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S
troke affects 15 million people worldwide and ac-
counts for approximately 10% of all deaths.40 Strokes 
are classified as either ischemic or hemorrhagic, and 

occur due to blood vessel occlusion or blood vessel rup-
ture, respectively. Approximately 13% of strokes are of the 
hemorrhagic subtype and include ICH and SAH.107 Intra-
cerebral hemorrhage is the most common cause of hemor-
rhagic stroke and causes extravasation of blood into the 
parenchyma and subsequent hematoma formation, result-
ing in brain damage.40 Intracerebral hemorrhage frequently 
causes significant morbidity and death, with as many as 
50% of patients dying within 1 month of presentation, and 
only 20% of survivors able to function independently at 6 
months.33 Also, with a worldwide incidence of 10–20 cases 
per 100,000 people, ICH is a global public health prob-
lem.99,118

Spontaneous ICH is mainly caused by hypertension, 
which causes microaneurysms at the bifurcation of in-
tracerebral arterioles that can immediately rupture.29,123 
These microaneurysms may be different from the ber-
ry aneurysms at the Circle of Willis branch points that 
cause SAHs. Intracerebral hemorrhage may also be due 
to cerebral amyloid angiopathy, anticoagulant use, hema-
tological disorders, arteriovenous malformations, arterio-
venous fistulas, cavernous angiomas, and brain tumors. 
Intracerebral hemorrhage can be further distinguished 
from SAH as it is more commonly found near gray-white 
junctions in cerebral lobes, subcortical structures such as 
the basal ganglia, the brainstem, and deep cerebellar nu-
clei.99,101 Current management for ICH immediately after 
onset involves airway management, monitoring of hemo-
dynamic parameters, control of intracranial pressure, and 
hematoma evacuation.

Brain injury from ICH can be described by primary 
and secondary mechanisms (Fig. 1). The majority of the 
brain injury due to ICH typically occurs within the first 
few hours as a result of mass effect due to hematoma for-
mation.98 This primary injury results in increased pres-
sure and disruption of the surrounding neural structures, 
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resulting in early neurological deterioration. Although 
randomized trials have not consistently shown a clear 
benefit of surgical management compared with medical 
therapy, there may be a role for ICH evacuation in an at-
tempt to reduce intracranial pressure and reduce mass ef-
fect to try and improve outcomes in select cases. Lack 
of Class I data supporting evacuation may be due to the 
added morbidity of the surgical procedure in eloquent ar-
eas (such as the basal ganglia), inappropriate timing of 
clot evacuation, variability of ICH and techniques used, 
and insufficient sample sizes in clinical trials.

Because the optimal therapy for treating the primary 
injury associated with ICH has not yet been identified, 
prevention and treatment of secondary injury is impera-
tive. As many patients continue to deteriorate clinically 
despite no signs of rehemorrhage or hematoma expansion, 
there is increasing interest in the mechanisms of second-
ary brain injury following ICH.30 Vasogenic and cytotox-
ic edema due to the breakdown of the BBB and cellular 
injury have been implicated in this process.146 Additional 
mechanisms for this secondary injury are believed to 
be due to the intraparenchymal accumulation of various 
blood components following ICH, activating cytotoxic, 
excitotoxic, oxidative, and inflammatory pathways.61 As 
a result of increased awareness of this secondary injury, 

specific therapeutic targets have been identified in hopes 
of preventing further brain damage following ICH. In 
this review, we will discuss the various molecular mecha-
nisms of secondary brain injury as a result of intrapa-
renchymal blood, potential therapeutic targets, and the 
various treatment strategies currently under investigation.

