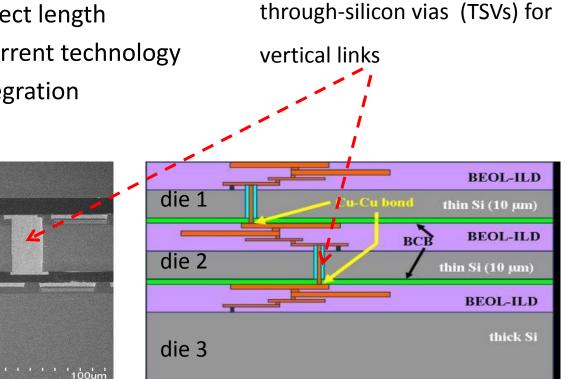
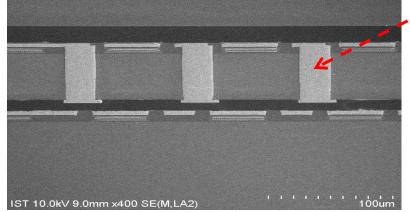


Through-Silicon-Via Inductor: Is it Real or Just A Fantasy?

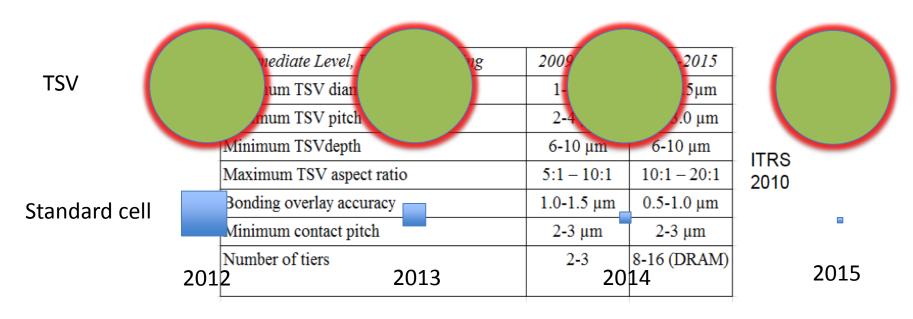
Umamaheswara Rao Tida¹ Cheng Zhuo² Yiyu Shi¹

¹ECE Department, Missouri University of Science and Technology ²Intel Research, Hillsboro



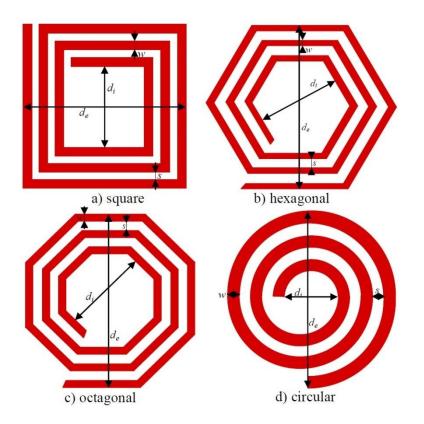

- Background and Motivation
- Micro-Channel Shield Technique
- Experimental Results
- Conclusions

- Background and Motivation
- Micro-Channel Shield Technique
- Experimental Results
- Conclusions


3D Integrated Circuits

- 3D IC is considered one of the most promising alternatives at the limit of device scaling
 - Reduced form factor
 - Reduced interconnect length
 - *Compatible* with current technology
 - Heterogeneous integration

