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Abstract

The demonstration of impaired complement regulation in the thrombotic

microangiopathy, atypical haemolytic uraemic syndrome (aHUS) has resulted in the

successful introduction of the complement inhibitor eculizumab into clinical practice.

Complement abnormalities account for approximately 50% of aHUS cases however

recently mutations in the non-complement gene DGKE have been described in

individuals not responsive to eculizumab.

We report here a family where the proposita presented with aHUS but did not

respond to Eculizumab. Her mother had previously presented with a post renal

transplant thrombotic microangiopathy (TMA). Both also had Charcot Marie Tooth

(CMT). Using whole exome sequencing we identified a mutation in INF2 in the

mutational hotspot for focal segmental glomerulosclerosis (FSGS). Subsequent

analysis of the Newcastle aHUS cohort identified another family with a functionally

significant mutation in INF2. In this family renal transplantation was associated with

post transplant TMA. In all individuals with INF2 mutations presenting with a TMA,

aHUS risk haplotypes were also present, potentially accounting for the genetic

pleiotropy.

Identifying individuals with TMAs who may not respond to eculizumab will avoid

prolonged exposure of such individuals to the infectious complications of terminal

pathway complement blockade.

Key words

Inverted formin 2, Charcot Marie Tooth. Atypical Haemolytic Uraemic Syndrome, Focal

Segmental Glomerulosclerosis
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Genetic abnormalities in the alternative pathway of complement have been

demonstrated to account for many cases of the thrombotic microangiopathy (TMA)

atypical haemolytic uraemic syndrome (aHUS)(MIM 235400)1. Understanding the role

of complement in the pathogenesis of aHUS has resulted in the successful introduction

of the complement inhibitor eculizumab into clinical practice2.

Recently mutations in the non-complement gene DGKE have been demonstrated

to be associated with aHUS (MIM615008)3. Individuals with DGKE mutations display

phenotypic variability with some patients presenting with membranoproliferative

glomerulonephritis4. As might be expected with a genetic cause which does not appear

to be complement mediated, individuals have not responded to treatment with

eculizumab3.

Despite recent advances, the genetic basis of many cases of familial aHUS remain

unsolved. In this study we describe the finding of INF2 mutations in two families with

TMA.

Our index case, patient III:2 presented aged 7 with pex cavus and difficulty walking

and was diagnosed with Charcot-Marie-Tooth (CMT) (figure 1). Aged 15 she

presented 5 days after a sore throat with microangiopathic haemolytic anaemia on

blood film (Hb, 9.4 g/dl), thrombocytopenia (platelets 119 ×109/L) and renal failure

(creatinine 879 µmol/l). Haptoglobins were undetectable, LDH was 844 U/L and there

was proteinuria (4.8g/l). Blood pressure on admission was 185/110 mm Hg.

Haemodialysis was commenced at presentation and plasma exchange was

undertaken prior to commencement of eculizumab. Initially there was an improvement

in the platelet count to 173 ×109/L but subsequently this fell to 100 ×109/L. A bone

marrow biopsy was unremarkable and trough eculizumab concentration was adequate

with a completely suppressed CH50. Three months after presentation a renal biopsy
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was undertaken demonstrating characteristic changes of a thrombotic

microangiopathy (figure 2a). There were also features of a distinct glomerulosclerosis

with small glomeruli and arteriosclerosis (figure 2b). After 9 months with no renal

recovery eculizumab was withdrawn.

Screening for known inherited and acquired causes of aHUS did not reveal any

abnormality1. The C5 variant c.2654G>A, (p.R885H) which impairs eculizumab

efficacy was not present5.

Family history revealed that the proposita’s mother, patient II:2 (figure 1), also had

CMT, had presented with ESRF aged 17 and had a post transplant TMA (figures 2d,e)

(case history supplementary data).

Due to the absence of an abnormality in a known aHUS associated gene we

sequenced the exomes of the two affected individuals in this family.

This revealed a rare variant in INF2, c.305T>A (p.V102D) (figure 1). Mutations in

INF2 are the commonest cause of familial autosomal dominant nephrotic syndrome6-

8. In a minority of these cases the mutations cause a syndromic form of Focal

Segmental Glomerulosclerosis (FSGS) associated with the demyelinating peripheral

neuropathy, CMT 9, 10 (figure 3).