Mechanisms of Secondary Brain Injury
Thrombin-Induced Injury

Thrombin, a serine protease found in the brain after 
ICH, has been shown to induce brain injury (Fig. 2). This 
enzyme is produced on the plasma membranes of plate-
lets, neutrophils, monocytes, and lymphocytes as a result 
of cleavage of prothrombin following activation of the in-
trinsic and/or extrinsic coagulation cascades.137,148 Entry 
of blood into the brain parenchyma activates this process, 
releasing large amounts of thrombin that is known to 
cause perihematomal edema formation after ICH due to 
endothelial cell damage.75,146,148 Studies have also shown 
continuous release of thrombin from intracerebral hema-
tomas for 2 weeks after clot formation due to fibrinoly-
sis.121

Thrombin-induced injury may be a central mecha-
nism for secondary injury in ICH, as many pathways are 

Fig. 1. Mechanisms and potential treatments for primary and secondary brain injury following ICH.
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implicated. Secondary injury due to thrombin primarily 
occurs through PARs, a family of G protein–coupled pro-
teins found on the surface of various cells including plate-
lets, neurons, and endothelial cells.24 Of these receptors, 
PAR-1, PAR-3, and PAR-4 have been shown to be acti-
vated by thrombin.24–26 This activation occurs by cleav-
age of the exodomains of PARs, forming a new amino 
terminus that acts as a tethered ligand for receptor activa-
tion, resulting in the activation of various signaling path-
ways.49,78,132 Protease-activated receptor-1 has been shown 
to be upregulated in ischemia models and is implicated in 
potentiation of NMDA receptors, neurite retraction, and 
cell death.37,119,128,129 It has been shown that mice lacking 
PAR-1 have a reduction in infarct volume following focal 
ischemia, indicating its importance in brain injury.64,149 
Additionally, studies have shown continued PAR-1 ac-
tivation following ICH, with PAR-1 levels peaking at 3 
days after onset.162 This effect may last for up to 14 days, 
implicating this process in cerebral edema initiation as it 
often peaks approximately 3 days after ICH.162 Protease-
activated receptors also activate various intracellular en-
zymes such as mitogen-activated protein kinases, which 
play a role in the recruitment of microglia and neuronal 
injury.91

Red Blood Cell Lysis

The presence of extravasated RBCs in the brain fol-
lowing ICH also stimulates a variety of cytotoxic, oxida-

tive, and inflammatory processes (Fig. 3). Red blood cell 
lysis begins to occur approximately 24 hours following 
ICH and occurs for several days after onset.87,133,139 This 
primarily occurs due to intracellular energy depletion, 
loss of structural integrity, and the formation of the mem-
brane attack complex due to activation of the complement 
system.55 The release of the intracellular contents of these 
cells induces brain edema, as studies have shown increas-
es in edema volume following reductions in hematoma 
size due to clot lysis.138 Studies in animals have shown 
delayed brain injury with intracerebral infusion of packed 
RBCs and dramatic edema formation within 24 hours 
following infusion of lysed RBCs.53,133,140,145 Infusion of 
lysed RBCs also causes disruption of the BBB, DNA in-
jury, and expression of heat shock proteins, indicating cell 
stress.80,140,143,145 Once released from RBCs, hemoglobin is 
degraded into heme and iron, causing injury to surround-
ing cells.95,133,139,157

Cytotoxicity

Thrombin has been shown to induce various compo-
nents of the complement system, an enzymatic cascade 
of blood and cell surface proteins. Thrombin primarily 
activates complement C3d and C9.38,50,55 The presence of 
C3d following ICH indicates activation of the comple-
ment cascade, while deposition of C9 on the neuronal cell 
membranes indicates membrane attack complex forma-
tion.13,55 This activity leads to the formation of a trans-

Fig. 2. Once released after ICH, thrombin is able to activate the complement pathway and PARs. This leads to a variety of cy-
totoxic, excitotoxic, and inflammatory effects that all lead to secondary brain injury. MAPKs = mitogen-activated protein kinases.
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membrane pore and subsequent cell lysis, which may be 
one of the mechanisms of neuronal death and disruption 
of the BBB as a result of endothelial cell damage follow-
ing ICH.55 Additionally, lysis of erythrocytes may result 
in further damage through hemoglobin-mediated edema 
formation.145

Thrombin is also able to induce apoptosis in neu-
rons and astrocytes by activation of various intracellular 
pathways.27,90 This occurs via RhoA, a small guanosine 
triphosphate-binding protein part of the Ras superfamily.27 
RhoA inhibitors have been noted to attenuate thrombin-
mediated cell death, implicating this mechanism as a major 
cause of neuronal loss following ICH. However, the exact 
mechanism by which RhoA induces apoptosis is currently 
unknown. This process may involve caspase activation, as 
inhibitors to these enzymes have been shown to prevent 
thrombin-induced cell death.128

