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Abstract 

This multiple-case study examined how advanced learners solved a complex problem, 

focusing on how their frequency and application of cognitive processes contributed to 

differences in performance outcomes, and developing a mental model of a problem.  Fifteen 

graduate students with backgrounds related to the problem context participated in the study.  

Data sources included direct observation of solution operations, participants’ think aloud and 

stimulated recalls as they solved the problem, as well as solution scores indicating how well each 

participant solved the problem.  A grounded theory approach was used to analyze stimulated 

recall and think aloud data.  A set of thirteen cognitive processes emerged in the coding and were 

tallied for each participant.  Individual cases were then grouped into clusters that shared similar 

frequencies of prior knowledge activation, performance outcomes, and tool use behaviors.  Each 

cluster was profiled from least to most successful with descriptive accounts of each cluster’s 

approach to solving the problem.  A cross cluster analysis indicated how learners’ cognitive 

processes corresponded with problem solving operations that revealed thresholds of knowledge 

development and formed an integrated mental model of the problem.  The findings suggested 

that mastering problem solving operations within each threshold enhanced the learners’ 

conceptual awareness of where to apply cognitive processes and increased the combinations of 

cognitive processes they activated at higher thresholds of knowledge development.  The findings 

have implications for anticipating where novices need support within each threshold of 

knowledge development during complex problem solving.  

Keywords: cognitive processes, cognitive tools, complex problem solving, developing 

expertise, mental models, problem representation
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Thresholds of Knowledge Development 

Problem solving is cognitive processing aimed at accomplishing certain goals when the 

solution is unknown (Mayer & Wittrock, 1996).  Early models of problem solving described an 

iterative cycle of representing the problem, searching for a solution, and implementing a solution 

strategy (Foshay & Kirkley, 1998).  Bransford and Stein (1984), for example, proposed that an 

IDEAL problem solver should have the ability to identify the problem, define the problem, 

explore possible strategies, act on these strategies, and look at the effects.  When an unknown 

obstructs the initial solution path, the problem solver initiates a new cycle and repeats the steps 

until a solution is reached.  This and similar models of problem solving have foregrounded an 

information processing approach without taking into consideration how complexity impacts 

cognitive demands or the spectrum of cognitive processes that underlie solution operations 

(Iiyoshi, Hannafin, & Wang, 2005; Kim & Reeves, 2007; Lajoie, 2008; Merriënboer & 

Stoyanov, 2008).  

Traditional instructional design models, which remain the norm in formal educational 

settings, have similar limitations when it comes to addressing problem complexity, primarily 

because these models are predicated on mapping a pre-specified cognitive process to a pre-

determined learning outcome or solution.  The Revised Bloom’s Taxonomy of Educational 

Objectives (Anderson & Krathwhol, 2001; Bloom, Engelhard, Furst, Hill, & Krathwohol, 1956), 

for example, sequenced six categories of cognitive processes along a hierarchy of knowledge 

development:  Remember, Understand, Apply, Analyze, Evaluate, and Create.  Each cognitive 

process category was associated with four dimensions of knowledge: factual knowledge, 

conceptual knowledge, procedural knowledge, and metacognitive knowledge. The taxonomy 

made it possible to associate cognitive processes with the depth of content knowledge a learner 
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needed to master a pre-determined learning outcome for well-structured problems (Krathwhol, 

2002).  Mastery of such problems requires application of a limited number of concepts, rules, 

and principles.  All elements of the problem are given and there is just one correct answer 

(Jonassen, 2000). 

Although information processing models and taxonomies of cognitive processes have 

proved helpful for the design of well-structured problems, they do not approximate the 

complexity of problem solving that characterizes work and learning in the 21st Century 

(Jonassesn, 2000; Mayer, 1998).  The current shift in instructional design from learning 

objectives to authentic reference situations (Merriënboer & Stoyanov, 2008) necessitates the 

need for more robust models of problem solving that account for how a problem’s complexity, 

structure, and context impact a learner’s ability to manage multiple and competing cognitive 

demands.  The social and cultural skills required within workplaces, alongside the dynamic, 

technology-infused task environments in which knowledge is now produced and distributed, 

have increased the need for technology scaffolds to help learners construct, represent, and apply 

knowledge just in time.  

When technology-based tools serve as scaffolds in learning environments, they are often 

called cognitive tools.  According to Jonassen (1996), cognitive tools are “computer-based tools 

and learning environments that have been adapted or developed to function as intellectual 

partners with the learner in order to engage and facilitate critical thinking and higher order 

learning” (p. 9).  Research has shown that cognitive tools have the potential to facilitate 

knowledge construction, support conceptual understanding, and scaffold higher-order cognitive 

tasks within complex learning environments (Jonassen, 2006; Pea, 1985; Salomon, Perkins, & 

Globerson, 1991).  In particular, tools are needed to help learners enact a “well-planned, 
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prioritized, set of cognitions and actions” (Funke, 1995, p. 4) toward the development of a 

mental model of the problem.  Mental models are the “…rich, complex, interconnected, 

interdependent, multi-modal representations of what someone or some group knows” (Jonassen 

& Strobel, 2006, p. 4), and they “are generally created in response to challenging problem 

situations” (Spector, 2010, p. 27).  When learners begin to externalize a mental model through 

external knowledge representations brought about by use of tools in the problem environment, 

these mental models can serve as an index for knowledge development, providing a window into 

how a learner is thinking and reasoning about the problem (Kim, 2012; Spector, 2010).  

In this multiple-case study (Kluwe, 1995; Stake, 2006; Yin, 2003), we examined 

advanced learners’ (i.e., graduate students) cognitive processes as they solved a complex 

problem in a problem-based, digital learning environment that provided a collection of 

technology-enriched cognitive tools to assist students’ problem solving.  The goal of this 

research is to understand how frequency and application of cognitive processes when solving a 

complex problem contributed to knowledge development and the overall quality of solution 

operations.  

Theoretical Framework 

Characteristics of Complex Problems 

Complex problems contain multiple, interrelated components that are unclear or 

implicitly represented and are open to multiple approaches and solution paths (Spector, 2010). 

They typically occur within dynamic task environments that are information-rich.  As 

circumstances change, the learner must take new information into consideration, adjust his or her 

representation of the problem, and devise new plans (Kluwe, 1995).  Limited or missing 
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information about the factors impacting the situation create multiple subproblems − “clusters of 

interrelated problems related to the same work activities” (Jonnassen, 2000, p. 81).  

The more complex the problem, the less top-down guidance learners have for acquiring 

and applying relevant knowledge (Funke, 1995; Spiro, Coulson, Feltovich, & Anderson, 1988).  

When elements that relate to the problem are far apart, the problem is said to be ill-structured.  

These problems have unclear goals, missing elements, multiple solution paths, and sometimes no 

solution at all (Funke, 1995; Jonassen, 2003; 2000; 1997).  The more distance there is between 

the learner and the task, the more ill-structured the problem becomes, and cognitive demands 

increase.  The learner must give the problem form by bringing together components perceived as 

relevant to its solution, which requires recognizing the problem, expressing personal opinions 

and beliefs about it, devising arguments for its solution, and keeping track of progress (Belland, 

2010; Belland, Glazewski, & Richardson, 2011; Cho & Jonassen, 2002; Dunkle, Schraw, & 

Bendixen, 1995; Larkin, 1983).  

Cognitive demands are also exacerbated by the prevalence of non-recurring tasks.  

Irregularities occur in the task environment that rarely fit preformed schema (Spiro et al., 1997), 

requiring the learner to adapt or tailor a concept to fit the situation at hand (Spector, 2008).  The 

“mobilization of potential knowledge” (Spiro et. al, 1997, p. 8) is far more useful for managing 

complexity in the task environment than the application of fixed concepts and knowledge 

structures.  Solutions often require novel approaches that integrate cross-disciplinary knowledge 

(Spector, 2008). 

Cognitive Tools as Scaffolds for Problem Solving 

Solving complex problems is challenging for novices because they are most accustomed 

to solving well-structured problems (Jonassen, 2000) and lack well-developed mental models of 
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the task environment in which complex problems occur.  Despite these challenges, an underlying 

assumption of instructional design is that learners are not necessarily limited to any particular 

level of cognitive development.  Given appropriate scaffolding, learners can not only work 

within a zone of proximal development but also can go beyond their current limitations when 

they make use of the affordances within the immediate environment to externalize thinking 

(Vygotsky, 1978).  

From the perspective of distributed cognition (Henning, 2004), knowledge develops 

through interactions between internal and external representations in the task environment.  

Zhang and Norman (1994) theorized external and internal representations as “equal partners” 

during problem solving, with external representation activating perceptual processes and internal 

representations activating cognitive processes.  In their view, high-level cognitive functions 

result from the learner’s internalization of information in the environment and the externalization 

of internal representations (Zhang & Norman, 1994).  Knowledge and intelligence develop 

through interactions between external objects, such as tools in the task environment, and the 

learner’s prior knowledge (Zhang, 1997).  Both external and internal representations work 

together to anchor and structure cognitive behavior and, in the process, each transforms the other 

(Zhang, 1997).  

Because novices “lack perquisite knowledge and capacities for the subject domain” 

(Mayer, 1989, p. 44), they are the most likely to benefit from tools that can serve as external 

knowledge representations that guide and direct the application of cognitive processes; in turn, 

these external representations develop the learners’ internal representation of the problem (Zhang 

& Norman, 1994).  Cognitive tools can provide scaffolding in various ways:  (1) sharing part of 

the cognitive load so that learners can work on higher-order tasks; (2) representing abstract 



ADVANCED LEARNERS’ COGNITIVE PROCESSES 8 

 

concepts in meaningful and concrete ways; (3) modeling effective cognitive strategies or 

techniques; (4) guiding learners through cognitive tasks using expert or cognitive tutoring 

systems; (5) supporting metacognitive and self-regulation tasks; and (6) challenging learners’ 

knowledge and beliefs (Liu, Yuen, Horton, Lee, Toprac, & Bogard, 2013; Jonassen, 2006; 

Lajoie, 1993).  The external demands of the problem become less complex as the learner uses 

tools to build an internal representation, or mental model, of the problem from which they can 

construct an external representation that can structure the application of cognitive processes.  

Construction of Mental Models during Problem Solving  

Learners develop mental models through activities in the task environment with the goal 

of understanding a phenomenon, often mediated through use of cognitive tools (Derry, 1996).  

Mental models are defined as “the knowledge and structure in memory, as propositions, 

productions, schemas, neural networks, or other forms” (Zhang, 1997, p. 180).  They are 

situational understandings of a system, containing “the essential parts, states, or actions of the 

system as well as the essential relations among them, so that the learner can be able to see how 

the systems works” (Mayer, 1989, p. 59).  Unlike schema, which is knowledge stored in the head 

and divorced from context and situation, a mental model consists of knowledge that is 

situationally and contextually bound (Derry, 1996).  A mental model is an internal representation 

of a system that the learner brings to bear in a problem-solving situation (Jonassen, 2003; van 

Gog, Ericsson, Rikers, & Pass, 2005).  It is constructed through the application of different 

cognitive processes such as “constructing, testing, and adjusting a mental representation of a 

complex problem or situation” (Derry, 1996, p. 168).  Jonassen (2005) identified “planning, data 

collecting, collaborating, accessing information, data visualizing, modeling, and reporting” 

(2005, p. 91) as processes learners apply toward the development of mental models.  Through 
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time, experience, and reflection on learning in the problem space, mental models gain strength, 

coherence, and conceptual complexity (Jonassen & Strobel, 2006; Kim, 2012). 

Once constructed, a mental model becomes a “building block” for further reasoning 

about the problem but is always subject to further adjustment based on the outcomes of problem 

solving (Derry, 1996).  A well-developed mental model integrates different kinds of knowledge. 

Jonassen and Strobel (2006) identified six interrelated features of well-formed mental models.  

