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Abstract

Classification in large-scale data is a key problem in big data domain. The theory of compressive sensing enables the
recovery of a sparse signal from a small set of linear, random projections which provides a compressive classification
method operating directly on the compressed data without reconstructing for big data. In this paper, we collected
the compressed vowel /a:/ and /i:/ voice signals using compressive sensing for throat polyp detection. The throat
polyp prediction procedure based on wavelet packet transform and support vector machine intelligent algorithm
was deduced. The experiments for throat polyp prediction with the proposed classification algorithm were carried
out. The results showed that the correct rate of prediction was stable under different number of samples and different
random measurement matrices.
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1 Introduction
Throat polyps are small fleshy growths which form on
the vocal cords, usually as a result of overuse. They are
mainly caused by straining or overusing the voice, for
example, public speaking. Professional singers, sports/
fitness coaches, or actors are all prone to developing
throat polyps. The most common symptoms of throat
polyps are a hoarse or deeper voice or a breathy sounding
voice similar to laryngitis.
The traditional methods of throat polyp diagnosis are

indirect laryngoscope, video-laryngoscope, and strobo-
scope light [1]. These methods need special instrument
and depend on the experience of the pathologists. Usu-
ally, the patients will feel uncomfortable pain. Due to
the fact that voice change of the patients is the most
common symptoms of throat polyps, it would be desir-
able if the throat polyps could be detected based on the
patient voices. In [1], Zhong et al. tried to detect throat
polyps based on patient voices. Two fuzzy classifiers
and a Bayesian classifier were designed for throat polyp
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detection based on patient vowel voices /a:/ and /i:/.
The experimental results showed that an interval type 2
fuzzy classifier performed the better. In this paper, we
will use the compressive sensing and support vector
machine (SVM) algorithm to detect the throat polyps
with patient vowel voices /a:/ and /i:/ while reducing
the burden of voice data collection and storage.
Compressive sensing (or compressed sampling (CS))

theory demonstrated that a high-dimensional signal can
be projected into a low-dimensional space with a ran-
dom measurement matrix when the signal was sparse
or compressible which was proposed by Donoho and
Candès in 2006 [2,3]. Then, the original signal can be
recovered from the low-dimensional information with
solving an optimization problem. The provable success
of CS for signal reconstruction motivated that the low-
dimensional signal contained the main features of the
original signal. Thus, the universality of CS theory can
be leveraged in the hypothesis testing problem and miti-
gate the complexity of data computing [4].
The hypothesis testing in compressed domain can not

only reduce the pressure of data storage and transmis-
sion but also overcome the large amount of data calcula-
tion. In [5,6], Budhaditya used the compressed sensor
network data for anomaly detection based on spectrum
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theory method and obtained satisfactory detection results
in the light of residual analysis of compressed data. In [7,8],
random projection in conjunction with principal com-
ponent analysis (PCA) was implemented for anomaly
detection in compressed domain, and an application of
this proposed methodology to detect IP-level volume
anomalies in computer network traffic suggested a high
relevance to practical problems. In [9], an anomaly de-
tection criterion based on wavelet packet transform and
statistic process control theory in compressed domain
was used for through wall human detection. The ex-
perimental results showed that the proposed algorithm
could effectively detect the existence of human being
through compressed signals.
Because of the advantage of compressed classification

in big data based on compressive sensing comparative
with classification in original data [10-15], a throat polyp
detection algorithm based on compressive sensing and
support vector machine is proposed in this paper. The re-
mainder of this paper is organized as follows: In Section 2,
the compressive sensing theory will be introduced. Throat
polyp detection procedure based on CS and SVM will be
deduced in Section 3. Experimental results of throat polyp
detection will be shown in Section 4. Section 5 is the con-
clusion and discussion.

2 Background on compressive sensing
Compressive sensing states that the signal often contains
some type of structure that enables intelligent represen-
tation and processing which builds on a core tenet of
signal processing and information theory [16].
Suppose that an observer makes measurements of a

signal x, it can be expressed as follows:

x ¼ Φθ ; ð1Þ

where θ ∈ RN is the expansion coefficient vector under
the orthonormal basis Φ. If θ has only K ≤N nonzero
coefficients, we can say that signal x is K-sparse.
The surprising result of CS is that a length-N signal

that is K-sparse in some basis can be recovered exactly/
approximately from a nonadaptive linear projection of the
signal onto a random basis. In matrix notation, it can be
described as follows [17-21]:

y ¼ Ψx ; ð2Þ

where y is an M × 1 column vector and Ψ is an M ×N
random matrix. The appeal of CS is that we only need
to collect M =O(K log(N/K)) random measurements to
recover the signal x by solving the following l0-norm-
constrained optimization problem:

⌢
θ ¼ argmin θk k0 s: t: y ¼ ΨΦθ ; ð3Þ
where the ‖θ‖0 norm counts the number of nonzero
components of θ. However, solving Equation 3 was both
numerically unstable and NP-complete. Instead of solv-
ing the l0 minimization problem, nonadaptive CS theory
seeks to solve the ‘closest possible’ tractable minimization
problem, i.e., the l1 minimization:

⌢
θ ¼ argmin θk k1 s: t: y ¼ ΨΦθ : ð4Þ

Although M <N, the recovery of the signal x from the
measurements y become possible and practical under the
additional assumption of signal sparsity or compressibility.
The provable success of CS for signal reconstruction can
indicate that the collected low-dimensional measurements
contained the main features of the original signal. There-
fore, it provides us a novel procedure for hypothesis testing
of big data which can be carried out in the compressed
domain.

3 Throat polyp detection procedure
The most common symptom and the first to typically
appear in the throat polyp patients is a general rough-
ness or hoarseness of the voice, which may or may not
be accompanied by a sore throat or a full feeling in the
throat. In other words, the frequency components of the
same voice such as vowel voices will be varied when a
person suffers throat polyps. Therefore, we can detect
the throat polyps by analyzing the frequency component
of the voice signal.

3.1 Acquire the frequency component by WPT
Fourier transform (FT) is the conventional signal fre-
quency spectrum analysis tool which is a global trans-
form and has low-frequency resolution. Due to its
shortage in recognizing the tiny change of the frequency
spectrum of FT, wavelet packet transform (WPT) has
become the widest implement in the field of signal fre-
quency analysis.
WPT is one extension of the wavelet transform (WT)

which provides a complete level-by-level decomposition.
It can enable the extraction of features from signals
which combine stationary and nonstationary characteris-
tics with an arbitrary time-frequency resolution [22].
In this paper, we extract the features of vowel voices

/a:/ and /i:/ to detect the throat polyps. According to the
principle of WPT, the vowel voice signal x(t) is decom-
posed into j levels of decomposition, and the node sig-
nals are reconstructed as xij tð Þ. Then, it can be expressed

as follows:

x tð Þ ¼
X2j

i¼1

xij tð Þ: ð5Þ

The node signal energy can be defined Ei
j as
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Figure 1 Node energy ratio of compressed vowel /a:/ voice signal for a normal and abnormal patient.
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Ei
j ¼ ∫∞−∞x

i
j tð Þ2dt ¼ ∑xij tð Þ2: ð6Þ

On the basis of WPT, Equation 6 illustrates that the
node signal energy Ei

j stores the energy of a specific time-

frequency window. In other words, Ei
j indicates the pro-

portion of corresponding frequency component in the
original signal. Thus, according to the principle described
above, the throat polyp detection can be achieved by
investigating the changing trend of Ei

j .

In order to eliminate the influence of volume for
throat polyp detection, we define ΔEi

j as the node signal

energy ratio in the total signal energy further:

ΔEi
j ¼

Ei
j

Xm

i¼1

Ei
j

; ð7Þ
0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Node 

N
od

e 
E

ne
rg

y 
R

at
io

Figure 2 Node energy ratio of compressed vowel /i:/ voice signal for
where m denotes the first dominant nodes which con-
tained the main energy of the signal. It can eliminate the
noise effect on the tiny energy node and improve the de-
tection accuracy.
3.2 Throat polyp detection procedure with SVM
Support vector machines (SVM) are a popular machine
learning method for classification, regression, and other
learning tasks. In this method, one maps the data into a
higher dimensional input space and one constructs an
optimal separating hyper plane in this space [23,24].
Given a training set of N data points (yi, xi), i = 1, 2, 3, …,

N where xi ∈ Rn and yi ∈ {1, −1}. The classifier is con-
structed as follows. One assumes that

