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Thresholding Neural Network for Adaptive Noise
Reduction
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Abstract—In this paper, a type of thresholding neural network
(TNN) is developed for adaptive noise reduction. New types of soft
and hard thresholding functions are created to serve as the ac-
tivation function of the TNN. Unlike the standard thresholding
functions, the new thresholding functions are infinitely differen-
tiable. By using the new thresholding functions, some gradient-
based learning algorithms become possible or more effective. The
optimal solution of the TNN in a mean square error (MSE) sense
is discussed. It is proved that there is at most one optimal solu-
tion for the soft-thresholding TNN. General optimal performances
of both soft and hard thresholding TNNs are analyzed and com-
pared to the linear noise reduction method. Gradient-based adap-
tive learning algorithms are presented to seek the optimal solu-
tion for noise reduction. The algorithms include supervised and
unsupervised batch learning as well as supervised and unsuper-
vised stochastic learning. It is indicated that the TNN with the sto-
chastic learning algorithm scan be used as a novel nonlinear adap-
tive filter. It is proved that the stochastic learning algorithm is con-
vergent in certain statistical sense in ideal conditions. Numerical
results show that the TNN is very effective in finding the optimal
solutions of thresholding methods in an MSE sense and usually
outperforms other noise reduction methods. Especially, it is shown
that the TNN-based nonlinear adaptive filtering outperforms the
conventional linear adaptive filtering in both optimal solution and
learning performance.

Index Terms—Adaptive noise reduction, image denoising,
mean square error (MSE), optimal estimation, thresholding,
thresholding neural network (TNN), wavelet transforms.

I. INTRODUCTION

NOISE reduction is a traditional problem in signal pro-
cessing as well as many applications in the real world.

Conventional linear system adaptive filtering techniques have
been widely used in adaptive noise reduction problems. How-
ever, because of the linearity of the operation, the filter cannot
change the intrinsic property of the original noised signal,
such as regularity, etc., Indeed, the linear filter is a kind of
linear manipulation of the spectrum of a signal because the
complex exponential function is the eigenfunction of a
linear system. Therefore, it is difficult to suppress the noise
and keep the signal using linear filters when the spectrum of a
signal is somewhat wideband and nonstationary, which is the
usual case. For example, some transient impulses can cause
wideband components in the signal. The linear filter tends
to eliminate or keep both noise and this type of important

Manuscript received October 11, 1999; revised September 21, 2000 and Feb-
ruary 14, 2001.

The author is with the Department of Electrical and Computer Engineering,
Ryerson Polytechnic University, Toronto, ON M5B 2K3, Canada (e-mail:
xpzhang@ieee.org).

Publisher Item Identifier S 1045-9227(01)03572-X.

component because both of them may have similar appearance
in spectrum. Also, the FIR (finite impulse response) filter based
noise reduction techniques in the transform domain have been
investigated [1], [2]. However, since the transformation used
is usually linear, the overall filtering is equivalent to a linear
filter. The convergence speed of the adaptive linear filter may
be improved in the transform domain, however, the optimal
noise reduction performance is the same as the conventional
time domain linear filtering.

Recently, wavelet thresholding methods proved to be pow-
erful tools for denoising problems [3]–[12]. The main purpose
of these methods is to estimate a wide class of functions in some
smoothness spaces, such as Besov space and Triebel space, etc.,
from their corrupted (by additive Gaussian noise) versions. The
main wavelet thresholding scheme is the soft-thresholding [5].
This technique is effective because the energy of a function
with some smoothness is often concentrated on few coefficients
while the energy of noise is still spread in all coefficients in
the wavelet domain. The Donoho’s wavelet soft-thresholding
method achieves asymptotically near optimal in the meaning
of minimax mean square error (MSE) over a wide range set
of functions with certain smoothness. However, it often tends
to oversmooth the function and thus remove some important
high-frequency components. In many signal processing appli-
cations, we need to search for the optimal minimum MSE so-
lution usinga priori information for a specific signal. The op-
timal minimax solution often has only theoretical meaning in
such cases because it may be far from the optimal solution for a
specific practical problem. Another natural thresholding scheme
called the hard-thresholding has also been tested and reported to
have better MSE performance in some simulations [7].

The questions are: 1) What are the optimal solutions of
thresholding methods in an MSE sense? i.e., what is the best
achievable noise reduction performance of the thresholding
methods? 2) In what situation, can the thresholding noise
reduction methods perform better than linear filter-based
methods? 3) How can the optimal solutions of thresholding
methods be achieved in real applications? It is noted that all the
current thresholding methods cannot completely adapt to the
optimal solution for a given specific signal.

In this paper, a new type of thresholding neural network
(TNN) for noise reduction in various applications is developed.
New types of smooth soft-thresholding and hard-thresholding
activation functions are presented. They make many gra-
dient-based learning algorithms feasible. The optimal solution
of soft-thresholding methods in an MSE sense is discussed. We
prove that there is at most one optimal solution for soft-thresh-
olding in an MSE sense. The optimal solutions of different

1045–9227/01$10.00 ©2001 IEEE



568 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 3, MAY 2001

methods are investigated. Subsequently, the gradient-based
learning algorithms of TNNs are presented to seek the optimal
solution in various situations and applications. It is also shown
that the presented TNN can be used in real-time time-scale or
time-frequency adaptive noise reduction. Several numerical
examples are given. The results show that the presented TNN
and its learning algorithms are very effective in finding the
optimal solutions of thresholding methods in an MSE sense in
various noise reduction applications.

This paper is organized as follows. Section II reviews the
basic concepts and results of thresholding methods. In Sec-
tion III, the thresholding neural network (TNN) and new types
of thresholding functions are presented. The optimal solutions
of the thresholding methods are discussed in Section IV. The
learning algorithms for different applications are introduced in
Section V. Section VI presents several numerical examples to
demonstrate our methods. Finally, Section VII concludes the
paper.

II. SOFT-THRESHOLDING ANDHARD-THRESHOLDING

A. Noise Reduction Problem and Thresholding Methods

The general noise reduction problem can be formulated as
follows. Assuming the real signal isand the observed signal

, where is the noise, we can obtain an estimate
of the real signal from the observed signal. The

objective of noise reduction is to reduce the noise inand make
the estimate as close to as possible. The commonly used cri-
teria to measure the closeness is the error energy ,
i.e., mean square error (MSE). Note that in the above formula-
tion the signal can be a finite data sample set, or an infinite
data sample set generated by a real-time stochastic process. In
the later case, a real-time adaptive estimation method may be
necessary.