They include structural knowledge (the structure of concepts in a domain), procedural 

knowledge (the plan for solving the problem), image of system (mental images of the system 

being explored), metaphors (associations), executive knowledge (i.e., knowing when to activate 

mental models), and beliefs (assumptions about the problem).  

Building mental models has many benefits for solving complex problems. The 

information load, shifting dynamics, and unclear task characteristics of a complex problem evoke 

cognitive demands that exceed the limitations of working knowledge, making it difficult to 

attend to all the components of the problem (Funke, 1995; Spiro et al, 1988).  Well-developed 

mental models reduce cognitive demands by extending the capacity of working knowledge.  

Novices recall discrete, isolated bits of information that quickly exceed the capacity of working 

memory, which is fleeting (Anderson, 2009; Kluwe, 1995; Miller, 1956). They may employ a 

backward reasoning approach, working from a hypothesis regarding the unknown back to the 

given facts through trial and error, requiring them to track multiple sub-goals and tasks related to 

solving the problem (Patel & Groen, 1991).  A problem that is ill-structured for a novice may be 

a well-structured, routine problem for an expert.  Experts can recognize routine tasks and apply 

procedural knowledge without exceeding the limitations of their working memory (Charness, 
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1976; Chase & Ericsson, 1982; Ericsson & Staszewsli, 1989).  They apply a top-down or 

forward cognitive processing approach by working from the known facts to the unknown.  

Having well developed mental models also assists with recalling relevant knowledge. 

Knowledge is more accessible when mental models are structured and integrated.  Novices may 

have stored knowledge of procedures, rules, and formulas, but without sufficiently integrated 

sets of mental models, they fail to recognize what conditions warrant the application of this 

knowledge or why it is relevant (Bransford, Brown, & Cocking, 2000).  Expert knowledge is 

more thoroughly integrated into a coherent mental model that includes specifications of when, 

where, and why to use their knowledge (Bransford et al., 2000); that is, expert knowledge is 

organized in condition-action form, increasing speed and accuracy during problem solving.  

In addition, the development of mental models increases perceptions of what information 

is most relevant in the task environment.   Experts can perceive recurring patterns of information 

that are undetectable to the novice, and they use this information to make accurate predictions of 

solution procedures (Chase & Simon, 1973; Livingston & Borko, 1989).  Their perceptual 

awareness of relevant information is usually a consequence of having a well-developed mental 

model.   Experts, for example, can classify and externally represent problems in their field by 

concepts, principles, big ideas, or laws; novices, on the other hand, work on the basis of surface 

features (Chi & Bassock, 1991; Chi, Feltovich & Glaser, 1981; Savelsbergh, de Jong, & 

Ferguson-Hessler, 1998).  They neither recognize nor understand the underlying systems.  

Consequently, they solve the problem in a foreshortened way, relying on surface characteristics 

and superficial understandings (Chi & Bassock, 1991; Chi, Feltovitch, & Glaser, 1981; Glaser, 

1989). 



ADVANCED LEARNERS’ COGNITIVE PROCESSES 11 

 

Much of what is known about the structure of mental models is inferred from external 

knowledge representations that reveal how the learner conceptualized the problem (Spector, 

2008; Zhang, 1997).  External representations guide the learner’s perception of what information 

is relevant, and help to “organize information around coherent explanations” (Mayer, 1989, p. 

46).  They can take different forms—numerical, verbal, or pictorial – and may be organized in 

groups, hierarchies, or other meaningful patterns and sequences (Klienmutz & Schkade, 1993).  

Some examples include diagrams, graphs, annotated concept maps, texts, and tables.  

Externalizing representations of problems have numerous benefits for helping novices to manage 

problem complexity such as limiting abstraction, aiding interpretation of information, 

recognizing  invariant information, seeing a situation from different perspectives, and making 

inferences (Spiro, et al, 1988; Zhang, 1997).  Furthermore, they can be used to extend working 

memory, store information, and share knowledge (Zhang, 1997). 

By examining the structure of external representations, it is possible to judge the progress 

the learner is making in developing knowledge, how the individual is reasoning about the 

problem, where there are misconceptions, and where support is likely to be needed (Kim, 2012; 

Spector, 2008).  Kim (2012) provided a stage-sequential model of learning progress by 

measuring the surface, structure, and semantic features of external representations.  Presumably, 

mental models become more integrated and conceptually complex as the learner progresses 

through stages of knowledge development: novice, advanced beginner, competent learner, 

proficient learner, and intuitive experts (Dreyfus & Dreyfus, 1986; Kim, 2012).  At each stage, 

the learners’ mental models, as assessed through external knowledge representations, reveal 

features that are more connected and semantically complex.  
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Additional insight into how mental models develop can be inferred from how 

strategically an individual interacts with and thinks across multiple knowledge representations 

tools.  Novices, for example, tend to work from a single representation, and depend on fixed 

knowledge structures rather than adapting them based on information in the problem (Spiro, et 

al, 1988).  Experts, however, think across multiple knowledge displays to plan and carry out 

goals and strategies, make connections across multiple representations, and negotiate a shared 

understanding with others (Henning, 2004; Jonassen & Strobel, 2006; Kozma, 2003).  

Regulating these processes involves “switching attention between internal and external 

representations, integrating internal and external information, and coordinating perceptual and 

cognitive operations” (Zhang, 1997, p 186).  

Given the critical role mental models play in problem solving, it is important that 

technology learning environments provide scaffolds that support the construction of mental 

models, which requires “engaging learners in using a variety of tools for constructing physical, 

visual, logical, or computation models of the phenomena” (Jonassen & Strobel, 2006, p. 8).  

Schkade and Kleinmuntz (1994) found that abilities in acquiring information was strongly 

influenced by the organization of information, and skill in combining and evaluating information 

was strongly influenced by the form a representation took.  They concluded that the way 

information is externally represented impacts decision-making and the ease of carrying out 

decision-making operations.  In other words, cognitive tools, when strategically employed, can 

help the learner develop and coordinate between the inner and outer representations of problems 

to enhance, guide, and manage cognitive processes. 
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Metacognition and Self-Regulation 

Skill in metacognition and self-regulation supports the development of mental models 

and the fidelity of external knowledge representations (Kim, 2012; Zimmerman & Campillo, 

2003).  Metacognition, originally defined as thinking about one’s own thinking (Flavell, 1971), 

involves self-awareness of cognitive processes, but may also include “affective and motivational 

components that can energize or hinder use of a strategy or skill on a transfer task” (Borkowski, 

Johnson, & Ried, 1987, p. 166).  Self-regulation refers to the control learners have over “setting 

goals, selecting appropriate learning strategies, maintaining motivation, and monitoring and 

evaluating academic progress” (Ramdass & Zimmerman, 2011, p. 196).  Increasing 

metacognitive and self-regulation activities has been shown to lead to higher recall and retention 

(Lee, Lim, & Grabowski, 2010; Poitras, Lajoie, & Hong, 2011) and deeper understanding 

(Bannert & Reimann, 2011) as learners become more aware of and take charge of forming their 

conceptualizations of problems.  

Studies on expert-novice differences suggest self-regulation is improved as mental 

models grow to include procedural knowledge of strategies.  Learning a problem solving strategy 

can lead to better problem representations, and problem representations can lead to better use of 

strategies (Alibali, Phillips & Fischer, 2008).  Because experts have developed mental models in 

condition-action form (Bransford, et al., 2000), they know when to switch strategies in response 

to changing variables in the task environment.  They balance the cost and benefits of a new 

strategy by assessing the level of cognitive effort required, and the effectiveness of a strategy to 

bring about a desired outcome based on prior experiences (Kleinmuntz & Schkade, 1993).  They 

are accurate at judging problem difficulty,  aware of the appropriateness of solutions attempted 

(Chi, Glaser, & Rees, 1982), are conscious of the errors they make, can accurately analyze the 



ADVANCED LEARNERS’ COGNITIVE PROCESSES 14 

 

reasons why they fail, and take corrective action when needed (Chi & Bassock, 1991; Chi, 

Feltovich & Glaser, 1981; de Jong & Ferguson-Hessler, 1991; Dunkle et al., 1995; Jonassen, 

2003; Larkin, 1983).  They are known to have cognitive flexibility (Spiro et al., 1988), which 

involves switching between tasks in response to shifting variables, and adopting new procedures 

in response to a new rule.  Cognitive flexibility has also been described as divergent thinking –

the ability to bring multiple perspectives to the task at hand, and is necessary for finding new 

solutions, and creating new knowledge and tools (Ionescue, 2012). 

Cognitive tools can support self-regulation by helping novices attend consciously to what 

they know, bring awareness of knowledge gaps, and strategize courses of action (Prawat, 1989).  

By representing the features of a problem, learners can assesses outcomes, recognize a need for a 

new strategies, and change plans.  Cognitive tools can also support metacognition through 

structuring the learning experience, providing scaffolds (e.g., prompts and feedback) to support 

the development of mental models, and guiding students toward self-regulation activities 

(Bannert & Reimann, 2011; Efklides, 2008; Lee, et al., 2010) and dynamic information 

processing– cognitive strategies, monitoring, and evaluation (Funke, 1995).   

Purpose of the Study 

In this study, we sought to better understand the connection between cognitive processes, 

performance outcomes, and the efficacy of operations for the development of mental models.  

We used a multiple case method to examine advanced learners’ (i.e., graduate students) (Kluwe, 

1995; Stake, 2006; Yin, 2003) problem solving operations, focusing on the how the frequency 

and application of cognitive processes contribute to the development of mental models and 

differences in performance outcomes.  Case study allows for a process analysis of complex 

problem solving through a descriptive account of think-aloud data and solution operations of 
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advanced learners.  We assumed that the performance of advanced learners would provide 

insight into cognitive processes underlying successful problem solving, and have implications for 

designing cognitive tools that support development of mental models for novices.  

Our inquiry built upon previous research using the same learning environment (see 

description below) to examine the interplay between the use of built-in cognitive tools and 

learners’ cognitive processes.  Liu and Bera (2005) found that the use of different types of tools 

was associated with different stages of problem solving and the students increasingly used 

multiple tools in the later stages of their problem solving process.  The results of the second 

study showed different types of cognitive tools were used for different types of cognitive 

processes; a connection was established between cognitive tool use and cognitive processes (Liu, 

Bera, Corliss, Svinicki, & Beth, 2004).  In a third study, results confirmed the findings from 

previous two studies with sixth graders (the target audience of the learning environment) to 

further exhibit strong connections between cognitive processes and cognitive tool use (Liu, 

Horton, Corliss, Svinicki, Bogard, Kim, & Chang, 2009).  The findings of these three studies 

provided empirical evidence to support the theoretical notion that technology-based cognitive 

tools play an important role in assisting students’ problem solving and activating cognitive 

processes necessary for constructing knowledge and active learning (Jonassen & Reeves, 1996).  

The current study examines how application of cognitive process contributed to performance 

outcomes and the development of mental models.  Our research question was: How does the 

frequency and application of cognitive processes during problem solving contribute to 

differences in performance outcomes and operations in the development of mental models?  
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Method 

Participants 

Fifteen graduate students from a large research university in the southwestern United 

States agreed to participate in this study.  These students were recruited from Astronomy (n=5), 

Educational Psychology (learning and cognition program area, n=3), Instructional Technology 

(n=4, two of them had a background in math and science education) and Science Education (n=3, 

all were middle school science teachers).  We chose a group of advanced learners as the 

participants because we intended to use simulated recall interviews to explore in-depth learners’ 

thinking processes.  Our past experience told us that it was very difficult for sixth graders (the 

target audience of the technology environment) to articulate their thought processes in an explicit 

and detailed way.  Because we selected participants from areas related to the technology 

environment—content knowledge, technology, and how to learn—we assumed that, compared to 

sixth graders, these graduate students would have more familiarity of the knowledge and skills 

for solving the problem strategically, and would apply advanced forms of reasoning typical of 

their respective disciplines (Mayer, 1998, 1989).  Because it takes 10 thousand hours, or ten 

years of deliberate practice to be a true expert in a domain (Ericsson, Prietula, & Cokely, 2007), 

we did not view these learners as experts, but we did hypothesize that they would demonstrate 

strategic application of cognitive processes toward the development of mental models, and that 

more frequent activation of higher-order processes occur among successful problem solvers.   

