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Abstract 

Background: There is emerging evidence for enhanced blood coagulation in coronavirus 2019 (COVID-19) patients, 

with thromboembolic complications contributing to morbidity and mortality. The mechanisms underlying this pro-

thrombotic state remain enigmatic. Further data to guide anticoagulation strategies are urgently required.

Methods: We used viscoelastic rotational thromboelastometry (ROTEM) in a single-center cohort of 40 critically ill 

COVID-19 patients.

Results: Clear signs of a hypercoagulable state due to severe hypofibrinolysis were found. Maximum lysis, especially 

following stimulation of the extrinsic coagulation system, was inversely associated with an enhanced risk of thrombo-

embolic complications. Combining values for maximum lysis with D-dimer concentrations revealed high sensitivity 

and specificity of thromboembolic risk prediction.

Conclusions: The study identifies a reduction in fibrinolysis as an important mechanism in COVID-19-associated 

coagulopathy. The combination of ROTEM and D-dimer concentrations may prove valuable in identifying patients 

requiring higher intensity anticoagulation.
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Background
�e novel severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) causing coronavirus disease 2019 

(COVID-19) has led to a global pandemic posing a major 

threat to humans [1]. More than 500 000 deaths related 

to COVID-19 have been so far reported [2].

SARS-CoV-2 primarily affects the respiratory sys-

tem with a widely heterogeneous clinical presentation, 

ranging from none or minimal symptoms to significant 

hypoxia with viral pneumonia, potentially leading to 

severe acute respiratory distress syndrome (ARDS) and 

cytokine storm [3]. ARDS with related lung injury is con-

sidered one of the main causes of death in COVID-19 

patients [4].

However, there is emerging evidence that involvement 

of other pathomechanisms contributes to morbidity and 

mortality. Both clinical and autopsy studies have revealed 

a high incidence of venous and arterial thromboembolic 

events, including pulmonary embolism, even in patients 

receiving therapeutic anticoagulation [5–7]. �ese 
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findings have led to recommendations for higher anti-

coagulation targets; however, it remains unclear which 

patients are at increased risk and require anticoagulation 

[8]. While fibrinogen and D-dimer levels are frequently 

elevated, neither parameter reliably identifies patients at 

an increased risk of thromboembolic complications [8]. 

Although different markers of hypercoagulation have 

been reported among COVID-19 patients [6, 9], the 

exact mechanisms underlying the prothrombotic state 

in these patients remain unclear so far [10, 11]. In par-

ticular, it has not been clarified to which extent increased 

procoagulation and/or impaired fibrinolysis is involved.

In addition to conventional laboratory parameters, 

rotational thromboelastometry (ROTEM) provides evi-

dence for net coagulation capacity and insight into clot 

formation time, clot firmness and fibrinolysis in the criti-

cally ill patients [12]. Here we report ROTEM data in 40 

consecutive, severely ill COVID-19 patients treated in 

two tertiary intensive care units (ICUs) and assessed the 

association with thromboembolic complications.

Methods
Coagulation tests

After admission to our ICUs, blood samples were drawn 

and viscoelastic tests were performed once with citrated 

blood using a ROTEM sigma point-of-care device (Tem 

International, Munich, Germany) [13]. In each patient, 

intrinsically (contact activation, INTEM) and extrinsi-

cally (tissue factor activation, EXTEM) activated test 

assays were performed to analyze the clot dynamics in 

both coagulation pathways. Furthermore, FIBTEM and 

HEPTEM were performed. In the FIBTEM, platelets are 

inactivated with cytochalasin D to enable isolated evalu-

ation of fibrinogen in clot firmness. �e heparin effect 

was determined by comparing the clotting time of the 

INTEM with the clotting time of the HEPTEM, where 

heparinase is added.

�e following ROTEM variables were analyzed: clotting 

time defined as the time until initiation of clotting; clot for-

mation time (seconds until a clot strength reaches 20 mm), 

reflecting the kinetics of clot formation; maximum clot 

firmness (MCF) defined as the maximum amplitude of 

clot firmness; maximum lysis (ML; %) defined as the dif-

ference between MCF and the lowest clot amplitude after 

MCF, reflecting fibrinolytic activity (Fig. 1).