To assess whether mutations in INF2 account for other cases of familial or sporadic

TMA previously referred to the Newcastle aHUS centre11 we analysed 28 familial

cases by exome sequencing and undertook Sanger sequencing on an additional 161

sporadic aHUS cases. In one family, in which no known genetic risk factors had been

found, we identified a functionally significant mutation in INF2, c.530G>A (p.R177H),

which segregated with the disease (supplementary data, Figures 1,2). No INF2

variants were identified in sporadic aHUS cases.
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INF2 is a ubiquitously expressed formin protein12 which accelerates actin

polymerization and depolymerisation, thus regulating a range of cytoskeleton

dependent cellular functions including the secretory pathway 13, 14. INF2 comprises

formin homology 1 and 2 domains (FH1 and FH2); an N-terminal diaphanous inhibitory

domain (DID) and a C-terminal diaphanous autoregulatory domain(DAD)15. Mutations

in INF2 predominate in the DID domain6, 7, 10. Functional analysis of INF2 mutations in

disease has demonstrated disorganised cytoskeletal functions7, 9 although the precise

mechanism of disease remains elusive.

The two INF2 variants we describe here reside in the mutational hotspot for disease

6-10. The c.305T>A (p.V102D) variant resides in exon 2 while c.530G>A (p.R177H)

resides in exon 4 (figure 3, 4). Structural modelling reveals that the p.V102D variant

is in close proximity to the DAD binding region. Modelling does not predict a surface

exposed residue but instead the variant may be expected to disrupt the architecture

of the 8th α-helix of the DID domain (Figure 4). The p.R177H variant resides before 

the 13th α-helix of the DID domain and is surface exposed (figure 4). Amino acids at 

both these positions are conserved across species with GERP++ scores of 4.76

(p.V102D) and 4.48 (p.R177H) (figure 1).

Disease-causing mutations in FSGS, have mainly been found to occur in the DID

domain, in exons 2-4, with only one report of a mutation in exon 6 (figure 3)6-8, 16. Within

this hot-spot there is a cluster between nucleotides 300 and 500 which accounts for

those with FSGS and CMT9, 10. The p.V102D mutation resides in this region and this

family have CMT while the p.R177H mutation resides downstream of this region and

this family has no neurological phenotype. The p.R177H mutation has previously been

reported in 3 unrelated pedigrees and in all cases had the non-syndromic form of
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FSGS6, 8. Functional analysis of this mutation demonstrated altered INF2 localisation

and disruption of the actin cytoskeleton9.

It is well reported that even in individual families with the same INF2 mutation there

is phenotypic variability. Most commonly individuals present with disease in

adolescence with mild proteinuria, developing ESRF in the 3rd or 4th decade, although

individuals have been reported to be unaffected into their 6th or 7th decade16. Variable

intrafamilial penetrance has also been reported for the neurological phenotype16. The

clinical and pathological disease pleiotropism we describe with INF2 mutations is also

seen in individuals with recessive DGKE mutations where some individuals present

with proteinuria and progressive renal failure while others present with aHUS. Likewise

the biopsy findings in DGKE associated disease are also heterogenous ranging from

a membranoproliferative pattern to a TMA. These findings can vary according to the

time of presentation. It is only with genetic analysis that the underlying pathological

process can be identified and a therapeutic intervention sought. It has been suggested

that genetic background or environmental factors modify the penetrance and

phenotype of disease16, 17. It is interesting to note that in family 1 both affected

members, II:2 and III:2, were both homozygous for the aHUS at-risk CFH-H3

haplotype18, and both carried one risk CD46 allele19. In family 2, patient III:1 was

homozygous for the CD46GGAAC risk haplotype while III:2 was heterozygous. III:1 also

carried one copy of the CFH-H3 haplotype (figure 1).

Although INF2 mutations have not previously been associated with a renal

thrombotic microangiopathy, aHUS has been reported in patients with primary

FSGS20-23 and FSGS is a frequent pathological sequalae of sporadic Stx-HUS24. A

thrombotic microangiopathy has also been associated with other causes of nephrotic
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syndrome25, 26 and primary glomerulonephritis including IgA nephropathy27-29; Henoch

Schonlein Purpura23; ANCA associated vasculitis22, 23; and anti-GBM nephropathy23.

It has been hypothesised that either direct or indirect (via impaired VEGF secretion

from podocytes) endothelial injury leads to a constricted microvasculature with

perturbed haemodynamic flow leading to the formation of platelet microthrombi and a

thrombotic microangiopathy. Loss of coagulation regulators with upregulation of

procoagulation factors has also been suggested as a contributory factor in those

individuals with co-existent nephrotic syndrome 30-33.