More information about each participant is presented in Table 1.  

Table 1 
 

Characteristics of Participants 

 Name  Gender 

# of Problems 

Solved 

Solution 

Correct Subject Matter Area 

1 Jay  M 1 No Astronomy 
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2 Parker M 1 Yes Astronomy 

3 Quinn F 2 Yes Astronomy  

4 Liam M 1 Yes Astronomy  

5 Tad M 1 Yes Astronomy  

6 Iris F 1 No Science Education  

7 Brooke F 1 Yes Science Education  

8 Jacey F 1 No Science Education  

9 Kyle  M 1 Yes IT w. Math/Science background 

10 Ian M 2 Yes IT w. Math/Science background 

11 Carlton M 1 No IT 

12 Noah M 1 No IT 

13 Jodie F 2 Yes Learning & Cognition 

14 Erin  F 1 Yes Learning & Cognition 

15 Seth M 1 Yes Learning & Cognition 

 

The Technology Environment 

The same learning environment, Alien Rescue, was used for the present study as well as 

the prior studies. Alien Rescue (Liu, Horton, Kang, Kimmons, & Lee, 2013, 

http://alienrescue.edb.utexas.edu/) is a multimedia problem-based learning (PBL) environment 

designed for sixth-grade space science.  Its goal is to engage sixth-grade students in solving a 

complex problem that requires them to use the tools, procedures, and knowledge of space and 

planetary science to learn about our solar system and processes of scientific inquiry.  Students 

are asked to find a suitable relocation site for six alien species whose homes were destroyed.  

Students, enacting the role of scientists, conduct investigations of the aliens and our solar system 

to decide which planets and moons are most habitable for each species.  In doing so, they 

identify and gather missing data, acquire and apply various science concepts, build probes to 

prospective planets and moons, and interpret data to find a home for each alien.  Students convert 

temperature, interpret spectra, and decipher periodic tables and apply other skills such as 

managing budgets and costs of missions as they work toward a solution.  
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However, factors impacting the solution are not readily transparent and new information 

that learners discover in the course of solving the problem requires them to develop new solution 

plans and contingencies.  Typical of complex problems, multiple solution paths are possible, and 

many sub-problems arise involving case-analysis, decision-making, strategic performance, 

dilemmas, argumentation, and composition (Jonnassen, 2000).  We further increased complexity 

for the participants by imposing a time limit.  The technology environment is designed for fifteen 

45-minute class sessions for 6th graders, and a total of six alien species need new homes, but we 

gave each participant 90 minutes to find a home for the same alien species, the Jakla-Tay, which 

included time for thinking aloud and composing a solution.  Participants who solved the problem 

in less than an hour were asked to find a home for a second alien species, the Akona.  These 

conditions kept the problem sufficiently complex for the advanced learners.  

To assist the students, a set of cognitive tools is provided to scaffold students' problem 

solving.  Table 2 provides a summary of the functions of each tool.  The tools can be divided into 

the four categories of cognitive tools identified by Lajoie (1993, 2000): Tools sharing the 

cognitive overload, supporting cognitive processes, supporting activities otherwise out-of-reach, 

and supporting hypothesis testing.  

Table 2 
 

Categories and Descriptions of Cognitive Tools in Alien Rescue 

Category Functions 

Category 1: Tools sharing cognitive overload 

Alien Database a  Provides information on the aliens' home worlds, their story, and 

their characteristics and habitat requirements.  

Solar System Database Provides information on the characteristics of selected worlds 

within the solar system.  

Missions Database Provides information on selected NASA missions.  

Concepts Database Provides instructional modules on various scientific concepts.  

Spectral Database Allows students to interpret spectra found in the Alien Database.  
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Periodic Table Allows students to look up information on the elements.  

Category 2: Tools supporting cognitive process 

Notebook  Allows students to generate and store notes on their research 

findings.  

Category 3: Tools supporting otherwise out-of-reach activities 

Probe Design Center  Provides information on real scientific equipment used in both past 

and future probe missions. Students construct probes by deciding 

probe type, communication, power source, and instruments.   

Launch Center  Provides an interface for launching probes. Students review the 

probes built in Probe Design, and decide which probe(s) to launch 

considering the budget.  

Category 4: Tools supporting hypothesis testing 

Mission Status Center  Allows students to view data retrieved by probes. Students must 

interpret this data in order to turn it into information that the 

students can use in developing the solution. Malfunctions are 

possible, and poor planning can result in mission failure and 

wasted budgetary expenditures. 

Message Tool  Serves as a repository of text messages sent to the student during 

problem solving.   

Solution Form  Allows students to submit solutions and rationales for the problem 

that can be reviewed and critiqued by the teacher. 

aAlso called Research Room. 

 

Procedure 

Each participant solved the problem individually in a lab setting on different days.  The 

researcher provided a brief introduction to logging in and navigating through the program.  Each 

participant watched the opening video scenario, which provided the context and described the 

problem, and then worked on the problem independently at the participant’s own computer.  The 

participants received no guidance in terms of the use of each tool, the sequence of tool use, or 

proceeding through the program.  Rather, the PBL program encouraged the learners to freely 

establish and implement their own course of action.  An essential goal of the program is that 

learners engage in planning, decision-making, and determining the best use of the program’s 
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affordances to reach the optimal solution.  After 90 minutes, each participant was asked to stop 

working and to write a solution recommendation for the home(s) they selected and the rationale.   

Data Sources  

To allow triangulation (Creswell, 2009), data were collected from three sources: 

stimulated recall interviews, thinking aloud processes, and students’ solution scores.  

Stimulated recall interviews and thinking aloud processes.  We asked participants to 

verbalize their thoughts during task completion (Ericson & Simon, 1993) using a think-aloud and 

stimulated recall procedure as they solved the problem.  The stimulated recall technique is “a 

valuable tool for investigating cognitive processes in a naturalistic context” (Lyle, 2003, p. 861).  

According to Spector (2010), “It is what the person is thinking and how that person is thinking 

about the problem situation that is very likely correlated with the quality of the solution that is 

developed and implemented” (p. 32).  The stimulated recall procedure involves an observer 

making careful notes while the participant works through a problem, asking probing questions 

using the observational notes as stimulus (Calderhead, 1981; Lyle, 2003).  In this study, the 

researcher asked each participant to explain what he/she was thinking immediately after he/she 

activated cognitive tools in the environment rather than after he/she had solved the problem.  

Two example questions are: “I see you found the alien database.  What were you thinking that 

made you want to go into there?” and “I noticed you recorded several pieces of information in 

your notebook as you read through the solar database.  Why did you do that?”  Each participant 

was asked what he/she was thinking after he/she clicked a tool, so there was only a few seconds 

delay between the action and participant’s recall.  Stimulated recall allows researchers to capture 

the link between the learner’s abstract understanding of the task requirements and the actual 

behaviors the learner engaged in.  It also makes it possible to measure cognitive activities and 
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motivation strategies to look for similarities in perception of task requirements across the entire 

problem solving process and to record the learners’ idiosyncratic knowledge and personalized 

routines. 

Solution score.  The participants’ performance outcome was measured by how well they 

were able to draft a well-supported recommendation for the home they selected.  Evaluation of 

the students' recommendations focused on how well they analyzed and synthesized data to 

support their solution and advance an argument for the home they selected.  Scores, ranging from 

1-8 on a rubric, were determined by three key criteria: 1) The feasibility of homes they selected 

(certain home(s) are good while other(s) are poor choices given the characteristics of the alien 

species and the planets), 2) The number of reasons they used to substantiate their choice, and 3) 

The number of limitations of the proposed home or gave consideration to how its constraints 

might be overcome.  A rationale received a higher score when it not only selected a good choice 

for home and provided several justifiable reasons, but also indicated limitation(s) of the chosen 

home. 

Data Analysis 

The data analysis used a multiple-level scheme, following the guidelines by Miles and 

Huberman (1994) for the development of a grounded theory (Corbin & Strauss, 2008).  First, the 

participants’ thinking aloud and stimulated recalls were audio recorded and transcribed. In this 

step, we took an inductive approach by using open coding and constant comparison.  Data were 

coded to identify the cognitive processes the participants enacted while solving the problem and 

using different cognitive tools.  Six researchers were engaged in the coding process.  To identify 

the codes, initially, the six researchers read through the transcripts from two participants and 

identified the cognitive processes independently.  Then the research team met to discuss each 
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code that surfaced and develop a definition of each code to reach a consensus on how to identify 

the cognitive processes.  Transcripts were re-coded based upon the defined categories of 

cognitive processes that emerged from the initial coding.  Through this iterative process of 

discussion and re-checking, a set of thirteen codes were generalized and agreed upon by the 

research team (see Appendix for a list of the codes and their definitions).  These codes described 

what cognitive processes the participants said they were doing, not what outcomes these 

processes may lead to.  For example, even though we may assign the code of planning and 

strategizing, or synthesizing to an action, it does not mean that the participant was planning 

effectively or synthesizing the right information.  It simply means that the code described the 

behaviors that corresponded with these processes as articulated by the participants in their recall 

interviews.  As a second step, using this coding scheme, each transcript was then coded by one 

researcher and verified and checked by a second researcher.  Any disagreement in coding was 

discussed and resolved until 100% inter-rater reliability was achieved. 

As a third step, all identified cognitive processes were tallied and examined for emergent 

patterns.  In order to identify patterns across participants, in addition to presenting the frequency 

of codes for each participant (see column 1 in Table 3), we also calculated the percentage of each 

code with its relation to the total number of codes (see column 2), by dividing the frequency for 

each code with the total number of codes.  By doing so, we attempted to eliminate the effect 

caused by the difference in the length of participants’ stimulated recall, which may lead to a 

difference in the raw frequency numbers. 

We examined the patterns based upon the use of tools, and the frequency and percentage 

of prior knowledge (code #5 in Table 3) the participants activated during the stimulated recall 

protocol.  The code prior knowledge activation indicates the participant already had some prior 
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knowledge and used that knowledge as a base to solve the problem.  Given the focus of this 

study, we wanted to see how these advanced learners utilized their prior knowledge in their 

problem solving process.  We examined the code of activating prior knowledge to explore the 

patterns revealed across the participants.  To assign a behavior as activating prior knowledge, 

typically such verbs or phrases were used by the participants: recalling, thinking of, I have the 

knowledge, and I knew.  For example, Quinn said: “After reading the type of atmosphere that 

their planet had, I had immediately thought of Io” and “I think a lot of it is just simply because I 

kind of have some prior knowledge of the different planets and moons, but I don't remember all 

of them.”  Frequency of prior knowledge activation was not an indicator of how much prior 

knowledge one actually had, but rather how often they activated it. 



