as follows:
only when the signal energy is concentrated on few signal

Supervised Learning with the Reference

Suppose the signal is; = A§(¢),i¢ = 0,...,N
the noise is Gaussian nois¥0, 02), whereé is a Kronecker
6. If A > o and a relative large threshold < ¢ < A is
selected, the MSE risks of soft-thresholding and hard-thre
olding areJ,(t) ~ o2 + t* andJ.,(t) =~ o2, respectively. For
the linear operator (14), the optimal MSE risk.Js,,:(a) =

samples and the local SNR is relatively large. In such cases, t(k+1) = t(k) — At(k) (16)

generally the optimal MSE risk of the hard-thresholding methaghd

is superior to the optimal MSE risk of the soft-thresholding 2J(t) N-1 9%

method, however, it is much easier for the soft-thresholding A¢(k) = a(k) - 5 |t=tn = alk) - Z € - a—t”

method to achieve its optimal MSE performance since it only i= t=tr)

has global optima. er a7
The presented TNN indeed combines the linear meth9v(i!1ere ei = 4 — v is the estimation errora(k) =

and thresholding methods. The linear orthogonal transfor(titl'lrg[al(k%%(k)"”7ap(k)] is the learning rate matrix

. . oL
perform; as local matched f!lters to concentrate the S|gn?% each step and; is the learning rate for parametgt Note
energy in the transform domain. The transform bases are also 95
Uy

employed to maintain the desired structure of the recovered =0, i¢l; (18)
signals. For examples, the Fourier transform maintains the ot;

harmonic components of the recovered signal structure airel, the parameter; only depends on the wavelet coefficients
the wavelet transform maintains some local regularity of tred scalej. This makes the above algorithm computationally ef-
recovered signal structure. ficient. This optimization procedure can be used as the learning
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algorithm of TNN’s depicted in Fig. 2. The given signal serie$hen we may construct an unsupervised learning algorithm to
y and the reference signal serigs— x are used as the trainingminimize this error. Based on this principle, the following two
set. unsupervised learning algorithms for the TNN are developed.

2) A Reference Noisy Signal = z + n’ can be Gener- 1) SURE Based Learning Algorithmdn practice, the noise
ated: In practice, the original signal is usually unknown and variances? is usually known or easy to be estimated. In such in-
cannot be used as the reference sighal Fig. 2. However, we stances, there is a good method to estimate the estimation error
may know more than one noise corrupted version of a signal. Fadithe true signal for additive Gaussian noise. Btein’s Unbi-
example, in adaptive echo cancellation applications, we haaged Risk Estima&URE) is an unbiased estimator of the MSE
two measurements for the same source signal [16], [17]. Al4@,7]. For noise suppression problem as in (2), assume the noise
in some applications, we may have an array of sensors and eagtiance has been normalizeddd = 1, without loss of gen-
sensor may give us one corrupted version of the signal. erality. Suppose an estimation operafor) is used to estimate

In such cases, a practical denoising scheme is developedtHa true signak;, i.e.,z = f(y). Define

this scheme, two noise corrupted sigpands’ are produced a(y) 2 f(y) —y (21)
X . .
from the same signat plus uncorrelated noiseandn’, i.e., whereg = [go, g1, g _1]T is a function fromRY to RV,
Yi =i+ 1 Stein [17] showed that wheg(y) is weakly differentiable
/ Iy ~
Yi =i+ gt =0, N1 19 E|fw) —=l? = N+ E{ls@|* +2V, - 9w)}  (22)

In this case, theAerror between the_ estinsand the reference wherev, - g(y) = 2‘70 dg: /dy;. TheStein's Unbiased Risk
signaly’ ise’ =  — y'. The MSE risk becomes Estimate(SURE) is dzéfined as

1 1 .
J'(8) =§E{Ile’ll2} = QE{IIw—y’IIQ} Jsure(t) = N +[lg@)|* +2V, - g(y). (23)
wheret is the threshold parameter when the thresholding func-
tions are used as the estimation opergtp). Clearly, it is an

unbiased estimator of the MSE rigk¢). Note that for the TNN,
the above SURE risk can be calculated for each channel in the

1 )
= B{ll& -z —'|[*}

:% [E{|l& — =2} + E{|n'|?} + 2B{(& — )" - n'}]

1 . 1 transform domain.
—ZF _ 2 _E 112
2 {llz ==l + 2 {17 Then the SURE risk can be used as the objective function of
—J(@t) + ZE{|n'|2}. (20) the TNN and the gradient-based adaptive learning algorithm
2 can be used to minimize this objective function. However,
Note thatE{(¥ — #)* - n'} = 0 because’ is uncorrelated the estimation operatof(-) has to have at least second-order

with z andn. As can be deduced from (20), when the parametggrivatives to obtain the gradient of the SURE rikri(t).