For simplification of analysis, first we consider the former
case, i.e., the signal is a finite data sample set, denoted by a
vector , and then the observed signal
is

(1)

i.e.,

(2)

where is a noise data vector. Gaussian white noise with distri-
bution is commonly assumed for. In the following
discussion, we will first stick to these simplifications and then
show that our results can be generalized to the general stochastic
process.

The objective of noise reduction is to estimate the real signal
from to minimize the MSE risk

(3)

where .
For linear noise reduction, the estimateis a linear com-

bination of observed data samples. The estimation operator
is linear. For nonlinear noise reduction, the operator

Fig. 1. The standard soft and hard thresholding functions.

is nonlinear. The thresholding methods use nonlinear opera-
tions to reduce the noise. The most commonly used thresholding
functions are the soft-thresholding function and the hard-thresh-
olding function. The standard soft-thresholding function is de-
fined as

(4)

where is the threshold. And the standard hard-thresh-
olding function is defined as

(5)

These two functions are shown in Fig. 1.
In thresholding methods, the observed data samples with

smaller (than ) values are suppressed and the samples with
larger (than ) values are kept. Therefore, when the smaller
samples are dominated by noise components, the thresholding
operation can suppress the noise in observed data samples.

B. Wavelet Thresholding

Recently, soft-thresholding in the wavelet transform domain
has been studied in statistical estimation problems and proved
to have many good mathematical properties [5]. There are three
steps in the standard wavelet thresholding method [5].

1) Apply the discrete wavelet transform (DWT) to the ob-
served data vectorand obtain the empirical wavelet co-
efficients.

2) Apply the nonlinearity—soft-thresholding to the empir-
ical wavelet coefficients, where a universal threshold

is chosen.
3) Use the inverse DWT on thresholded wavelet coefficients

and obtain the estimated function vector.
The basic idea of the wavelet thresholding method is that

the energy of a signal (with some smoothness) is often concen-
trated on few coefficients while the energy of noise is spread
among all coefficients in the wavelet domain. Therefore, the
nonlinear soft-thresholding function tend to maintain few
larger coefficients representing the signal while reducing the
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noise coefficients to zero in the wavelet domain. It is proved
[5] that the above soft-thresholding based wavelet thresholding
denoising method achieves a “noise free” property (i.e., the
estimated signal is at least as smooth as the original signal) and
is asymptotically near optimal in the meaning of minimax MSE
over a wide range of smoothness classes. A universal threshold
is intuitively expected to uniformly remove the noise since the
white noise still has the same variance over different scales in
the transform domain.

Scale-dependent thresholds can be used in Step 2) of the
wavelet thresholding scheme so that the denoising result can
adapt to the local smoothness of the function. A scale-depen-
dent threshold selection procedure called theSureShrink[3] is
proposed based onStein’s Unbiased Risk Estimate(SURE).
It proved to be smoothness-adaptive in a near minimax sense.
However, SureShrinkno longer has a “noise free” property
since SURE risk is just an estimation of the MSE.

Note that the MSE is the most commonly used criteria in
signal processing applications. In wavelet thresholding research
for function estimation, it is also often used as the criteria to
select the threshold [6], [7].SureShrinkapproach uses MSE as
the risk of estimation. Therefore, in this paper, we use the MSE
to evaluate the noise reduction performance.

From the basic idea of the thresholding method, we can rea-
sonably infer that the thresholding method can reduce noise in
a transform domain, as long as the transform can concentrate
the signal energy but spread the noise energy in the transform
domain.

III. T HRESHOLDINGNEURAL NETWORK

A. Neural Network Structure

We construct a type of thresholding neural network (TNN)
to perform the thresholding in the transform domain to achieve
noise reduction. The neural network structure of the TNN is
shown in Fig. 2.

The transform in TNNs can be any linear orthogonal trans-
form. The linear transform performed on observed data sam-
ples can change the energy distribution of signal and noise sam-
ples. By thresholding, the signal energy may be kept while the
noise is suppressed. For a specific class of signal, the appro-
priate linear transforms may be selected to concentrate signal
energy versus noise, and then a good MSE performance can be
achieved. Here the thresholding functions are employed as non-
linear activation functions of the neural network. The inverse
transform is employed to recover the signal from the noise-re-
duced coefficients in the transform domain. Specifically, since
most signals have some kinds of regularities and the wavelet
transform is a very good tool to efficiently represent such char-
acteristics of the signal, the wavelet transform is often a suitable
linear transform in TNNs.

Note that there are several orthogonal channels in the trans-
form domain. We denote the set of coefficients at channelas

. The different thresholds are used in different orthogonal
channels and they are independent, i.e., the thresholds of dif-
ferent orthogonal channels can be optimized independently.

It is also worth pointing out that although the term “neural
network” is used, the TNN is different from the conventional

Fig. 2. The structure of thresholding neural network (TNN).

multilayer neural network. In TNNs, a fixed linear transform
is used and the nonlinear activation function is adaptive, while
in conventional multilayer neural networks, the activation func-
tion is fixed and the weights of the linear connection of input
signal samples are adaptive. We use the term “neural network”
because the TNN has some basic elements similar to a conven-
tional neural network, i.e., interconnection of input signal sam-
ples, nonlinear activation functions, and adaptivity to a specific
input, etc. In addition, it is possible to change the fixed linear
transform in Fig. 2 to an adaptive linear transform. In this way,
both the weights of linear connections of input signal samples
and the nonlinear activation function are adaptive, and then the
conventional multilayer neural network techniques may be in-
corporated. This will be a meaningful exploration we are going
to pursue in the future.

B. Newsoft and Hard Thresholding Functions

It is well known that it is very important for a neural network
to have good learning algorithms [13]. Most learning algorithms
of a neural network employ the gradients and higher deriva-
tives of the network activation function. In addition, high-order
differentiable activation functions make a neural network have
better numerical properties. It is desired that the activation func-
tion of a neural network can be differentiated and has high-order
derivatives so that the gradient-based learning algorithms can
be developed. However, the standard soft-thresholding func-
tion is only weakly differentiated and does not have any high-
order derivative. The standard hard-thresholding function is a
discontinuous function and cannot be differentiated at all. The
author’s previous work presented a new type of soft-thresh-
olding function which has second order weak derivatives and
proved to be useful [14]. In the following, we will present new
types of smooth soft-thresholding and hard-thresholding func-
tions which are infinitely differentiable.

