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Susceptible-Infected-Susceptible
(SIS) model

® [wo possible states: susceptible and infected
® [wo possible events for infected nodes:

p Recovery (rate 1)

p Infection to neighbors (rate A)

/N




Heterogeneous
Mean-Field theory for SIS

Pastor-Satorras and Vespignani (2001)

® Degree distribution P(k) ~ k7

® p;=density of infected nodes of degree k
Pr = —pr + Mk[L — pr] > P(K'|k) pr
k/

® Threshold (k) 0'4_
Ac = @ 03 |
K 02
® Scale-free networks: y <3 01 |
zero epidemic threshold "0
N




Susceptible-Infected-Removed
(SIR) model

® Three possible states: susceptible, infected and
removed.

® [wo possible events for infected nodes:
p Death/recovery (rate 1)
p Infection to neighbors (rate A) %‘
| / \
p Transition between :?i« %,4
healthy and infected




HMF for SIR

® HMF theory

O ®)
=0 - )

® /ero epidemic threshold for scale-free networks

® Finite epidemic threshold for scale-rich networks




Got the Flu (or Mumps)? Check the Eigenvalue!
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Abstract

For a given, arbitrary graph, what is the epidemic threshold? That is, under what conditions
will a virus result in an epidemic? We provide the super-model theorem, which generalizes
older results in two important, orthogonal dimensions. The theorem shows that (a) for a wide
range of virus propagation models (VPM) that include all virus propagation models in standard
literature (say, [8]|5]), and (b) for any contact graph, the answer always depends on the first
eigenvalue of the connectivity matrix. We give the proof of the theorem, arithmetic examples
for popular VPMs, like flu (SIS), mumps (SIR), SIRS and more. We also show the implications
of our discovery: easy (although sometimes counter-intuitive) answers to ‘what-if’ questions;
easier design and evaluation of immunization policies, and significantly faster agent-based
simulations.
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Beyond HMF for SIS

® Wang et al, 2003

Ay = Largest eigenvalue of the adjacency matrix

® Chung et al. 2005

A { c1vV ke Vke > <<kk>> In*(N)
N — I€2 k2
CQ% % > \/kcln(N)

k. = Largest degree in the network
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Beyond HMF for SIS

® Summing up

\ 1/ Vke v >5/2
‘T 2 <y <5/2

In any uncorrelated quenched random
network with power-law distributed
connectivities, the epidemic threshold goes
to zero as the system size goes to infinity.

This has nothing to do with the scale-free
nature of the degree distribution.
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Finite Size Scaling
SIS v =45
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Mathematical origin
of HMF failure for SIS

® HMF is equivalent to using annealed
networks with adjacency matrix

kik;
(k)N

aij — C_L(k?i, ]{7]) —

® This matrix has a unique nonzero eigenvalue

_ (K)
A=




Physical origin
of HMF failure for SIS

® Star graph with kmax* | nodes
Dimaz X Akman — 1) O\ /@
P1 X (>‘2kma:v — 1) /
® For A\ > 1/\/kma.. the hub and its neighbors

are a self-sustained core of infected nodes,
which spreads the activity to the rest of the

system.




A truly endemic state
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Extensions

® For Erdos-Renyi graphs

An — max{\/kmaz, (k)
Krivelevich et al., 2003

® For correlated graphs

AN > \/kmam
Restrepo et al, 2007

The threshold vanishes for any network
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Conjecture: on scale-rich networks, the epidemic threshold
is vanishing or finite depending on the presence or absence
of a steady-state.
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Kitsak et al., Nat. Phys. (2010)

Node A
k=96
k=63
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Node B Node C
k =96 k=65

k-cores are important for SIR (and SIS...)
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SIS dynamics on
maximum k-core
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SIS dynamics on
maximum k-core

® Maximum k-core index (Dorogovtsev et al, 2007)

Lo (r=2)
ks ~ (v —2)(3 — 7)(3—7)/(7—2);@”% < mm> ~ k3

maax
kma:v

® Summing up

Ae ~ 1/ks ~ ko ~ (k) /(K7)

max

The maximum k-core induces a threshold
scaling as the HMF threshold
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UCM
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SIR dynamics

® On the maximum k-core

Ae ~ 1/ks ~ K ay ~ (k) /(k7)

maax

® On the star-graph centered around the hub

b2, LH2)

No dependence on
kmax (When large)

kmaac

The maximum k-core always governs
the transition and sets the threshold
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Summary

® /ero epidemic threshold for SIS on scale-rich networks.
® Finite epidemic threshold for SIR on scale-rich networks.

® For SIS the transition can be governed either by the
maximum k-core or by the largest hub.

® For SIR the maximum k-core always dominates.

® Correlations may change the picture

C. Castellano and R. Pastor-Satorras, PRL, 105,218701 (2010)
C. Castellano and R. Pastor-Satorras, arXiv:1105.5545 (201 1)
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