t is adjusted so thaf’(t) is minimized, J(¢) in (10) is also Neither the standard soft-thresholding functigiz, t) nor the
minimized accordingly. That means, when selectin (19)  standard hard-thresholding functign(z, t) has second-order
as the reference signal, the neural network structure in Fig. 2 Gativatives. Note that the new proposed thresholding functions
also be used to adjust the parameter minimize the risk/(¢). nst(,t) andm, (. ) in (6) and (7) are infinitely differentiable

Theorem 2: Suppose the reference noisy sigilak= z+n'is  and thus can be used. The gradient of the SURE risk can then
selected as in (19), i.e., the reference error serigls4s3; — 4. e calculated as follows:

and the risk is/’(t) = (1/2)E{>_,(2: — v.)*}. Suppose N—1 N=1 .9
oo 8JsURE 9 agZ 8%g; @)
t argminJ’(¢) E < Jyi0t
+ g
thent* = t* and both the errors; ande; can be used to seekwhereg; = U(yz,t) i and the thresholdlng function(-)
t* for minimizing J(¢) in adaptive algorithms. may ben.(z,t) or nn:(xz,t). Then the gradient-based adaptive

Proof: First, from (20) we know that* = ¢*. The errok;  learning steps (16)—(17) can be employed in this unsupervised
is an instantaneous error fgf(¢) and can be used to adaptivelylearning process.

seek the"™, which is the same as. _ Also note that Donoho’s method [3] uses the standard soft-
This is to say, itis equivalent to use the reference sighat  thresholding function and selects a threshoidn a finite set
the true signak as the reference signal in terms of minimizingy,,,,...,yx_1}. Therefore the selected threshatd is a

the MSE of the estimation. Also note that the optimal solutfon sub-optimal threshold for the SURE risk.

does not depend on the SNR of the reference noisy signal [Se@) Learning by Cross-Validationit is possible to “create” a

(20)]. reference signal from the received sigpatself by cross-vali-

dation. Then the estimation error can be estimated and the gra-

dient-based adaptive learning algorithm as in (16) and (17) can

be used. This scheme is similar to the cross-validation wavelet
In many practical occasions, it is hard to obtain any availabarinkage method proposed by Nason [6], where the wavelet

reference signal and only the received noisy signialknown. transform and standard thresholding functions are used.

Yet it is still desired to recover the original true signalSince The received signal samplgscan be divided into even sam-

there is no other reference signal available for the evaluatiplesy. and odd sampleg, by a subsampling process. Thgn

of the estimation error, the estimation error has to be estimategh be the reference signakgfto calculate the estimation error

from the received signa} itself in an unsupervised fashion.in Fig. 2 and vice versa. This is reasonable because the features

B. Unsupervised Learning-Only the Received Signial
Known
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of coefficients ofy. andy, in the transform domain are usu-LMS-like scheme, i.e., we use instantaneous square error risk
ally very similar. For example, for an oversampled bandlimited;(z, z) = 1/2¢* to approximate the true risk(z, x) in (26)
signaly with a sampling rate doubling the critical Nyquist samin all of the adaptive supervised and unsupervised learning al-
pling rate, the amplitude spectragpfandy, are completely the gorithms we previously developed. The thresholding parameter
same and there are only some phase differences between thean then be adjusted adaptively by

spectra. The similar properties also exist for other orthogonal aI(t)

linear transforms. We suggest the use of necessary magnitude or At(k) = a(k) - 8Zt (28)

phase compensation when calculating the cross-validation error. t=t(k)

Note that this cross-validation learning algorithm does not needEspecially, for SURE based algorithms, the SURE risk can

to know anya priori information of the noise. be used to estimate the MSE instantaneously in the transform
domain

C. Time Adaptive Stochastic Learning-Nonlinear Adaptive )

Filtering P ° P Jisure(t) 14 ¢°(w) +2- 8{;2»;) (29)

1) Time Adaptive Stochastic Learning Algorithms: the This stochastic learning process is depicted in Fig. 7. In this
above adaptive learning algorithms, we assume that the sigpas$e, the linear orthogonal transform should be implemented in
samples are finite and all samples of the received sigraak real-time. Usually, we can use a specific filter bank depending
used in learning process. However, in real-time adaptive sigmal the transform.
processing applications, the signal is usually time-varying By using above time adaptive stochastic learning algorithms,
random process and only the past samples of the receivegl actually achieve a type of nonlinear time adaptive filtering
signal are known. It is necessary for the TNN to track theol.
changes of the signal in real-time and continually seek the2) Convergence of the Stochastic Learning Algorithiiie
optimum in some statistical sense. The previous analysis anhlysis of an adaptive nonlinear system is generally difficult.
learning algorithms indeed can be generalized to this case. Here we only analyze the convergence property of the proposed

For stochastic signals, the noise suppression problem carshgchastic learning algorithm in a tangible situation. The anal-
formulated as follows with a slight modification of (2). Assumeysis of the algorithm will be based on stationary signals, al-
that a random signal is transmitted over a channel to a sensdhough our nonlinear adaptive filtering methods are designed
that receives the signal with an additive uncorrelated noise to track nonstationary random input. This idealization is com-
The received signa} is given by monly used so that the analysis becomes relatively tractable.
(25) Furthermore, we assume the standard soft-thresholding function
isused. In the following theorem, we show that in such an ideal
Situation, the algorithm is convergent in certain statistical sense.