The new type of soft-thresholding function is constructed as
follows:

(6)

where is the threshold and is a user-defined (fixed)
function parameter. Obviously, the soft-thresholding functions
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have all higher order derivatives for . Note that
when , is just the standard soft-thresholding
function . The new thresholding functions with different
parameter are shown in Fig. 3(a). It can be seen that the
new thresholding functions perform the operations similar to the
standard soft-thresholding function. Therefore, similar thresh-
olding effects of the estimate using the new thresholding func-
tions can be expected.

The new type of hard-thresholding function is motivated by
the sigmoid function [13]. It is constructed as follows:

(7)
where is the threshold and is a user-defined (fixed)
function parameter. It is also easy to see that the new hard-
thresholding functions have all higher order derivatives for
. When , is just the standard hard-thresh-

olding function , i.e., . The
new hard-thresholding functions with different parameterare
shown inFig. 3(b). It can be seen that the new hard-thresholding
functions also have the thresholding effect similar to the stan-
dard hard-thresholding function. However, by using new hard-
thresholding functions , it becomes possible to con-
struct a gradient-based learning algorithm for the TNN. Fur-
thermore, the SURE risk, which employs the second deriva-
tives of the estimate, can be utilized in unsupervised learning
of the TNN by using the new type of hard-thresholding func-
tion. These will be shown in Section V-B1.

When the gradient of the thresholding functions with respect
to the threshold is employed in the learning algorithm, new
soft-thresholding functions have better adjustability since they
have nonzero derivatives for all. The standard soft-thresh-
olding function does not have adjustability when since
it has zero function values and derivatives for . This is
one reason why the new type of thresholding function has better
numerical properties than the standard thresholding function in
adaptive learning processes.

Apparently, the larger are the function parametersand in
(6) and (7), the more adjustability the new thresholding func-
tions have, since they will have larger derivatives when .
However, the thresholding ability of the new functions decreases
when and are too large. Actually, when , the new
thresholding functions become a linear function and they have
no thresholding ability at all. We suggest selecting a smalland

so that the new thresholding functions are good approxima-
tions of the standard thresholding functions and practically keep
all good properties of standard thresholding techniques.

IV. ON OPTIMAL PERFORMANCE OF THETHRESHOLDING

NEURAL NETWORK

For any method dealing with the noise reduction problem,
we want to get the bottom line of its performance. That is,
we want to ask the questions: What is the best performance of
this method? What are the properties of the optimal solution
of the method? How can the optimal solution of the method

Fig. 3. New thresholding functions. (a) New soft-thresholding functions. (b)
New hard-thresholding functions.

be achieved? These are natural questions when we evaluate a
method since the best performance defines all the potential of
the method, and it is our objective to achieve the best perfor-
mance of the method in practice. In this section, the optimal
solution of the TNN and its properties will be discussed. The
learning algorithms of the TNN to achieve the optimal solution
will be presented in the next section.

Since the orthogonal linear transform used in the TNN pre-
serves the signal energy, the MSE of the estimation in the trans-
form domain is equal to the MSE of the estimation in the time
domain. Furthermore, since the thresholds of different orthog-
onal channels are independent and the thresholds of different
orthogonal channels can be optimized independently, we will
only analyze the optimal solution of one channel in the trans-
form domain in the following, without loss of generality.
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A. The Optimal Solution of the Soft-Thresholding

In many nonlinear optimization problems, such as training
of an artificial neural network, a very troublesome issue is that
there may be more than one local optimum. This often makes
it difficult to find the global optimal solution of the problem.
However, in the following, we will prove that when using the
standard soft-thresholding function as the activation function,
the TNN has only global optimal solution.

Theorem 1: Suppose are signal samples, are Gaussian
white noise samples with i.i.d. distribution and the
observed noise corrupted signal samples are ,

. Let be the noise reduction output using the
standard nonlinear soft-thresholding method, i.e.,

(8)

where . Define the risk function to be the MSE, i.e.,

(9)

with , and denote the optimal solution

(10)

There exists at most one optimal solution and if
and only if the noise level .

See Appendix A for proof.
Remarks:

1) Theorem 1 shows that if there is an optimal threshold solu-
tion for MSE risk , then it is unique. There is no local
minima problem when the gradient-based optimization al-
gorithms are used.

2) The results in Theorem 1 hold for the thresholding of the
data at one channel in the transform domain of the TNN.
Since the threshold parameters at different channels in the
transform domain are adjusted independently as we men-
tioned before, Theorem 1 also holds for the whole TNN.

3) Note that the conclusion in Theorem 1 is not a trivial re-
sult of convexity. Although is convex with respect
to , the risk function is not convex. The properties
of depend on the distribution of the noise, i.e., the con-
clusion does not hold for any distribution. It is still an open
question to verify the validity of the Theorem 1 for some
other commonly used noise distributions.

4) The conclusion in Theorem 1 is derived from the standard
piecewise soft-thresholding function. Since the new soft-
thresholding functions in (6) have properties similar to the
standard soft-thresholding function, it is reasonable to ex-
pect that the conclusion in Theorem 1 also holds for the new
type of soft-thresholding function in (6).

5) This conclusion does not hold for hard-thresholding activa-
tion functions. It is easy to find a numerical counter-example
to verify this.

B. Soft-Thresholding, Hard-Thresholding, and Linear
Filtering

Unlike linear filtering, it is not tractable to find the analytic
optimal solution of the nonlinear thresholding method, as we
can see from the proof of Theorem 1. In the following, with the
help of numerical analysis, the optimal performances of various
thresholding methods are analyzed and compared.

As can be seen, for both thresholding methods,
. For soft-thresholding,

(here we will use subscript to represent different activation
functions), where

(11)

where is the distribution function of the
additive Gaussian noise.