Additional routine laboratory tests performed accord-

ing to standardized protocols comprised hemoglobin 

concentration, white blood cell count, platelet count, 

prothrombin time (PT), international normalized ratio 

(INR), activated partial thromboplastin time (aPTT) 

and inflammatory parameters (see Table  2). �e levels 

of tissue-type plasminogen activator (t-PA), plasmino-

gen activator inhibitor-1 (PAI-1) and plasminogen were 

determined using commercial ELISA Kits (t-PA Antigen 

ELISA Kit, PAI-1 Antigen ELISA Kit, Glu-Plasminogen, 

TECHNOZYM®/Technoclone).

To combine the parameters maximum D-dimers (mg/l) 

and ML (%), the difference (maximum D-dimers—ML 

EXTEM) was calculated and analyzed.

Anticoagulation therapy

In our Intensive care units, all patients included in this 

trial were treated with either low molecular weight hep-

arin or in the case of ECMO therapy with argatroban. 

We aimed for a PTT of 50–55  s (normal 26–40  s), and 

in patients with thromboembolic events we aimed for a 

PTT of 60–80 s.

Ultrasound

We performed ultrasound examinations in all patients 

(GE Vivid S70 ultrasound machine with a 9L-D probe) 

to screen for venous thrombosis, focusing on the jugu-

lar, subclavian, brachial, femoral and popliteal veins upon 

admission to our ICU and subsequently at least once 

weekly.

Ethics

�e study was approved by the ethics committees of 

Charité – Universitätsmedizin Berlin (EA4/115/20).

Statistics

Statistical analyses were performed using  IBM®  SPSS® 

Statistics version 26 (New York, USA). �e descriptives 

are provided as median with limits of the interquartile 

range (IQR) for continuous variables or as absolute and 

relative frequencies for categorical variables.

Continuous data were primarily right skewed. �ere-

fore, the Mann–Whitney U test was used to compare 

differences between patient groups in continuous vari-

ables, while Chi-square test was used for categorical 

data. A two-sided significance level of 0.05 was applied 

without adjustment for multiple comparison. All p val-

ues constitute exploratory data analyses and do not allow 

for confirmatory generalization of results. To evaluate 

the strength of different ROTEM variables to distinguish 

between patients with and without thromboembolic 

events, receiver operating characteristic (ROC) analysis 

was carried out including area under the curve measures 

(AUC) with 95% confidence intervals (CI). Sensitivity, 

specificity and accuracy (percentage of correctly classi-

fied patients) are reported.

Results
Characteristics of the cohort

Forty consecutive patients with COVID-19 confirmed by 

polymerase chain reaction in throat swabs were admitted 
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to two ICUs within our department between March 25th 

and May 11th. All patients received viscoelastic testing 

using the ROTEM system and were included in the anal-

ysis, which was censored on May 11th.

Table  1 shows baseline characteristics of the study 

cohort. As most patients were referred from community 

hospitals within a regional network, patients were mostly 

severely ill with a median sequential organ failure assess-

ment (SOFA) score of 9 and a mean acute physiology 

and chronic health evaluation (APACHE) II of 28 points. 

Mechanical ventilation via either endotracheal tube 

or tracheostomy was administered to 78% of patients, 

whereas extracorporeal membrane oxygenation was 

required for 25% and kidney replacement therapy for 53% 

of patients. Evidence for macrothromboembolic events 

was found in 23 of 40 patients (58%). In five patients, we 

identified thromboembolic events upon admission to our 

ICUs (N = 3 prediagnosed pulmonary emboli, N = 2 deep 

venous thrombosis). Nineteen patients developed throm-

boembolic complications during the ICU stay, compris-

ing deep vein thrombosis (N = 14), pulmonary embolism 

(N = 4), ischemic stroke (N = 3), complete thrombosis of 

the ECMO-circuit requiring emergency circuit-change 

(N = 1) and a clotted ECMO cannula (N = 1).