Excitotoxicity

Potentiation of NMDA receptors by PAR-1 may cause 
neuronal death following ICH due to glutamate-induced 
excitotoxicity.37,43 This notion is supported by studies 
showing that PAR-1 knockout mice had reduced thrombin-
mediated NMDA receptor potentiation.37,43 Also, removal 
of PAR-1 and the addition of NMDA receptor antagonists 
reduce neuronal injury associated with the addition of 
NMDA and transient middle cerebral artery occlusion.43 
The potentiation of NMDA by PAR-1 occurs through the 
activation of Src, a proto-oncogene tyrosine-kinase, which 
is known to augment NMDA activity by phosphorylation of 
these receptors.113 This activity is confirmed by increased 
expression of Src kinases following ICH.113

Levels of extracellular amino acids such as glutamate 
have been shown to increase following ICH, resulting in 

Fig. 3. Hemolysis leads to the release of hemin into the extracellular space. Hemin may then intercalate into cell membranes 
or enter cells via the heme carrier protein 1 (HCP1). Intracellularly hemin may activate cytotoxic and inflammatory pathways. It is 
then degraded by heme oxygenases, producing prooxidative iron, carbon monoxide (CO), and bilirubin. Thus far, the role of CO 
and bilirubin in ICH-mediated injury is unclear. Hb = hemoglobin; HO-1 = heme oxygenase-1; ROS = reactive oxygen species.
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glutamate-mediated excitotoxicity.97 This increase in lev-
els of extracellular amino acids may be due to the release 
of these molecules as a result of active ischemia, as in 
vivo models have shown 80-fold increases in glutamate 
levels after middle cerebral artery occlusion.47 Because 
neurons have high intracellular concentrations of gluta-
mate, ICH-induced cell death may result in the release 
of these stores into the extracellular space.97 Additionally, 
injury of astrocytes may impair glutamate removal, re-
sulting in extracellular accumulation.
Oxidative Injury

Hemin, the oxidative form of heme, is a potent oxi-
dant that injures cells and is well known to cause brain in-
jury.103 Its mechanism of action occurs through oxidative 
stress and the activation of caspases, resulting in the in-
jury of astrocytes, neurons, and microglia.102,135 However, 
microglia that clear hemin have protective mechanisms 
that prevent cell death.17 Following ICH, hematogenous 
phagocytes, microglia, and surrounding astrocytes and 
neurons attempt to sequester hemin.103,156 This primarily 
occurs via the heme carrier protein 1.103 Once within the 
cell, hemin is degraded by heme oxygenases, producing 
biliverdin, carbon monoxide, and iron.70,103 Iron released 
due to hemin degradation can reach high levels within the 
brain following ICH, resulting in the formation of hydrox-
yl radicals and subsequent cellular stress and DNA dam-
age via interaction with hydrogen peroxide.3,86,133,139 Iron 
levels after ICH may increase up to 3-fold and remain 
elevated for 1 month, causing continued brain injury fol-
lowing the initial insult.139 However, hemin itself can also 
participate in redox reactions, producing free radicals 
that can damage intracellular structures and cause oxida-
tive stress.57 Additionally, because hemin is lipophilic, it 
may intercalate into lipid membranes, altering function 
and fluidity.4 The roles of biliverdin, which is converted 
to bilirubin by biliverdin reductase, and carbon monoxide 
are unclear.70 Small concentrations of bilirubin have been 
demonstrated to inhibit glutamate uptake and induce in-
flammation, oxidative stress, and apoptosis.16,34,115 Howev-
er, bilirubin and carbon monoxide have also been shown 
to have antioxidant and antiinflammatory effects.103 Also 
unclear is the amount of bilirubin accumulation due to 
hemin degradation following ICH.
Inflammation