Similarly, for hard-thresholding activation function (5),
, where

(12)

Then the MSE risk difference between soft-thresholding and
hard-thresholding is

(13)
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Apparently, the MSE risks of soft-thresholding and
hard-thresholding depend on the signal energy distribution and
the signal-to-noise-ratio (SNR). There is no simple relationship
between them due to the nonlinearity. Therefore, the general
properties of these risks are investigated using numerical
methods as follows. Without loss of generality, we assume
the noise level (i.e., let the signal and threshold level
be normalized by the SNR). The soft-thresholding risk (11),
hard-thresholding risk (12) and their difference (13) are shown
in Fig. 4(a)–(c), respectively. The grayscale in the figures
is normalized according to the MSE risk. In Fig. 4(c), the
absolute value of the risk difference is shown and the positive,
negative and zero regions are indicated. From the figures we
can see that when the thresholdis much larger than and

, both soft-thresholding and hard-thresholding threshold all
data samples to zero, which corresponds to the zero zone
inFig. 4(c). When the signal is relatively larger than the
threshold and noise , the hard-thresholding will have better
MSE performance, which corresponds to the positive zone in
Fig. 4(c). Generally, the MSE of the estimate of large signal
samples is dominant in whole MSE risk. This can justify the
reported results [7] that in most cases the hard-thresholding
gives better performance than soft-thresholding, as far as the
optimal solution of the method is concerned.

Note that when the signal power is comparable with the noise,
the soft-thresholding method seems to give better MSE risk.
However, in such a case both thresholding methods tend to sup-
press both signal and noise. In Fig. 5, the optimal thresholds
for conditional MSE risks (11) and (12) are shown. When the
signal power is comparable with the noise power, the optimal

is large and tends to threshold both signal and noise to zero.
Practically, there is no useful signal after such thresholding.

Ho wever, since the hard-thresholding MSE risk function usu-
ally has many local minima, it is difficult to find the global
optimal threshold for hard-thresholding methods. In addition,
since the standard hard-thresholding function is discontinuous,
it is even difficult to find a local minimum for it. In wavelet
thresholding methods [5], it is also proved that the soft-thresh-
olding method may keep better smoothness of the true signal
than the hard-thresholding method.

Since the nonlinear thresholding methods are used to replace
the linear filter for noise reduction applications, it is of interest
to compare them with a linear operation on the signal in terms
of the optimal MSE risk. For comparison, here we consider the
simplest linear operation for noise reduction, i.e.,

(14)

where is the linear parameter. The conditional MSE risk
can be written as

(15)

It is easy to obtain that the optimal parameterfor is
and the optimal conditional MSE risk is

.
The optimal conditional MSE risk of the above linear oper-

ator is plotted in Fig. 6. For comparison, the numerical optimal
MSE risks of (11) and (12) are also shown in Fig. 6. The noise

Fig. 4. Risks of soft-thresholding and hard thresholding with normalized noise
power� = 1. (a) Soft-thresholding. (b) Hard-thresholding. (c) Risk difference
between soft-thresholding and hard-thresholding.

level is still normalized. It can be seen that the optimal condi-
tional MSE risk of this simple linear operator is better than both
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Fig. 5. Conditional optimal thresholds for hard-thresholding (solid line) and
soft-thresholding (dashed line) for a given signal valuex with normalized noise
power� = 1.

soft-thresholding and hard-thresholding. However, this only in-
dicates that for a constant signal, the linear operator performs
better. When the signal energy is concentrated on only few sam-
ples, the linear method still keeps the noise on small signal sam-
ples while the thresholding method removes the small signal
samples as well as the noise on them. By nonlinear operation,
the thresholding method exhibits better MSE performance. This
can be illustrated by an example in an extreme case as follows.

Suppose the signal is and
the noise is Gaussian noise, , where is a Kronecker
. If and a relative large threshold is

selected, the MSE risks of soft-thresholding and hard-thresh-
olding are and , respectively. For
the linear operator (14), the optimal MSE risk is

. Actually, if is a vector, i.e., a gen-
eral linear filter is used, the above MSE risk is still optimal when
the signal spectrum is white. This can be proved by using op-
timal Wiener filtering [15], [16]. It can be seen that whenis
relatively large, the optimal MSE risk of this linear operator is
much inferior to the thresholding methods.

From the above analysis, we can infer that, compared to
linear methods, the thresholding methods are more effective
only when the signal energy is concentrated on few signal
samples and the local SNR is relatively large. In such cases,
generally the optimal MSE risk of the hard-thresholding method
is superior to the optimal MSE risk of the soft-thresholding
method, however, it is much easier for the soft-thresholding
method to achieve its optimal MSE performance since it only
has global optima.

The presented TNN indeed combines the linear method
and thresholding methods. The linear orthogonal transform
performs as local matched filters to concentrate the signal
energy in the transform domain. The transform bases are also
employed to maintain the desired structure of the recovered
signals. For examples, the Fourier transform maintains the
harmonic components of the recovered signal structure and
the wavelet transform maintains some local regularity of the
recovered signal structure.

Fig. 6. Conditional optimal risks for linear operator (solid line),
soft-thresholding (dashed line) for a given signal valuex with normalized noise
power� = 1.

V. ADAPTIVE LEARNING ALGORITHMS OFTNNS TOWARD THE

OPTIMAL SOLUTION

A. Supervised Learning with the Reference

In this section, we discuss the supervised learning algorithms
of the TNN. In supervised learning, a reference signal serves
as a teacher to evaluate the MSE in the learning process. The
following two cases are considered.

1) The Original Signal is Known: This case seems im-
practical since the original signal is usually unknown in prac-
tice. The objective of the TNN is to estimate the original signal.
However, the scheme can actually be used in two occasions: 1)
When the original signal is used as a reference signal, the TNN
can give us a numerical method to calculate the optimal thresh-
olds. Note that the global optimal thresholds of the thresholding
method can not be calculated analytically by close form expres-
sion. 2) When there are some known training signal sequences
of a relatively stationary signal, this scheme can be used to train
the TNN first and then the trained TNN can be used to process
the subsequent unknown signal sequences.

Since the soft-thresholding function is weakly dif-
ferentiable in Stein’s sense [17], for (3) can be calculated
numerically by a gradient-based optimization algorithm. In
learning step , the parametercan be adjusted as follows:

(16)

and

(17)

where is the estimation error,
is the learning rate matrix

at each step and is the learning rate for parameter. Note

(18)

i.e., the parameter only depends on the wavelet coefficients
at scale . This makes the above algorithm computationally ef-
ficient. This optimization procedure can be used as the learning
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algorithm of TNN’s depicted in Fig. 2. The given signal series
and the reference signal series are used as the training

set.
2) A Reference Noisy Signal can be Gener-

ated: In practice, the original signal is usually unknown and
cannot be used as the reference signalin Fig. 2. However, we
may know more than one noise corrupted version of a signal. For
example, in adaptive echo cancellation applications, we have
two measurements for the same source signal [16], [17]. Also,
in some applications, we may have an array of sensors and each
sensor may give us one corrupted version of the signal.

