
 1 

 

Thrombin Binding Aptamer, more than a simple aptamer: Chemically modified derivatives and 

biomedical applications 

 

 

 

Anna Aviñó, Carme Fàbrega, María Tintoré  and Ramon Eritja *. 

 

Institute for Research in Biomedicine, IQAC-CSIC, CIBER-BBN Networking Centre on Bioengineering, 

Biomaterials and Nanomedicine, Edifici Helix, Baldiri Reixac 10, E-08028 Barcelona, Spain.  

Phone: +34(93)4039942; Fax: +34(93)2045904. 

Email1: recgma@cid.csic.es, Email2: ramon.eritja@irbbarcelona.org 

 

 

 

Email of all authors: 

anna.avinyo@irbbarcelona.org 

carme.fabrega@irbbarcelona.org 

maria.tintore@irbbarcelona.org 

recgma@cid.csic.es 

 

 

Short running title:  Chemically modified thrombin binding aptamers 

 

Keywords: Thrombin binding aptamer, TBA, G-quadruplex, thrombin, anticoagulant, oligonucleotide 

synthesis, DNA, aptamer 

 

 



 2 

 

 

ABSTRACT  

------------------------------------------------------------------------------------------------------------------------------- 

 The thrombin binding aptamer (TBA) is a well characterized chair-like, antiparallel quadruplex 

structure that binds specifically to thrombin at nanomolar concentrations and therefore it has interesting 

anticoagulant properties.  In this article we review the research involved in the development of new TBA 

derivatives with improved anticoagulant properties as well as the use of the TBA as a model compound 

for the study of quadruplex structures. Specifically, we describe the impact of modified nucleosides and 

non-natural backbones in the guanine tetrads or in the loops and the introduction of pendant groups at the 

3’ or 5’-ends. The modified oligonucleotides are shown to be excellent tools for the understanding of the 

molecular structure of the TBA and its folding properties. Finally, we review the use of the TBA-

Thrombin recognition system for the development of analytical tools based on the TBA folding. 

------------------------------------------------------------------------------------------------------------------------------- 
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 Introduction   

Aptamers are oligonucleotides that were originally derived from an in vitro selection and 

polymerase chain reaction process known as SELEX (systematic evolution of ligands by exponential 

enrichment) [1-4] which selects them on the basis of their specific and tight binding affinity to a target of 

choice from a library of sequences including proteins. Through this approach, a large number of aptamers 

with very high affinity have been developed for diagnostics, therapeutics and other technical applications 

[5], but there is still room for improvement in terms of increasing their binding properties and their 

pharmacokinetic properties [6]. 

The thrombin binding aptamer (TBA) is the first example of a potential nucleic acid therapeutic 

agent, targeted to a protein that does not physiologically bind nucleic acids with the following consensus 

sequence: 5’-G1G2T3T4G5G6T7G8T9G10G11T12T13G14G15-3’ [7]. This 15-base-long oligonucleotide binds 

specifically to thrombin at 10 nM concentrations and therefore, it has interesting anticoagulant properties. 

It inhibits specifically clot-bound thrombin and reduces arterial thrombus formation. In addition, it does 

not compete with other known active site inhibitors of thrombin [7-10].  Nevertheless, TBA binding to 

other serum proteins or proteolytic enzymes is essentially undetectable.   

In an effort to identify the region of thrombin with which the TBA aptamer interacts, the 

inhibition of fibrinogen-clotting activity was studied using recombinant mutagenesis of  anion-binding 

exosite of  thrombin (exosite I) [10].  The results suggested that the single-stranded DNA binding site is 

located in the thrombin exosite I and overlaps the thrombin platelet receptor and thrombomodulin binding 

sites. The TBA binding site on thrombin was also examined by solid-phase plate binding assays [11]  and 

by chemical modifications studies [12]. These studies showed that the TBA aptamer binds specifically to 

α-thrombin but not to γ-thrombin, which is a proteolytic cleavage product of α-thrombin in the 

fibrinogen-binding exosite. Both results suggest again that the thrombin exosite I is important for the 

aptamer-thrombin interaction.  

The awareness of the folded structure of this aptamer, both free in solution or bound to thrombin, 

is essential to understand its biological activity and useful in the future development of oligonucleotide-

based therapeutics or drug design. The TBA has been characterized by NMR spectroscopy [12-15] and X-

ray crystallography [16-18]. These studies have led to the description of its compact and symmetrical 

chair-like, unimolecular antiparallel quadruplex structure. This structure consists of two G-tetrads 

connected by three edge-wise loops: two TT loops (T3T4 and T12T13) at one end and a single T7G8T9 loop 
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in the other end (Figure 1A). The conformational distribution of the four co-planar 2’-deoxyguanosines in 

the G-quartets of the TBA aptamer is well defined and they are stabilized by cyclic Hoogsteen hydrogen 

bounding (Figure 1B). All sugar puckers are predominantly South (S) while the guanines on the same G-

quartet plane display alternating 5’-syn-anti-syn-anti-3’ conformations with respect to the glycosyl torsion 

angle (syn-G at positions G1, G5, G10 and G14; anti-G at positions G2, G6, G11 and G15, Figure 1), except 

for the G8 and the thymines in the loops which are all anti. The two TT loops, both at one end of the 

quadruplex, span a narrow groove, while the TGT loop, placed at the other end, spans a wide groove.  
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Figure 1: A) Folding topology of the intramolecular quadruplex adopted by the d(G1G2T3T4G5G6T7G8T9G10G11T12T13G14G15) 

thrombin-binding DNA aptamer containing three edge-wise loops. B) Structure of the G-quartet with cyclic array of four guanines 

formed by Hoogsteen-type H-bonds, M indicates a metal ion.   

 

It has been known for several years that not only the primary nucleotide sequence, but also 

environmental conditions and in particular cations, play an important role in the formation, topology and 

stability of G-quadruplexes [19-25]. In the case of the thrombin binding aptamer, it was believed that the 

presence of K+ in the medium was necessary to shift the equilibrium toward the quadruplex conformation, 

subsequently favouring thrombin binding, its ionic size fitting into the free space existing in the center of 

each quartet. Preliminary studies with Mn2+ suggested that it can bind strongly in two sites with one in the 

each narrow groove [26]. Both Mn2+ ions are released when the aptamer is complexed with thrombin, 

indicating that both narrow grooves are involved in the TBA-thrombin interactions. Some authors have 

used a combination of temperature-dependent UV spectroscopy, calorimetry, NMR and electrospray 

ionization mass spectrometry techniques to evaluate the effect in the stability, hydration and 
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thermodynamics of the monovalent and divalent metal ions in the formation of 3D structures of the TBA 

complexes [26-34]. Divalent ions (Pb2+, Ba2+ and Sr2+) and NH4
+ bind and stabilize the quadruplex 

structure with even higher efficiency than K+ while Li+, Na+, Cs+, Mg2+ and Ca2+ form weaker complexes 

only at very low temperatures. These results have been rationalized in terms of their radii; cations with an 

ionic radius in the range 1.3-1.5 Ǻ fit well within the two G-quartets of the complex while the other 

cations do not. The divalent cations like Pb2+, Ba2+ and Sr2+ efficiently occupy the region between the two 

quartets in the TBA-ion complex in a 1:1 stoichiometry [27, 29, 33]. The aptamer complex with 

monovalent and divalent ions unfolds in a monophasic transition [30].  