Laboratory parameters

Table  2 shows laboratory parameters for the study 

cohort and in patients with and without thromboem-

bolic events. Hematological parameters were similar 

in both patient groups. Patients with thromboembolic 

events had a significantly higher maximum C-reactive 

protein (CRP) value, with a median value of 341  mg/l 

[IQR 261.1–370.7] versus 261.1 mg/l [IQR 175.3–312.9], 

respectively (p = 0.002). Other markers of inflammation 

Fig. 1 a All measured values in ROTEM analysis, including clotting time (CT [s]), clot formation time (CFT [s]), maximum clot firmness (MCF 

[mm]) and maximum lysis (ML [%(range)]). b A reduction of fibrinolysis in a COVID-19 patient with a thromboembolic event; the clot amplitude 

remains unchanged until the end. c A physiological fibrinolysis pattern in a healthy person, reflected by the subtle decrease of the MCF during the 

measurement
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such as procalcitonin (PCT), ferritin and interleukin-6 

did not differ significantly between groups.

Analyses of the coagulation parameters revealed no 

significant differences between the groups with the 

exception of a prolonged PTT in the group with throm-

boembolic events. Patients had significantly elevated lev-

els of fibrinogen without significant differences between 

groups.

Moreover, the median initial D-dimer levels were 

4.84  mg/l [IQR 3.5–7.2] in the group with thromboem-

bolic complications in comparison with 3.06  mg/l [IQR 

2.3–3.9] in the group without thromboembolic complica-

tions (p = 0.003).

ROTEM parameters

Substantial abnormalities in the ROTEM analysis were 

found in the overall cohort. Maximum clot firmness in 

INTEM, EXTEM, FIBTEM and HEPTEM was markedly 

elevated in the entire cohort compared to reference val-

ues with median values of 74 mm [IQR 69–77], 75 mm 

[IQR 70.3–78], 34.5  mm [IQR 27.3–39.5] and 73  mm 

[IQR 67.5–75.3], respectively. Of note, there was no sig-

nificant difference in these parameters between the sub-

groups with and without thromboembolic complications. 

However, the median clotting time detected in INTEM 

was significantly longer in the group of patients with 

thromboembolic complications: 215  s [IQR 197–251] 

versus 189 s [IQR 171.5–212]; p = 0.005. Clotting times in 

FIBTEM, EXTEM and HEPTEM showed no significant 

differences between groups.

Figure  2 depicts ML in INTEM and EXTEM. Under 

both conditions, ML was reduced and significantly lower 

in the group with thromboembolic complications (INTEM 

median 2% [IQR 0–3.0] versus 6% [IQR 2.5–6]; p = 0.001; 

EXTEM median 3% [IQR 0–5] versus 5% [IQR 3.5–8], 

p = 0.001), indicating substantially impaired fibrinolysis in 

both groups. �is was observed to be more pronounced in 

patients with thromboembolic complications.

ROC analysis to distinguish patients with and without 

thromboembolic complications

Based on the above findings, we evaluated the potential 

of different ROTEM variables to distinguish between 

patients with and without thromboembolic events using 

ROC analysis (Fig. 3). Maximum lysis in EXTEM resulted 

in an area under the curve (AUC) of 0.8 [95% CI 0.7–0.9] 

for thromboembolic events (p = 0.001), while the ML 

in INTEM resulted in an AUC of 0.79 [95% CI 0.6–0.9] 

(p = 0.002). D-dimers showed an AUC of 0.78 [95% CI 

0.6–0.9], and maximum D-dimers had an AUC of 0.82 

[95% CI 0.7–1.0]. Combined analysis showed that the dif-

ference in D-dimers and ML EXTEM resulted in an AUC 

of 0.92 [95% CI 0.8–1].

Discussion
�is study provides evidence that hypofibrinolysis is 

an important contributor to the hypercoagulable state 

in COVID-19 patients. Maximum lysis assessed in 

ROTEM analysis, especially in the EXTEM analysis, was 

reduced more profoundly in patients with thromboem-

bolic events. Based on these observations, we propose 

that ROTEM analysis is useful for patient stratification 

according to their prothrombotic risk. In particular, 

combined consideration of ROTEM maximum lysis and 

D-dimers may identify patients that benefit from thera-

peutic anticoagulation.