ADVANCED LEARNERS’ COGNITIVE PROCESSES 24 

 

Table 3 
 

Frequency and Percentage of Cognitive Codes 

Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Participants Carlton Seth Jacey Noah Liam Tad Iris Parker Erin Kyle Jay Jodie Quinn Ian Brooke 

Codes # % # % # % # % # % # % # % # % # % # % # % # % # % # % # % 

1- Seeking 

information 12 19.67 13 17.57 9 16.36 12 20.34 19 20.88 11 14.47 13 20.00 8 17.39 20 34.48 10 18.52 9 18.00 13 19.40 7 16.28 19 18.10 8 21.62 

2-Comparing 5 8.20 5 6.76 3 5.45 8 13.56 15 16.48 9 11.84 7 10.77 6 13.04 6 10.34 7 12.96 10 20.00 8 11.94 7 16.28 12 11.43 4 10.81 

3-Confirming 6 9.84 9 12.16 0 0.00 4 6.78 9 9.89 7 9.21 5 7.69 0 0.00 5 8.62 3 5.56 1 2.00 2 2.99 2 4.65 5 4.76 3 8.11 

4-Generating 

hypothesis 5 8.20 4 5.41 7 12.73 6 10.17 3 3.30 6 7.89 5 7.69 5 10.87 3 5.17 3 5.56 5 10.00 4 5.97 6 13.95 11 10.48 4 10.81 

5-Activating 

prior 

knowledge 2 3.28 0 0.00 0 0.00 4 6.78 5 5.49 7 9.21 3 4.62 2 4.35 0 0.00 3 5.56 1 2.00 5 7.46 4 9.30 12 11.43 2 5.41 

6-Evaluating 

and 

synthesizing 5 8.20 7 9.46 8 14.55 7 11.86 10 10.99 15 19.74 11 16.92 5 10.87 8 13.79 6 11.11 8 16.00 5 7.46 6 13.95 7 6.67 2 5.41 

7-Testing 

hypothesis 3 4.92 3 4.05 2 3.64 2 3.39 4 4.40 13 17.11 4 6.15 4 8.70 4 6.90 1 1.85 2 4.00 6 8.96 1 2.33 4 3.81 5 13.51 

8-Planning & 

Strategizing  12 19.67 12 16.22 14 25.45 4 6.78 9 9.89 5 6.58 8 12.31 5 10.87 2 3.45 7 12.96 8 16.00 5 7.46 6 13.95 16 15.24 4 10.81 

9-Just-in time 

learning  0 0.00 1 1.35 2 3.64 0 0.00 0 0.00 0 0.00 1 1.54 1 2.17 0 0.00 2 3.70 1 2.00 4 5.97 1 2.33 3 2.86 0 0.00 

10-. 

Organizing  6 9.84 1 1.35 1 1.82 4 6.78 7 7.69 1 1.32 2 3.08 3 6.52 1 1.72 2 3.70 1 2.00 8 11.94 0 0.00 7 6.67 3 8.11 

11- State of 

Mind 

(curiosity, 

confusion, ...) 2 3.28 12 16.22 5 9.09 4 6.78 5 5.49 0 0.00 4 6.15 4 8.70 7 12.07 5 9.26 2 4.00 1 1.49 2 4.65 6 5.71 0 0.00 

12-Orienting:  

browsing, 

scoping 1 1.64 3 4.05 1 1.82 1 1.69 0 0.00 0 0.00 0 0.00 2 4.35 0 0.00 2 3.70 0 0.00 1 1.49 0 0.00 2 1.90 1 2.70 

13- 

Metacognition 2 3.28 4 5.41 3 5.45 3 5.08 5 5.49 2 2.63 2 3.08 1 2.17 2 3.45 3 5.56 2 4.00 5 7.46 1 2.33 1 0.95 1 2.70 

Total 61 100 74 100 55 100 59 100 91 100 76 100 65 100 46 100 58 100 54 100 50 100 67 100 43 100 105 100 37 100 
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Finally, we examined the participants’ performance across several measures: the number of 

problems they solved, the number of cycles they took to solve the problem, the number of probes they 

launched (a key cognitive tool use), the cost effectiveness of their missions (the total cost of all probes 

sent to collect data), the percentage of activating prior knowledge (the frequency of activating prior 

knowledge [code #5] divided with the total occurrences of cognitive codes), and their solution score.  

Participants who shared similar results across these factors were grouped together into clusters (see 

Table 4).  As a result, four profiles of problem solving performance emerged.  

Table 4 
 

Profiles of Learner Clusters 

Profile 

Number of 

Problems 

Attempted 

Average 

Number of 

Problem 

Solving 

Cycles  

(total cycles) 

Average 

Number of 

Probes 

Launched  

(total 

probes) 

Developed a 

Cost 

Effective 

Solution  

Average 

Percentage of 

Activating 

Prior 

Knowledge  

Argued a 

Viable 

Solution  

Average 

Solution 

Score  

Cluster 1 

(n=4): 

Low Prior 

knowledge, 

Unsuccessful 

1 4.25 (17) 3 (12)  No 2.51 No 1 

Cluster 2 

(n=3): 

Medium 

Prior 

knowledge,  

Successful 

1 6.33 (19) 6 (18) No 6.44 Yes 5 

Cluster 3 

(n=4): 

Low Prior 

knowledge,  

Highly 

Successful 

1 4.25 (17) 2.75 (11) Yes 2.98 Yes 7 

Cluster 4 

(n=4): 

High Prior 

knowledge, 

Highly 

Successful 

2 2 (8) 1.75 (7) Yes 8.40 Yes 6 
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Findings and Discussion 

Multiple factors underlie success at solving a complex problem, and various scaffolds for 

activating cognitive processes can be used more or less effectively toward deriving effective solutions 

(Bixler & Land, 2010; Puntambekar & Hübscher, 2005; Simons & Klein, 2007).  Thus, in the findings, 

we begin by describing performance trends and cognitive processes operations that characterized each 

cluster (See Figs. 1-4).  We discuss clusters from least to most successful in solving the problem to show 

a progression of complex problem solving ability.  Next, we provide a cross cluster analysis to show 

differences in how learners applied cognitive processes to develop facets of problem representation, or 

thresholds of knowledge development (see Figure 5) as learners applied cognitive processes toward the 

development of mental models during the problem solving process.  Finally, we discuss cognitive 

process associated with self-regulation, and suggest some directions for designing cognitive tools.  
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Figure 1. Distribution of codes in cluster one 

 

 

 
Figure 2. Distribution of codes in cluster two 

 

 

 
Figure 3. Distribution of codes in cluster three 

 

 
Figure 4. Distribution of codes in cluster four 
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Profiles of Complex Problem Solving  

Cluster 1: Low Prior Knowledge Activation, Unsuccessful.  The four advanced 

learners we placed in Cluster 1 came from Instructional Technology (IT), Learning and 

Cognition, and Science Education programs.  Together, they averaged 4.25 problem solving 

cycles and sent an average of 3 probes (see Table 4).  Figure 1 presents the distribution of 

cognitive codes for this group.  Their low activation of prior knowledge suggested that they had 

low domain knowledge, or that their knowledge was inert.  As shown in Table 3, Seth and Jacey 

did not activate prior knowledge (code #5) during their stimulated recall.  Carlton also had a low 

degree of activating prior knowledge (ranked as the 11th highest among the fifteen participants), 

and Noah was ranked in the middle among the fifteen participants.  Ultimately, they were 

unsuccessful solving the problem.  In the following, we discuss aspects of their performance that 

led to unsuccessful outcomes.  

Ineffective operations for building structural knowledge.  Although seeking information 

(code 1) was the top ranked code for this cluster (code 1, 18.49%), they had formed ineffective 

procedural operations for building domain knowledge.  First, when compared to the other more 

successful clusters, these learners seldom compared data (code 2, 8.49%) when seeking 

information, which compromised their ability to make connections and build conceptual 

knowledge.  They often used tools that were inappropriate for the stage of problem solving they 

were in and the cognitive processes they wanted to enact.  For example, during the research 

stage, both Jacey and Carlton used hypothesis testing tools (probe builder and launcher) to seek 

information without having an actual hypothesis.  Jacey said, “I guess I am just going to 

randomly send probes to these different planets to collect data.  Then I’ll observe the data and 

see which [planets] I can eliminate.”   They sent probes with the intention of seeking information 
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rather than testing specific hypotheses.  Failure to associate their cognitive processes with the 

right tool at the right time (i.e. stage of problem solving) and their difficulty with making 

connections among the information they processed exacerbated backward reasoning processes 

(Chi & Bassock, 1991; Glaser, 1989) and compromised development of structural knowledge.  

Inadequate self-regulation.  Cluster 1 learners engaged metacognitive processes (code 

13, 4.81%) and had high frequencies of planning and strategizing (code 8, 17.03%).  However, 

often they carried out plans and applied strategies before considering their appropriateness or 

alternative courses of action.  They focused more on finding shortcuts than on building 

knowledge of concepts and identifying all the factors impacting the problem.  They often 

disregarded prompts for specifying the purpose for their missions, and built probes without 

consideration of costs or feasibility.  Carlton said, “Since I have an unlimited budget, I may as 

well make the Cadillac of all probes and send it to every planet I think might fit … there is no 

rationale, for not including an instrument.”  They went through several cycles before formulating 

a specific research question.  Because their research questions were too broad, they had difficulty 

gathering relevant information and building domain knowledge of concepts central to the 

problem.  When things were not working, they were inflexible changing their plans until they 

encountered excessive setbacks.  Jacey underwent five cycles before self-regulating, which was 

essential for revising her representation of the problem and developing more effective operations 

for building structural knowledge of the domain: 

I need to be more specific about where I want to send this probe and what 

I want it to do, but I really don’t have enough information on all these 

different planets.  Maybe I can eliminate them in another way, so I may 

have to go into the solar system database and research individual planets.  
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Maybe there is already information about the atmosphere without sending 

a probe.  So I am going to eliminate by the information that is already 

known without spending a lot of money. 

Once they began associating the tools with the cognitive function they wanted to enact, as 

Jacey did above, they grew more proficient at developing more effective plans and strategies for 

building structural knowledge and generating hypotheses.  

Setbacks elicited negative emotions.  State of mind (code 11, 8.84%) was highest among 

Cluster 1 learners.  Feelings of frustration and uncertainty in the wake of setbacks corresponded 

with task avoidance and foreshortened conclusions.  They demonstrated behaviors typical of 

performance learning orientations, as characterized by “focusing on avoiding inferiority, not 

looking stupid or dumb in comparison to others” (Pintrich, 2000, p. 99).  Carlton said: “I feel like 

I have a high self-concept and so I feel like finishing quickly is important to me, and that I can 

show others that I can finish quickly.”  Seth oscillated between building background knowledge 

and “just getting done.”  He said: “I want to do it quick and like perform well or something.”  

The emphasis they placed on speed as a measure of ability contributed to ineffective procedural 

operations such as inconsistent use of tools and frequent disregard for self-regulatory cues within 

the problem space.  Performance orientation behaviors, which focused on maintaining one's self-

efficacy as a capable problem solver through external validation, did not regard setbacks as 

feedback for revising problem representation, but as threats to their sense of self as capable 

problem solvers.  At the same time, they cared about being successful and were concerned when 

setbacks inhibited progress. 

Having trouble with integrating meaningful information.  In contrast to the other 

clusters, these learners had low occurrence of comparing (code 2, 8.49%).  They did not have a 



ADVANCED LEARNERS’ COGNITIVE PROCESSES 31 

 

systematic procedure for comparing across data representations to make connections between 

isolated facts.  Although they had recorded life-supporting requirements of the alien species in 

the notebook tool, they failed to discern how requirements interacted to sustain life and had 

trouble prioritizing requirements when examining the affordances and constraints of a potential 

home.  Lack of an integrated conceptual knowledge base made it difficult for them to perceive 

what factors were most important when evaluating results from problems.  In the end, they drew 

conclusions from a limited set of data.  Their failed solutions resulted from inadequate 

procedures for developing structural knowledge, ineffective operations for self-regulating, 

frustration and anxiety in response to setbacks, and difficulty bringing together relevant data to 

evaluate outcomes.  

Cluster 2: Medium to High Prior Knowledge Activation, Somewhat Successful.  