Hong et al. have determined the alkali metal binding site and constant by electrospray ionization 

(ESI) and infrared multiphoton dissociation (IRMPD) respectively [35]. The binding constant of 

potassium is 5-8 times greater than those for other alkali metal ions and the K+ binding site is different 

from other metal binding sites. In a 1:1 TBA-metal complex, potassium coordinated between the bottom 

G-quartet and the two adjacent TT loops of the TBA. In a 1:2 ratio TBA-metal complex, the second 

potassium ion binds at the distant TGT loop. In the other hand, Na+, Rb+ and Cs+ bind at the lateral TGT 

loop in both 1:1 and 1:2 complexes, presumably due to the formation of ion-pair adducts. 

By contrast, some published works provide evidence that the TBA is able to bind thrombin in the 

absence of divalent and monovalent ions [24, 25, 36-37], which suggests that the binding to thrombin 

promotes the TBA folding to its 3D structure, even in the absence of salts. 

Several groups have studied and suggested that molecular crowding causes a structural transition 

from an antiparallel to a parallel DNA G-quadruplex and they are an important factor to control the 

formation of G-quadruplex [38-39]. Miyoshi et al. have shown that different molecular crowding 

promotes and stabilizes the G-quadruplex structure of the TBA by a favourable enthalpic contribution that 

exceeds an unfavourable entropic contribution. Moreover, the thermodynamic effect correlates with the 

number of hydroxyl groups of the molecular crowding cosolute [39]. 

It is worth noting that despite the robust stability of the intramolecular quadruplex structure, 

alternative intermolecular quadruplexes are possible at high aptamer concentration, as detected by CD 

and electrophoresis migration experiments [40]. The crystal structure of the TBA-thrombin complex 

solved by Padmanabhan et al. [16] at 2.9 Ǻ resolution differs in the aptamer quadruplex topology with the 

NMR structure.  Indeed, the core of the two G-tetrads is the same in the two models, although structural 

differences exist in the way the central bases are connected. A difference concerning the disposition of the 
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two TT and the TGT loops with respect to the grooves. In an effort to resolve this ambiguity, the structure 

of the TBA-thrombin complex has been determined at 2.8 Ǻ, built on the basis of the NMR structure of 

the aptamer [17]. The results confirmed that both structures fit the crystallographic data equally well, thus 

leaving the doubt on which binding model is the correct one. In both models, the TBA is sandwiched 

between two symmetry-related thrombin molecules and interacts with the exosite I of a thrombin 

molecule and exosite II of the second one. In particular, the two TT loops in the NMR structure interact 

with the fibrinogen-recognition site (exosite I) of the thrombin molecule and the TGT loop interacts with 

the heparin-binding site (exosite II) of the neighbouring thrombin, whereas in the X-ray structure the 

opposite occurs [16-17]. The structure of the complex between thrombin and TBA is shown in Figure 2. 

The uncertainty between the two models was caused by the absence or poor electron density in 

the region of the TT loops and in the G10 for the X-ray structure and in the G14 and in the TGT loop for 

the NMR structure. In a more systematic analysis [18], eight orientations of the NMR aptamer were 

evaluated in an effort to reconcile the NMR and X-ray data [16-17]. The resulting crystallographic R-

factors and the analysis of the aptamer-protein complexes clearly distinguished between the two possible 

oligonucleotides backbone directionalities. However, due to the missing density in the connecting loops 

of the aptamer, the details of the ligand protein interactions could not be properly addressed. Moreover, 

even recent papers still discuss modified aptamer-thrombin interactions on the bases of both models [39]. 

The recent solved high resolution structure of the complex of thrombin with a modified TBA 

(mTBA), which contains a 5’-5’ inversion between T3 and T4, clarifies several questions regarding 

thrombin-aptamer interaction [41]. The aptamer tightly binds to thrombin exosite I by its TT loops, 

through a mix of hydrophobic and polar interactions in agreement with the results obtained in the 

systematic analysis [18]. However, the interaction details are different for the two aptamers due to the 

chain inversion of the mTBA. This chain inversion allows the formation of a great number of contacts 

with the enzyme and lead to an increase in shape complementarity. In addition, the quadruplex structure 

is efficiently stabilized by a potassium ion, which is sandwiched between the two quartets. 

The antiparallel quadruplex structure of the TBA has a distinctive denaturation-renaturation 

profile that is reversible and observable by different techniques, particularly by NMR experiments, which 

suggest that the denaturation of the quadruplex occurs by the opening of the G-G base pairs that are not 

protected by a loop, followed by the opening of the TGT loop [42]. 
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Figure 2. Structure of the complex formed by thrombin and the thrombin binding aptamer (TBA). Thrombin is coloured in green 

with the amino acid residues that contact the TBA in red (cartoon representation). The TBA is coloured in blue except the residues 

involved in the TT and TGT loops that are highlighted in yellow (stick representation).   

 

1. Clinical trials with the thrombin-binding aptamer 

The anticoagulant properties of TBA were first evaluated on cynomolgus monkeys, and sheeps 

[8]. The rapid onset and the short half-life of TBA (t1/2: 2 min) in vivo lead to an interest for the use of 

TBA for certain acute clinical settings such as surgical interventions where regional anticoagulation is 

required. TBA was able to inhibit clot-bound thrombin and platelet thrombus formation in an ex vivo 

whole-artery angioplasty model [9]. Moreover, when TBA was administered by infusion in a short-term 

canine cardiopulmonary bypass model it was shown that TBA could be used as anticoagulant safely and 

as efficiently as heparine [43]. Clinical trials evaluating TBA (ARC-183, HD1, Archemix Corporation) as 

anticoagulant during coronary artery bypass graft surgery were halted after phase I due to suboptimal 

dosing profiles, primarily caused by the restricted binding affinity of the aptamer [44]. A more potent 
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second-generation DNA aptamer (NU172, Archemix Coorp., Nuvelo Inc.) was developed showing clear 

inhibition of clot formation [45].  