1 1 1 Theorem 3: For the stochastic signal model described in (25)
J(&,x) = QE{GQ} =5 E{E - z)?} = S & - zi)?},Yi.  and (26), assume the following learning algorithm is used:
. | (@0 (i +1) = #(i) - At(3) (30)
Here we assume the signalis an ergodic stochastic process, .
which is a commonly used assumption in adaptive filtering préﬂhent(z) 20

Yy =x+n.
Let z denote the signal after noise suppression. Now the M
risk can be written as

files [19]. The only difference between (26) and (3) is that (26) At(i) =a(i) - 9%; e
uses the mathematical expectation instead of the average (sum- ot
mation) of finite samples in (3). By replacing the average with ali) - [ + ()], i < —t(0)
the mathematical expectation, it is easy to show that the The- =190, lyi| < ¢(i (31)
orem 1 and its proof still hold for this stochastic case, i.e., the —a(d) - [n; — ()], v >t
above MSE risk has at most one minimum with respect to tie@d whent(i) < 0
threshold parameter Also, we can rewrite (17) in the gradient ald) - [ns + ()], wi < t(0)
based adaptive learning algorithm as: At(i) = { 2a(i)t(d), | < —t(3) (32)
at() = k) PNy = alh) E{ : 3}‘ —a(i) [ = @) i > ().
t= t(k% Herea(i) > 0 is the learning rate of each step.
] X < th imat ) ) If there exists optimat* as in (10), then
wheree; = ¢; — v; is the estimation errorp N
diaga (k), aa(k),...,ap(k)] is the learning rate matnx thEoE{t(z)} =t (33)

at each step andy,; is the learning rate for parametey. whena(z) is suitably selected, i.e., the above learning algorithm

Similarly, one can easily prove that (20) and Theorem 2 camconvergent in the mean. See Appendix B for proof.

be generalized to real-time stochastic signals. Therefore, afteNote that (32) constructed such that the negdtten be han-

replacing the summation with the mathematical expectatidifed smoothly wher\¢(¢) is too large and then the limit is un-

in adaptive learning, all above-mentioned supervised abgsed. In practice, we can seledt) small enough so thats)

unsupervised learning algorithms can be generalized to teenonnegative. Although it is not easy to select a proper series

real-time stochastic signal model depicted in (25). «(1), the difference betweet{:) and+* will approach a small
Nevertheless, the mathematical expectation of the error is ditamber whem(:) is small enough. From (30) and (31), it is

ficult to obtain in practice. Hence, we suggest the use of @asy to see that it(¢) — ¢*| > 6, whena(i) < 6/¢;, t(¢) will
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Input Signal Lincar iaverse Linear | Estimation  MEthOd [S]; “SgreShrink” is an optimized hyb_rid scale d_epen-
——»| Orthogonal Orthogonal % dent thresholding scheme based on SURE risk [3], which has
y;=x+n, | Transform Transform K the best MSE performance among conventional thresholding

denoising methods. To clearly illustrate the results, Fig. 9 plots
the estimation error for the signal “Blocks-Doppler”, i&= x.
The results of other test signals are not plotted here due to space
limitations.

TNN-OPTO and TNN-OPT1 are the supervised TNN
) ] methods with the standard soft-thresholdingz, ) and the
be adjusted towartf until |¢(i) — ¢*| < é. Therefore, the algo- new soft-thresholding functiomy,,(z, t), respectively. They
rithm is still very practical even if a serieg) cannot be found poth use the true signal as reference and converge to MSE
to make the algorithm convergentin certain mathematical Senggnima. For soft-thresholding functions, the found minima can
The results in Theorem 3 also hold for the transform domain gy pe the global minima. Therefore, they actually represent
TNNs. This is simply because each threshglih ¢ is only de-  the optimal MSE performance of the thresholding scheme.
pendent on coefficients series and MSE at chapnéhcht; is  Note that here we take an empirical function parameter value

Instantaneous error

Ji @)

Fig. 7. Stochastic learning for TNNs.

adjusted independently from the others. A = 0.01 for the new soft-thresholding functiop, (z, t)* This
Apparently, if the reference signal as in (19) is used, Theoreggyy soft-thresholding function is used in all following TNN
3 still holds for the same reasons in Theorem 2. methods unless otherwise specified. TNN-hard shows a local