Thrombin has also been observed to increase pro-
inflammatory cytokines such as TNF-α and IL-1b.54,142 
This increase may occur through the activation of mi-
croglia via PARs, resulting in recruitment and prolifera-
tion of these cells at the site of injury.108,120 Tumor necrosis 
factor-α has been shown to increase in ICH models and 
is implicated in edema formation because TNF-α knock-
out mice have less brain edema and neurological deficits 
compared with wild-type mice.54 Plasma TNF-α has 
been shown to correlate with the amount of brain edema 
in patients.19 Other studies have also raised other mecha-
nisms of TNF-α mediated injury such as enhancement 
of leukocyte infiltration, resulting in BBB disruption and 
cellular apoptosis.6 Thrombin also stimulates microglia 
to secrete IL-1b, resulting in similar damaging effects as 

TNF-α, such as neurotoxicity, opening of the BBB, and 
induction of apoptosis.142 The role of this mechanism in 
ICH-mediated injury is supported by studies showing at-
tenuation of brain edema by the overexpression of IL-1b 
receptor antagonists.142

Matrix metalloproteinases are zinc-containing prote-
ases that are involved in extracellular matrix remodeling, 
chemotaxis, and proteolytic cleavage of various mole-
cules.35 These proteins are produced by microglia, peri-
cytes, and astrocytes, and when found in high levels in the 
brain, result in extracellular matrix degradation, BBB dis-
ruption, and neuronal death.149 The mechanism for MMP-
mediated brain injury is due to activation of microglia and 
subsequent release of inflammatory cytokines, release of 
neutrophil-derived toxins from infiltrated leukocytes, and 
generation of toxic molecules from interaction with nitric 
oxide. Several MMPs including MMP-2, -3, -9, and -12 
have been observed to increase following ICH and can af-
fect clinical outcome.2,96 Additionally, studies have shown 
that MMP-3, -9, and -12 null mice have less brain injury 
as a result of ICH.136,149,150 As thrombin is able to increase 
expression of various MMPs, the effects of thrombin on 
microglial activation and neuronal apoptosis may be due 
to these mediators.67,150

Nuclear factor-κB, a transcription factor involved in 
inflammatory processes, also contributes to brain injury 
following ICH.5 In response to various cytokines and free 
radicals, NF-κB translocates to the nucleus, inducing the 
transcription of inflammatory enzymes, chemokines, and 
cytokines. Activation of NF-κB occurs within minutes of 
ICH and can remain active for 7 days following onset.161 
This activity results in DNA fragmentation, causing cell 
death.46 Elucidation of the mechanisms of DNA fragmen-
tation following NF-κB may allow for the development of 
therapeutic interventions to inhibit this process.

Nonhematogenous Perihematomal Mechanisms 
of Secondary Injury

Ischemia has been believed to play a role in second-
ary brain injury following ICH. Several animal stud-
ies have shown reductions in rCBF and the presence of 
tissue ischemia around hematomas, even though blood 
flow is reestablished quickly.81,88,89,100,106,151 This return 
to normal perfusion is observed as early as 10 minutes 
following hemorrhage but is likely variable, depending 
on factors such as size of the hematoma and the pres-
ence of increased intracranial pressure. Although there 
may be quick recovery, ischemic damage to the cortex 
overlying the hematoma has been noted, consistent with 
histological findings of ischemia following 5 minutes of 
CBF cessation.89,122 In ICH, ischemia of the surround-
ing tissue may be due to mechanical compression of the 
surrounding microvasculature by the hematoma, result-
ing in a hypoxic environment.82,89 Hypoxia causes brain 
injury by a multitude of mechanisms. The inability to 
synthesize ATP results in Na+/K+ ATPase dysfunction, 
leading to neuronal membrane depolarization and ionic 
imbalance.28 This may impair the function of many en-
zymes such as sodium-dependent glutamate transporters, 
resulting in increased extracellular glutamate levels and 
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excitotoxicity.28 Low concentrations of ATP also prevent 
the maintenance of low calcium concentrations within 
cells by disrupting the Ca2+ ATPase, leading to high in-
tracellular calcium levels that activate many DNAses 
and calcium-dependent proteases.28 Additionally, energy 
depletion results in the production of reactive oxygen spe-
cies and the release of cytochrome c from the outer mi-
tochondrial membrane, both of which result in apoptosis 
and further brain injury.28,126 Many of these mechanisms 
of injury overlap with the excitotoxic and oxidative path-
ways induced by thrombin and hemin, demonstrating the 
complexity of these damaging pathways and challenge of 
designing drugs to prevent this injury.