Cluster 2 was comprised of three learners whose stimulated recall responses revealed a medium 

to high activation of prior knowledge of planetary science, and averaged a solution score of 5 

points.  Liam and Tad were doctoral students in Astronomy, and Iris was a master student in 

science education.  As shown in Table 3, Liam’s percentage of activating prior knowledge was 

5.49%, which was ranked as the 7th among the fifteen participants.  Iris’ 4.62% of prior 

knowledge code was ranked as the 9th.  Tad’s activation of prior knowledge accounted for 

9.21% of his total occurrences of cognitive codes, which was the third highest among the fifteen 

participants.  Despite their advanced knowledge, they took an average of 6.33 of cycles to solve 

the problem and accrued excessive project costs.  In the following, we describe the performance 

trends across their cases. 

Reliance on structural knowledge.  Cluster 2 learners identified a suitable habitat for the 

alien species within three cycles, acting on an intuitive leap or hunch.  Relying on their advanced 
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knowledge of the domain, they made accurate forward inferences (Chase & Simon, 1973; 

Livingston & Borko, 1989) by comparing, confirming, and synthesizing data when seeking 

information.  For example, while reading that the alien species need for sulfur to grow their 

crops, Tad immediately sent a probe to Titian, a moon of Jupiter, claiming, “…there is 

atmospheric nitrogen present for their plants and there is atmospheric methane present. Usually 

where there is methane there is sulfur—they tend to go hand and hand a lot of times.”  Having 

prior domain knowledge increased the diversity of cognitive processes and knowledge 

construction processes when seeking information.  However, they had neglected orienting (code 

12, 0%) to the full range of tools available to the problem space and enacted operations for 

hypotheses development and testing before gathering contextual knowledge about the alien’s 

characteristics and other factors that can affect the alien’s ability to adapt to an imperfect but 

otherwise habitable environment. 

Inert argumentation.  Cluster 2 learners worked from limited data, and looked for a 

perfect match rather than argue for how the aliens could adapt to an imperfect but otherwise 

habitable environment. Information seeking, comparing, and confirming were the dominant 

processes they used to evaluate probe results when operations for synthesizing data were 

necessary for building an argument and generating a solution.  A pattern of rapid dismissal of 

strong candidates emerged.  For example, after checking the data from his probe, Liam abruptly 

ruled out Io, a good match, as being appropriate for the species: “…I just noticed that it [Io] 

doesn’t have nitrogen in its atmosphere based on the results, so I am going to scrap that idea.”  

Liam did not argue how the species could use their farming and engineering abilities to 

manufacture nitrogen from Io’s natural resources.  Developing the argument would have 

required synthesizing their prior knowledge with the data they obtained from the probes, and the 
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information about the alien’s needs and characteristics.  Operations for these processes remained 

inert until they had formed a better conception of the task and developed an awareness of all the 

factors impacting the situation.  

Delayed self-regulation.  They averaged sending six probes before generating a solution.   

Having ruled-out the best homes during the initial cycles, they sent probes to unlikely candidates 

based on overly complicated rationales.  Cluster 2 engaged planning and strategizing (code #8) 

processes, but they did not reevaluate their approach until they had exasperated resources of 

time, money, and mental stamina.  Few remaining options caused them to reexamine their initial 

hypotheses.  For example, Liam stated:  

It seems kind of strange to go full circle and come back to Io which looked pretty 

good from the start.  I sort of ruled it out because of its lack of nitrogen. But after 

going through all the other possibilities it is becoming clear to me I was trying to 

find a perfect match.  I am not finding one. 

Recognizing how multiple factors impacted solution procedures was critical to their 

reevaluation of the problem, and enhanced solution generation procedures to include synthesis 

and evaluation of multiple data to build arguments.  Tad, for example, reviewed his probe results 

from Venus after having eliminated the planet several cycles earlier having decided Venus’ 

surface temperature was too hot.  This time, however, he synthesized knowledge of the aliens 

with his conceptual knowledge of the domain to build an argument:  “The temperature is high, 

but they are a subterranean species, they live mostly below the surface, so that may not affect 

them as much.”  Bringing related factors together to build arguments remained inert until they 

had formed an accurate perception of the task’s complexity.    
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For Cluster 2 learners, prior knowledge facilitated rapid development of hypotheses yet 

caused them to activate solution generation procedures before they had understood the 

complexity of the task or the types of data they would need.  This left their representation of the 

problem underdeveloped for many cycles.  Inconsistent self-regulation kept them from reforming 

their representation of the problem and activating operations for argumentation until they had no 

other recourses but to make something work from the mass of data they had collected.  

Cluster Three: Low-Medium Prior Knowledge Activation, Highly Successful.  

Cluster 3 included four advanced learners.  Jay and Parker were doctoral students in Astronomy. 

Kyle was a Master’s student in IT, and Erin was a doctoral candidate in Learning and Cognition. 

As shown in Table 3, these four learners had low frequencies of prior knowledge codes.  This 

was the case even for Jay and Parker who were doctoral students in astronomy.  Parker’s 

percentage of activating prior knowledge was 4.35%, which was ranked as the 10th and Jay’s 2% 

ranked as the 12th among the fifteen participants.  Kyle’s activation of prior knowledge 

accounted for 5.56%, which was ranked in the middle of using prior knowledge as compared 

with other participants.  Erin never activated prior knowledge during the stimulated recall.  Even 

so, this cluster had the highest solution scores (see Table 4).  We examine the performance traits 

that made them highly successful problem solvers in the following.  

Methodological use of tools to develop domain knowledge.  These learners developed 

domain knowledge by comparing data representations and forming connections between isolated 

facts as they sought information.  They averaged the highest levels of comparing (Code 2, 

14.09%) of all the clusters.  They initially worked on the basis of surface characteristics 

(Bransford et al., 2000; Chi & Bassock, 1991; Glaser, 1989).  Kyle, for example, searched for a 

planet or moon that matched the color of the aliens’ skin: “They [the aliens] talked about how 
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they were the same color as that planet, so I figured it might be an adaptation of theirs; so, they 

might want to be on a planet that is the same color as them.”  Such logical approximations 

involved comparing data and perceiving meaningful patterns, but lacked a thorough knowledge 

base with which to derive immediate breakthroughs.  They gradually grew from superficial 

surface comparisons toward organizing their operations around concepts underlying the problem.  

They used the notebook tool to externalize conceptual knowledge, keep track of unknown 

information, and pose questions around knowledge gaps.  Parker, through use of the notebook 

tool, combined geological, physical, biological, and atmospheric knowledge he had formed to set 

boundaries around his search: 

As a first cut I am looking for red planets and red moons because they need these 

heavy metals, and it seems a significant fact that they use red and orange bricks in 

building their homes.  Like Mars I am saying that it might be a possibility, but 

there are a few questions that I have about its atmosphere like ‘Does it have 

nitrogen and sulfur?’ 

Recognizing and isolating unknown information was necessary for formulating 

research questions that guided the development of structural knowledge, and compelled 

these learners to use tools methodologically for resolving unknowns.   Just in time 

learning (Code 9, 1.97%) was a skill they applied when encountering a knowledge 

constraint that inhibited progress.  Kyle, for example, used the concepts database tool 

whenever new factors emerged and obstructed his initial path: 

I didn’t know anything about the probes, so I want to learn about those.  

At the same time, I’ve been wondering about converting temperature, so it 

was good that I found it [concept database] in there.  So I have to go back 
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and read this because honestly I didn’t remember much about Kelvin, so I 

need to look at that again. 

They recognized the need to convert temperature scales, distinguish between probes 

types, and interpret spectra, but had to relearn the concepts so they could execute these 

operations toward their larger goal.  Their search of the research databases was sustained by self-

generated questions and learning goals that if proved unsuccessful could still produce insights 

about the problem and bring them closer toward a solution.  

Productive response to failure.  These learners responded to failure productively (Kapur 

& Rummel, 2012; Kapur, 2008) by identifying the underlying issue and determining new 

solution paths. Setbacks triggered appraisal of outcomes and development of new goals.  Their 

formative response to setbacks was indicative of a mastery learning behavior (Pintrich, 2000). 

They were driven more out of curiosity than by external validation, and embraced uncertainties. 

For example, when studying the alien species, Erin stated: “I am a social scientist…when I don’t 

know, I go and find out.”  They embraced the role of scientist with a genuine concern for the 

species, taking care to balance the alien’s needs with perceived wants, and inferring how these 

factors could help them adapt to an imperfect home.  Parker said: “I am looking for things that 

might make them comfortable, like they need heavy metals because they know how to work with 

them and they seem to like digging the tunnels.”  In this regard, enacting the role of scientists on 

a mission to save endangered species was the locus of their attention, rather than external 

perceptions of themselves as problem solvers. 

High self-regulation.  Figure 3 shows that the average percentage of planning and 

strategizing (code 8, 10.82%) was the 4th most applied process for this cluster, and 

metacognition (code 12, 3.79%) was the 10th most activated processes.  Cluster 3 focused on 
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self-regulating the efficacy of their procedures for building domain knowledge.  Being self-

regulative of procedural operations provided a more strategic and defined focus, especially when 

planning missions for testing hypothesis.  As shown in Figure 3, information seeking (#1), 

evaluating and synthesizing (#6), comparing data, and generating hypothesis peaked in their 

frequency distribution of cognitive codes.  The sequence of these processes—seek, compare, 

plan, and evaluate—indicated that they had formed a predictable pattern for managing the 

problem and evaluating progress.  They were cognizant of why they needed the information they 

gathered, how they would apply it, and why the application mattered.  Parker’s response was 

typical: “I only have one question about the planets, so I chose the mass spectrometer.  I already 

know there is volcanic activity on the planet and I don’t think I really need the radar.  I don’t 

think that is relevant.”  They waited to test hypotheses until they had exhausted all information 

resources, were functioning at the cusp of their knowledge, and could neither dismiss a home 

from consideration nor affirm its suitability.  

Strategic use of tools to support decision-making.  As Cluster 3 built domain 

knowledge, they became strategic with using multiple tools simultaneously to support synthesis 

and evaluation processes prior to generating a solution.  As shown in Figure 3, the distribution of 

cognitive codes peaked at evaluating and synthesizing (code #6, 12.84%), and was the 3rd most 

activated process for this cluster.  Their predominant strategy was to build hypotheses of two or 

three potentially habitable homes, rank them according to their degree of habitability, send 

probes back to back, and compare results to determine the best fit for the species.  Choosing 

between two or more habitable homes increased the problem’s complexity and compelled them 

to access multiple representation tools to perceive all factors impacting the situation and manage 
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cognitive demands.  Kyle, for example, accessed mission status center, the notebook tool, 

spectral database, periodic table, and other tools to support synthesis and evaluation processes:  

This is really hard…I see similarities in both places about what they need, but I 

need to figure-out which ones are most important because I do not want them to 

die. . .Part of it is that I don’t know how much they need of certain materials.  

The spectrometer showed that there is sulfur and nitrogen on Venus but it looks 

like very small amounts, but also the probe was destroyed.  So I don’t know if it 

was just higher up in the atmosphere that it didn’t have those things or if there 

was more of it closer to the surface.  But then there is plenty of sulfur in Io, but 

does not have enough…well, it doesn’t have any nitrogen. I am balancing that 

with the gravity on Venus.  It is much stronger than what they are used to and 

the last thing I want to do is crush them. 

Kyle’s use of multiple tools for evaluating the results initiated comparing (code #2), 

evaluating and synthesizing (code #6), planning and strategizing (code #8), and state of mind 

(feeling uncertain) (code #11).  The final solutions evidenced deep understanding of scientific 

concepts and argued how the aliens could use innate abilities and physical characteristics to 

overcome the limitations of an imperfect environment. 