In this small cohort of severely ill COVID-19 patients, 

we observed thromboembolic complications in more 

than 50% of patients. Analysis of routine coagulation 

parameters should be interpreted with caution, as many 

of the patients were treated with therapeutic anticoagu-

lation. However, in accordance with previous studies, 

fibrinogen and factor VIII were elevated in our cohort 

and D-dimers were significantly elevated in the subgroup 

with thromboembolic complications [14]. Other conven-

tional markers of the coagulation system showed no sig-

nificant differences between the two groups.

In contrast to individual parameters, viscoelastic meth-

ods, such as thromboelastography and ROTEM, permit 

functional evaluations by recording most components 

of the coagulation process in vitro in the presence of cel-

lular blood components. �is provides insight into the 

different coagulation phases, including the initiation, for-

mation and stabilization of a clot, and finally, clot lysis. 

�e influence of the endothelium as an important co-

factor of coagulation, however, is not directly reflected 

in ROTEM assessment. In several studies, hypercoagula-

ble conditions were identified using ROTEM in disease 

states with an increased risk of thromboembolic events 

[15, 16]. Moreover, viscoelastic systems, such as ROTEM 

and thromboelastography, were successfully established 

to detect hypo- or hyperfibrinolysis in patients with trau-

matic injury or severe septic shock [17, 18].

Panigada et al. used thromboelastography in 20 patients 

with COVID-19 in addition to plasmatic tests of coagula-

tion [19]. Similar to our study, they also found increased 

levels of fibrinogen and factor VIII, and almost normal 

routine coagulation tests. �romboelastography data 

showed elevated clot firmness as reflected by maximal 

amplitude and reduced fibrinolysis measured as reduced 

clot lysis at 30  min (Lys 30), consistent with our obser-

vations. Spiezia and colleagues and Pavoni and co-work-

ers also recently showed severe hypercoagulopathy in 

critically-ill COVID-19 patients using ROTEM [20, 21]. 

�ey found a significantly higher maximal clot firmness 

in INTEM, EXTEM and FIBTEM, and shorter INTEM 

clot formation time in comparison with a healthy control 
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group. However, they observed no differences between 

COVID-19 patients with and without thrombosis [20]. 

In a cohort of 19 patients, Ibañez et  al. noted markedly 

reduced fibrinolysis in COVID-19 patients; however, no 

distinction with respect to the presence of thromboem-

bolic events was made [23].

While our findings confirm these results, we noted not 

only a markedly reduced fibrinolysis in the whole cohort 

but a significantly reduced ML in the group with throm-

boembolic complications. �e clot lysis parameter ML 

provides information on the fibrinolytic activity, with 

low values providing evidence for hypofibrinolysis. In 

the current study, we found the ML in both EXTEM and 

INTEM to be markedly below normal values. Further-

more, the ML under both conditions was even lower in 

the group with thromboembolic complications. �ere-

fore, we conclude that a severely impaired fibrinolysis 

plays an important role in the hypercoagulable state and 

thromboembolic risk in COVID-19 patients [23].

It is, however, somewhat surprising that highly elevated 

levels of D-dimers were found in a state of hypofibrinol-

ysis. As a hypothesis, it has been suggested that intra-

alveolar fibrin deposition accounts for local activation of 

fibrinolysis in ARDS.

�e mechanisms leading to hypofibrinolysis in COVID-

19 remain to be defined. Complex interactions between 

inflammation and the coagulation and fibrinolytic system 

have been examined and controversially discussed for 

decades [24–26]. One potential mechanism may be 

the production of alpha defense in neutrophils, which 

are known to promote fibrin polymerization and block 

fibrinolysis in vitro [27].