However, some animal and human studies have 
shown evidence against a significant ischemic penum-
bra following ICH.18,32,36,44,45,48,100,109,134,153 These studies 
did not show any ischemic tissue surrounding the clot, 
although there was evidence of hypoperfusion. Positron 
emission tomography has shown reductions in the oxy-
gen extraction fraction in tissue surrounding hematomas, 
contrasting with what occurs during acute ischemia.153 
Magnetic resonance imaging in patients has not shown 
significant changes in the apparent diffusion coefficient 
or mean transit time, both of which are markers of irre-
versible ischemia and hypoperfusion.109 The lack of pro-
longed reductions in rCBF after ICH may be due to in-
complete vascular compression by the hematoma.100 This 
idea is supported by studies demonstrating rCBF within 
hematomas in regions of intact neural tissue.100 Complete 
compression of intracerebral vessels by the expanding he-
matoma may result in the disruption of the pia-microvas-
culature interface, potentially causing alterations in BBB 
integrity.100 Because this has not been noted to occur im-
mediately following ICH, complete vessel compression is 
unlikely. In addition, white matter fibers are dense struc-
tures that provide mechanical resistance against the ex-
panding hematoma.84 Finally, robust collateral circulation 
from penetrating cortical arterioles and pial vessels from 
other cerebral arteries may prevent significant changes in 
rCBF and tissue ischemia.84,100 However, due to the rela-
tively small sample sizes in many studies, larger human 
studies are needed to provide more conclusive data.

Therefore, it is unclear whether perihematomal isch-
emia is a significant factor in secondary brain injury fol-
lowing ICH. Recently there has been a paradigm shift 
in thinking toward a metabolic instead of an ischemic 
penumbra. Increases in perihematomal glucose uptake 
and use (hyperglycolysis) have been observed in patients 
following ICH, consistent with what is noted following 
traumatic brain injury.14,154 The mechanism of focally 
increased glucose uptake may be due to nonconvulsive 
seizure activity, which is found in many patients with 
acute ICH.131 These repetitive depolarizations may lead to 
secondary injury by increasing extracellular glutamate, 
resulting in intracellular calcium accumulation and exci-
totoxicity.130 The role of seizures as a cause of increased 
glucose utilization is supported by the suppression of hy-
perglycolysis by anticonvulsant glutamate receptor antag-
onists.20 Further studies are needed to elucidate addition-
al metabolic changes in this perihematomal tissue and 
investigate potential interventions to this ongoing injury.

Potential Therapeutic Targets and Current  
Treatments Under Investigation

Understanding the mechanisms of secondary injury 
following ICH has allowed for the development of treat-
ments aimed at preventing this damage. Some agents 
have been validated in in vivo studies but have not yet 
been evaluated in clinical trials. However, several clini-
cal trials have already been conducted to evaluate vari-
ous neuroprotective drugs for the treatment of secondary 
injury from ICH.
Prevention of Cytotoxicity

One promising therapy for the prevention of second-
ary brain injury following ICH is the use of direct throm-
bin inhibitors. As thrombin plays a major role in cellular 
injury via a variety of pathways, inhibiting its activity 
would be beneficial. Inhibitors such as hirudin (a throm-
bin inhibitor found in leeches) and argatroban (a synthet-
ic, direct thrombin inhibitor) have been shown to reduce 
brain edema following ICH in in vivo models, possibly 
by inhibiting PAR-1 expression.68,69,74,163 Although there 
is concern of prolonged bleeding with the use of these 
anticoagulants, the use of direct thrombin inhibitors has 
been shown to not cause enlargement of hematoma vol-
ume, unlike with other anticoagulants such as warfarin.72 
Clinical trials are needed to evaluate the efficacy of these 
drugs for the prevention of brain injury following ICH.

