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Abstract

This paper presents a method for describing and recog-

nising local structure in 3D images. The method extends

proven techniques for 2D object recognition in images. In

particular, we propose a 3D interest point detector that is

based on SURF, and a 3D descriptor that extends SIFT.

The method is applied to the problem of detecting repeated

structure in range images, and promising results are re-

ported.

1. Introduction

Image based object recognition is a long standing cen-

tral problem in computer vision. Recently, attention has

turned to the use of local feature descriptors that, given a

keypoint in an image, calculate a signature describing the

image about that point. Using local descriptors to describe

an object provides robustness to partial occlusion, and de-

pending on the design of the descriptor can provide robust-

ness to changes in illumination and viewpoint.

For example, the Scale Invariant Feature Transform

(SIFT) [4] has proven to be a very effective descriptor for

object recognition from images. SIFT calculates a signa-

ture that characterises the image in the neighbourhood of a

keypoint in a way that is robust to changes in global illu-

mination, object rotation and scale. The signature is based

on histograms of image grey-level gradients which are cal-

culated at several scales, and normalised with respect to a

locally dominant orientation.

The idea of this work is to build a local 3D feature de-

scriptor with comparable robustness to missing data and

changes in viewpoint. This was initially motivated by pre-

vious work of the authors [5] in image based modelling. In

this domain it is common to have a 3D data set—whether

captured from a range finder, or the output of structure and

motion estimation, or modelled manually—that is incom-

plete. Often it is the case that this 3D data will contain

repeated structure, some instances of which are captured or

modelled with higher fidelity than others. If such repeti-

tion can be recognised automatically, information from in-

stances that are well modelled can be propagated to those

that are poorly modelled, resulting in a more accurate over-

all model.

Local 3D feature descriptors have been investigated pre-

viously. For example, Frome et al. [2] define a shape context

for a 3D keypoint. The shape context is computed by count-

ing the number of 3D points lying in a neighbourhood of

the keypoint. These counts are partitioned into a histogram

based on their distance and direction from the keypoint.

In a similar vein, spin images [3] also divide the area

around a keypoint into a number of spatial bins and then

count the number of points in each bin. The difference is

that in spin images the bins are defined by height and radius;

i.e. the neighbourhood is cylindrical, which has advantages

over a spherical neighbourhood. Neither transform is in-

variant to scale, and, although they exhibit some robustness

to rotation (histograms are calculated relative to estimated

surface normal) they are sensitive to small changes in the

computed surface normal.

The success of local feature descriptors depends strongly

on the choice of keypoint locations. In 2D images, good

keypoints are those that can be well localised, such as corner

points where the intensity gradient is high in all directions.

Several techniques such as the Harris corner detector, and

more recently SURF [1], have been developed to identify

these points. In 3D images, we also require keypoints that

can be well localised, but in 3D this requires that the spatial

gradient of the surface about a keypoint be high in all three

directions.

This paper proposes a new 3D feature descriptor, called

ThrIFT, that extends the successful SIFT and SURF algo-

rithms to keypoint selection, identification and matching in

range data. It brings many of the advantages of these algo-
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rithms to bear on the problem of 3D structure recognition.

We show how this 3D keypoint detector and descriptor can

be combined to detect repeated 3D structure in range data

of building facades.

The remainder of this paper is organised as follows. Sec-

tion 2 describes our interest point detector. Section 3 de-

scribes our 3D descriptor. In section 4 we present empirical

results, and section 5 concludes the paper.

2. A 3D Interest Point Detector

The objective of an interest point detector is to repeat-

ably identify the same scene points under a range of image

transformations, such as a change in viewpoint or illumi-

nation. This requires that the interest points be located at

scene features that define an unambiguous location (corners

have this property but edges do not).

SIFT and SURF use the determinant of the Hessian

to measure the distinctiveness of candidate interest points.

This is successful because when the determinant of the Hes-

sian is large then both principal curvatures are large [4],

meaning that the point is well defined and likely to be re-

peatably detected under different viewing or lighting condi-

tions. Conversely, when the determinant of the Hessian is

small then at least one of the principal curvatures is small,

so localisation in this direction may vary under image trans-

formations.

In range data, interest points must be well localised in

all three dimensions if they are to be repeatably detected

at the same location. ThrIFT uses the 3D version of the

Hessian to select such interest points. We approximate a

density function f(x, y, z) by sampling regularly in space

throughout the data (explained in detail below). We then

construct a scale space over the density function, and search

for local maxima of the Hessian determinant.