It is intriguing that all 3 patients who had renal transplants had biopsy proven

evidence of a thrombotic microangiopathy in their renal allografts. The risk of FSGS

recurrence post transplant in those with genetic defects of the glomerular filtration

barrier is low due to correction of the underlying defect34-36. An exception to this is in

those individuals with complete deficiency of NPHS1 due to the presumed generation

of antibodies against this immunologically novel protein in the allograft. Such a

scenario would not be expected in a dominantly inherited condition.

Currently, there is little information available as to the recurrence of FSGS post

transplantation in individuals carrying INF2 mutations. However, in one small study

recurrence was seen in one of three individuals8. INF2 is expressed ubiquitously12 and

recurrence of FSGS in an allograft suggests that a circulating factor or cell type is

predisposing to recurrent disease. Such a factor may account for post transplant TMA.

It should be noted that INF2 has been demonstrated to complex with and alter the

intracellular transport of the complement regulators CD55 and CD59 which are present

on all circulating cells including platelets. We cannot however rule out the possibility

that the TMA was a consequence of the post-transplant milieu (eg, viral diseases,

ischemia reperfusion injury, donor-specific antibodies, immunosuppressive drugs).



TMA in INF2 mediated renal disease

8

In summary we describe two families with mutations in INF2 in addition to common

aHUS risk haplotypes who present with aHUS or a post transplant TMA. Eculizumab

was unsuccessful in preventing either ongoing TMA or ESRF as is seen with other

non-complement mediated causes of aHUS. Indentifying individuals who will not

respond to eculizumab will avoid exposing these individuals to the infectious risks of

terminal pathway complement blockade. This study represents an initial application of

whole-exome sequencing in personalised management of TMA.

Concise Methods

The study was approved by Newcastle and North Tyneside 1 Research Ethics

Committee, and informed consent was obtained in accordance with the Declaration of

Helsinki.

Complement Assays

C3 and C4 levels were measured by rate nephelometry (Beckman Coulter Array

360). FH levels were measured by radial immunodiffusion (Binding Site). Screening

for complement autoantibodies were undertaken using ELISA as described

previously37, 38.

Genetic Analysis and Multiplex ligation-dependent probe amplification

Mutation screening of CFH39, CFI40, CFB41, MCP42, C343, and DGKE3 was

undertaken using Sanger sequencing as previously described. Screening for genomic

disorders affecting CFH, CFHR1, CFHR2, CFHR3, CFHR5, CFI and CD46 was

undertaken using multiplex ligation-dependent probe amplification (MLPA)44, 45.

Mutation screening of INF2was undertaken using Sanger sequencing using the primer

conditions in supplemental table 5.
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Whole exome sequencing

Enrichment from isolated DNA was performed using either Illumina Nextera Rapid

Capture Exome by AROS AB (family 1) or Agilent SureSelectXT Human All Exon V5

by GATC Biotech, Konstanz (family 2, III:1) as described previously46. Library

preparation was performed post-capture, with adaptor sequences and indexing

incorporated using proprietary methods of AROS AB and GATC Biotech, compatible

for Illumina sequencing technology. Illumina sequencing was performed on the

HiSeq2000 instrument (v3 chemistry)(Supplemental table 2).

The quality of sequencing reads was firstly checked with FastQC 47. Duplicated

reads were removed with FastUniq 48. The remaining reads were mapped to the

human reference genome GRCh37 with BWA 49. The alignments were refined with

tools of the GATK suite 50. Variants were called according to GATK Best Practice

recommendations 51, 52, including recalibration. Freebayes was also used to call

variants from the same set of samples 53. The variants called by Freebayes with total

coverage ≥ 5, minor allele coverage ≥ 5 and variants call quality ≥ 20 were added to 

those identified by GATK. Annovar was used for annotations and prediction of

functional consequences 54. Variants identified in family 1 were filtered as detailed

(Supplemental table 2). First, we selected for variants in high impact regions and

selected variants at a minor allele frequency (MAF) <5% in 1000G and ESP6500. We

then selected those variants segregating in a dominant fashion with disease. Variants

predicted to be deleterious by Polyphen-2 HDIV and HVAR, Mutation Taster, Mutation

Assessor, FATHMM or RadialSVM were selected for further analysis. A more stringent

MAF cut-off of <0.1% in 1000G and ESP6500 was applied and non-conserved variants

(<2 by GERP++ and <0.5 by PhyloP) were discarded (Supplemental table 3).
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Phenotypic data was then used to interrogate the remaining 34 genes providing only

one candidate gene known to have both renal and neurological conditions inherited in

an autosomal dominant pattern (Supplemental table 4).