The success of Cluster 3 was not predicated on the amount of prior knowledge they had 

when beginning the problem, but on consistent procedural operations for building structural 

knowledge that gave way to forward reasoning processes.  The analysis showed Cluster 3 

provided an exemplar case of how learners with minimal background knowledge in a domain 

could use cognitive tools strategically to solve an ill-structured problem more expertly. 
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Cluster Four: High Prior Knowledge, Highly Successful.  Cluster 4 learners quickly 

inferred the problem’s underlying concepts, had high solution scores, and solved for two 

problems in the time it took other participants to finish one problem.  They had high frequency of 

prior knowledge activation, and this ranked as the cluster’s 5th most applied cognitive processes. 

Quinn and Brooke, doctoral students in astronomy, relied on their structural knowledge of the 

solar system, which minimized their use of tools.  Jodie and Ian, graduate students in education, 

had less conceptual knowledge of the domain, but applied cognitive strategies and had prolific 

tool use at all stages of problem solving to derive quick solutions. 

Highly developed structural knowledge of the domain. Most novices struggle with 

recognizing the problem, setting it up, forming a solution path, and applying relevant knowledge 

to the task (Bransford, et al, 2000; Patel & Groen, 1991; Savelsbergh et al., 1998).  However, 

Quinn and Brook exemplified these aspects of developing expertise from the first cycle. They 

processed information about the aliens against their prior knowledge of the solar system without 

relying on tools for comparing data.  For example, when reading about the Jakla-Tay, Shay said: 

“I am trying to think in what ways it compares to our solar system and also get a feeling for the 

different types of planets that were inhabited vs. the ones that weren’t inhabited.”  She compared 

the data she processed about the aliens against her internalized knowledge of the Earth’s solar 

system without referring to the solar database.  In fact, many of the cognitive processes the tools 

were designed to support, particularly those for hypothesis generation, testing, and evaluation, 

were already internalized for these learners.  In only one cycle, she hypothesized Io as a good 

match for the species: “After reading the type of atmosphere that their planet had, I had 

immediately thought of Io. I am trying to remember what it was composed of.  Their planet 

sounded a lot like Io, so I am just reading it [in the solar system database].”  Brooke exhibited 
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similar behaviors, having targeted a habitable home in just two cycles. “I almost just want to skip 

to the end [laughs]!” 

Brook and Quinn used prior knowledge to its maximum benefit.  They used tools for 

confirming the accuracy of their hunches or whenever they grew curious of a tool’s functionality.  

Their progression through the program was mostly a matter of forward sequence and their use of 

tools was a necessary means to a pre-determined outcome.  After analyzing her probe results, 

Quinn stated: “I was hoping that I would find something more detailed than I already knew about 

Io, but I didn’t really feel that I found anything that was more beneficial or useful.  I just wasted 

money.”  Like Cluster 3 learners, both were conscientious of project costs and associated 

excessive expenses with inadequate planning.  

Active cognitive processing approach.  Jodie’s and Ian’s knowledge of the solar system 

was less thoroughly internalized, but both solved the problem within only three cycles.  Jodie 

was a doctoral candidate in Learning and Cognition and Ian a master’s candidate in Instructional 

Technology.  They leveraged what prior knowledge they had of the solar system with the 

cognitive strategies and use of multiple tools to think across and make connections between data 

representations, which facilitated quick and well-substantiated hypotheses.  They applied high 

frequencies of synthesis and evaluation tools from the first cycle of problem solving.  They had 

an active cognitive processing approach characterized by “…activating prior knowledge, 

questioning, interpreting, analyzing, and processing new information and concepts in light of 

past experiences; monitoring, developing, and altering prior understanding, and integrating 

current experiences with past experiences” (Gillespie, 2002, p. 1).  While all of the participants 

enacted these processes, Jodie and Ian, combined these processes at all stages, which 

distinguished them from the other participants who relied upon Category 4 tools (see Table 2) for 
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activating these processes.  Their cognitive processing infused seeking information, comparing, 

and applying prior knowledge regardless of what tools they were using.  Beginning with the first 

cycle, they applied knowledge of the aliens’ needs and preferences to evaluate information they 

processed about the Earth’s solar system.  Ian said: “I am looking for other rocky worlds; that 

kind of limits what I am looking at.  I just know that this particular species came closer from 

their original sun.  So for now I am limited myself from Mercury to Mars and then Mars’ 

moons.”  

Activated argumentation operations at all stages.  They showed advanced cognitive 

skills in that they formed arguments for how aliens could adapt to the constraints of a potential 

home long before they decided to send probes and evaluate results.  For example, after 

researching a planet with a high gravitational pull, Jodie said: “This species are strong, they are 

short. They do hard labor, so I don’t think a higher gravity would necessarily affect them.”  After 

reading about the high temperature on Venus, Ian said: “I didn’t see anything about [the alien’s] 

bodies that said they couldn’t survive in extremely hot temperature, but you never know.”  He 

combined his knowledge of the aliens’ physical characteristics with the knowledge he possessed 

about the planet to infer that the species could withstand its high gravity.  Instead of 

automatically eliminating a home on the basis of its deficiencies, as learners in Cluster 2 had 

done, they evaluated how the aliens could mitigate the constraint it posed by comparing and 

synthesizing data they had gathered regarding the species.  The ease with which they made 

inferences, synthesized information, and developed hypotheses during the research stage 

suggested that they relied on their advanced cognitive processing skills in conjunction with the 

prior knowledge they had. 
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Cluster 4 was characterized by advanced domain knowledge and strategies for processing 

information.  The pattern of reading, making inferences, developing and testing hypotheses 

dominated each of their cycles, allowing them to solve for two problems within the time frame 

others only solved one.  Consequently, Cluster 4 demonstrated the most expert-like performance 

of all participants.  

Summary of clusters.  The performance trends that characterized each cluster indicated 

that the frequency of high-level cognitive processes was an unreliable indicator of successful 

performance.  Far more important was how skilled learners were at keeping their cognitive 

processes focused on discerning relevant factors, identifying unknowns, and developing 

knowledge for generating a solution.  Successful problem solving operations among learners 

with low prior knowledge activation (Cluster 3) was associated with self-regulation of 

knowledge development, formative response to failure, and bringing multiple representations 

together to compare, synthesize, and evaluate.  Unsuccessful performance among low prior 

knowledge activation learners (Cluster 1) was associated with ineffective procedures for 

developing an integrated knowledge base, performance oriented behaviors, and inconsistent self-

regulation.  However, even learners with high activation of prior knowledge and familiarity of 

the problem domain (Cluster 2) encountered difficulty with general problem solving skills that 

impaired performance.  They had a tendency to misrepresent the problem and act on a solution 

path without recognizing all factors.  These setbacks kept argumentation operations inert when 

evaluating results.  The most successful learners (Cluster 4) had developed a highly integrated 

knowledge that increased cognitive power at all stages of problem solving, allowing them to 

work with great efficiency, accuracy, and solve for two problems.  Our descriptive analysis 

suggests that individual differences in learning orientation, prior knowledge, and skill in self-
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regulating knowledge development impact how cognitive processes are applied toward 

successful solution operations.  

Thresholds of Knowledge Development: A Cross Cluster Analysis  

To further explore the association between cognitive processes and performance 

differences among the four clusters, we examined how learners’ cognitive processes 

corresponded with facets of mental model development, which include 1). Building a procedural 

model, 2). building a structural model, 3). building an executive model, and 4). building 

arguments (Jonassen & Strobel, 2006).  As shown in Figure 5, the outer arrows represent the 

steps associated with the problem solving cycle (Bransford & Stein, 1984).  The outer circle 

represents self-regulation in the application of cognitive processes across each of the four 

thresholds.  The middle circle identifies the tasks, or essential operations for each threshold.  

Finally, the inner circle represents the cognitive processes that learners applied toward carrying 

out those tasks.  For some clusters, it took multiple cycles to master the operations within a 

threshold, and mastering them was necessary for successful operations in later thresholds.  In the 

preceding discussion, we present the dominant cognitive processes and operations associated 

within each threshold as well as areas where novices may require scaffolding within each 

threshold. 
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Figure 5. Thresholds of Knowledge Development 

Threshold I: Developing a procedural model.  Developing a procedural model 

involved generating procedures for operating in the problem environment, and developing plans 

for solving the problem.  It required analyzing the problem and discerning the function and 

purpose of tools for executing a solution path.  The dominant cognitive processes for developing 

a procedural model were planning/strategizing (code 8) and orienting (code 12), both of which 

were associated with self-regulation (Azvedo & Hardwin, 2005; Lajoie, 2008).  The most 

successful learners developed procedures for how they would use tools at different stages of 

problem solving, and implemented a methodological approach for use of building and integrating 

domain knowledge (Cluster 3, 10.82%; Cluster 4, 11.87%).  Doing so was critical for learners 
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who had low activation of prior knowledge and had little else but the tools from which to set up 

the problem.  Cluster 3, for example, strategized using the tools to build hypotheses of two or 

more homes, send probes, and compare the results.  Cluster 1 had the highest proportion of 

planning-strategizing (17.03%) of all the clusters, but had a tendency to mismatch tools with the 

cognitive processes, and use tools that were ineffective for developing structural knowledge.  

They had to keep returning to this threshold until they developed sufficient procedural 

operations.  Disproportionately high frequencies of planning-strategizing as compared to other 

clusters indicated struggle, numerous cycles of problem solving, and cognitive overload more 

than efficient problem solving.  

All clusters had similar rankings for orienting, which involved qualitative analysis of the 

problem through exploring the problem space and the function of tools.  Orienting was lowest 

among the clusters with advanced domain knowledge (Cluster 2, 0%; Cluster 4, 1.53%).  Most 

notably, Cluster 2 was the only group who had no application of orienting, which compromised 

the qualitative analysis of the problem.  In summary, orienting, planning, and strategizing 

featured prominently in problem analysis and developing solution procedures.  Knowing which 

tools can best support different cognitive processes is a meta-awareness that is not automatic for 

some learners, especially novices (Puntambekar & Hübscher, 2005; Simons & Klein, 2007).  

Novices need support for building associations between tools, cognitive processes, and stages of 

problem solving to form students’ initial representation of the problem and help them use the 

right tool for the tasks at hand.  

Threshold II: Developing a structural model.  This threshold involved developing a 

structure of concepts underlying the problem that were relevant to its solution.  Learners used 

their procedural model of tools to build domain knowledge and discern missing elements that 
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related to the solution.  The dominant processes included information seeking (code 1) and 

comparing (code 2).  The most successful learners applied these processes for gathering data, 

questioning, determining the importance of information, and identifying unknowns.  

Information seeking (code 1) was the top ranked process for each cluster.  However, it is 

noteworthy that the lowest scoring cluster had the least application of information seeking 

(Cluster 1, 18.49%), and the highest scoring cluster had the highest levels of this process (C3, 

22.10%).  The development of structural knowledge increased cognitive demands for both these 

clusters, requiring them to keep track of unknown information, research questions, and relevant 

data.  Cluster 3 relied on methodological use to manage essential operations in this threshold, 

while Cluster 1 was less consistent in applying cognitive processes to these tasks.  Self-

regulatory tools (Azevedo & Hadwin, 2005) are necessary at this threshold so that learners can 

stay focused on building structural knowledge of the domain. 

Comparing (code 2) was a critical process in the development of structural knowledge.  

By thinking across two or more representations, learners were apt to make connections between 

data, infer probabilities, and discern relationships.  Comparing was the 2nd most activated 

process for Clusters 3 and 4 (Cluster 3 14.09%; Cluster 4 12.61%), which had the highest 

solution scores.  It was the 3rd most applied process for Cluster 2 (Cluster 2; 13.03%).  However, 

Cluster 1, which averaged the lowest scores, had fewer instances of comparing (Cluster 1, 

8.49%), and was the cluster’s 6th most activated cognitive process.  Considering that these 

learners also had the lowest average frequency of prior domain knowledge (Cluster 1, 2.51%), 

they were in the most need of building a structural representation.  Failure to use tools 

methodologically made it difficult for them to transcend backward reasoning processes.  Given 
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that comparing was a distinguishing factor in learners’ success, tools that intentionally scaffold 

comparing processes for building structural knowledge can be of considerable benefit to novices.  