ωTφ xið Þ þ b≥1; if y i ¼ 1
10 12 14 16 18 20
Number

Abnormal patient
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a normal and abnormal patient.
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Figure 3 Correct rate of throat polyp prediction under different random measurement matrices.
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ωTφ xið Þ þ b≤1; if y i ¼ −1 ð8Þ

which is equivalent to

yi ω
Tφ xið Þ þ b

� �
≥1; i ¼ 1; 2;…;N ð9Þ

where φ is a nonlinear function which maps the input
space into a higher dimensional space. However, the
function (9) is not explicitly constructed. In order to ob-
tain the separating hyper plane in the higher dimen-
sional space, variables ξi are introduced to solve the
following primal optimization problem

min
ω;b;ξ

1
2
ωT ωþ C

XN

I¼1

ξ i

subject to yi ω
Tφ xið Þ þ b

� �
≥1−ξ i: ð10Þ
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Figure 4 Correct rate of throat polyp prediction under different numb
Through the training data, we can obtain the support
vectors and kernel parameters in the model for prediction.
As we know, a continuous speech usually consists of

vowels and voiced consonants. The vocal cord does not
vibrate when producing voiced consonants which come
from the vibration of the lips and teeth. It will bring up
interference in the afterward steps because of useless signal
collection. Meanwhile, multi-vowel in one speech sample
will result in an aliasing in spectrum map of the sample.
Therefore, in this paper, we only use the vowels /a:/
and /i:/ to detect the throat polyps of the patients.
In this paper, we acquired the vowel voice signal based

on compressive sensing and extract the features con-
structed by frequency components of compressed signals.
Lastly, the SVM method is used to obtain the classification
model for throat polyp detection. The procedure is
depicted in Algorithm 1.
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4 Experimental results and analysis
In the experiments, vowel /a:/ and /i:/ voice signals of 26
patients were collected, among which 13 patients have
throat polyps and 13 patients did not have throat polyps.
The Gaussian random measurement matrix was used for
compressed data obtained. The compressed voice signals
were decomposed by eight-layer wavelet packet with
‘db10’ wavelet, and the first 20 node signals were used to
extract the features. The C-SVM program proposed by
Dr. Lin was used for setting up the classification model
and throat polyp prediction [23].
In the first experiment, we used 7,000 samples in the

original vowel /a:/ and /i:/ of 26 patients, respectively, to
construct the features. The compression ratio is 50%,
and the features of eight normal patients without throat
polyps and eight abnormal patients with throat polyps
were used for training to establish a classification model.
The other features of ten patients were used to test the
performance of the proposed algorithm (Algorithm 1).
Figures 1 and 2 showed the node energy ratio of com-

pressed vowel /a:/ and /i:/ signals of a normal patient
without throat polyps and an abnormal patient with
throat polyps. It can be seen that the frequency compo-
nents of two kinds of patients are different and the low-
frequency component in vowel voice signals changed
more obviously when the patient has throat polyps. In
other words, the frequency component of patients would
vary when he or she suffers throat polyps. Thus, fre-
quency component energy of vowel voice signals could
be used as the features for throat polyp detection.
Figure 3 showed the prediction results of throat polyp

patients under different random measurement matrices
based on the proposed algorithm (Algorithm 1). We can
see that the correct rate of prediction is about 50% with
small fluctuations. It indicates that the features used for
test and training were similar although they were obtained
under different measurement matrices. Meanwhile, we re-
pute that the low correct rate of prediction and small fluc-
tuations were caused by the few training samples.
In the second experiment, we used different samples

in the original vowel /a:/ and /i:/ of 26 patients, respect-
ively, to construct the features with the same measure-
ment matrix. The compression ratio, the training data,
and test data were the same with the first experiment.
The results were shown in Figure 4, while the correct
rate of prediction has a mean value of ten predictions,
respectively, for each number of samples. It can be seen
that the correct rate of prediction was about 50% at dif-
ferent number of samples, while the fluctuations also
were caused by the few training date and could not con-
struct a high-accuracy prediction model. Meanwhile, the
results demonstrated that our classifier is able to detect
throat patient with a small number of samples.

5 Conclusions
Big data refers to large, diverse, complex, longitudinal,
and distributed data sets. Some core technologies are
needed to solve the problem in big data such as classifi-
cation technology. Compressive sensing theory provided
a new approach for big data classification which over-
whelmed the limitation of Nyquist sampling theory and
could sample and compress data simultaneously.
In this paper, we used the compressive sensing theory

to acquire the compressed vowel voice signals for throat
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polyp detection. The frequency component energy ratios
of compressed data obtained by wavelet packet trans-
form were used as features. Then, the support vector
machine intelligent algorithm was used to detect the
existence of throat polyps. The experimental results
showed that the performance of prediction was stable, but
the correct rate of prediction is low, due to the few samples
of patient cases.
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