 

2. Modifications on the thrombin-binding aptamer 

In recent years, several attempts to improve pharmacological properties of the TBA have been 

described, such as stability, higher thrombin affinity, longer life time in vivo etc. These modifications 

have included substitutions in the nucleosides [46], LNA [47-48], UNA [49], RNA [50-51] or  2’-O-

methyl-RNA [50, 52], methylphosphonate or phosphorothioate internucleoside linkages [50, 52], partial 

inversion of the TBA polarity with and 5’-5’ internucleoside linkage or change in the loop size and 

sequence [28]. In some cases, the modifications introduced are evaluated in different positions of the 

aptamer in order to increase the knowledge of the interactions between thrombin and the TBA which are 

critical for the biological activity. Besides these modifications, thrombin binding aptamer has been 

functionalized with different derivatives such as fluorescein, biotin or thiol groups to be incorporated in 

biosensors for the detection of thrombin. These derivatives will be described in section 7. Herein, we have 

classified the modifications of the TBA depending on the location: G-tetrads, loops or changes of the 

overall quadruplex structure. 

 

 2.1 Modifications of the guanine tetrad   

 Several modifications have been introduced in the G-tetrads, some of which are analogues of the 

guanine base. Other modifications are related with the sugar structure or with the internucleotide 

phosphate bonds in the guanine tetrad. The guanine analogues that have been introduced in the TBA are 

summarized in figure 3. Hypoxanthine, 7-deazaguanine and C8-methylguanine were the first guanine 

analogues to be introduced into the TBA to understand its structure by NMR. These guanine derivatives 

are unable to form the hydrogen bond required for the formation of the G-tetrad and consequently cause 

significant disruption to the chair-like structure [12]. He and co-workers studied the N2 and C8-alkyl 

substituted of the G residues forming G-tetrads [53]. These positions are not forming the H-bonding of 

the tetrads and are available for attaching one or more groups pointing away from the chair-like structure. 

This is the main reason why these substitutions caused relatively small perturbation on the quadruplex 

structure. However, they can produce different effects on the thrombin activity. The increased activities 

for the substitutions on C8 positions may be explained by the stabilization of syn conformation of the G 
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residues, while the increased activities for the substitutions on N2 positions may be due to the interaction 

with thrombin. 

 6-Thioguanine reduced the quadruplex formation due to the increased radius and decreased 

electronegativity of the sulphur [54]. This modification caused a destabilization of the Hoogsteen 

hydrogen bonding of guanine tetrads. Moreover, the thiol group at position 6 disrupted the interactions 

with water molecules and with cations, becoming a weaker hydrogen bond acceptor than the oxo group. 

8-Aminoguanine did not significantly alter the structure of the TBA quadruplex but it has a small 

destabilization effect on the TBA quadruplex. A detailed study of this modification in the G2 position was 

carried out by molecular dynamics simulations, NMR, UV spectroscopy and circular dichroism.  The 

presence of 8-aminoguanine did not affect hydrogen bonding or purine-ion interaction, but clearly 

reduced the strength of stacking interactions [55]. Nallagatla et al. prepared a library of all possible 

substitutions of guanine by isoguanine in the TBA by split and mix synthesis [56]. The library was 

screened for binding to human thrombin and selected sequences were individually resynthesized and their 

affinities were assayed by isothermal titration calorimetry. Three modified aptamers carrying one single 

isoguanine were found to have higher binding affinity for thrombin than the unmodified TBA. The 

thermal stability of these modified TBAs was not analysed although it is presumed that the effect of the 

modification will depend on the position of the aptamer.  
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Figure 3: Chemical structure of the modified guanines in the TBA tetrads.  
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Finally, the effect of adding a third tetrad on the TBA aptamer has also been explored [28]. This 

modified thrombin binding aptamer is more stable than the native TBA due to the enthalpic contribution 

of the extra guanine tetrad. 

 

 2.2 Modification of the 2’-deoxyribose of the guanine tetrad  

 Several modifications in the TBA have been applied to the sugar moiety of the guanine tetrad. 

The structures of the modified 2’-deoxyribose incorporated in the TBA are summarized in figure 4. In 

some of them, the 2’-deoxyribose moiety was replaced by a non carbohydrate structure. On the contrary, 

other modifications are based on the addition of different groups in the 2’-position. These groups may 

influence sugar puckering and glycosidic bond conformation of the G-tetrad. 

 In a very interesting work, Shafer’s group [51] examined the influence of individual nucleoside 

conformation on the overall folding topology by selective replacement of deoxyG by riboG. The 

unimolecular antiparallel TBA is reversed to bimolecular parallel quadruplex by a specific 

ribonucleotides substitutions. The parallel quadruplex conformation implies that all nucleosides are in the 

anti conformation. The strong preference of guanine ribonucleosides for the anti conformation is the 

driving force for the change in topology and also impact in quadruplex molecularity. 

 The denaturation behaviour of the TBA derivatives carrying ribonucleotides was also described 

by Mergny’s group [50]. The authors prepared a TBA analogue with all the G of the two tetrads replaced 

by riboG. In this case, the modified TBA presented a complex behaviour with a non-superimposable and 

multi-phasic response upon heating and cooling (hysteresis). The same authors also described the same 

TBA analogues with 2’-O-Me guanosine substitutions. This analogue, instead, showed reversible 

transitions with concentration independent of the melting temperature (Tm). In fact, substitution of the 

ribose 2’-H with a methoxy group destabilized the quadruplex structure. 

 LNA are 2’-O-4’-C-methylene-linked ribonucleotide nucleic acids analogues that bind with 

increased affinity to DNA and RNA. The bicyclic structure of DNA forces the sugar to be in the C3’-endo 

conformation, and nucleotides with a C3’-endo conformation prefer the glycosidic bond to be in the anti 

configuration. Three different works were addressed to study the effect of LNA in the TBA quadruplex 

[47-48, 57] . Mayol’s group prepared four different TBA-based oligonucleotides containing LNA 

residues [47, 57]. The first analogue was fully substituted by LNA residues. This oligonucleotide was 

unstructured most probably due to the decreased flexibility of the oligomer. Oligonucleotides containing 
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G-LNA in the eight positions of the tetrads or in the first G1 position (syn configuration) gave mixtures of 

several structures. On the other hand, the oligonucleotide containing G-LNA in the last guanine G15 (anti 

configuration) folded in the same TBA chair-like quadruplex. Bonifacio et al. also studied the effect of 

single LNA substitutions on different positions of the TBA [48]. The LNA substitutions had either a 

moderate stabilizing or destabilizing effect on the folded structure, depending on the position of the LNA 

in the TBA. The thermal stability of the substituted aptamers did not correlate to thrombin inhibition. 