Other cognitive processes frequently activated in this threshold were confirming (code 3), 

organizing (code 10), and just in time learning (code 9).  Confirming was most often applied by 

the least successful clusters 1 and 2.  They took more cycles to solve the problem and had not 

integrated relevant information (Cluster 1, 7.19%; Cluster 2 8.93%).  The more successful 

clusters (Cluster 3, 4.04%; Cluster 4, 5.13%) activated this process to check the accuracy of their 

inferences before determining a course of action or drawing conclusions.  Organizing shared a 

similar ranking across clusters, but was highest for Cluster 4 (Cluster 1, 4.95%; Cluster 2, 4.03%; 

Cluster 3, 3.49%; Cluster 4, 6.68%).  Just in time learning was among the lowest of all processes 

activated for each cluster, but occurred more often within Clusters 3 and 4 (Cluster 1, 1.25%; 

Cluster 2, .51%; Cluster 3, 1.97%; Cluster 4, 2.79%).  The higher occurrences for Cluster 4 can 

be attributed to those learners having solved a second problem.  Both Clusters 3 and 4 had 

consistent operations for seeking information and comparing with Category 1 tools (see Table 2), 

and gradually integrated other cognitive processes as their domain knowledge grew more 

advanced.  

Given the critical role of developing structural knowledge, novices can benefit from 

representation tools that adjust to their mental model.  Tools that provide learners flexibility 

organizing content into meaningful and related chunks as they process new information are 

recommended.  Concept maps and diagrams along with a notebook tool can provide a visual 

medium for helping learners to notice what they know from what they need to find out (Henning, 

2004; Kozma, 2003).  Flexible representation tools can also offer insight into how a student is 

thinking about the problem and where critical concepts remain unformed (Kim, 2012).  When 
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these representations cultivate such awareness, they can also scaffold the formulation of research 

questions, plans, and strategies for seeking information and comparing (Puntambekar & 

Hübscher, 2005; Simons & Klein, 2007).  

Threshold III: Developing an executive model.  Executive operations involved having 

perceptual awareness of relevant information in the problem space that triggered solution 

generation procedures. It involved knowing when and why to activate prior knowledge (code 5) 

to generate hypotheses (code 4).  Executive operations infused procedural and structural models, 

which increased learners’ perception of critical concepts underlying the problem and 

discernment of the factors impacting the problem.  Operations within this threshold included 

combining relevant information, inferring possible solutions, and testing assumptions.  Learners 

who functioned successfully at this threshold had a developed structural knowledge of the 

domain, an adequate representation of the problem type, and strategic use of tools.  Such 

effective operations produced executive operations that were accurate, forward reasoning 

processes.  

Activation of prior knowledge (code 5) was critical to triggering executive operations.  

This code represented knowledge that participants had acquired outside of the technology 

environment that they used to solve the problem.  Clusters 1 and 3 had low levels of prior 

knowledge activation (Cluster 1, 2.51%; Cluster 3, 2.98%).  It was the 11th most activated 

process for both clusters.  Cluster 3 entered this threshold only after mastering the developmental 

tasks in the prior thresholds.  As their structural knowledge grew in tandem with procedural 

operations, the power of their cognitive operations increased and they enacted forward reasoning 

operations.  Few learners in Cluster 1, however, functioned successfully at this level.  Inadequate 

formation of procedural and structural operations resulted in misdirected cognitive operations 
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and superficial hypotheses.  Activation of prior knowledge was higher for Clusters 2 and 4 

(Cluster 2, 6.44%; Cluster 4, 8.40%).  It was the 5th most applied process for Cluster 4 and the 7th 

for Cluster 2.  They ascended to the executive threshold in just one cycle.  Infusing procedural 

and structural knowledge allowed them to discern underlying concepts, and form hypotheses as 

they sought information in the research databases.  They compared, synthesized, and evaluated 

data when processing new information without having to rely extensively on the tools for 

initiating these processes. 

Generating hypotheses (code 4) was the other cognitive process associated with the 

executive operations.  Clusters 1 and 4 had high frequencies of generating hypotheses (Cluster 1, 

9.12%; Cluster 4, 10.3%), and it was the 4th most applied process for both groups.  However, 

Cluster 4 solved for two problems, which is why they had high occurrences of this code.  Cluster 

1 had disproportional levels of generating hypotheses compared to the more successful Clusters 

2 and 3 (Cluster 2, 6.29%; Cluster 3, 7.9).  They had attempted operating in this threshold 

without having developed adequate structural knowledge of the domain, and therefore formed 

hypotheses based on limited or superficial information.  Clusters 2 and 3, having developed a 

stronger structural representation, recognized meaningful information and applied more robust 

combinations of cognitive processes toward developing well-substantiated hypotheses organized 

around scientific concepts.  In this threshold, novices need assistance when making connections 

among data representations and drawing inferences for potential solutions.  Interactive visual 

prompts can be useful for scaffolding executive operations by asking learners what they need to 

find out, how the information they are gathering connects with what they already know, and 

what they can infer by combining this knowledge (Bixler & Land, 2010; Xun & Land, 2004). 
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Threshold IV: Developing beliefs and argumentation. The final threshold involved 

refining beliefs about the problem and developing an argument.  Beliefs are the “reflected and 

unreflected assumptions underlying parts of the model” (Jonassen & Strobel, 2006, p. 5) from 

which individuals base their representation of the problem.  It involved composing an argument 

for a feasible solution from evidences collected.  The dominant processes for this threshold 

included testing hypotheses (code 7) and synthesizing-evaluating (code 6).  Supplementary 

cognitive processes for this threshold included comparing (code 2) and confirming (code 3).  The 

essential operations included gathering the relevant findings from test results, drawing 

conclusions from the data collected, and generating an evidence-based solution.  Learners most 

often used Category 3 and 4 tools (see Table 2) to support their cognitive operations at this 

threshold.  

Hypothesis testing revealed much about the efficacy of participant’s operations at this 

level.  Cluster 2 had the highest occurrence of this process (Cluster 2, 9.22%), and it was the 

cluster’s 5th most applied code, indicating inconsistent self-regulation.  They had integrated 

procedural and structural knowledge, but their mental model of the problem as being well-

structured restricted operations in this threshold to comparing and confirming.  They had 

gathered all the data they needed for generating a solution, but argumentation process remained 

inert until they had developed a representation of the problem that allowed them to function 

successfully at this threshold.  Cluster 1 had the lowest activation of hypothesis testing of all the 

clusters (Cluster 1, 4%), and it ranked as its 10th most applied code.  They often used Category 4 

for operations in Threshold II.  For example, they designed and launched probes, a hypothesis 

testing procedure, to seek information without having an actual hypothesis to test.  When they 

did test an actual hypothesis, they failed to synthesize or evaluate relevant data from multiple 
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sources.  They generated arguments that were based on foredawn conclusions from a limited set 

of data. 

Success at this threshold required a well-developed structural knowledge, as well as 

procedural operations for bringing together multiple data representations alongside probe results 

to scaffold evaluation and syntheses (code 6) of relevant data.  Highly successful learners used 

Category 4 tools to evaluate probe results against knowledge of planetary science, physical 

science, and anthropological considerations related to the aliens’ ability to adapt to a new 

environment.  Cluster 3 brought together the right information and all categories of tools to build 

a coherent argument through high concentrations of synthesis and evaluation (Cluster 3, 

12.94%).  They made connections between relevant data to combine and interpret data, test 

assumptions, make decisions, infer solutions, and build arguments.  Their partnership with tools 

to support their thinking (Jonassen, 1996) and to build arguments at this level allowed them to 

produce the highest average solutions scores even though they began with little domain 

knowledge.  Cluster 4 often applied argumentation operations without assistance from tools. 

They solved two problems and still had low levels of syntheses and evaluation (Cluster 4, 

8.37%).  

Clusters 1 and 2 had similar levels of synthesis and evaluation, (Cluster 1, 11.02%; 

Cluster 2, 15.88%), and they often applied these processes to irrelevant data.  Operations at this 

threshold for analyzing relevant information and building credible arguments were not possible 

until they had formed an integrated mental model of all the factors impacting the problem.  

When evaluating results, learners needed scaffolds for perceiving gaps in their knowledge 

development and determining next steps.  Novices can also benefit from tools that trigger self-
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regulatory processes, which could come from cues in the form of questions or comments that 

redirect the learner toward next steps (Xun & Land, 2004).  

The Role of Self-Regulation 

Solving a complex problem successfully depends a great deal upon enacting self-

regulation skills to keep cognitive processes focused on operations within each threshold.  Self-

regulation was evidenced in how effectively learners used tools strategically to monitor progress 

and resources, prioritize tasks, and keep track of sub goals.  Self-regulation also involved 

evaluating outcomes and adjusting plans and strategies in response to setbacks.  The cognitive 

processes we associated with skill in self-regulation were planning-strategizing (code #8), state 

of mind (code #11) and metacognition (code #13).  The clusters had similar levels of 

metacognition (Cluster 1, 4.81%; Cluster 2 3.73%; Cluster 3, 3.79%; Cluster 4, 3.36%).  

However, being metacognitive, which involved awareness of why one was executing procedural 

operations, did not necessarily produce self-regulatory behaviors.  Clusters 1 and 2 seldom 

revised their representation of the problem and delayed adjusting plans and strategies when 

encountering setbacks.  Setbacks reoccurred until they discerned the underlying causes of these 

failures, adjusted their representation of the problem, and developed new plans and strategies for 

mastering the threshold that corresponded with their level of knowledge development.  Highly 

self-regulative learners, such as those in Clusters 3, often readjusted their plans and strategies 

based on their developing representation of the problem, which required  evaluating outcomes 

and responding productively to setbacks to both identify knowledge constraints and build a more 

dynamic mental model of the problem.  Tools are needed to help novices re-strategize after 

evaluating outcomes.   
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Solving a complex problem is a messy, non-linear, and non-routine endeavor that 

requires trial and error, but setbacks during an activity can increase frustration and cause learners 

to lose focus from the problem (Pekrun, 2006).  Learning orientation behaviors (Pintrich, 2000) 

appeared to have influenced how learners with low prior knowledge activation perceived 

setbacks as occasions for refining their model of the problem.  The mastery orientation behaviors 

as exhibited among Cluster 3 learners capitalized on setbacks for re-strategizing and monitoring 

resources.  The performance orientation behaviors as shown by Cluster 1 learners perceived 

setbacks as indicators of incompetence, and this disposition inhibited progress.  Feelings of 

anxiety, frustration, and exhaustion surrounded operations for this cluster.  As they encountered 

more and more setbacks, their actions became perfunctory and they formed premature 

conclusions.   Managing emotions was an aspect of self-regulation for which these learners had 

little support other than their own volition.  State of mind (code 11), which included emotions the 

learners reported experiencing, was the 5th most applied cognitive process for clusters with low 

prior knowledge activation (Cluster 1, 8.84%; Cluster 3, 8.51%).  Professing state of mind 

occurred much less for the advanced knowledge clusters (Cluster 2, 3.88%; Cluster 4, 2.96%).  

Only in the case of Cluster 4, which included the most expert-like learners, did metacognition 

trump state of mind.  They regulated actions in response to outcomes without commenting much 

on the emotions outcomes elicited.  Consideration should be given to what tools or affordances 

in technology learning environments can help learners adopt a mastery learning orientation and 

manage emotions constructively when coping with multiple setbacks under pressure. 