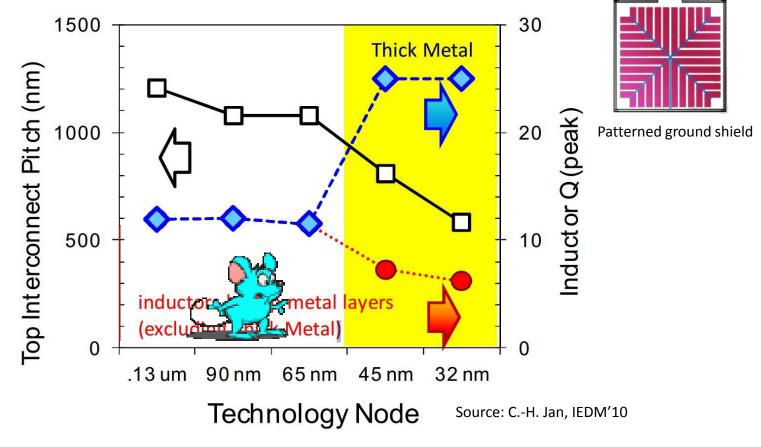
The Curse of TSV Scaling



✓ TSV scaling limited by the wafer handling and alignment accuracy

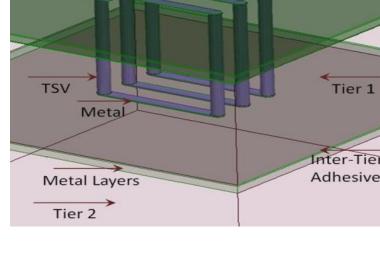
✓ TSV diameter will not scale with logic gates

 \rightarrow 50X diameter ratio, 2500X area ratio by 2015!


On-Chip Spiral Inductor

- Low-noise amplifiers, power amplifiers
- voltage control oscillators
- voltage regulators
- DC-DC converters

- Substrate loss
- Large die area (78,400 um²) for practical purposes
- Consumes high routing area

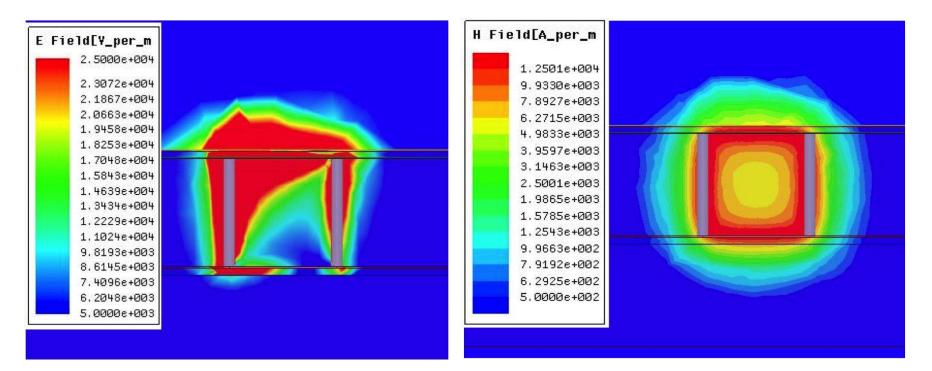

The Curse of CMOS Scaling

Brought by scaling of the interconnect pitch and metal thickness

How about 3D RF SOC?

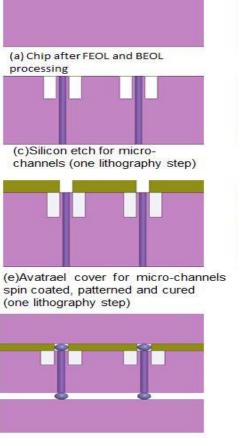
- Subject to both curses?
 Not necessarily!
- Use dummy TSVs to make inductors
 - Minimum footprint
 - No special RF process
 - Sounds fancy, but...
- Is it real or just a fantasy?
 - New loss mechanism?
 - New design freedom?

Prior Art and Motivation


- The quality factor of the TSV inductor is significantly less than its 2D spiral counterpart, mainly due to the losses from the substrate.
- The entire TSV inductors is buried in the silicon substrate, which is lossy at high frequencies.
- Bontzios et al suggested that for 50 μm substrate thickness and below, TSV inductor should be used when area is the only concern.
- Is there any way that we can reduce substrate losses for TSV inductors?

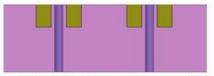
Contributions

- Novel shield technique using micro-channel.
- Experimental results states 21x and 17x increase of Q and L respectively.
- With this technique, TSV inductors can achieve up to 38x smaller area and 33% higher Q compared with spiral inductors.