~ 3) Time-Scale or Time-Frequency Adaptive Noise Redyginimum found by the TNN using a new hard-thresholding
tion: The above stochastic adaptive learning algorithms agénction me(z,t) ith an empirical function parameter value
capable of tracking the time-varying nonstationary features Bf = 0.01. Obviously, this local minimum is usually not as
the signal and noise toward the minimum MSE risk. Thergpod as soft-thresholding. In experiments, we found that the
fore, we can also use the above stochastic adaptive learnifgy using hard-thresholding is very easy to get trapped in
algorithms for a finite length signal to track local changegcal minima.
within the signal. In this case, we can take advantage of thernN-refis a supervised TNN method using noisy reference
time-varying local estimation error instead of the overag/ — z+n/. Here noise’ is set to have the same variance:as
average. Then the threshold parametés dependent on not The \MSE performance is very close to the optimal, as expected.
only different channels in the transform domain but also timgnq yet this is a very practical adaptive noise reduction method
position, i.e., it is fully adaptive with respect to the time andjnce a noisy referencg is often easy to obtain. TNN-sure is
different channels. If the wavelet-based or Fourier-based linggy{ unsupervised TNN method based on SURE risk while the
orthogonal transform is used, the time-scale or time-frequengyise variance is known or can be well estimated. We see that the
adaptive noise reduction by TNN's is indeed achieved [19]. \SE result is also rather good. Note that only new soft-thresh-
olding functions can be used in this method since SURE risk is
VI. EXAMPLES used. When there is no additioragpriori information available
but the received noisy signal itself, the TNN method using
cross-validation can be used, denoted as TNN-CV. As can be
expected, the results of TNN-CV is not as good as that of the
Five test signals are generated using software WavelLab [268fher methods that use additioralpriori information. How-
Four of them are commonly used in denoising literature [3gver, TNN-CV is stilla good method when no additioagiriori
namely, Blocks, Doppler, Bumps and HeaviSine. Their signadformation is available.
length is 1024 samples. To test the adaptivity of the algorithm,Last, TNN-TS employs a supervised stochastic learning
we intentionally create a new test signal, which is a combinatiomethod of the TNN and achieves time-scale adaptive noise
of two completely different signals — Blocks signal and Doppleeduction. The reference signal is again= = + »n’. We see
signal. Its signal length is 2048 samples. The test signals #nat it usually gives the best MSE performance, even better than
shown as in Fig. 8(a)—(e). The SNR is 7 dB and the noise vatfite optimal MSE performance the nontime-adaptive thresh-
ance is normalized to 1, i.e., the MSE of the noisy signial1. olding methods can achieve (see TNN-OPTO and TNN-OPT1).
For comparison, the noise reduction results of different methodswever, for signal “HeaviSine,” it does not give better MSE
are tested and the discrete wavelet transform (DWT) is usedpasformance than the optimal nontime-adaptive solutions.
the linear transform in the TNN. Daubechies 8-tap least asyifhis can be justified by the fact that the “HeaviSine” signal is
metrical wavelet filters are used. The largest scale of the DWhFetty smooth and has little abrupt changes. Therefore, the time
is setto beV/ = 6 inthe experiments, i.e., there até+1 =7 adaptivity of the algorithm cannot help to improve the MSE
orthogonal channels in the transform domain of the TNN.  performance.
Some typical adaptive noise reduction methods based on thé&or comparison we also calculated the optimal MSE perfor-
TNN are tested. The results of different noise reduction schenreance of a 16-tap linear filter. The original true signas used
are shown in Table I. The information and techniques used bg a reference and the solution of the Wiener-Hoff equation —
different methods are also indicated in Table I. Two commonly, ) — .
The performances of the numerical tests in this paper are reasonably in-

used Wa_'velet th_reShommg .den0|s!ng methods are also g'Ve.n\fQ{ant in the neighborhood of the selected empirical values of function param-
comparison: “VisuShrink” is a universal wavelet thresholdingtersx andy.

A. Adaptive Noise Reduction When all Signal Samples are
Known
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Doppler

S N & O

(a) (b)

Bumps HeaviSine

Blocks—Doppler

O S00O 1000

(e)

Fig. 8. Test Signals. (a) Blocks. (b) Doppler. (c) Bumps. (d) HeaviSine. (e) Blocks-Doppler.

Wiener filter is obtained. The corresponding MSE is shown in In numerical experiments, we also observed that in cases
the last column in Table I. where both standard and the new thresholding functions
From the results, we see that almost all adaptive noise reduan be used, the methods using the new thresholding func-
tion methods perform better than conventional wavelet thresfens have similar optimal MSE performance to the ones
olding methods and the Wiener filter in terms of MSE. Fromsing standard thresholding functions, but the adjustability
the plots, we observe that compared to nonadaptive convamd robustness of the learning algorithms using the new
tional methods, the TNN-based methods can better adapt to tasesholding functions are much better and they usually give
changes of the local features and usually preserve better fedter learning results. This is because the new thresholding
structure (high-frequency part) of the signal. functions have nonzero derivatives for all while the
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Noise n VisuShrink SureShrink