 Damha and co-workers studied the impact of 2’-deoxy-2-fluoroarabinonucleoside residues (2’-F-

araN) on the thrombin binding aptamer [58]. 2’-Deoxy-2’-fluoro-D-arabinonucleic acids (2’F-araN) 

confer DNA-like (South/East) conformation to oligonucleotides while rendering them more nuclease 

resistant. It was found that incorporation of 2’-F-araN G or T residues into the TBA stabilizes the 

complex (∆Tm + 3ºC /2’-F-araN modification). Oligonucleotides with all nucleotides replaced by 2’-F-

araN in the G-syn positions or in the G-tetrads showed a moderated increase of the melting temperature 

compared to the unmodified TBA. The CD spectrum and the hysteresis observed in the heating and 

cooling processes of these analogues supported a parallel structure with all anti-dG and the existence of 

multimeric G-quadruplex structures. On the contrary, when the 2’-F-araN are replaced in the G-anti 

positions, in the loops or in both the resulted quadruplex structures correspond to antiparallel quadruplex 

with alternating syn-anti Gs. The lack of concentration dependence in the Tm data and the lack of 

hysteresis in the heating/cooling processes support a unimolecular G-quadruplex structure. Moreover, 

nuclease resistance of this modified TBA was increased up to 48-fold in 10 % fetal bovine serum (FBS).  

 Carbacyclic bicyclo [3.1.0] hexane locked nucleoside analogues are a different “locked” 

nucleoside from the previously presented LNA [52]. An advantage of this methanocarba nucleoside 

system over LNAs is that both North (N)- and South (S)-locked platforms can be prepared by shifting the 

position of the fused cyclopropane ring. It has been described the effects of replacing a single 2’-

deoxyguanosine residue at the 3’-end of the TBA (positions dG14 and dG15) with methanocarba 

nucleosides locked in either the N- or S-conformation [59]. These positions were selected to explore the 

combined effects of a constrained sugar pucker (N or S) and the corresponding biased glycosyl torsion 

angle (anti or syn) associated with a particular pseudosugar conformation. Experimental and theoretical 

results indicated that a N-pseudosugar conformation favours the anti glycosyl orientation, whereas the S-

pseudosugar conformation favours the syn disposition of the base. The introduction of methanocarba 

nucleosides at positions G14 and G15 with locked-N(anti) and locked-S (syn) conformations fixed the 
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conformational state of these nucleosides and helped to understand the impact of conformational 

restrictions on the antiparallel, G-quartet DNA structure of the TBA. These results indicated that the 

glycosyl conformation is more restrictive for the TBA stability than the sugar puckering. 

 Wengel’s group examined the influence of unlocked nucleic acid (UNA) on the thermodynamic 

stability, binding affinity and biological activity of the quadruplex TBA [49]. UNA is an acyclic RNA 

mimic, which misses the bound between the C2’ and C3’ atoms of the ribose ring. The modified variants 

are aptamers singly substituted with a UNA monomer in every possible position. UNA modified TBAs in 

positions U3, U7 and U12 showed an antiparallel folding topology. In contrast, modifications of any of the 

guanine monomers forming G-tetrads resulted in significant destabilization of the quadruplex structure. 

The modified TBA with UNA in position 7 resulted in the highest thrombin binding affinity. Recently, 

the same authors have also evaluated the effects of the modification of 2’-C-piperazino-UNA monomer 

[60]. This monomer is characterized by more efficient stabilization of quadruplexes structures in 

comparison to regular UNA and increases thermodynamic stability of TBA by 0.28-0.44 kcal/mol in a 

position depending manner with retained quadruplex topology and molecularity. 
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Figure 4: Chemical structure of the modified carbohydrate moiety in the guanine TBA tetrads. LNA: locked nucleic acid, UNA: 

unlocked nucleic acid.  

 

 2.3 Modifications in the internucleotide phosphates of the guanosine tetrad 
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The TBA has been modified with three different phosphate linkers, phosphorothioate, 

methylphosphonate and formacetal. The structures of these linkages are summarized in figure 5. The 

modified TBA oligonucleotides containing thiophosphoryl substitutions at different internucleotide sites 

were studied. It was found that these linkages do not disrupt the antiparallel ntramolecular quadruplex 

[52]. The substitutions placed between planes of G-quartets led to a drop in formation free energy, and the 

stability decreases linearly with the number of these modifications. The TBA containing phosphorothioate 

linkages have more resistance to various nucleases. In this way, the in vivo half-life of the modified TBAs 

are increased.  Mergny’s group also studied the introduction of phosphorothioate bonds in all of G-

forming tetrads [50]. The resulting modified TBA was less stable than the unmodified TBA. It also had an 

intramolecular G-quadruplex structure with concentration independent melting temperatures showing a 

reversible quadruplexes to random coil transitions. The same group studied the modified TBA carrying 

backbone methylphosphonate in the two G- tetrads [50]. The methylphosphonate TBA variant suffered a 

loss of negative charge at the level of the phosphate backbone that led to a strong destabilization. Non 

observable melting transition was detected. The negative charge of the oxygen atoms in the phosphate 

groups was found to be involved in a complex pattern of water bridges with the sugar group and the edges 

of the guanine units. A series of TBA analogues were synthesized containing one or more phosphodiester 

linkages replaced by a natural formacetal group [61]. The formacetal group is achiral and the 

incorporation of these moieties into oligonucleotides decreased the tissue uptake and increased the in vivo 

half-life. Unfortunately, no structural studies were carried out with these TBA analogues. 

In summary, several G-tetrad modifications of the TBA have been studied. Some of them have 

destabilized or disrupted the quadruplex structure because the introduced modification have changed 

directly the H-bonding tetrad arrangement, sugar puckering or glycosidic guanine orientation. In addition, 

some modifications have destabilized the antiparallel quadruplex to form a more undefined multimer 

quadruplex structures.  
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Figure 5: Chemical structure of the modified internucleotide phosphate bonds in the guanine TBA tetrads. 
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 3. Modification of the loops 

The TBA is formed by two guanine tetrads connected by three edge-wise-loops: a central TGT 

loop and two TT loops as it is shown in the Figure 1A. The loops are important in the folding of the 

aptamer and in the interactions with the thrombin. Most of the modifications are based in changes of the 

composition or in the length of the loops. Thymine bases in the loop region exclusively prefer the anti 

orientation. The literature reports that G8 shows base stacking interactions with the first tetrad, but the 

conformation of the nucleoside is not mentioned. 