Protein modelling

Phyre2 was used to generate an approximate protein structure using the inputted

amino acid sequence of INF2 (NP 071934.3, amino acids 1-250) using the intensive

modelling mode. Protein domain boundaries for INF2 were taken from Pfam55.Three-

dimensional protein structures were manipulated using PyMOL 56

Acknowledgments

The research leading to these results has received funding from the European

Union’s Seventh Framework Programme (FP7/2007-2013) under Grant 305608

(EURenOmics). VB is funded by NCKRF.Funding for this study was provided by the

UK Medical Research Council (G0701325). E.K.S.W. is a Medical Research Council

clinical training fellow. D.K. is a Wellcome Trust intermediate clinical fellow.

Disclosure

T.H.J.G., and D.K. have received honoraria for consultancy work from Alexion

Pharmaceuticals. D.K. is scientific advisor to Gyroscope therapeutics.



TMA in INF2 mediated renal disease

11

Figure Legends

Figure 1 Pedigrees of families with Inverted formin 2 (INF2) genetic variants. The

pedigrees demonstrate the segregation of the renal / neurological phenotype with the

rare genetic variant, c.305T>A (p.V102D) in family 1 (a) and c.530G>A (p.R177H) in

family 2 (d). Individuals tested but not carrying the mutation are shown – nmd (no

mutation detected). The number of alleles carrying the aHUS risk haplotype CFH-H3

(CFHrisk) and CD46GGAAC (CD46risk) are shown on the pedigree. Sanger sequencing

trace of wild type (WT) and mutant (Mut) for c.305T>A (p.V102D) (b) and c.530G>A

(p.R177H) (e). Alignment of human, chimpanzee, orangutan, mouse, rat, dog,

opossum, platypus and zebrafish INF2 demonstrating amino acid conservation (c, f)

(performed using http://genome.ucsc.edu/cgibin/hgTrackUi?hgsid=309786867&c=

chr21&g=cons46way#a_cfg_phyloP).

Figure 2 Renal biopsies. Native renal biopsy from family 1, patient III:2. (a) Two

arterioles (right) showing features of active thrombosis and a small artery (left) with

relatively slight intimal oedema with fibrosis, Hematoxylin and eosin stain (H&E). (b)

Glomerulus (left) showing global sclerosis and occluded arteriole (right), Periodic acid–

Schiff (PAS). Native renal biopsy from family 1, patient II:2 demonstrating end-stage

changes with diffuse global sclerosis (c). Renal transplant biopsy from family 1 patient

II:2 demonstrating (d) an occluded arteriole (PAS) and (e) a capillary loop with

abundant subendothelial fluffy material (Electron microscopy). Native renal biopsy

from family 2, patient III:2 demonstrating (f) a sclerosed glomeruli and (g) a segmental

sclerosing lesion. Renal transplant biopsy from family 2 patient III:1. Mucoid intimal

thickening is seen in an interlobular artery with red cell fragmentation in the wall and
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luminal thrombus (h). Mesangiolysis is also seen 3-6 o’clock (i) (silver stain). Native

renal biopsy from family 2, patient III:2 showing a subacute/chronic arterial TMA with

fibroproliferative obliteration of small arteries and arterioles (J) (H&E) and (K)

(trichrome). Renal transplant biopsy from family 2, patient III:2 demonstrating end

stage change with fibrous obliteration of arteries. (l)(H&E)

Figure 3 Inverted formin 2 (INF2) variants in FSGS, CMT and aHUS. A

representation of the domain structure of INF2 showing the diaphanous inhibitory

domain (DID), formin homology domains (FH1, FH2) and the diaphanous

autoregulatory domain (DAD). Genetic variants associated with isolated FSGS are

below the domain structure. Genetic variants with a combined FSGS/CMT phenotype

are shown above the domain structure. Variants from Mademan et al57. The locations

of the aHUS associated mutations demonstrated in the study are shown in red.

Figure 4 Predicted structure of diaphanous inhibitory domain (DID) of Inverse

Formin 2 (INF2). A structural model of the DID domain (amino acids 1-234) was

generated using Phyre2 (a)58. Blue spheres represent the amino acids involved in

binding to DAD domain: (R106, N110, A149, I152). The position of the p.V102D and

R177H mutations are highlighted in red. The p.V102D lies in the 8th α-helix  of the DID 

(amino acids) domain. (b) Surface representation of the modelled structure

highlighting the surface exposed amino acids responsible for DAD binding (R106,

N110, A149, I152). The mutant p.V102D is not buried but may be expected to disrupt

the architecture of the 8th α-helix. The p.R177H variant resides before the 13th α-helix 

of the DID domain and is surface exposed .
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