6} J
0 500 1000 1500 00 O 500 1000 1560 2000 0 500 1000 1500 2000
(a) (b) (c)
Supervised TNN with true signal reference and nxn Supervised TNN with true signal reference and n,xn Supervised TNN with true signal reference and 0, (x.0)
6 I 6 I 6 : 1

-6 1 -6 B : o H i :
0 500 1000 1500 2000 © 500 1000 1560 20600 0 500 1600 1500 2000
(d) (e) (f)
Supervised TNN with reference y* Unsupervised TNN based on SURE Unsupervised TNN based on cross—validation
6 ‘ ' 6 ! I -] 6 ' ‘

-6 ; -6 : 1 -
0 560 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
(8) (h) (i)
TNN based time—scale adaptive learning with reference y* Wiener filtering with true signal reference x
6f 6

0 500 1000 1500 2000 O 500 1060 1500

4 (k)

Fig. 9. Numerical results of the error signals for different noise reduction methods applying on Blocks-Doppler signal (a) Original erso(bhdiseiShrink

(c) SureShrink (d) TNN-OPTO: Supervised TNN with true signal reference, using standard soft-thresholding fatioh (€) TNN-OPT1: Supervised TNN
with true signal reference, using new soft-thresholding funcigiiz, t) with A = 0.01 (f) TNN-hard: Supervised TNN with true signal reference, using new
hard-thresholding function,..(x, t) with # = 0.01 (g) TNN-ref: Supervised TNN with the noisy reference siggal= = + n’ usingn.(z,t) (h) TNN-sure:
Unsupervised TNN based on SURE (i) TNN-CV: Unsupervised TNN based on cross-validation (j) TNN-TS: TNN-based time-scale adaptive learningneih refe
y’ = = + n’. (K) Linear: Wiener filtering with true signal referenee

standard soft-thresholding function has zero function valuafgorithm based on the new functions still knows where to
and derivatives whemz| < ¢. Therefore, whert > |z|, the go.

learning algorithm based on the standard soft-thresholdingNote that except for the TNN using hard-thresholding func-
function completely loses its adjustability, while the learningons, all other algorithms are generally not sensitive to the ini-
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TABLE |
MSR RsK FOR DIFFERENT DENOISING SCHEMES

VisuShrinK SureShrinj TNN-OPT(Q TNN-OPTI1 TNN-hard TNN-ref TNN-surd TNN-C TNN-TS Linear
reference v
true signal =
known o2 v 4 v
standard v 4 4
soft-thresholding
new v v v v v
soft-thresholding
new 4
hard-
thresholding
reference V4 4
v =z +n'
cross-validation v
Time-Scale V4
Adaptive
MSE(Blocks) 1.0304 0.4289 0.2685 0.2682 0.3941 0.2847 0.4010 0.6774 0.2427 | 0.5755
MSE(Doppler) 0.5242 0.2527 0.2121 0.2121 0.2009 0.2162 0.2811 0.3619 0.1915 | 0.4977
MSE(Bumps) 1.2580 0.4513 0.3653 0.3648 0.4298 0.3690 0.5198 0.6268 0.3109 | 0.8103
MSE(HeaviSine) 0.1125 0.0900 0.0786 0.0735 0.0626 0.0737 0.0845 0.1109 0.0796 | 0.2077
MSE 0.7931 0.3087 0.2170 0.2170 0.2800 0.2184 0.2777 0.3963 0.1673 | 0.5527
(Blocks-Doppler)

tial value of the TNN. The learning rate defines the convergentikering, there are abrupt changes of MSE at the time of abrupt

speed and accuracy of all the algorithms. changes of the signal. Apparently, such sudden changes are
not desired in adaptive systems, although they seem inevitable.

B. Adaptive Noise Reduction in Real-Time Adaptive Filtering~or TNN-based methods, there is no such phenomena. The

In real-time adaptive filtering, only past samples of the réidaptive process is rather smooth in terms of MSE. This is
ceived signal are known. The objective is to use these past s&ficause the abrupt changes (singularities) are caught on all
ples to track the changes of the signal in real time and contirtgales in the transform domain [21]. Their energy is spread to
ally seek the optimum. Therefore, the time adaptive stochas®i¢ channels and therefore will not cause the sudden change of
learning algorithms described in Section V-C1 can be used. 2daptive systems. _ _ _ _