However, complete inhibition of thrombin may ac-
tually be deleterious as low concentrations have been 
shown to be neuroprotective.148 This protective effect 
has been observed in neurons and astrocytes in in vitro 
models. Pretreatment with thrombin has been shown to 
prevent brain edema and damage induced by large doses 
of thrombin, ICH, and cerebral ischemia,79,144,147 but these 
protective effects are eliminated by thrombin inhibitors.147 
Although the exact mechanism by which thrombin exerts 
its neuroprotective effects is unknown, it is believed to be 
due to the activation of PARs, production of heat shock 
proteins, and upregulation of endogenous thrombin in-
hibitors.56,62,144,147 Additionally, thrombin preconditioning 
has been shown to increase levels of hypoxia inducible 
factor-1α, transferrin, and transferrin receptor, increas-
ing brain tolerance to erythrocyte- and iron-mediated 
injury.52 Further research elucidating the mechanisms of 
this protective effect are needed for the development of 
therapeutic strategies aimed to enhance this effect. The 
doses of thrombin inhibitors that simply reduce throm-
bin concentration without complete inhibition need to be 
clarified to augment neuroprotection. Alternatively, spe-
cific thrombin inhibitors that do not affect neuroprotec-
tive pathways should be investigated.

Due to the activation of numerous apoptotic path-
ways following ICH, molecules that inhibit this process 
have been investigated for use in ICH. One such drug is 
tauroursodeoxycholic acid, the taurine conjugate of the 
endogenous bile acid ursodeoxycholic acid.105 Taurourso-
deoxycholic acid is able to inhibit production of reactive 
oxygen species, stabilize the mitochondrial membrane, 
activate antiapoptotic proteins such as Bcl-2, and inhibit 
the activity of proapoptotic proteins such as Bad.104,105 A 
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Phase I trial investigating the safety of this drug has been 
designed.

Albumin has also been investigated as a neuroprotec-
tive agent. Studies have demonstrated numerous mecha-
nisms of this neuroprotection including reduction of 
brain edema, inhibition of oxidative damage, and mainte-
nance of normal endothelial and astrocytic function.7,8,10,12 
In vivo studies have demonstrated improved functional 
outcome and BBB integrity following administration 
of albumin after ICH.9,11 The Albumin for Intracerebral 
Hemorrhage Intervention (ACHIEVE) trial is currently 
evaluating the effects of albumin in 40 patients with ICH.
Inhibition of Excitotoxicity

Gavestinel, a drug that functions as an antagonist by 
binding to the glycine site on the NMDA receptor, has 
been investigated in the Glycine Antagonist in Neuro-
protection (GAIN) International and Americas trials.83 
In these trials, patients were randomized to receive the 
drug or placebo within 6 hours of symptom onset. This 
time point is considered to be crucial as the majority of 
hematoma enlargement occurs within this period due to 
continuous bleeding or rebleeding.65 Outcomes of the tri-
al were death or functional ability as determined by the 
Barthel Index.42 Of the 3450 patients randomized in these 
trials, 571 had ICH. Analysis of these patients revealed 
no significant differences in mortality rates between the 
2 groups (p = 0.38). There was also no difference in the 
distribution of Barthel Index scores at 3 months between 
the 2 groups, although there was a trend favoring gavesti-
nel (p = 0.091). It may be beneficial to test this agent later 
during the peak of secondary brain injury from ICH.

As glutamate levels have been shown to increase 
following ischemic injury and ICH, glutamate scaveng-
ing may provide neuroprotection. Oxaloacetate has been 
shown to be neuroprotective in traumatic brain injury 
models by reducing glutamate levels.164 The mechanism 
for this effect is due to the transformation of glutamate 
to 2-ketoglutarate by glutamate-oxaloacetate transami-
nase, an enzyme found in the blood.39 Human studies are 
needed to evaluate the efficacy of this mechanism in ICH.
Protection From Oxidative Injury

Three clinical trials have been conducted to evaluate 
citicoline (cytidine-5-diphosphocholine), an intermedi-
ate in the phospholipid synthetic pathway.1 Studies have 
shown its neuroprotective effects occur by maintaining 
the integrity of various cellular membranes, attenuat-
ing lipid peroxidation, restoring Na+/K+-ATPase activ-
ity, and enhancing the glutathione system.1 Additionally, 
citicoline may decrease glutamate release from neurons 
and improve astrocyte uptake, decreasing extracellular 
glutamate levels.58 In a randomized study of 32 patients, 
those receiving citicoline experienced improved muscle 
strength following ICH.60 Another study involving treat-
ment of 19 patients with citicoline found that treated pa-
tients were 5-fold more likely to be functionally indepen-
dent following ICH compared with those who received 
a placebo.110 Finally, a trial of 182 patients revealed that 
treatment with citicoline resulted in improvement in the 