2.1. The Density Map

In this work we consider range data to be a set of 3D

points:

X =
{

xi ∈ R
3
}

We wish to approximate a density function f(x, y, z)
from this data. Let n(B) be the number of data points in

the region B ⊆ R
3. We can approximate f in any such

region using
∫

B

f(x) dx = n(B)

We define equal-sized boxes B = {Bijk}(i,j,k)∈I⊂Z3

and space them regularly in each spatial dimension:

Bijk = {(x, y, z) ∈ R
3 | iα ≤ x < (i + 1)α,

jβ ≤ y < (j + 1)β,

kγ ≤ z < (k + 1)γ}

We then construct f as a sum of delta functions:

f(x, y, z) =
∑

(i,j,k)∈I

D(i, j, k)δ(x−Xijk, y−Yijk, z−Zijk)

where (Xijk, Yijk, Zijk) = Bijk is centre of the box Bijk

and

D(i, j, k) =
n(Bijk)

argmax
(i,j,k)∈I

{

n(Bijk)
}

is the normalised density map. In practice we operate di-

rectly on D since it is readily represented as a 3D array.

D can be thought of as the 3D analogy to a 2D image: each

element represents the density (resp. pixel intensity) in a re-

gion of space. We can apply 3D convolutions to D in much

the same way as for 2D images.

2.2. Density Scale Space

2D detectors often construct a scale space to enable fea-

ture detection at a range of scales. This is achieved by con-

volving the image with Gaussian kernels of increasing ra-

dius, resulting in an image pyramid. We apply a similar

concept to search the density map D over a range of scales.

We convolve D with a series of 3D Gaussian kernels to con-

struct a pyramid of density maps, with each layer represent-

ing the scale σ = kσ′ where σ′ is the scale of the layer im-

mediately below. For efficiency we downsample the density

map by a factor of 2 when the scale reaches 2 (and simul-

taneously reduce the variance of the Gaussian kernel by a

factor of 2). This bounds the size of the convolution kernels

and hence leads to a large performance improvement.

Let L(x, y, z;σ) be a scale space for D:

L(x, y, z;σ) = (D ⊗ g(σ))(x, y, z)

where g(σ) is a 3D Gaussian with variance σ:

g(x, y, z;σ) = exp
(−x2 − y2 − z2

2σ2

)

(Note that we have omitted the normalisation constant.)

The number of downsampling operations (i.e. the num-

ber of octaves), and the number of scales we generate be-

tween downsampling (i.e. the number of layers per octave)

are user-specified parameters.

2.3. Selecting Interest Points

Interest points must be well localised in all three spa-

tial dimensions in order to be repeatable. We implement

this in ThrIFT by choosing points for which all three prin-

cipal curvatures are large. Such points will represent signif-

icant extrema in the density function along all three direc-

tions, which will lead to the interest point being detected in
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the same position when the scene is viewed under different

viewpoint or lighting conditions.

We use the determinant of the 3 × 3 Hessian matrix to

find such points because it can be computed efficiently and

accurately, and is defined for arbitrary scale. Given a point

x = (x, y, z) and a scale σ, the Hessian at (x, σ) is defined

as:

H(x, σ) =





Lxx(x, σ) Lxy(x, σ) Lxz(x, σ)
Lyx(x, σ) Lyy(x, σ) Lyz(x, σ)
Lzx(x, σ) Lzy(x, σ) Lzz(x, σ)





where

Lxx(x, σ) =
∂2

∂x2
L(x, σ)

is the second partial derivative of L in the x direction, and

similarly for the other partial derivatives. In practice we

compute the terms in the Hessian by direct convolution of

D with Gaussian second partial derivatives:

Lxx = D ⊗
∂2

∂x2
g(σ)

and similarly for the other partial derivatives. This avoids

constructing the scale space and computing the terms in the

Hessian as separate operations.

In our implementation we chose to compute exact con-

volutions using separable kernels (the alternative would be

to approximate the kernels with box filters as in SURF). In

practice we found that we could use relatively small density

maps without loss of performance, and hence the extra ef-

ficiency of box filters was unnecessary. Furthermore, using

exact convolutions allows us to sample at any desired fre-

quency in the scale domain, which makes it unnecessary to

interpolate the location of interest points later in the detec-

tion process.

We compute |Det(H)| at each point in the scale space.

To eliminate weak responses we apply a constant threshold

T . Next we apply non maximal suppression within a 3×3×
3 × 3 window. The remaining responses are local maxima

of |Det(H)|, and these are exported as interest points.