In such cases, a practical denoising scheme is developed. In
this scheme, two noise corrupted signaland are produced
from the same signal plus uncorrelated noiseand , i.e.,

(19)

In this case, the error between the estimateand the reference
signal is . The MSE risk becomes

(20)

Note that because is uncorrelated
with and . As can be deduced from (20), when the parameter

is adjusted so that is minimized, in (10) is also
minimized accordingly. That means, when selectingin (19)
as the reference signal, the neural network structure in Fig. 2 can
also be used to adjust the parameterto minimize the risk .

Theorem 2: Suppose the reference noisy signal is
selected as in (19), i.e., the reference error series is
and the risk is . Suppose

then and both the errors and can be used to seek
for minimizing in adaptive algorithms.

Proof: First, from (20) we know that . The error
is an instantaneous error for and can be used to adaptively
seek the , which is the same as .

This is to say, it is equivalent to use the reference signalor
the true signal as the reference signal in terms of minimizing
the MSE of the estimation. Also note that the optimal solution
does not depend on the SNR of the reference noisy signal [See
(20)].

B. Unsupervised Learning-Only the Received Signalis
Known

In many practical occasions, it is hard to obtain any available
reference signal and only the received noisy signalis known.
Yet it is still desired to recover the original true signal. Since
there is no other reference signal available for the evaluation
of the estimation error, the estimation error has to be estimated
from the received signal itself in an unsupervised fashion.

Then we may construct an unsupervised learning algorithm to
minimize this error. Based on this principle, the following two
unsupervised learning algorithms for the TNN are developed.

1) SURE Based Learning Algorithms:In practice, the noise
variance is usually known or easy to be estimated. In such in-
stances, there is a good method to estimate the estimation error
of the true signal for additive Gaussian noise. TheStein’s Unbi-
ased Risk Estimate(SURE) is an unbiased estimator of the MSE
[17]. For noise suppression problem as in (2), assume the noise
variance has been normalized to , without loss of gen-
erality. Suppose an estimation operator is used to estimate
the true signal , i.e., . Define

(21)

where is a function from to .
Stein [17] showed that when is weakly differentiable

(22)

where . TheStein’s Unbiased Risk
Estimate(SURE) is defined as

(23)

where is the threshold parameter when the thresholding func-
tions are used as the estimation operator. Clearly, it is an
unbiased estimator of the MSE risk . Note that for the TNN,
the above SURE risk can be calculated for each channel in the
transform domain.

Then the SURE risk can be used as the objective function of
the TNN and the gradient-based adaptive learning algorithm
can be used to minimize this objective function. However,
the estimation operator has to have at least second-order
derivatives to obtain the gradient of the SURE risk .
Neither the standard soft-thresholding function nor the
standard hard-thresholding function has second-order
derivatives. Note that the new proposed thresholding functions

and in (6) and (7) are infinitely differentiable
and thus can be used. The gradient of the SURE risk can then
be calculated as follows:

(24)

where and the thresholding function
may be or . Then the gradient-based adaptive
learning steps (16)–(17) can be employed in this unsupervised
learning process.

Also note that Donoho’s method [3] uses the standard soft-
thresholding function and selects a thresholdin a finite set

. Therefore the selected threshold is a
sub-optimal threshold for the SURE risk.

2) Learning by Cross-Validation:It is possible to “create” a
reference signal from the received signalitself by cross-vali-
dation. Then the estimation error can be estimated and the gra-
dient-based adaptive learning algorithm as in (16) and (17) can
be used. This scheme is similar to the cross-validation wavelet
shrinkage method proposed by Nason [6], where the wavelet
transform and standard thresholding functions are used.

The received signal samplescan be divided into even sam-
ples and odd samples by a subsampling process. Then
can be the reference signal ofto calculate the estimation error
in Fig. 2 and vice versa. This is reasonable because the features
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of coefficients of and in the transform domain are usu-
ally very similar. For example, for an oversampled bandlimited
signal with a sampling rate doubling the critical Nyquist sam-
pling rate, the amplitude spectra ofand are completely the
same and there are only some phase differences between their
spectra. The similar properties also exist for other orthogonal
linear transforms. We suggest the use of necessary magnitude or
phase compensation when calculating the cross-validation error.
Note that this cross-validation learning algorithm does not need
to know anya priori information of the noise.

C. Time Adaptive Stochastic Learning-Nonlinear Adaptive
Filtering

1) Time Adaptive Stochastic Learning Algorithms:In the
above adaptive learning algorithms, we assume that the signal
samples are finite and all samples of the received signalare
used in learning process. However, in real-time adaptive signal
processing applications, the signal is usually time-varying
random process and only the past samples of the received
signal are known. It is necessary for the TNN to track the
changes of the signal in real-time and continually seek the
optimum in some statistical sense. The previous analysis and
learning algorithms indeed can be generalized to this case.

For stochastic signals, the noise suppression problem can be
formulated as follows with a slight modification of (2). Assume
that a random signal is transmitted over a channel to a sensor
that receives the signal with an additive uncorrelated noise.
The received signal is given by

(25)

Let denote the signal after noise suppression. Now the MSE
risk can be written as

(26)
Here we assume the signalis an ergodic stochastic process,
which is a commonly used assumption in adaptive filtering pro-
files [19]. The only difference between (26) and (3) is that (26)
uses the mathematical expectation instead of the average (sum-
mation) of finite samples in (3). By replacing the average with
the mathematical expectation, it is easy to show that the The-
orem 1 and its proof still hold for this stochastic case, i.e., the
above MSE risk has at most one minimum with respect to the
threshold parameter. Also, we can rewrite (17) in the gradient
based adaptive learning algorithm as:

(27)
where is the estimation error,
diag is the learning rate matrix
at each step and is the learning rate for parameter.
Similarly, one can easily prove that (20) and Theorem 2 can
be generalized to real-time stochastic signals. Therefore, after
replacing the summation with the mathematical expectation
in adaptive learning, all above-mentioned supervised and
unsupervised learning algorithms can be generalized to the
real-time stochastic signal model depicted in (25).