 

3.1 Modifications of the loop composition by natural nucleosides 

Shafer’s group has undertaken a systematic examination of the thermodynamic stability of 

thrombin aptamer analogues containing sequence modifications in one or more loops [28]. The results 

indicated that changes in loop sequences had a significant impact on the aptamer stability. Most of the 

changes in the central loop led to a decrease in thermodynamic stability, indicating that, at least among 

the sequences explored, the TGT loop sequence is optimal for stability. These effects may involve 

changes in both stacking interactions and cation binding. The impact of replacing single Ts in the external 

loops with Cs provide evidence for hydrogen bond formation between these loops, as observed in the 

NMR structures. The stability of aptamers containing a C in position 3 or 12 was similar or slightly 

higher than the unmodified TBA. A recent paper has examined the stability of the G-quadruplex of TBA 

in which thymine residues were substituted by adenine. The G-quadruplexes formed by T4A and T13A 

were more stable and T3A, T7A, T9A and T12A were more unstable than that of the wild-type [62]. 

 

3.2 Modifications of the loop composition by non-natural nucleosides 

Replacement of anti thymines in the loops with anti conformationally biased 2’-F-araT increased 

the thermal stability to different degrees depending on the number and position of the modification. In 

addition, the modification of G8 with 2’-F-araG resulted in an increase of the stability. Overall, 2’-F-araN 

modifications in the loops stabilizes the formation of a unimolecular G-quadruplex [58]. LNA 

substitutions in the loops demonstrate a position dependent effect on the stability of the TBA. The 

substitution of G8 for G-LNA increased the stability, but the substitution of T7 decreased the stability. 

Nevertheless, substitution of T4 disrupted the aptamer [48]. On the other hand, single UNA modification 
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of the TBA in U3, U7 and U12 positions did not affect the stability of the unimolecular antiparallel 

structure. However, these same modifications in positions U4, G8, U9 and U13 resulted in significant 

destabilization of the quadruplex structure [49]. 

Borbone’s group modified the different positions of the TBA with flexible acyclic thymidines 

[63]. They obtained the same pattern of thermodynamic stabilities than UNA modifications. These 

analogues were able to fold into a bimolecular or monomolecular quadruplex structure depending on the 

nature of the monovalent cations (sodium or potassium) coordinated in the quadruplex core. Thermal 

stability was in agreement with the structural model in which T9, T4 and T13 are stacked on the adjacent 

G-quartet. These interactions were totally or partially disrupted by the introduction of the acyclic 

nucleotide at these positions. The TBA analogues containing an acyclic residue at positions T3, T7 or T12 

resulted in a similar stability than the observed for the unmodified TBA, thus suggesting a marginal role 

of these positions on the structural stability [63].  

Modifications of the TBA loops by thiophosphoryl internucleotide bonds were evaluated [52]. 

No destabilization was observed in each of the loop regions, although the stability against nuclease was 

increased in comparison to that of the native TBA. Finally, a new TBA aptamer modified with 4-thio-2’-

deoxyuridines replacing some Ts in the loops was described [64]. This substitution was based on previous 

experiments showing that oligonucleotides with 4-thio-2’-deoxyuridines showed high-affinity binding to 

HIV-1 reverse transcriptase [65]. No thermodynamic data were performed but TBA modified with 4-thio-

2’-deoxyuridines has an increased anticoagulant and antithrombotic properties [64].  

 

3.3 Modification of the loop length 

Loop length plays an important role in intramolecular quadruplex formation. When the central 

loop was replaced by four nucleotides, the resulting aptamer had a lower stability compared to 

unmodified TBA [28]. The thermodynamic analysis indicated that the central loop sequence in the parent 

aptamer is optimal for stability. Reduction of the two external TT loops to a single T led to a complete 

disruption of the quadruplex structure. This was expected due to the difficulty of forming a single base 

loop. On the contrary, extension to TTT loops had the same stability as the unmodified TBA. Addition of 

a single G at the 5’-end decreased the stability of the aptamer while addition of a G at the 3’-end 

increased the stability [28].  
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4. Synthesis of different constructs based on the TBA 

In an effort to select more potent and selective DNA ligands to thrombin, several authors have 

synthesized different constructs. Most of them have modified the TBA structure itself or others have 

incorporated additional structures or molecules to the TBA. The first approach was comprised of an 

unimolecular quadruplex motif and complementary flanking sequences capable of forming an additional 

Watson-Crick duplex motif [66]. After that, following the same approach, a new 29 nucleotide single 

stranded oligonucleotide based on a quadruplex/duplex structure was described to bind the heparin-

binding exosite of thrombin [67]. Seela’s group proposed a new construct arising by replacement of the 

TGT loop of the TBA by a mini-hairpin 5’-GCGAAGC-3’. This fused oligonucleotide exhibited a two-

phase thermal transition indicating the presence of the two unaltered moieties [68].  

A new interesting architecture demonstrated that the combination of bivalent TBA aptamers, 

which simultaneously targeted and accordingly inhibited the regulatory exosites I and II of thrombin [69]. 

This approach turned out to be a combination of features of the individual aptamers in one molecule: high 

affinity binding and anticoagulant activity. A new quadruplex structure was studied in the 

d(G2T4G2CAG2GT4G2T) sequence, which differs from the TBA in having longer first (T4) and third (GT4) 

loop and a shorter (CA) middle loop. This oligonucleotide has different strand directionalities, loop 

connectivities and syn/anti G-tetrad distribution [70]. Circularization is an attractive alternative to 

chemical modification for improving aptamer stability. This new approach was used in the design and 

construction of a TBA aptamer. The new construct has increased target binding affinity and much 

improved stability in biological fluids [71]. 

Mayol and co-workers described a new topology of the TBA that consists of a series of 

oligonucleotides containing 3’-3’ or 5’-5’ inversion of polarity sites [72]. The oligonucleotide d(3’-GGT-

5’-5’-TGGTGTGGTTGG-3’) was characterized by an unusual folding, three strands parallel to each other 

and only one strand oriented in an opposite manner. This led to an anti-anti-anti-syn and syn-syn-syn-anti 

arrangement of the Gs in the two tetrads. The thermal stability of the modified oligonucleotide was higher 

than the corresponding for the unmodified TBA. 