Barthel Index, although no effect on the modified Rankin 
Scale or NIH Stroke Scale was noted.66

Due to the neurotoxic effects of iron, there is interest 
in the use of iron chelators for prevention of this iron-medi-
ated injury. In vivo studies have demonstrated that deferox-
amine rapidly accumulates within brain parenchyma and 
reduces iron concentration, brain edema, neuronal death, 
and neurological deficits following ICH.41,51 A multicenter 
Phase I trial showed that infusions of deferoxamine are 
tolerable and safe up to a daily dose of 6000 mg.112 Pre-
liminary data in 4 patients with hemorrhagic stroke and 3 
with ischemic stroke showed decreases in serum markers 
of oxidative stress.111 Currently, a Phase II trial is underway 
to evaluate the efficacy of deferoxamine in ICH.

Peroxisome proliferator-activated receptor g is a 
transcription factor that plays a role in cellular defense 
mechanisms and hematoma clearance.159 This activity 
occurs through the upregulation of CD36, the phagocy-
tosis-facilitating gene, resulting in faster hematoma clear-
ance.159 In addition, it enhances expression of antioxidant 
molecules such as catalase and superoxide dismutase, 
preventing the oxidative damage of neurons and microg-
lia.114,160 In vivo studies have demonstrated improvements 
in hematoma resolution and functional outcome follow-
ing treatment with peroxisome proliferator-activated re-
ceptor g agonists in ICH models.159 Currently the Safety 
of Pioglitazone for Hematoma Resolution in Intracerebral 
Hemorrhage (SHRINC) trial is evaluating the use of such 
agonists in 80 patients with ICH.

Haptoglobin is a protein found in blood plasma that 
has the ability to bind hemoglobin. It functions to bind ex-
tracellular hemoglobin, preventing hemoglobin-mediated 
oxidative damage.157 In the brain, haptoglobin is synthe-
sized by oligodendrocytes, thereby protecting against ex-
travascular hemoglobin toxicity. Animal models of ICH 
have demonstrated increased haptoglobin production fol-
lowing injury. Animals that are hypohaptoglobinemic are 
more susceptible to injury and have more brain damage 
following ICH, whereas those that overexpress haptoglo-
bin are more protected. Haptoglobin is therefore a poten-
tial therapeutic target for the prevention of brain injury 
following ICH. Thus far, sulforaphane, a NF-E2–related 
factor–2 activator, has been shown to increase haptoglo-
bin in the brain and reduce injury following ICH.158 Ad-
ditional in vivo and human studies are needed to identify 
other agents that increase haptoglobin levels and establish 
their efficacy in preventing ICH-induced brain injury.

Another agent known to bind heme is hemopexin, a 
glycoprotein found in plasma.125 However, hemopexin is 
also expressed by neurons and is present throughout the 
brain.76 Mice that do not express hemopexin have great-
er infarct volumes and neurological deficits following 
middle cerebral artery occlusion.76 Hemopexin knock-
out mice also had increased protein oxidation and tissue 
heme, and decreased cell viability and locomotor activ-
ity.22 This protein may also be another modifiable target 
to decrease brain injury following ICH.
Reduction of Inflammation

Rosuvastatin, a competitive inhibitor of 3-hydroxy-
3-methylglutaryl coenzyme A reductase, has been inves-
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tigated for its neuroprotective effects. Statins may exhibit 
their neuroprotective effects via a variety of mechanisms 
such as reduction of inflammation through inhibition of 
NF-κB, TNF-α, and chemokine expression,63,92 upregu-
lation of nitric oxide synthase,31,63,73 and protection from 
glutamate-induced excitotoxicity.15 A prospective/retro-
spective nonrandomized study treated 18 patients with ro-
suvastatin and found improved outcomes compared with 
control subjects (mortality rate 5.6% vs 15.8%, respec-
tively; NIH Stroke Scale score ≥ 15, OR 0.04).124 Larger 
studies are needed to provide more conclusive evidence 
on the efficacy of statins for the prevention of secondary 
brain injury following ICH. Due to the neuroprotective 
effects of statins, there has also been considerable interest 
in using these drugs following aneurysmal SAH. A me-
ta-analysis of double-blind randomized controlled trials 
showed significant reductions in delayed ischemic deficits 
(OR 0.41, 95% CI 0.20–0.82; p < 0.001) and mortality 
(OR 0.29, 95% CI 0.09–0.93; p = 0.04) following statin 
therapy for SAH.127