In our cohort, we found markedly elevated markers 

of inflammation, including interleukin-6, CRP and fer-

ritin; however, only the maximum CRP level differed 

significantly between patients with and without throm-

boembolic complications. We could not detect significant 

differences among additional individual analytes (i.e., tPA 

or PAI concentrations) between both groups; however, 

we did not evaluate the effect of the complement or brad-

ykinin system, which are both known to play crucial roles 

in connecting the inflammatory response and fibrino-

lytic activity. Future clinical trials should also focus on 

the role of thrombin-activatable fibrinolysis inhibitor 

(TAFI), plasmin-alpha-2-antiplasmin (PAP) complexes 

and antiplasmin, which would give valuable insights into 

the mechanisms of COVID-19-induced hypofibrinolysis. 

Furthermore, endothelial dysfunction is likely involved 

but was not assessed.

ROC analyses provided an AUC for ML in EXTEM 

of 0.8. As such, it might be a candidate as prediction 

marker of future thromboembolic complications. Zhou 

et al. reported D-dimers to be one of the most sensitive 

and specific factors predicting mortality in a large cohort 

Table 1 Patient characteristics of total cohort and subcohorts with and without thromboembolic events

ECMO Extracorporeal membrane oxygenation, SOFA sequential organ failure assessment, CRRT  continuous renal replacement therapy, SIC sepsis-induced 

coagulopathy, APACHE acute physiology and chronic health evaluation

Cohort (n = 40) Thromboembolic events 
(N = 23)

No thromboembolic 
events (N = 17)

p value

Age (years, (median, [IQR])) 67 [57.3–76.6] 66 [56–76] 68 [62–77.5] ns

Gender, male (n, %) 35 87.5% 20 87% 15 88% ns

BMI, kg/m2 (median, [IQR]) 28.1 [24.8–32.8] 27.8 [24.2–33] 28.7 [25.7–32.3] ns

Duration of ICU stay, days (median, [IQR]) 39.5 [24–54.25] 42 [28–58] 25 [8.5–47.5] 0.05

Death during ICU stay (n, %) 11 27.5% 9 39.1% 2 11.8% 0.58

Intubation (n, %) 31 77.5% 20 87% 11 65% ns

ECMO (n, %) 10 25% 9 39.1% 1 6% ns

CRRT (n, %) 21 52.5% 16 69.6% 5 29.4% 0.013

SOFA score (median, [IQR]) 9 [6.3–11.8] 10 [6–11] 8 [4.5–11] ns

SIC score (median, [IQR]) 3 [2–4] 3 [2–4] 3 [2–4] ns

APACHE score (median, [IQR]) 28 [22–33] 29 [23–34] 26 [19–31.8] ns

Preexisting conditions

 Coronary artery disease (n, %) 9 22.5% 6 26% 3 18% ns

 Hypertension (n, %) 25 62.5% 14 61% 11 65% ns

 Diabetes mellitus/insulin resistance (n, %) 13 32.5% 10 43% 3 18% ns

 Chronic kidney disease (n, %) 7 17.5% 6 26% 1 6% ns

 Chronic dialysis (n, %) 1 2.5% 1 4% 0 0% ns

 Lung disease (n, %) 7 17.5% 6 26% 1 6% ns
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of COVID-19-patients in China [14]. Cui et  al. found a 

good sensitivity and specificity using a cutoff of 1.5 ng/ml 

for predicting thrombotic events in COVID-19 patients 

[8]. D-dimers were also markedly elevated in our cohort 

and were found to be significantly higher in the subgroup 

with thromboembolic events. ROC analysis for D-dimers 

revealed an AUC of 0.78. �e combination of the maxi-

mum D-dimer and ML in EXTEM (D-dimer—ML) 

Table 2 Laboratory parameters of total cohort and subcohorts with and without thromboembolic events

Unless values are designated as maximum values during the ICU stay, these parameters were determined on the day, when ROTEM analysis was performed, after 

admission to our ICUs

CT clotting time, CFT clot formation time, MCF maximum clot �rmness, ML maximum lysis

Cohort (N = 40) Thromboembolic event

Yes (N = 23) No (N = 17)

Median [IQR] Median [IQR] Median [IQR] p value

Laboratory variables (normal values)

 Haemoglobin (12·5–17·2 g/dL) 10.1 [8.5–11.2] 9.70 [8.3–10.8] 10.4 [9.3–11.9] ns

 White blood cells (3·5–10·5/nl) 10.13 [7.5–13.7] 10.63 [7.4–16] 9.58 [6.6–12.1] ns