- Background and Motivation
- Micro-Channel Shield Technique
- Results
- Conclusions

E Field and H Field without Shield

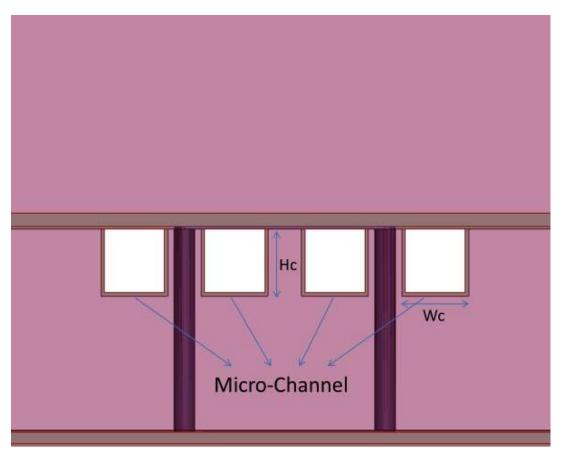
- Much of the losses are near the inductor.
- Losses can be reduced if substrate near inductor is removed.
- Substrate is removed by using micro-channel technique.


Micro-Channel Fabrication Steps

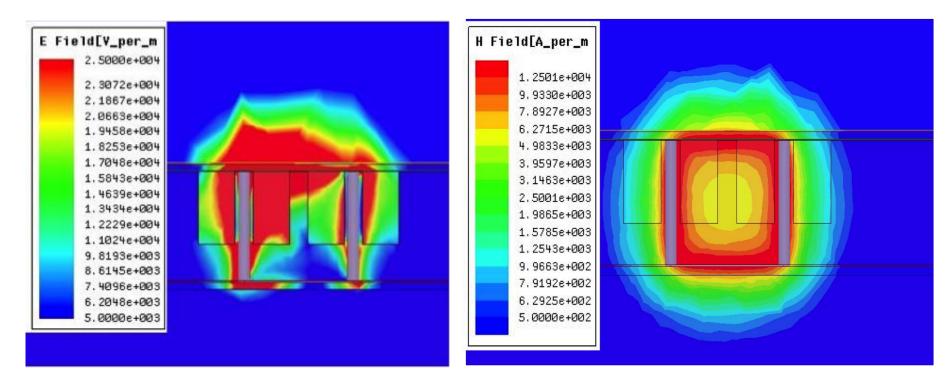
(g)Assemble chip on substrate

Adds little amount of cost due to two extra lithography steps.

(b)Electrical through via fabrication



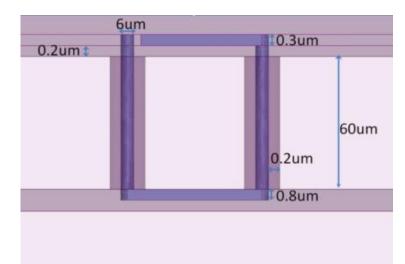
(d)spin coat and polish a sacrificial polymer material


(f)Assemble chip on chip

Micro-Channel Shields

- 4 Micro-channels are placed 5um away from the TSV.
- When the TSV inductor is used as antenna, the micro-channels can help to cool it as well.

E and H Field with Shield



- Losses are reduced due to the reduction of E-field in the substrate.
- Less effect on Inductance since no change in magnetic flux.

- Background and Motivation
- Introduction
- Micro-Channel Shield Technique
- Experimental Results
- Conclusions

Experimental Setup

Notation	Meaning	Range
Ν	Number of turns	1-6
Т	Number of tiers	2-4
P(µm)	Loop pitch	13-23
W(µm)	Width of metal strip	3-12
f(GHz)	Operating frequency	0.15, 1,5, 10