Nevertheless, the mathematical expectation of the error is dif-
ficult to obtain in practice. Hence, we suggest the use of an

LMS-like scheme, i.e., we use instantaneous square error risk
to approximate the true risk in (26)

in all of the adaptive supervised and unsupervised learning al-
gorithms we previously developed. The thresholding parameter

can then be adjusted adaptively by

(28)

Especially, for SURE based algorithms, the SURE risk can
be used to estimate the MSE instantaneously in the transform
domain

(29)

This stochastic learning process is depicted in Fig. 7. In this
case, the linear orthogonal transform should be implemented in
real-time. Usually, we can use a specific filter bank depending
on the transform.

By using above time adaptive stochastic learning algorithms,
we actually achieve a type of nonlinear time adaptive filtering
tool.

2) Convergence of the Stochastic Learning Algorithm:The
analysis of an adaptive nonlinear system is generally difficult.
Here we only analyze the convergence property of the proposed
stochastic learning algorithm in a tangible situation. The anal-
ysis of the algorithm will be based on stationary signals, al-
though our nonlinear adaptive filtering methods are designed
to track nonstationary random input. This idealization is com-
monly used so that the analysis becomes relatively tractable.
Furthermore, we assume the standard soft-thresholding function
is used. In the following theorem, we show that in such an ideal
situation, the algorithm is convergent in certain statistical sense.

Theorem 3: For the stochastic signal model described in (25)
and (26), assume the following learning algorithm is used:

(30)

when

(31)

and when

(32)

Here is the learning rate of each step.
If there exists optimal as in (10), then

(33)

when is suitably selected, i.e., the above learning algorithm
is convergent in the mean. See Appendix B for proof.

Note that (32) constructed such that the negativecan be han-
dled smoothly when is too large and then the limit is un-
biased. In practice, we can select small enough so that
is nonnegative. Although it is not easy to select a proper series

, the difference between and will approach a small
number when is small enough. From (30) and (31), it is
easy to see that if , when , will
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Fig. 7. Stochastic learning for TNNs.

be adjusted toward until . Therefore, the algo-
rithm is still very practical even if a series cannot be found
to make the algorithm convergent in certain mathematical sense.
The results in Theorem 3 also hold for the transform domain in
TNNs. This is simply because each thresholdin is only de-
pendent on coefficients series and MSE at channel. Each is
adjusted independently from the others.

Apparently, if the reference signal as in (19) is used, Theorem
3 still holds for the same reasons in Theorem 2.

3) Time-Scale or Time-Frequency Adaptive Noise Reduc-
tion: The above stochastic adaptive learning algorithms are
capable of tracking the time-varying nonstationary features of
the signal and noise toward the minimum MSE risk. There-
fore, we can also use the above stochastic adaptive learning
algorithms for a finite length signal to track local changes
within the signal. In this case, we can take advantage of the
time-varying local estimation error instead of the overall
average. Then the threshold parameteris dependent on not
only different channels in the transform domain but also time
position, i.e., it is fully adaptive with respect to the time and
different channels. If the wavelet-based or Fourier-based linear
orthogonal transform is used, the time-scale or time-frequency
adaptive noise reduction by TNN’s is indeed achieved [19].

VI. EXAMPLES

A. Adaptive Noise Reduction When all Signal Samples are
Known

Five test signals are generated using software WaveLab [20].
Four of them are commonly used in denoising literature [3],
namely, Blocks, Doppler, Bumps and HeaviSine. Their signal
length is 1024 samples. To test the adaptivity of the algorithm,
we intentionally create a new test signal, which is a combination
of two completely different signals – Blocks signal and Doppler
signal. Its signal length is 2048 samples. The test signals are
shown as in Fig. 8(a)–(e). The SNR is 7 dB and the noise vari-
ance is normalized to 1, i.e., the MSE of the noisy signalis 1.
For comparison, the noise reduction results of different methods
are tested and the discrete wavelet transform (DWT) is used as
the linear transform in the TNN. Daubechies 8-tap least asym-
metrical wavelet filters are used. The largest scale of the DWT
is set to be in the experiments, i.e., there are
orthogonal channels in the transform domain of the TNN.

Some typical adaptive noise reduction methods based on the
TNN are tested. The results of different noise reduction schemes
are shown in Table I. The information and techniques used by
different methods are also indicated in Table I. Two commonly
used wavelet thresholding denoising methods are also given for
comparison: “VisuShrink” is a universal wavelet thresholding

method [5]; “SureShrink” is an optimized hybrid scale depen-
dent thresholding scheme based on SURE risk [3], which has
the best MSE performance among conventional thresholding
denoising methods. To clearly illustrate the results, Fig. 9 plots
the estimation error for the signal “Blocks-Doppler”, i.e., .
The results of other test signals are not plotted here due to space
limitations.

TNN-OPT0 and TNN-OPT1 are the supervised TNN
methods with the standard soft-thresholding and the
new soft-thresholding function , respectively. They
both use the true signal as reference and converge to MSE
minima. For soft-thresholding functions, the found minima can
only be the global minima. Therefore, they actually represent
the optimal MSE performance of the thresholding scheme.
Note that here we take an empirical function parameter value

for the new soft-thresholding function 1 This
new soft-thresholding function is used in all following TNN
methods unless otherwise specified. TNN-hard shows a local
minimum found by the TNN using a new hard-thresholding
function with an empirical function parameter value

. Obviously, this local minimum is usually not as
good as soft-thresholding. In experiments, we found that the
TNN using hard-thresholding is very easy to get trapped in
local minima.

TNN-ref is a supervised TNN method using noisy reference
. Here noise is set to have the same variance as.

The MSE performance is very close to the optimal, as expected.
And yet this is a very practical adaptive noise reduction method
since a noisy reference is often easy to obtain. TNN-sure is
an unsupervised TNN method based on SURE risk while the
noise variance is known or can be well estimated. We see that the
MSE result is also rather good. Note that only new soft-thresh-
olding functions can be used in this method since SURE risk is
used. When there is no additionala priori information available
but the received noisy signal itself, the TNN method using
cross-validation can be used, denoted as TNN-CV. As can be
expected, the results of TNN-CV is not as good as that of the
other methods that use additionala priori information. How-
ever, TNN-CV is still a good method when no additionala priori
information is available.

Last, TNN-TS employs a supervised stochastic learning
method of the TNN and achieves time-scale adaptive noise
reduction. The reference signal is again . We see
that it usually gives the best MSE performance, even better than
the optimal MSE performance the nontime-adaptive thresh-
olding methods can achieve (see TNN-OPT0 and TNN-OPT1).
However, for signal “HeaviSine,” it does not give better MSE
performance than the optimal nontime-adaptive solutions.
This can be justified by the fact that the “HeaviSine” signal is
pretty smooth and has little abrupt changes. Therefore, the time
adaptivity of the algorithm cannot help to improve the MSE
performance.