The test results for the signal “Blocks-Doppler” are presented'”deed’ more numerical simulations of other signals also
here to illustrate the adaptive filtering, since it is highly nonstghow that the TNN based methods perform much better than
tionary. The signal is assumed to be a stochastic real time 48€ar adaptive filtering in both learning performance and the
ries, i.e., only past samples are available at each time. Two stimal MSE performance.
chastic learning algorithms for the TNN are tested, i.e., super- ) ) o
vised stochastic learning with noisy referende= « + ' and C- Spatial-Scale Adaptive Image Denoising
unsupervised stochastic learning based on SURE risk. In botHmage denoising is an often-encountered application in real
algorithms, the new soft-thresholding functigg,(=,¢) with  world. In the following, an image denoising example using a
A = 0.01 is used. Again, the DWT and the same setup as ieal-world image is presented to illustrate the application of the
the above subsection are used. Then the optimal MSE perfoNN. The 256x 256 “cameraman” image is used as the test
mance calculated for TNN-OPT1 can be treated as the optintabge, with additive independent, identically distributed (i.i.d.)
convergent MSE performance of these statistical learning alggaussian noise. The original clean image is shown in Fig. 11(a).
rithms. Two noisy images are generated with same noise variance. One

For comparison, the LMS (Least-mean-square) based linedthem is used as a reference imageTNN-TS method pre-
adaptive filtering method [16] is also used for the same signaknted in the preceding Section VI-A is used. This is a super-
Clearly, the linear adaptive method needs a reference signalviged stochastic learning method of the TNN. For two-dimen-
be justified, we use the same noisy siggals the reference sional images, it becomesspatial-scale adaptivémage de-
signal for the linear adaptive method. The length of the adaptimeising method instead dime-scale adaptivéor the one-di-
linear filter is set to be 16. We tried different learning rates andensional signal. The same wavelets as in Section VI-A are
selected the best one for the LMS based linear adaptive methased and the largest scale of the two-dimensional DWT is set to
It is easy to show that the optimal MSE performance of thi&/ = 3 in the experiments. The new soft-thresholding function
adaptive linear filter is the Wiener filtering result as in Table 1x.:(x, t) with A = 0.01 is used. The algorithm is tested for noisy

The learning performances of different adaptive filteringnages with different noise variances. The peak-signal-to-noise-
methods are shown in Fig. 10. Note that the MSE at eaditio (PSNR) results are shown in Table Ill. The first column
time ¢ is calculated by taking the mean value of the squarésithe original PSNRs of noisy images. Note that the new spa-
error using the adaptive parameters (thresholds or linear filteal-scale adaptive image denoising method is still denoted as
coefficients) at time to filter all samples. The MSEs at time“TNN-TS” in the table.

1 = 2048 of different methods are shown in Table II. For comparison, Table Il also shows the results of the non-

From the results, we can see that the TNN-based meth@diaptive conventional wavelet schemes. They are calculated
converge rather fast toward the optimal solutions of thesing functions provided in Matlab Wavelet Toolboxes. As in
methods. In addition, we see that when using linear adapti8ection VIA, “VisuShrink” is the universal soft-thresholding
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Learning curves of TNN based adaptive filtering ment, especially when the PSNR of the original noisy image is
11— T T — = high. This can be expected since the amplitudes of the few co-
X 5 5 — Withreference y')l - tiients representing the signal in the transform domain are
1k .{ == Sure based P g g
I :

much higher than those coefficients representing the noise, and
more of the signal energy can be preserved when cutting off all
the coefficients with a threshold.

Fig. 11(b) shows the noisy image with PSNR20 dB (the
first row in Table lll. The denoised images using different
methods are shown in Fig. 11(c)—(f). Apparently, the TNN
based spatial-scale adaptive denoising method gives the best
visual result as well as the best PSNR improvement.