Several intercalating agents have been conjugated to the 3’-end of the TBA and they have been 

found to stabilize the aptamer. Moreover, the hydrophobicity and fluorescent properties may be used to 

enhance the bioavailability of these conjugates [73]. Finally, the capping of the 3’-end of the TBA with 

bridged nucleosides was described. The bridged nucleosides increased the nuclease resistance 36-27 fold 
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and the stability in serum 1.5-4 fold without affecting the binding affinities of the aptamers to thrombin 

[74]. 

 

5. Binding activity of modified thrombin binding aptamers 

The reported bibliography concerning the modified TBAs might give an insight into the 

variables involved in the mode of action of the TBA. Nevertheless, the mode of action of the TBAs 

actually requires a more wide recognition process that involves even locally a single residue. Several 

assays are described to study the binding or interaction of the modified TBAs to thrombin such as 

nitrocellulose filter binding assay [58], isothermal tritation calorimetry [53, 56, 62, 75], surface plasmon 

resonance [49] or by non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) [74]. 

Recently, the interaction of the TBA with thrombin was evaluated by differential pulse voltammetry at a 

glassy carbon electrode and atomic force microscopy at a highly oriented pyrolytic graphite electrode 

[76]. 

Thrombin binding affinity of the modified TBAs in the tetrads was studied by different 

researchers. The thrombin binding of a TBA containing 2’-deoxyinosine or 7-deaza-2’-deoxyguanosine 

was significantly decreased as the residues were unable to form the hydrogen bonds required for the 

formation of the G-tetrad [77]. On the contrary, the TBA containing isoguanine showed an enhanced 

binding activity to human α-thrombin compared to the unmodified TBA determined by isothermal 

titration calorimetry [56]. The effect of 2’-F-araN modifications was conducted using nitrocellulose filter 

binding assay. The binding of 2’-F-araN aptamers to thrombin was always adversely affected when the 

modification was on G tetrads themselves. Some loop modifications with 2’-F-araN also reduced 

thrombin binding. However, the two loop modified aptamers in positions 7, 9, 12, 13 or 3, 4 , 7, 9 showed 

a 4-5 fold enhancement in thrombin binding affinity [58].  

On the other hand, real-time measurements of the interaction between thrombin and the TBA 

containing UNA modifications were performed by surface plasmon resonance. The modification of the 

G1 position showed similar affinities to the unmodified TBA. The rest of the Gs involved in the tetrads 

showed a higher dissociation constant or were not measurable, presumably due to a lack of significant 

affinity towards thrombin after the incorporation of UNA in these positions. The U7 UNA modification 

located in the central loop was the only UNA modified aptamer that showed small but significant 
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improvement in affinity [49]. Similar results were obtained with 2’-C-piperazino-UNA-U monomer, but 

in this case the presence of a positively charge decreased the thrombin affinity [60]. 

Another interesting work has focused on the replacement of thymine loop residues by adenine. 

Isothermal titration calorimetry (ITC) measurements indicated that the binding constant of the 

interactions between T13A, T7A, T9A and T12A aptamers and thrombin was close to that of the unmodified 

TBA, whereas T13A was significantly lower and T4A did not appear to bind thrombin [62]. The binding 

energy of the modified TBA containing a 5’-5’-site of polarity inversion to thrombin was characterized by 

means of ITC. The equilibrium constant for the interaction of the modified TBA was about one order of 

magnitude higher than that for the TBA. The binding process was enthalpically driven with a larger 

favorable enthalpy for the modified aptamer [75]. The construct formed by a quadruplex core of the TBA 

and a duplex interacted with a 20 to 50 –fold higher affinity to the heparin-binding exosite than the 

unmodified TBA by nitrocellulose filter [67]. Finally, thrombin binding affinities of capped TBAs with 

2’,4’-bridged nucleotides were measured using non-equilibrium capillary electrophoresis of equilibrium 

mixtures (NECEEM) [74]. The binding abilities were almost the same level than the native TBA.  

According to the different strategies used to measure the thrombin binding, we can conclude that 

no important binding changes are observed when the modification does not disrupt the quadruplex 

structure. In addition, some modifications in the loops or in the overall construct structure do not affect or 

increase the binding affinity. 

 

6. Thrombin inhibition by modified thrombin binding  aptamers 

Prothrombin Time (PT) is the more used assay to study the inhibition of thrombin. PT assay is a 

routine diagnostic assay that evaluates in vitro the activation of extrinsic pathway of the coagulation 

cascade. This ultimately measures the conversion of fibrinogen in fibrin by thrombin, with the consequent 

formation of a solid gel clot. When this assay is performed in presence of the aptamer TBA, the binding 

of fibrinogen to the thrombin is inhibited and a longer time is required to form a clot.  Moreover, other 

important assays are fibrinopeptide A release assay, platelet aggregation and thrombus growth. 

The effects of the substitutions at N2 and C8 of the G residues which form the G-tetrad on the 

thrombin inhibitory activity measured by PT were relatively small. The introduction of a benzyl group 

into N2 of G6 and G11 and naphthylmethyl groups into N2 of G6 increased the thrombin inhibitory activity, 

whereas other substituents in these positions had almost no effect or decreased the activity. Particularly, 
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the oligonucleotides carrying a 1–naphthylmethyl group in the N2 position of G6 showed an increase in 

activity by about 60% in vitro and in vivo. The introduction of a relatively small group such as methyl and 

propynyl, into the C8 positions of G1, G5, G10 and G14 increased the activity, presumably due to the 

stabilization of the quadruplex, whereas the introduction of a large substituent group, decreased the 

activity, probably due to steric hindrance [53]. The 2’-C-piperazino-UNA-U monomer modification 

showed an unfavorable impact of the piperazino moiety on the inhibition with thrombin [60]. The 

biological effect of the UNA-modified TBAs was tested in a prothrombin time assay. The TBA modified 

with UNA-U7 showed an increased inhibitory effect relative to the unmodified TBA, while inhibition of 

coagulation by G1, U3, G8, U9 and U12 was near two fold decreased, and U4, U13 and G15 showed no 

influence on fibrin-clot formation [49]. 

The TBA modified with LNA showed a different thrombin inhibition according the position of 

the modification. Stable aptamers with LNA in positions G5, T7 or G8 showed a decreased thrombin 

inhibition measured by fibrin clotting assay. Nevertheless, a less stable aptamer with LNA at G2 was as 

active as the unmodified aptamer [48]. In addition, Mayol’s group described that the TBA modified by 

LNA in the G15 position displayed a prolonged PT [47]. The modification of the phosphate linkages by 

formacetal [61] or thiophosphoryl [52] groups exhibited a similar prothrombin time to the one found for 

the unmodified TBA. The effect of the modified loops on the thrombin inhibitory activity was also 

studied using acyclic nucleosides. In this case, the analysis of PT assays confirmed that the highest PT 

value was obtained for a modified TBA containing an acyclic thymidine in position 7 [63]. On the other 

hand, the TBA modified with four 4-thiodeoxyuridine showed a 2-fold increased inhibition of thrombin 

catalyzed fibrin clot formation, fibrinopeptide A release and thrombus formation [46]. 