For comparison we also calculated the optimal MSE perfor-
mance of a 16-tap linear filter. The original true signalis used
as a reference and the solution of the Wiener-Hoff equation –

1The performances of the numerical tests in this paper are reasonably in-
variant in the neighborhood of the selected empirical values of function param-
eters� and�.
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Fig. 8. Test Signals. (a) Blocks. (b) Doppler. (c) Bumps. (d) HeaviSine. (e) Blocks-Doppler.

Wiener filter is obtained. The corresponding MSE is shown in
the last column in Table I.

From the results, we see that almost all adaptive noise reduc-
tion methods perform better than conventional wavelet thresh-
olding methods and the Wiener filter in terms of MSE. From
the plots, we observe that compared to nonadaptive conven-
tional methods, the TNN-based methods can better adapt to fast
changes of the local features and usually preserve better fine
structure (high-frequency part) of the signal.

In numerical experiments, we also observed that in cases
where both standard and the new thresholding functions
can be used, the methods using the new thresholding func-
tions have similar optimal MSE performance to the ones
using standard thresholding functions, but the adjustability
and robustness of the learning algorithms using the new
thresholding functions are much better and they usually give
better learning results. This is because the new thresholding
functions have nonzero derivatives for all, while the
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Fig. 9. Numerical results of the error signals for different noise reduction methods applying on Blocks-Doppler signal (a) Original error–noisen (b) VisuShrink
(c) SureShrink (d) TNN-OPT0: Supervised TNN with true signal reference, using standard soft-thresholding function� (x; t) (e) TNN-OPT1: Supervised TNN
with true signal reference, using new soft-thresholding function� (x; t) with � = 0:01 (f) TNN-hard: Supervised TNN with true signal reference, using new
hard-thresholding function� (x; t) with � = 0:01 (g) TNN-ref: Supervised TNN with the noisy reference signaly = x + n using� (x; t) (h) TNN-sure:
Unsupervised TNN based on SURE (i) TNN-CV: Unsupervised TNN based on cross-validation (j) TNN-TS: TNN-based time-scale adaptive learning with reference
y = x + n . (k) Linear: Wiener filtering with true signal referencex.

standard soft-thresholding function has zero function values
and derivatives when . Therefore, when , the
learning algorithm based on the standard soft-thresholding
function completely loses its adjustability, while the learning

algorithm based on the new functions still knows where to
go.

Note that except for the TNN using hard-thresholding func-
tions, all other algorithms are generally not sensitive to the ini-
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TABLE I
MSR RISK FOR DIFFERENTDENOISING SCHEMES

tial value of the TNN. The learning rate defines the convergence
speed and accuracy of all the algorithms.

B. Adaptive Noise Reduction in Real-Time Adaptive Filtering

In real-time adaptive filtering, only past samples of the re-
ceived signal are known. The objective is to use these past sam-
ples to track the changes of the signal in real time and continu-
ally seek the optimum. Therefore, the time adaptive stochastic
learning algorithms described in Section V-C1 can be used.

The test results for the signal “Blocks-Doppler” are presented
here to illustrate the adaptive filtering, since it is highly nonsta-
tionary. The signal is assumed to be a stochastic real time se-
ries, i.e., only past samples are available at each time. Two sto-
chastic learning algorithms for the TNN are tested, i.e., super-
vised stochastic learning with noisy reference and
unsupervised stochastic learning based on SURE risk. In both
algorithms, the new soft-thresholding function with

is used. Again, the DWT and the same setup as in
the above subsection are used. Then the optimal MSE perfor-
mance calculated for TNN-OPT1 can be treated as the optimal
convergent MSE performance of these statistical learning algo-
rithms.

For comparison, the LMS (Least-mean-square) based linear
adaptive filtering method [16] is also used for the same signal.
Clearly, the linear adaptive method needs a reference signal. To
be justified, we use the same noisy signalas the reference
signal for the linear adaptive method. The length of the adaptive
linear filter is set to be 16. We tried different learning rates and
selected the best one for the LMS based linear adaptive method.
It is easy to show that the optimal MSE performance of this
adaptive linear filter is the Wiener filtering result as in Table I.

The learning performances of different adaptive filtering
methods are shown in Fig. 10. Note that the MSE at each
time is calculated by taking the mean value of the squared
error using the adaptive parameters (thresholds or linear filter
coefficients) at time to filter all samples. The MSEs at time

of different methods are shown in Table II.
From the results, we can see that the TNN-based methods

converge rather fast toward the optimal solutions of the
methods. In addition, we see that when using linear adaptive

filtering, there are abrupt changes of MSE at the time of abrupt
changes of the signal. Apparently, such sudden changes are
not desired in adaptive systems, although they seem inevitable.
For TNN-based methods, there is no such phenomena. The
adaptive process is rather smooth in terms of MSE. This is
because the abrupt changes (singularities) are caught on all
scales in the transform domain [21]. Their energy is spread to
all channels and therefore will not cause the sudden change of
adaptive systems.

Indeed, more numerical simulations of other signals also
show that the TNN based methods perform much better than
linear adaptive filtering in both learning performance and the
optimal MSE performance.

C. Spatial-Scale Adaptive Image Denoising

Image denoising is an often-encountered application in real
world. In the following, an image denoising example using a
real-world image is presented to illustrate the application of the
TNN. The 256 256 “cameraman” image is used as the test
image, with additive independent, identically distributed (i.i.d.)
Gaussian noise. The original clean image is shown in Fig. 11(a).
Two noisy images are generated with same noise variance. One
of them is used as a reference image. TNN-TS method pre-
sented in the preceding Section VI-A is used. This is a super-
vised stochastic learning method of the TNN. For two-dimen-
sional images, it becomes aspatial-scale adaptiveimage de-
noising method instead oftime-scale adaptivefor the one-di-
mensional signal. The same wavelets as in Section VI-A are
used and the largest scale of the two-dimensional DWT is set to

in the experiments. The new soft-thresholding function
with is used. The algorithm is tested for noisy

images with different noise variances. The peak-signal-to-noise-
ratio (PSNR) results are shown in Table III. The first column
is the original PSNRs of noisy images. Note that the new spa-
tial-scale adaptive image denoising method is still denoted as
“TNN-TS” in the table.