In SIFT responses with two principal curvatures of dif-

ferent sign are eliminated, since such points represent sad-

dles in the intensity function. We allow such points be-

cause in the 3D setting saddles may represent useful interest

points.

We could now expand |Det(H)| about each interest

point using the Taylor series, which would allow us to fur-

ther localise the interest points, as in SIFT and SURF. How-

ever, in our approach we sample regularly in the spatial and

scale domains, and we found in practice that further locali-

sation was unnecessary.

The ThrIFT detector is summarised by:

Interest(X ) = arglocalmax
(x,σ)

|Det(H(x, σ))|

3. The 3D descriptor

The success of the descriptors used in SIFT and SURF

have been partially attributed to the use of image gradients

as the basis for describing image patches. Image gradients

capture the dominant orientation of blocks of pixels, and are

robust to changes in viewpoint and illumination.

ThrIFT also uses orientation information as the basis for

its descriptor. In the case of range data, the dominant orien-

tation at a point is the direction of the surface normal at that

point. Since we do not have explicit surface normal infor-

mation we approximate it by fitting a least-squares plane to

the points in a sphere centred at the point.

We may think of the surface normal at a point as the

principal direction of the density map at that point. In this

sense, the surface normal is a direct generalisation of the

gradient orientation used in SIFT. Furthermore, the three

components of the surface normal vector correspond to a

generalisation of the dx and dy image gradients used in the

SURF descriptor.

There is a further advantage to using surface normal in-

formation that is specific to range data. In real range data,

the density of points on a surface is determined by the view-

point of the camera or range finder. A surface close to the

viewpoint will by sampled more densely than the same sur-

face further from the viewpoint, and similarly a surface that

is normal to the viewpoint will be sampled more densely

than the same surface oblique to the viewpoint (see Figure

1). In fact, as an object rotates, the relative sampling den-

sity of its surfaces will change significantly, as each surface

changes its orientation with respect to the viewpoint. Hence

it is important that our descriptor be robust to such changes

in sampling density.

In general the surface normal at a point is unaffected the

sampling density at that point. In practice we approximate

the surface normal with a least-squares plane, so changes

in sampling density will invariably have some effect on the

surface normal we compute. However, in the presence of

a significant number of points we can expect these errors

to cancel out, since all the points are situated on the same

underlying surface, and we assume that sensor noise is in-

dependent for each data point. This means that the nor-

mal to the least-squares plane will be largely unaffected by

changes in sampling density. Hence by using surface nor-

mals our descriptor becomes more robust to changes in sam-

pling density than other descriptors that use only location

information (e.g. spin images [3] and shape contexts [2]).

Our descriptor operates as follows. For each interest

point z = (x, σ) we define the support set:

Support(z) = {y ∈ X : ‖y − x‖ ≤ σ}
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Figure 1. Changes in sampling density result-

ing from changes in viewpoint

For each y ∈ Support(z) we define two windows:

W1 = {p ∈ X : ‖p − y‖ ≤ ωsmall}

W2 = {p ∈ X : ‖p − y‖ ≤ ωlarge}

Let P1 and P2 be the least-squares plane for W1 and W2

respectively, and let nsmall and nlarge be normal to P1 and

P2 respectively. These two vectors can be interpreted as the

principal curvatures of the density map at y for scale ωsmall

and ωlarge respectively. In our implementation ωsmall and

ωlarge are user-defined parameters, but they could also be

determined automatically from the detected scale σ. See

Figure 2 for a geometric interpretation of these entities.

The descriptor output for the interest point z is a his-

togram over the angle θ between nsmall and nlarge for each

y ∈ Support(z)

cos(θ) =
nsmall · nlarge

‖nsmall‖‖nlarge‖

The number of bins nb is a user-defined parameter. The

bins are spaced evenly between 0◦ and 90◦. The descriptor

output v contains the values from the bins of the histogram,

normalised such that ‖v‖ = 1. Hence nb also determines

the dimensionality of the final descriptor.

SIFT and SURF involve an orientation assignment step

that makes the rest of the process invariant to rotation. Be-

cause THRIFT uses only a comparison of surface normal

estimates at two scales, the descriptor is already invariant to

full 3D rotation, and there is no need for an explicit orienta-

tion assignment step.

Figure 2. The two least squares planes and

corresponding normals for one support point

on an example surface

4. Results

We evaluated ThrIFT using data acquired with a laser

range finder. Each data set contained approximately 500

million data points collected in a 360◦ sweep.