Celecoxib is a nonsteroidal antiinflammatory drug 
that has been shown to reduce perihematomal inflam-
mation and cell death in ICH.23,116 Because celecoxib se-
lectively inhibits cyclooxygenase-2, it is a potential treat-
ment for ICH because cyclooxygenase-2 is activated in 
ICH models, resulting in increased levels of prostaglan-
din E2.23 As prostaglandin E2 can induce free radical 
formation and glutamate-mediated excitotoxicity due to 
glutamate release from astrocytes, the neuroprotective 
effects of celecoxib are believed to occur through the re-
duction of prostaglandin E2 synthesis via cyclooxygen-
ase-2 inhibition.23,59 One retrospective study analyzed the 
volumes of hematoma and edema in 17 patients treated 
with celecoxib.93 Treatment significantly reduced the vol-
ume of brain edema and the ratio of initial hematoma and 
edema volumes to follow-up volumes compared with the 
control group. The results of a Phase II trial investigating 
the efficacy of celecoxib are currently pending. Although 
trials have shown increased risk of serious cardiovascular 
events with use of celecoxib, short-term use in ICH may 
not increase these risks significantly.117

Minocycline, a broad-spectrum tetracycline antibi-
otic, has also been investigated as a neuroprotective agent 
due to its antiinflammatory properties. In vivo studies 
have shown reduced perihematomal brain edema, neuro-
nal loss, BBB disruption, and improved functional out-
come following ICH with minocycline treatment.141,155 
Minocycline also reduces brain iron accumulation and 
resulting toxicity by chelating iron.21 In an open-label, 
blinded study, 74 patients were treated with minocycline 
6–24 hours after acute ischemic stroke.71 Those treated 
had significantly lower NIH Stroke Scale and modified 
Rankin Scale scores, with higher Barthel Index scores, 
indicating significantly better outcome. Currently, 3 trials 
are in progress for evaluation of the neuroprotective ef-
fects of minocycline in stroke.

Other Investigated Agents

Other studies have evaluated the use of mannitol, 
glycerol, and NXY-059 (disufenton sodium) for neuro-
protection in patients with ICH but did not observe any 

improvement in mortality or functional outcome.77,83,152 
Mannitol exerts its neuroprotective effects by function-
ing as an osmotic diuretic, thus reducing brain edema.85 
It also functions as an antioxidant, protecting against free 
radical–mediated damage. Neuroprotection due to glyc-
erol occurs by hemodilution, which results in increased 
cerebral perfusion and reduction of cerebral edema, 
thereby reducing intracranial pressure.152 The free radi-
cal trapping agent NXY-059 prevents brain injury by 
quenching free radicals formed by hemoglobin degrada-
tion and ischemic tissue.94

Conclusions
The mechanisms of secondary brain injury following 

intracerebral hemorrhage are numerous and involve the 
initiation of cytotoxic, excitotoxic, oxidative, and inflam-
matory pathways. Optimal management of patients with 
ICH remains undefined. Surgical therapies have shown 
disappointing results in primary brain injury treatment. 
Medical therapies aimed at prevention of continued insult 
may improve mortality rates and functional outcomes. 
Although there is not yet an effective medical treatment, 
advances have been made in elucidating the mechanisms 
of brain injury following ICH. These advances have led 
to the development of neuroprotective therapies, many of 
which show promise in early clinical testing. However, fur-
ther research is required to illuminate and better define the 
multitude of mechanisms involved in ICH pathogenesis in 
the hope of revealing targets for novel therapeutics. Addi-
tionally, large randomized trials are needed to establish the 
efficacy and safety of currently identified neuroprotective 
agents. Nonetheless, our focus must also be on finding ef-
ficient interventions to prevent ICH, decreasing the severe 
morbidity and mortality associated with this disease.
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