For comparison, Table III also shows the results of the non-
adaptive conventional wavelet schemes. They are calculated
using functions provided in Matlab Wavelet Toolboxes. As in
Section VIA, “VisuShrink” is the universal soft-thresholding
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Fig. 10. Learning curves of various adaptive filtering methods. (a) TNN-based
adaptive filtering. (b) Linear adaptive filtering (LMS algorithm). Note that the
scales of (a) and (b) are different.

TABLE II
MSE AT (CONVERGENT) TIME i = 2048 FOR DIFFERENT ADAPTIVE

FILTERING SCHEMES

denoising technique and “SureShrink” is a SURE risk-based
scale dependent denoising technique [3], [5]. The column
“Wiener” represents the denoising results by Wiener filter,
which is the optimal solution of the linear filtering technique.

As can be seen, the TNN based spatial-scale adaptive image
denoising has the best performance in terms of PSNR improve-

ment, especially when the PSNR of the original noisy image is
high. This can be expected since the amplitudes of the few co-
efficients representing the signal in the transform domain are
much higher than those coefficients representing the noise, and
more of the signal energy can be preserved when cutting off all
the coefficients with a threshold.

Fig. 11(b) shows the noisy image with PSNR dB (the
first row in Table III. The denoised images using different
methods are shown in Fig. 11(c)–(f). Apparently, the TNN
based spatial-scale adaptive denoising method gives the best
visual result as well as the best PSNR improvement.

VII. CONCLUSION

In this paper, we developed a new type of TNN structure for
adaptive noise reduction, which combines the linear filtering
and thresholding methods. We created new types of soft and
hard thresholding functions to serve as the activation function
of TNNs. Unlike the standard thresholding functions, the new
thresholding functions are infinitely differentiable. By using
these new thresholding functions, some gradient-based learning
algorithms become possible and the learning process becomes
more effective.

We then discussed the optimal solution of the TNN in the
MSE sense. It is proved that there is at most one optimal solu-
tion for the soft-thresholding TNN. The general optimal perfor-
mances of both soft and hard thresholding TNNs are analyzed
and compared to the linear noise reduction method. It is shown
that the thresholding noise reduction methods are more effec-
tive than linear methods when the signal energy concentrates
on few coefficients in the transform domain. It is indicated that
the hard-thresholding may have many local minima. Although
the optimal MSE performance of hard-thresholding may be su-
perior to that of soft-thresholding, the soft-thresholding is still
more practical since its optimal solution is much easier to find.

Gradient-based adaptive learning algorithms are presented to
seek the optimal solution for noise reduction. The algorithms in-
clude supervised and unsupervised batch learning as well as su-
pervised and unsupervised stochastic learning. The optimal so-
lution of the TNN can be found by supervised learning with the
true signal as a teacher. A practical supervised learning scheme
using a noisy signal as a reference is developed and proved
to be as effective as using the true signal as a reference. In un-
supervised learning, two learning schemes are developed. The
SURE risk and cross-validation are used to estimate the MSE
of the TNN, respectively. Depending ona priori information,
different learning algorithms can be selected.

By estimating the instantaneous MSE of the TNN, the sto-
chastic learning algorithms can be developed. It is indicated that
the TNN with the stochastic learning algorithms can be used as
a novel real-time nonlinear adaptive filter. It is proved that the
stochastic learning algorithm is convergent in certain statistical
sense in ideal conditions.

Numerical results are given for different noise reduction algo-
rithms including conventional wavelet thresholding algorithms
and linear filtering method. It is shown that almost all the TNN-
based adaptive noise reduction algorithms perform much better
than the others in terms of MSE. It is also shown that the more
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Fig. 11. (a) Original. (b) Noisy (PSNR= 20 dB). (c) VisuShrink. (d) SureShrink. (e) TNN-based spatial-scale adaptive filtering. (f) Wiener filtering.

a priori information is used, the better is the performance. No-
tably, the time-scale adaptive noise reduction method based on
stochastic learning often performs even better than the optimal
solutions of conventional thresholding noise reduction schemes.
The TNN-based nonlinear adaptive filtering methods are also
tested and compared with the traditional linear filtering method.

It is shown that the new methods outperform the linear adaptive
filtering in both the optimal solution and the learning perfor-
mance. With a real world application – image denoising, we
construct a spatial-scale adaptive image denoising algorithm
based on the TNN. The new image denoising scheme shows su-
perior performance in both PSNR and visual effect in our tests.
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TABLE III
THE PSNRS (DB) OF DIFFERENTDENOISINGMETHODS. THE FIRST COLUMN IS

THE ORIGINAL PSNRS OFNOISY IMAGES

In this paper, we show that the proposed TNN is a very effec-
tive new tool for adaptive noise reduction of both deterministic
and stochastic signals. Various noise reduction algorithms can
be constructed based on the TNN. Further investigation on the
detailed setup of TNNs and applications is worth being pursued.

APPENDIX A
PROOF OFTHEOREM 1

Proof: First rewrite (8) as

Let , i.e.,
. Note is aconditional expected value[22].

From (9),

Taking derivative with respect to, we obtain2

Let ,
then must hold. Since is Gaussian
distribution, its probability density function (pdf) is

. Subsequently

2Note that:(@=@t) p(�; t)d� = p(b(t); t)(@b(t)=@t) � p(a(t); t)

(@a(t)=@t)+ (@p(�; t)=@t)d�.

Then

Therefore, if we let denote any zero of , i.e., ,
then

That means: 1) All zeros of must be the minimum points
of because

(34)

i.e., . 2) Function increases monotonically in the
neighborhood of . Since is a continuous differentiable
function of , cannot cross axismore than once. Therefore,

has at most one zero, i.e., there is at most one minimum
solution for .

On the other hand, function can be rewritten as

(35)

Obviously, if the noise level is zero, then . If the noise
level is not zero, then , , i.e., . Since

and , then .

APPENDIX B
PROOF OFTHEOREM

Proof: From (30) and (31), we obtain

(36)
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when . From (30) and (32), we obtain

(37)

when .
Hence

(38)

Suppose there exists. Then
. Since is unique and

(see (34)), we obtain

(39)

Hence, when ,
. If is selected such that

with constant , we obtain

(40)
On the other hand, if , then

. If is selected such that
with the same as above, we obtain

(41)

Therefore, if a positive is
selected, we obtain

(42)

Since , it follows

(43)
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