VII. CONCLUSION

In this paper, we developed a new type of TNN structure for
: : ; _ adaptive noise reduction, which combines the linear filtering
0 500 1000 1500 2000 and thresholding methods. We created new types of soft and
time hard thresholding functions to serve as the activation function
(@) of TNNs. Unlike the standard thresholding functions, the new
thresholding functions are infinitely differentiable. By using
Learning curve of linear adaptive filtering (LMS) these_ new thresholding fqncnons, some gra_ldlent-based learning
8 ; ' : : algorithms become possible and the learning process becomes
: f ; : more effective.
bl We then discussed the optimal solution of the TNN in the
: : : f MSE sense. It is proved that there is at most one optimal solu-
tion for the soft-thresholding TNN. The general optimal perfor-
. : : : mances of both soft and hard thresholding TNNs are analyzed
1 ‘ : 5 that the thresholding noise reduction methods are more effec-
tive than linear methods when the signal energy concentrates
on few coefficients in the transform domain. It is indicated that
the hard-thresholding may have many local minima. Although
the optimal MSE performance of hard-thresholding may be su-
perior to that of soft-thresholding, the soft-thresholding is still
more practical since its optimal solution is much easier to find.
Gradient-based adaptive learning algorithms are presented to
seek the optimal solution for noise reduction. The algorithms in-
clude supervised and unsupervised batch learning as well as su-
pervised and unsupervised stochastic learning. The optimal so-
(b) lution of the TNN can be found by supervised learning with the
true signal as a teacher. A practical supervised learning scheme
Fig. 1Q. !_ea_rning curves ofvariogs ac_iapt‘ive filtering met_hods. (a) TNN-baSQngng a noisy Signay as a reference is developed and proved
22;21\’;':'(2;”;% ((E)) ;ge;;f:%a:]r;twe fileering (LMS algorithm). Note that the, o as effective as using the true signal as a reference. In un-
supervised learning, two learning schemes are developed. The
TABLE Il SURE risk and cross-validation are used to estimate the MSE
MSE AT (CONVERGENT) TIME i = 2048 FOR DIFFERENT ADAPTIVE of the TNN, respectively. Depending @npriori information,
FILTERING SCHEMES different learning algorithms can be selected.
TNN with noisy | SURE based TNN | Lincar (MS) By 'estimat.ing the i_nstantaneous MSE of the.T_NN., the sto-
reference 3/’ with reference g/ chastic Iearnlng aIgonthm; can be; developed. Itis indicated that
02441 0.4233 0.7942 the TNN with the stochastic learning algorithms can be used as
a novel real-time nonlinear adaptive filter. It is proved that the
stochastic learning algorithm is convergent in certain statistical
denoising technique and “SureShrink” is a SURE risk-bassénse in ideal conditions.
scale dependent denoising technique [3], [5]. The columnNumerical results are given for different noise reduction algo-
“Wiener” represents the denoising results by Wiener filterithms including conventional wavelet thresholding algorithms
which is the optimal solution of the linear filtering technique. and linear filtering method. It is shown that almost all the TNN-
As can be seen, the TNN based spatial-scale adaptive imégsed adaptive noise reduction algorithms perform much better
denoising has the best performance in terms of PSNR improtean the others in terms of MSE. It is also shown that the more

0 500 1000 1500 2000
time




ZHANG: THRESHOLDING NEURAL NETWORK FOR ADAPTIVE NOISE REDUCTION 581

()

Fig. 11. (a) Original. (b) Noisy (PSNR: 20 dB). (c) VisuShrink. (d) SureShrink. (e) TNN-based spatial-scale adaptive filtering. (f) Wiener filtering.

a priori information is used, the better is the performance. Ndtis shown that the new methods outperform the linear adaptive
tably, the time-scale adaptive noise reduction method basedfittering in both the optimal solution and the learning perfor-
stochastic learning often performs even better than the optinm@dince. With a real world application — image denoising, we
solutions of conventional thresholding noise reduction schemeenstruct a spatial-scale adaptive image denoising algorithm
The TNN-based nonlinear adaptive filtering methods are albased on the TNN. The new image denoising scheme shows su-
tested and compared with the traditional linear filtering methogderior performance in both PSNR and visual effect in our tests.
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TABLE Il 1 s > |
THE PSNRSs (DB) OF DIFFERENT DENOISING METHODS THE FIRST COLUMN IS :; § Pn(g - t)dﬁ + § Pn(g + t)dS
THE ORIGINAL PSNRs oFNOISY IMAGES L/ — o0 -z -
t —T o
Noisy || VisuShrink | SureShrink | TNN-TS | Wiener 2 { Epn(€ — H)dE — Epn(€+ t)dﬁ}
20.0159 20.4768 25.7450 26.6423 | 26.2899 1T _m_ O;“” _
25.0290 22.4583 28.9996 29.9728 | 29.1181 2 2
= —t)dé + +t)d
30.0057 || 24.6496 32.6900 | 33.7289 | 32.4476 o2 | J oo Epn(& —t)de Y Epn(E+?) 5_
34.9942 26.7662 36.7637 37.8609 | 36.3116 t
39.9867 | 28.8212 | 41.0362 | 41.9908 | 40.6440 - ph(t|$)-
Then
—;
_ In this paper, we shqw thaf[ the prop(_)sed TNNis avery_e_ffe_c- —— == Z {/ Epn (€ —t)de
tive new tool for adaptive noise reduction of both deterministic o

and stochastic signals. Various noise reduction algorithms can )
be constructed based on the TNN. Further investigation on the + 5 P(§+1)dE| — _h( )-

—x;

detailed setup of TNNs and applications is worth being pursue-ldnerefore if we let. denote any zero of(t), i.e., h(t.) =