 Platelet count (150–370/nl) 193.5 [131.3–316.3] 181 [116–306] 209 [178–325.5] ns

 Prothrombin time (70–130%) 74.5 [62.8–86] 79 [61–83] 71 [63.5–87.5] ns

 INR (0·9–1·25) 1.2 [1.1–1.4] 1.18 [1.1–1.4] 1.26 [1.1–1.4] ns

 PTT (26–40 s) 45.65 [39.4–56.1] 51.10 [40.8–57.4] 41.1 [38.7–54.2] ns

 Fibrinogen (1·6–4 g/l) 6.67 [4.7–7.7] 6.72 [5.0–7.8] 6.1 [4.6–7.9] ns

 D-dimers (< 0·5 mg/l) 3.95 [2.6–5.9] 4.84 [3.5–7.2] 3.06 [2.3–3.9] 0.003

 max. D-dimers (< 0·5 mg/l) 8.25 [3.6–16.2] 11.57 [8.2–18.4] 3.98 [2.6–6.4] < 0.001

 Procalcitonin (0·5 µg/l) 0.57 [0.2–2.5] 0.81 [0.4–4.7] 0.24 [0.2–1.3] ns

 CRP (< 0·5 mg/l) 123.8 [84.3–216.5] 130 [86–273.7] 111 [79.3–185] ns

 max. CRP (< 0·5 mg/l) 312.9 [208.3–343.9] 341.4 [261.1–370.7] 261.05 [175.3–312.9] 0.002

 IL-6 (< 7 ng/l) 103 [35·6–230] 88 [27.7–340] 153 [53.7–206.5] ns

 max. IL-6 (< 7 ng/l) 558.6 [178.8–1792.3] 550 [174–2475] 567.2 [186.5–1196.5] ns

 Ferritin (30–400 µg/l) 1636 [1067.8–4028.5] 1663 [1218.5–4655] 1567 [720–3662] ns

 max. Ferritin (30–400 µg/l) 2523.2 [1536.7–6635.1] 2781.5 [1854.7–7996.2] 2028.4 [922.9–4893.4] ns

 tPA (2–8 µg/l) 1 [0.9–5.5] 1 [0.9–3.6] 2 [0.9–9.9] ns

 PAI-1 (7–43 ng/ml) 36 [17–70] 31 [12–61] 42.50 [25.3–87] ns

 tPA/PAI-1 0.053 [0.02–0.18] 0.05 [0.02–0.14] 11 [0.03–0.24] ns

 Antithrombin III (80–120%) 79 [58.5–96.5] 75.5 [56.8–84] 94 [66.5–110] ns

 Factor VIII (50–150%) 258 [190.5–319.5] 260 [219.5–355] 222 [149.5–289.5] ns

 Plasminogen (80–120%) 88 [72.8–114] 82 [72.8–109.8] 101 [70.8–129.8] ns

ROTEM variables

 FIBTEM CT (s) 88.5 [78–97.8] 89 [78–102] 88 [75.5–96] ns

 FIBTEM CFT (s) 68 [51–104] 64.5 [54–95.8] 71 [47–165] ns

 FIBTEM MCF (mm) 34.5 [27.3–39.5] 35 [27–38] 34 [27–40] ns

 EXTEM CT (s) 86 [69.5–99.8] 84 [69–96] 86 [70.5–107.5] ns

 EXTEM CFT (s) 46.5 [40–60.5] 47 [40–61] 45 [40.5–56.5] ns

 EXTEM MCF (mm) 75 [70.3–78] 75 [69–78] 76 [72.5–78.5] ns

 INTEM CT (s) 208 [181.3–227.5] 215 [197–251] 189 [171.5–212] 0.005

 INTEM CFT (s) 50.5 [39.5–61.8] 56 [39–63] 45 [39.5–60.5] ns

 INTEM MCF (mm) 74 [69–77] 74 [65–77] 73 [69.5–78] ns

 HEPTEM CT (s) 188.5 [170.5–208.3] 193 [173–209] 173 [159–206] ns

 HEPTEM CFT (s) 41 [35.5–56.5] 40 [34–60] 42 [37–51] ns

 HEPTEM MCF (mm) 73 [67.5–75.3] 73 [66–76] 71 [71–75] ns

 ML, EXTEM (%) 3 [1.3–5.8] 3 [0–5] 5 [3.5–8] 0.001

 ML, INTEM (%) 3 [1–6] 2 [0–3] 6 [2.5–6] 0.001
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improved the AUC to 0.92, with a cutoff of 3.7 for a sen-