The structural changes in the overall structure that have been described do not seem to affect too 

much the thrombin inhibition [75]. The TBA containing a 5’-5’ inversion of polarity site affected sensibly 

the biological inhibition. Cook and co-workers presented a series of constrained unimolecular 

quadruplex/duplex molecules with increased thrombin inhibition using clot formation assay and release of 

fibrinopeptide A [66]. Moreover, Steiner also described a quadruplex/duplex molecule construct that 

binds the heparin-binding exosite with 20-50 fold higher affinity measured by clotting time [67].  

Finally, the new construct assembled by two distinct aptamers that targets thrombin combines 

features of the individual aptamer subdomains with enhanced activities regarding both functionalities; 

these are probably due to an enhanced affinity of the bivalent fusion aptamer. This structure displayed 
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enhanced anticoagulant activity when compared to the TBA, however, affinities were improved only two 

to three fold compared to those of the individual precursors [69].  

Similar conclusions could be obtained for the thrombin inhibition of the modified TBA. It is 

important to mention that T7 position seems very sensitive to different modifications in terms of 

increasing the thrombin inhibition. Moreover, the addition of different constructs with improved 

pharmacokinetic properties to the TBA could be a reasonable idea that probably would not compromise 

the inhibitory activity. 

 

7. Novel applications using thrombin binding aptamer. 

In addition to the anticoagulant properties, a large number of analytical tools based on the 

folding and refolding of the TBA have been developed. In the following section some of these new 

developments are reviewed. 

 

7.1. The TBA as model for the analysis of binding mode of drugs with affinity to G-

quadruplex.  

G-quadruplexes have become structures of special interest for drug development due to their 

possible implications in anticancer research. The potential role of G-quadruplexes has been highlighted 

with the development of strategies designed to stabilize telomere ends as G-quadruplex structures using 

specific small molecules, which can destabilize telomere maintenance in tumour cells [78]. G-

quadruplexes are also found in transcriptional regulatory sequences of critical oncogenes such as c-myc 

and c-kit [79, 80]. Ligands that selectively bind and stabilize these structures were studied as potential 

anticancer drugs of interest [81]. The TBA was used as a model for the analysis of the interaction of 

several drugs with G-quadruplex structures. In one of the first studies, Joachimi et al. described the 

potential role of porphyrins in the modulation of the anticoagulant properties of the TBA [82]. Later, Del 

Toro et al. confirmed the formation of an interaction complex with a stoichiometry 1:1 between the 

porphyrin (TmPyP4) and the TBA [83]. Ultraviolet melting and circular dichroism data reflected that the 

initial G-quadruplex structure of the TBA was stabilized in the interaction complex: being slightly 

disordered by the presence of the ligand. The interaction between the porphyrin (TmPyP4) and the TBA 

was also studied by time-resolved fluorescence anisotropy. Based on the anisotropic decay curves, a 

sandwich-type binding mode was proposed in which both terminal G-quartet and T-T base pairs stack on 
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the porphyrin ring [84]. The interaction between the TBA and the bipyridinium salts was studied by 

cyclic voltammetry. A strong interaction between G-quadruplex forming DNA sequences and viologens 

was observed [85]. 

 

7.2. TBA as sensing element for thrombin and metal ions 

The conformational change of the TBA during the folding /unfolding process was exploited for 

building sensors for metal ions and for detection of thrombin. This work together with the use of other 

aptamers as sensors has been summarized in several recent reviews [86-90]. One of the most relevant 

studies is the development of probes for the detection of intracellular potassium concentration [91-92]. 

Oligonucleotides containing the TBA sequence functionalized with a fluoresceine derivative as 

fluorophore and a rhodamine dye as quencher at the 3’ and 5’-ends were prepared. Upon binding of 

potassium, the TBA probes folded in the intramolecular quadruplex. The quadruplex folding induced by 

potassium was observed by a decrease of fluorescence due to fluorophore-quencher interaction [91-92].  

The development of quadruplex DNA-based FRET probes with special emphasis on the TBA 

quadruplexes were reviewed [93].  

A similar FRET experiment was adapted recently for the detection of the activity of human O6-

alkylguanine-DNA alkyltransferase (hAGT) [94]. The modified TBA probe contained one O6-

methylguanine residue that prevented quadruplex formation. Upon removal of the O6-methyl group in the 

guanine by hAGT, the natural TBA sequence is formed and it folds into the quadruplex, inducing a 

decrease of fluorescence due to fluorophore-quencher interaction [94]. A colorimetric assay for the 

determination of mercury (II) using the TBA was also reported [95]. The binding of mercury to the TBA 

induced the folding of the molecule that triggered salt-induced gold nanoparticle aggregation [95].  

The folding/unfolding of the TBA can also be regulated by light. The incorporation of o-

nitrobenzyl thymidine derivatives (caged nucleosides) in the TBA sequence did not allow the folding of 

the TBA, preventing thrombin binding. Photoremoval of the nitrobenzyl groups on thymidines generated 

the native aptamer which now is capable of binding thrombin, which prevented blood clotting [96]. Also, 

the effect of a photoactive nitrobenzyl group on a guanine residue of TBA has been studied using 

classical molecular simulations [97].  Theoretical calculations are able to describe the change in the 

structure when the modified residue is incorporated in the TBA as well as the formation of the quadruplex 

after photolysis [97]. The photodeprotection of the nitrobenzyl groups is irreversible and for this reason, 
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Ogazawara et al. [98] developed a guanine derivative carrying a fluorenylvinyl group at position 8. The 

fluorenylvinyl guanine derivative may undergo to cis-trans photoisomerization that is reversible. The cis-

trans isomerization affected the formation of the quadruplex structure and subsequently the binding of 

thrombin. In this way, the binding of thrombin to the TBA derivatives carrying guanines with the 

fluorenylvinyl group can be reversibly modulated by light [97].  

The conjugation of several derivatives of the TBA to gold nanoparticles was studied [99]. Some 

of the TBA-gold nanoparticles are highly efficient as anticoagulants [99]. Moreover, the functionalization 

of iron oxide nanoparticles with TBA has described [100]. The TBA magnetic nanoparticles conjugates 

showed a clear magnetic resonance imaging (MRI) signal when binding to thrombin [100]. 