APPENDIX A then
Oh(t T
PROOF OFTHEOREM 1 (;(t ) 2 Z [/ Epn (€ — t.)d¢
Proof: First rewrite (8) as =
yi+t, oy <t + £2pn(£+t )dﬁ} dr — —h( 2)
.’i’z = 0, |yz| <t —%i
yi—t, y; >t /_% —d
Let J(t|lz;) = JB)|e, = 1/2E{e}|z;}, ie, J(t) = T o2 Z{ Epn(€ 1)
>, J(t|z;). Note J(t|z;) is aconditional expected valy@2]. .00
From (9), + Epnlé+ tz)di} dx
1 —i
J(t|z;) :§E{Ef|xz} > 0.
1 9 That means: 1) All zeros df(¢) must be the minimum points
) [Py < =) - E{(ni —)7|y: < 1} of J(t) because
P(lys| <) - E{a?||yi| < t 2
+ Pl < 0)- Bloflll < 0 FI| oy a4
+ P(y; > t) - E{(n; +t)*|y; > t}] M,y C -
1 ) , [T i.e.,t* = t.. 2) Functionh(t) increases monotonically in the
=5 [/t (€ —1t)pa(8)dS + = '/t .pn(S)dﬁ neighborhood of.. Sincei(t) is a continuous differentiable
o . o function oft, (¢) cannot cross axismore than once. Therefore,
+/ (€ + t)2pn(§)d§} h(t) has at most one zero, i.e., there is at most one minimum
) I ) solutiont* for J(¢).
Taking de”‘gat'z’T W)'th respect t we obtaiA On the other hand, functio(¢|z) can be rewritten as
A J ta:i
(the) &= (tle) = / Epnlg+ 0t — [ Epul+ g
_t_m —Z
[ rnmion- [ oo 0%t — 2) + pu(t + )]
e 00 +t U pn,(£+t)d£+/ pn(£+t)d£} (35)
R AR IR VA | . |
—o0 —; Obviously, if the noise level is zero, theéh = 0. If the noise
=P(y; > t) - E{(n: + t)|y: > t} level is not zero, thel ¢ < 0, h(t|x) < 0, i.e.,h(0) < 0. Since
— P(y; < —t) - E{(n; — )|y < —t}. t > 0and(9h(t)/dt)|1=o = 1 > 0, thent* > 0.m
Let h(t) & 3, h(tle;) = 3,(9J(tx;)/0t) = (9.J(t)/dt),
then h(t*) = 0 must hold. Sincen; is Gaussian APPENDIX B
distribution, its probability density function (pdf) is PROOF OF THEOREM
pa(§) = (1/V2m0) exp{—(§?/20?)}. Subsequently Proof: From (30) and (31), we obtain
Ot) _ L[ (e~ ypute — e E{#(i + DI, w1} =t(3) — (i)
ot o2 J_ —t(i)—;
e <[ e inmioe
+ 5 | SEHDpalE+1)dE —o0
2Note that(d/ot) [ p(¢,0)d = p(b(t),)(Db(1)/0t) — pla(t), 1) - /t(i)_m_(£ = H0))pa(£)dE

(Da(t)/0t)+ fii) (9p(&, )/ 0t) . =t(i) — i) - B(t(0)|z:) (36)
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whent(i) > 0. From (30) and (32), we obtain
E{t(i + DIt@), z:} =t(i) — oi)

x { / T ek tiaoe

— o0

SR CCT

i) [ o pn<£>d§}

(i)—=z;
—t(i) — ali)
—t(i)—z;
x [ [ e time

-/ :’ (€~ HIE)E

=t(i) — (@) - h(t()|z:) (37)
whent(:) < 0.
Hence
E{t(i+ D)|t(i)} :/ps () - E{t(i + D)|t(¢), x }dz
=t(i) — a (@) - h(t(7))- (38)

Suppose there exists. Then|E{t(: + 1)[t(4)} — ¢*| = [t(¢) —

t* — «(i) - h(t(4))|. Sincet* is unique andn(t)/dt|—» > 0
(see (34)), we obtain

h(t) < 0,t> ¢

{h(t) < 0,t>t" " (39)

Hence, whent(i) < t*, t* — E{t(i + D|t(0)} = t* —
t(i) — a(d) - |h(t(3))]. If a(?) is selected such thét< () =
Bi((t(é) — %) /h(t(¢))) with constan < 53, < 1, we obtain

0<t"—E{t(+ )|t} = (1= B)[t" — t(d)]. if t(e) < t*.

(40)

On the other hand, #{z) > t*, thenE{t(: + 1)|t(¢)} —t* =

t(i)—t* —ali)-h(t(i)). If (%) is selected such that< a(i) =
B ((¢(@)—*)/h(t(3))) with the same3; as above, we obtain

0 < E{t(e+ Dt(6)} —t* =1 = B)[t() — t¥]

i t(d) >t (41)

Therefore, if a positiv® < (i) = §;(t(i) — t*)/h(t(i)) is
selected, we obtain

B+ ) - #1=| [ )

x E{t(i + 1)|t(0) }dt(i) — t*

=H / ;pt@(t(fz))

x [t° — E{t(i + 1)|t(L)}]dt(L)}

" { )

X [E{t(i + 1)[t(@)} — t*]dt(i)}‘

—{ [ note

x [t — t(i)]dt(i)}

" { [ poe@)

x [t(i) — t*]dt(i)}‘

{ [0

x [t(i) — t*]dt(i)}‘
=(1 = B)|E{t()} —t7|.

Sincel < (1 — ;) < 1, it follows

=(1-5)

=(1-7)

(42)

lim |E{t(0)} — | = 0. (43)
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