Since the primary goal of the detector is to be repeatable,

our first experiment tested the repeatability of our detector

in the presence of noise. We generated a density map from

the range data and then added independent Gaussian noise

to each density value. We ran the detector before and after

the addition of noise and recorded the number of interest

points that were detected in both cases as a percentage of

the total number of interest points. We used density maps

of size 100 × 100 × 100. Our detector generated 5 octaves,

each containing 4 layers. We used a threshold of 0.5. Only

those interest points that were detected at exactly the same

location and scale were classified as repeats.

Figure 3 shows the observed repeatability as a function

of noise. The results show a high level of repeatability. At

1% noise, our detector achieves a repeatability of 91.3%.

At 10% noise, which corresponds to less than 3 bits of pre-

cision, our detector repeatably detects over 50% of the in-

terest points at exactly the same location and scale. In the

context of extrapolating a partial model of a scene (which is

the intended application of ThrIFT) there will be many fea-

tures in the scene that could be matched. Detection of any

significant subset will be enough to extrapolate the model;
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hence these results show that ThrIFT is suitable for this ap-

plication.

We evaluated the performance of our descriptor on the

problem of detecting repeated structure in 3D scenes, since

that is the key information needed to extrapolate a partial

model. We used urban scenes containing buildings with re-

peated structure. For each scene we used the detector to

find a set of interest points. We then computed the descrip-

tor for each interest point and compared these with the de-

scriptor computed for a hand-picked reference region. We

isolated the 50 interest points with descriptors that most

closely matched that of the reference region, and recorded

how many of these corresponded to repetitions of the scene

structure at the reference region (correct matches). Match-

ing was performed using the Euclidean distance between

descriptors. Ground truth was established manually.

We used 10 bins for the histogram. We set ωsmall =
0.3σ and ωlarge = 0.8σ where σ is the radius of the refer-

ence region. Hence ωsmall and ωlarge were constant for all

interest points.

Table 1 shows the results of this experiment for three data

sets. Figure 5 shows the locations of the specific regions

that were matched to the reference point in each scene. The

results show that of the strongest 50 matches, over 80% in

each scene were correct identifications of repeated struc-

ture.

The first two test scenes, “Library-Sparse” and

“Windows-Sparse”, contained facades that were oblique to

the range finder, resulting in sparsely sampled surfaces (see

Figure 5). For these scenes ThrIFT was still able to achieve

an accuracy above 80%. The last scene, “Windows-Front”

contained a more densely sampled facade, which led to a

corresponding increase in accuracy (94%).

In this evaluation we considered each interest point and

descriptor independently. A more intelligent use of the

available data would be to consider the descriptors together

using some higher-level recognition system, which would

lead to better detection of repeated structure. For example,

we might look for many regularly-spaced matching descrip-

tors as evidence for repeated structure, or we might look for

repeated groups of descriptors.

We conducted our experiment without any such higher-

level integration of the information so that our results would

show the performance of ThrIFT alone. Since ThrIFT was

alone able to achieve such promising results, we can expect

good performance when we use ThrIFT as input to a higher-

level recognition system designed specifically for detecting

repeated structure.

5. Conclusion

In this paper we have presented ThrIFT, a system that

extracts and describes distinctive scene feature from range

Data set % Correct Matches

Library-Sparse 86%
Windows-Sparse 84%
Windows-Front 94%

Table 1. Out of the strongest 50 matches, the

percentage that were correct

Figure 3. Repeatability of the interest point

detector in the presence of noise.

data. We have justified our approach as a generalisation

of two successful 2D feature extraction systems, SIFT and

SURF.

We have shown the performance of our system by testing

it on a number of scenes acquired using a laser range finder.

Our results show that our detector exhibits high repeatabil-

ity, and that our descriptor can be used for identification of

repeated structure.

Future work will focus on more comprehensive evalua-

tions of ThrIFT. We will test the repeatability of the detec-

tor in the presence of viewpoint changes, and systematically

test the descriptor on a library of range data scans.
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Figure 4. Results from the detector. The spheres show the location and scale of all detected interest
points. Notice how interest points tend to occur in regions with high spatial gradients.
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Figure 5. Results from the descriptor. The blue sphere shows the location and scale of the reference
point. The green spheres show the locations of the best 50 matches. Even from an oblique viewpoint,

repeated structure is identified in the majority of cases. The data set names (for cross-reference with
Table 1) are (a) Library-Sparse; (b) Windows-Sparse; (c) Windows-Front.
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