Considerations for Further Research 

In this study, we analyzed verbal reports and problem solving behaviors to infer how 

cognitive processes contributed to differences in performance outcomes and the development of 
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a mental model.  Development of mental models is typically made known through examining 

external knowledge representations (Spector, 2010), but research is needed to examine how 

learners’ interactions with tools in the task environment and the cognitive processes they activate 

provide insight into how mental models develop.  In other words, how reliably do configurations 

of tool use patterns, solution operations, and cognitive processes serve as an index for how 

mental models are developing?  Along these lines, additional research is needed to examine the 

effect mental models may have on increasing or decreasing cognitive power when problem 

solving.  Based on our analysis, we hypothesize that when learners ascend to a higher threshold, 

they build a more integrated mental model of the problem, and cognitive power increases.  They 

become more accurate in perceiving conditions in the task environment that warrant the 

application of cognitive processes and apply robust combinations of cognitive processes toward 

executing solution operations.  

The findings also indicated that self-regulation was important for keeping cognitive 

processes focused on setting up and carrying out operations within each threshold.  However, 

frequency in applying cognitive processes mattered far less than one’s intention for activating 

them.  Additional research should consider when, why, and how learners apply cognitive 

processes associated with self-regulation.  One’s intent, we hypothesize, is a function of the 

learner’s mental model - particularly the beliefs the learner has formed about the problem—as 

well as the individual characteristics of the learner such as learning orientation, domain 

familiarity, and tool use.  Additional research should consider how these individual differences 

interact to determine the efficacy of learner’s self-regulation skills.  We also recommend further 

consideration into how a technology environment can cultivate dispositions in which self-

regulation becomes a habit of thought and action.  For example, designing the self-regulation 
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tools that are constitutive of the identities learners perform in a problem simulation are important 

considerations for designers, and we see value in research that examines the effects this has on 

regulating cognitive processes in development of mental models.  Finally, as the field continues 

to investigate the nature of complex problem solving, there is a need for a shared language for 

describing solution processes.  We see value in a synthesis of research that can assist researchers 

and instructional designers in distinguishing between cognitive processes, strategies, and skills 

commonly associated with solving complex problems, and mapping them with different 

categories of technology tools for supporting knowledge development.  

Limitations 

The multiple case study approach allowed for drawing inferences about problem solving 

from multiple data to construct a rich and holistic account of how advanced learners solved a 

complex problem.  Since the researcher is the primary instrument of data collection and analysis, 

the possibility of researcher bias increases when conducting case studies (Stake, 2006; Yin, 

2003).  We attempted to minimize this by involving five researchers in the coding processes until 

there was 100% inner-rater reliability.  As with all case studies, the small sample size and 

context-specific situation from which the data were collected and analyzed reduces claims of 

generalizability.  However, case study research does not derive its power from generalizability, 

but from thick descriptions that may illuminate or increase understanding of multiple variables 

that underlie a phenomenon (Stake, 2006; Yin, 2003). 

Conclusion 

Assessing learners’ knowledge development when solving a complex problem has 

typically involved evaluating  learners’ external knowledge representations as an index of how 

mental models formed; such evaluations usually occur after the learning event and with minimal 
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consideration of the cognitive processes that are involved (Kim, 2012; Jonassen, 2006; Jonassen 

& Strobel, 2006; Spector, 2010). In this study, we focused on the cognitive processes and 

behaviors that influenced learners’ knowledge development during problem solving by analyzing 

stimulated recall, think-aloud, solution scores, and direct observation of problem solving 

processes. We provided a descriptive analysis of how advanced learners’ application and 

frequency of cognitive processes and behaviors corresponded with performance outcomes and 

facets of mental model development.  The findings showed how cognitive processes and 

learners’ behaviors interacted in the development of mental models, or thresholds of knowledge 

development to form a robust representation of the problem.  The frequency of cognitive 

processes, no matter how high-level, did not produce successful operations until leaners applied 

them toward operations within each threshold to develop a richer mental model. Successful 

problem solvers, with consistent self-regulation, focused cognitive processes on carrying out 

operations in each threshold to advance their representation of the problem. As they progressed 

through each threshold, their mental model of the program grew more integrated and their 

cognitive power increased; that is, their solution operations focused on the most relevant aspects 

of the problem and the combinations cognitive processes they applied grew more diversified and 

sophisticated. As such, the analysis posits the development of mental models as a multifaceted, 

ongoing, and dynamic process that is necessary for increasing one’s awareness of where to apply 

cognitive processes and the executive power of procedural operations. 

Viewing complex problem solving as the progression of developmental thresholds 

provides a framework for predicting where novices will require support for applying their 

cognitive energies in concert with their developing representation of the problem.  Given the 

interdependent nature of these interactions, we believe instructional taxonomies and information 
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processing models of knowledge development that posit an isolated and linear pathway in the 

application of cognitive skills and processes are less helpful.  Instead, designers of complex 

problem solving environments should consider how successful problem solvers apply cognitive 

processes toward mastering tasks within thresholds to anticipate where novices may require 

support at each threshold of problem solving.  Toward those ends, this analysis has provided an 

integrated model of complex problem solving that we hope is beneficial for instructional 

designers, educators, and students. 
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Appendix 

List of Cognitive Codes and Definitions 

Cognitive Code* Definition and Example 

1. Seeking information Looking for, finding, figuring out, looking up, searching, and skimming through.  

This is a process whereby the learner searches for and acquires information to be used 

in the problem solving process. The process of seeking information may be used to 

acquire background knowledge necessary for problem solving or to address potential 

self-identified gaps in knowledge in which missing information is needed in order to 

solve the problem. 

2. Comparing 

 

Finding similarities and differences, evaluating, differentiating, and discriminating.  

Comparing occurs when the learner compares two or more pieces of information (e.g., 

comparing the characteristics of two potential planets) to identify potential similarities 

and differences. This process often occurs as the learner works to discriminate between 

possible problem solutions within the environment or when evaluating the extent to 

which a potential solution addresses the problem (e.g., how well a planet meets the 

needs of a particular alien). The learner may quite often use the words "compare" or 

“comparing” in describing this process. 

3. Confirming 

 

Checking, going back and seeing, making sure, and looking back (over notes).   

This is a problem solving process where the person wants to ensure that s/he has the 

correct data - typically recorded in the notebook but sometimes mentally stored. 

4. Generating 

hypothesis:  General & 

Specific 

 

This is problem-solving process where the person develops the idea of an appropriate 

world for an alien species. Rarely does the person actually use the word “hypothesis.” 

Rather, this process can be inferred by the actions and words of the person. For 

instance, if a person is sending a probe to a world and states the s/he is doing it to 

gather specific information rather than for general data gathering purposes, then the 

person has developed a hypothesis that that world may be appropriate for an alien 

species and wants to see if the new information will agree with his or her hypothesis. 

Generating the hypothesis is often linked with “testing hypothesis.” So, in the 

abovementioned example not only did the person generate the hypothesis but has 

already started testing it by sending a probe. 

5. Activating prior 

knowledge 

 

An indication that the user already knows something and he/she uses that knowledge 

as a base to solve problem. Some verbs/phrases used include “recalling”, “thinking 

of”, “I have the knowledge”, and “I knew.” For example, “after reading the type of 

atmosphere that their planet had, I had immediately thought of Io” (Quinn). “I think a 

lot of it is just simply because I kind of have some prior knowledge of the different 

planets and moons, but I don't remember all of them” (Quinn). 

6 Evaluating and 

synthesizing 

Putting together and making a comparison of pieces of info gathered; and making a 

judgment. 

7. Testing hypothesis Testing hypothesis occurs after they target a potential home(s) they think may be a 

good fit. For example: “Well I think of all the planets and all of the moons of the 

planets it is my number one priority target for these aliens just because it seems to fit 

most of the criteria” (Quinn). 

 

In many cases, when testing a hypothesis, they have specific questions they want 

answered about home(s) they have targeted, and they cannot locate the answers in the 

databases. They attempt to answer these questions by sending a probe. For example: 
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Parker says, “I want to know more about its atmosphere. Like ‘Does it have 

nitrogen?’” Kyle says: “The only thing they didn’t say in the solar system database 

was the materials on the surface. It talked about how they need metal in their tunnels 

and what not. And it didn’t say anything about that so maybe this will.” 

 

Sending a probe does not always mean that the person has a hypothesis. Some people 

might send probes to generate a hypothesis. There’s a difference between hypothesis 

testing and hypothesis generating. Hypothesis generating is when they collect 

information about a home they have think may be a potential candidate. Their search 

tends to be honed in on the home they are interested in. Usually, they want more 

information to determine if it is worthwhile to send a probe. For example: Quinn says, 

“Well, I basically narrowed down in my mind what planets or moons I thought would 

be most interesting. Now I am specifically looking at missions that were sent to those 

planets and seeing what information I can get out of it.” 

8. Planning & 

Strategizing 

Planning involves thinking about how they can get information they need. This is very 

common in the probe design room when they consider affordances and constraints of 

available instruments. Quinn says: “Well I am thinking I want my orbiter to go past 

Jupiter to its moon Io, so I want to think about things like how long my power supply 

is going to last and what is ideal for being reasonably far away from the sun and the 

types of conditions it will run into once it gets close to Io as well.” 

 

Sometimes planning involves thinking about how they can get and apply information 

for leveraging their search: Kyle says “So I have to back and read this because 

honestly I didn’t remember much about Kelvin so I need to look at that again.” 

 

Planning may also involve how they decode to deploy probes. Some people plan to 

send probes to multiple prospects at the same time so they compare the results. For 

example, “I was going to send one to Venus and I still might. I want to compare the 

two.” In this case, Kyle plans to send two probes – one to Io and one to Venus—so he 

can compare results. This may also be considered a strategy for selecting the best 

home. 

 

Since the researcher often asked the questions after they performed an action, we may 

not see a lot of instances of planning. The most instances of planning may involve 

statements such as “I need to do X” or “I should do X” or “I want to do X”. Planning 

seems to happen the most in the probe design room. 

 

This is the plan of attack for how the user breaks down the problem. Since 

‘strategizing’ is synonymous with ‘planning’, this will pertain only to actions in which 

users are trying to make the problem easier to solve. In this definition, ‘strategizing’ is 

one aspect of ‘planning’. For example, “I can definitely rule-out some”, “I basically 

narrowed down in my mind what planets or moons I thought would be most 

interesting”, and “I am trying to figure-out what is the most important thing to take 

into account when making a decision.” 

9 just-in time learning Using cognitive tools to learn information that they need immediately, e.g., “I was 

looking to make sure that I was reading the mass spectrometer report correctly.  I 

thought I remembered the chemical symbols, but I wanted to make sure.  So I looked 

at the Periodic Table to make sure I had the symbols correct” (Jodie). 
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10. Organizing 

(specifically In relation 

to notebook) 

This is the organization of information for the purposes of scaffolding conceptual 

thinking. This could be done physically or mentally, but the end goal is that the user 

has a better idea of the situation. For example, “I just kept a mental checklist”, “But 

then when I got over here I felt like I needed that information on the left. I am not 

saying that you should change it, but I thought that it caused me to think about reading 

things left to right”, “making notes about what characteristics of this planet might 

match the needs of the Aliens”, “I am trying to balance. I see similarities in both places 

about what they need, but I need to figure-out which ones are most important because I 

do not want them to die.” 

Secondary coding  

11. State of Mind This code was given when participants described their state of mind, e.g., curiosity, 

confusion, and so on…. For example, “the ones they used to farm with, which is 

problematic because Ganymede does not have nitrogen on it, so I am disappointed” 

(Noah). 

12. Orienting This code was given when participants’ actions are related to using cognitive tools to 

browse or scope. For example, Noah says, “As it turns out I clicked on the first one 

which was Magellan….” 

13. Metacognition This code was given when participants’ talked about their thought processes, showing 

a deliberate process of what they were doing. For example, “I am going to write down 

the reasons why I am eliminating these planets. My memory is not that great, 

obviously, and I need to write them down so I can keep them off my mind” (Noah). 

*Codes for describing actions—what cognitive process does this person say he/she is doing (not what outcome this 

process may lead to) 
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