sitivity of 94% and specificity > 90%. �e predictive value 

of this D-dimer–ML parameter, however, requires valida-

tion in a second cohort.

In addition to providing insights in the mechanism 

of thrombus formation, our results may underline the 

possible therapeutic option of specific fibrinolytic 

therapy for ARDS caused by COVID-19. Administra-

tion of recombinant t-PA has already been suggested 

as a potential treatment and has shown promising 

results in a previous study independent of COVID-19 

[28]. Currently, a phase IIa trial is underway to exam-

ine the effect of thrombolytics in COVID-19 patients 

with hypoxemic lung injury (ClinicalTrials.gov, NCT 

04357730) [29].

�ere are several limitations to our study. First, 

ROTEM measurements were performed when patients 

were transferred to our ICUs after different treatment 

periods in other hospitals. �us, the ROTEM results 

reflect different stages of the disease. Also, many, but 

not all patients, were previously treated with heparin 

when thromboelastometry measurements were per-

formed. Second, the study is monocentric, performed 

in a tertiary care center, and the generalizability to 

other settings and patients with a less severe course and 

earlier stages of the disease needs to be tested. �ird, 

Fig. 2 a Maximum lysis (ML) in EXTEM, b maximum lysis (ML) in INTEM, c D-dimers on the day of ROTEM and d max. CRP in COVID-19 patients with 

and without thromboembolic complications
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our prediction models based on associations between 

poor clot lysis, D-dimers and the presence of thrombo-

embolic events are hypotheses and require validation 

in independent patient cohorts and prospective obser-

vational studies. Fourth, thromboembolic events may 

have been underdiagnosed, as only ultrasound was rou-

tinely performed, while CT scans to exclude pulmonary 

embolism were only performed in some patients. Fifth, 

our results are descriptive in nature and do not provide 

explanatory models for the observed hypofibrinolysis. 

Future studies should focus on the examination of pos-

sible mechanisms.

Sixth, 25% of patients of our cohort received ECMO 

therapy, which may itself have had a thrombogenic effect 

and in part may have contributed to the high rates of 

thrombosis. However, the current literature points into 

Fig. 3 ROC analysis of a maximum lysis (ML) in EXTEM, b D-dimer and c ML INTEM d difference of ML in EXTEM and max. D-dimer for prediction of 

thromboembolic events in our cohort [*AUC of 0·92 (p < 0.001)]
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the direction that in some cases ECMO rather leads to 

hyperfibrinolysis [30]. An ECMO-side effect as an expla-

nation for a systematic hypofibrinolysis as observed in 

our cohort thus appears rather unlikely. Seventh, even 

though the statistical analysis showed robust values for 

our analysis, it may be difficult to guide clinical decision 

based on these values, as the difference in maximum lysis 

is 2%.

In summary, we found substantially reduced fibrinoly-

sis in COVID-19 patients, which was more pronounced 

in patients with thromboembolic events. Clot ML time, 

as assessed by ROTEM as a single parameter, or in com-

bination with D-dimers may prove valuable for thrombo-

embolic risk stratification in COVID-19 patients and aid 

in decision-making regarding anticoagulation strategies.

Conclusions
ROTEM revealed severe hypofibrinolysis in COVID-19 

patients. Maximum lysis, especially following stimulation 

of the extrinsic coagulation system, was inversely associ-

ated with an enhanced risk of thromboembolic complica-

tions. �e combination of maximum lysis with D-dimer 

concentrations revealed high sensitivity and specific-

ity of thromboembolic risk prediction. Hence, ROTEM 

may help to identify patients benefiting from therapeutic 

anticoagulation.
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