Several electrochemical sensing platforms based on the TBA quadruplex were developed for the 

detection of thrombin. A label-free electronic detection system for the direct detection of thrombin based 

on electrochemical impedance spectroscopy was developed [101].  The TBA carrying an amino group 

was covalently linked to multi walled carbon nanotube disposable screen-printed carbon electrodes by 

amide formation and the resulting electrodes were able to sense thrombin at a detection limit of 105 pM 

[101]. The incorporation of ferrocene to the TBA increased the sensitivity of the detection reaching a 

detection limit for thrombin to 0.5 pM [102]. Conjugation of the TBA to silver nanoparticles and to gold 

nanoshells allowed the detection of thrombin by surface-enhanced Raman spectroscopy [103-106]. The 

interaction of thrombin with the TBA was also studied on quantum dots and in surface plasmon resonance 

[107].  

The absorption and redox behavior of the TBA and the complex thrombin-TBA was evaluated 

by differential pulse voltammetry at a glassy carbon electrodes [76, 108]. The TBA guanine oxidation 

peak was found to be sensitive to G-quadruplex formation and to thrombin binding, showing a higher 

oxidation potential [76, 108]. Recently, the excellent binding properties of a 29-base-long thrombin-

binding aptamer linked to gold nanoparticles were used for the development of a sensitive detection of 

DNA that relied on the modulation of the thrombin activity on the surface of the nanoparticles [109].   

 

7.3. Single-molecule experiments on the TBA  

One of the first single-molecule experiments using the TBA-thrombin interaction was performed 

by atomic force microscopy (AFM) [110]. An AFM gold-coated tip was functionalized with the thiolated 

TBA. The thrombin was linked covalently to a gold-coated glass slide. The rupture force for a single 



 23 

aptamer/thrombin complex was determined as 4.45 pN. The analysis of the system revealed that the 

rupture forces corresponded to the melting of the G-quadruplex of the aptamer bound to the thrombin and 

subsequent dissociation of the complex [110]. 

Recently, the TBA folding and unfolding induced by ions was studied using nanopores 

encapsulated with single molecules. The TBA quadruplex was formed rapidly in the presence of 

potassium ions and had a slow unfolding reaction. The sodium and lithium complex of the TBA were 

similar but the folding and unfolding of the sodium complex was faster than the folding and unfolding of 

the lithium complex [111]. 

The excellent molecular recognition properties of DNA were exploited to incorporate 

functionalities in molecular constructs and for the design of 2-dimensional arrays with well defined 

structures [112-113]. A remarkable development in this field was the use of stable DNA Holliday 

junctions with addressable sticky ends to form two-dimensional DNA crystals [113]. The so-called DNA 

tile system was used for the assembly of bidimensional DNA arrays, containing thrombin binding 

aptamer sequences [114-115]. The DNA arrays templated the formation of ordered thrombin arrays that 

were visualized by AFM [114-117]. Origami DNA is a new method for the rational organisation of 

structures that uses a circular viral single stranded DNA (M13 DNA) and about two hundred 

oligonucleotides (staple strands) that are designed to fold the viral DNA into a rationally designed shape 

[118]. The TBA sequences were also introduced in DNA origamis, showing a nanometric control of the 

deposition of thrombin molecules on the origami [119-120]. 

 

Conclusions  

 Aptamers are a novel class of nucleic acids with affinity to proteins that may be used for 

therapeutic or diagnostic purposes. The thrombin-binding aptamer was one of the first aptamers 

developed by SELEX and probably one of the most studied aptamer. The TBA is a relatively short 

sequence, easy to synthesize with a well-defined structure and has a good affinity for thrombin. For all 

these reasons, it can be considered a paradigm of the potential applications of the aptamers. During the 

last 20 years, several authors have defined the structural facets of the TBA molecule exploring several 

potential variables such as sugar puckering, glycosidic bond conformation, H-bonding groups, backbone 

modifications, etc… Some of the modified TBA derivatives have a good affinity for thrombin, as well as 

a large stability in physiological conditions, which has led to the setting of some clinical assays. The 
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lessons learned in this process are important not only for the anticoagulant properties of the TBA but also 

to improve the understanding of G-quadruplex structures present in telomeres and some promoter regions 

of oncogenes.   

An important development in the last years has been the conjugation of the TBA to 

nanomaterials such as gold and iron oxide nanoparticles, which may increase the stability in plasma as 

well as it may open the opportunity of adding receptor-mediated systems for efficient in vivo targeting. 

Moreover, the TBA-thrombin recognition system is already being used for the development of sensors 

based on both electrical and optical methods, and more recently for the DNA-templated directed assembly 

of nanomaterials.  As the time goes on, the potential applications of this relatively simple DNA molecule 

are increasing exponentially. This intense activity will help to further develop the aptamer field and it 

may also span the knowledge about other useful nucleic acids for therapeutic or diagnostic purposes. 

 

 
Acknowledgement. This study was supported by the European Communities (FUNMOL, FP7-NMP-

213382-2),  Spanish Ministry of Education (MOL2MED, CTQ2010-20541), the Generalitat de Catalunya 

(2009/SGR/208), IRB Barcelona, COST (G4net, MP0802) and CIBER-BBN (VI National R&D&i Plan 

2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, Instituto de Salud Carlos III 

with assistance from the European Regional Development Fund. 

 



 25 

LEGENDS 

 

Figure 1: A) Folding topology of the intramolecular quadruplex adopted by the 

d(G1G2T3T4G5G6T7G8T9G10G11T12T13G14G15) thrombin-binding DNA aptamer containing three edge-wise 

loops. B) Structure of the G-quartet with cyclic array of four guanines formed by Hoogsteen-type H-

bonds, M indicates a metal ion.   

 

Figure 2. Structure of the complex formed by thrombin and the thrombin binding aptamer (TBA). 

Thrombin is coloured in green with the amino acid residues that contact the TBA in red (cartoon 

representation). The TBA is coloured in blue except the residues involved in the TT and TGT loops that 

are highlighted in yellow (stick representation).   

 

Figure 3: Chemical structure of the modified guanines in the TBA tetrads.  

 

Figure 4: Chemical structure of the modified carbohydrate moiety in the guanine TBA tetrads. LNA: 

locked nucleic acid, UNA: unlocked nucleic acid.  

 

Figure 5: Chemical structure of the modified internucleotide phosphate bonds in the guanine TBA tetrads. 
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