Nominal Settings

P=18um, W=6um, f=0.15, 1, 5, 10 GHz

voltage regulators

-

RF applications

Improvement Using Micro-channel at Various Channel Dimensions

		W _c (um)								
			Quality Factor		Inductance (nH)					
		10	20	25	10	20	25			
	10	6.71	6.92	7.03	1.396	1.395	1.394			
		(4.5%)	(8.1%)	(9.6%)	0.0%	0.0%	0.0%			
H _c (um)	20	7.02	7.29	7.46	1.393	1.390	1.390			
		(9.6%)	(13.8%)	(16.3%)	0.0%	0.0%	0.0%			
	30	7.34	7.34 7.76		1.391	1.386	1.384			
		(14.6%)	(21.1%)	(23.9%)	0.0%	0.0%	0.0%			
	40	7.73	8.28	8.59	1.388	1.386	1.382			
		(20.5%)	(29.2%)	(34%)	0.0%	0.0%	0.0%			
	50	8.25	8.98	9.41	1.388	1.380	1.376			
		(28.8%)	(40.1%)	(46.1%)	0.0%	0.0%	0.0%			
	60	9.12	10.34	10.96	1.386	1.374	1.377			
		(42.2%)	(61.4%)	(71.0%)	0.0%	0.0%	0.0%			

- N=6, T=2, P=18um, W=6um and f=10 GHz
- Improvement over no shield case are shown in parenthesis.

Maximum Q Improvement at 10 GHz

Q		Т								
		2	3	4	5					
	1	10.96 (5.88%)	13.12 (14.5%)	14.53 (38.9%)	14.90 (70.3%)					
	2	11.36 (11.7%)	11.31 (78.52%)	7.59 (168%)	6.14 (359%)					
N	3	11.89 (26.3%)	9.15 (167%)	4.65 (406%)	2.00 (2034%)					
	4	11.89 (42.4%)	7.46 (269%)	2.93 (1007%)	1.03 N/A					
	5	11.37 (55.3%)	5.97 (371%)	1.87 N/A	0.19 N/A					
	6	10.98 (71%)	4.74 (483%)	1.01 N/A	-2.08 N/A					

- P=18um, W=6um, Wc and Hc are max
- An average of 2.5x improvement in Q

Maximum Q Improvement at 1 GHz

	Q	Т								
		2	3	4	5					
	1	4.29 (0.0%)	3.74 (0.5%)	4.15 (1.0%)	4.44 (2.0%)					
	2	3.36 (0.0%)	4.72 (3.2%)	5.37 (4.8%)	5.90 (9.9%)					
N	3	3.76 (0.2%)	5.28 (1.7%)	6.39 (15.8%)	6.83 (36.4%)					
	4	4.02 (0.8%)	6.04 (11.1%)	7.11 (37.4%)	7.57 (88.3%)					
	5	4.13 (0.1%)	6.49 (17.8%)	7.65 (67.0%)	7.78 (153.0%)					
	6	4.29 (2.7%)	6.81 (26.5%)	7.92 (98.5%)	8.01 (235.1%)					

• P=18um, W=6um, Wc and Hc are max

Maximum L Improvement at 10 GHz

L (nH)			Т		
		2	3	4	5
	1	0.135 (0.0%)	0.344 (0.0%)	0.577 (0.0%)	0.828 (1.2%)
	2	0.344 (0.0%)	0.958 (0.0%)	1.729 (0.0%)	2.708 (11.9%)
Ν	3	0.594 (0.0%)	1.700 (0.0%)	3.523 (39.9%)	5.882 (1615%)
	4	0.843 (0.0%)	2.741 (1.0%)	5.959 (424%)	8.855 N/A
	5	1.093 (0.0%)	3.390 (2.2%)	8.577 N/A	3.055 N/A
	6	1.376 (0.0%)	5.206 (58.5%)	10.634 N/A	-3.518 N/A

- P=18um, W=6um, Wc and Hc are max
- Increased fSR brought by the shield.

Q Factor and Area Comparison Between 2D Spiral Inductors and 3D TSV inductors

D	Design Specs Spiral Inductor					TSV Inductor									
#	f	L	Geometry		А		Geometry				Q		А		
	(GHz)	(nH)	Т	D	d	W	Q	(um²)	Ν	Т	W	Р	w/o	w/	(um²)
			(um)	(um)	(um)	(um)					(um)	(um)	Shield	Shield	
1	1	6.5	2	560	535	10	5.7	313,600 (1)	6	2	7	20	4.6	7.6	8,255 (1/37.9x)
2	5	2.50	2	400	355	20	6.9	160,000 (1)	4	3	6	18	4.3	10.3	9,358 (1/17.1x)
3	10	0.95	1	330	320	10	10.0	108,900 (1)	2	3	6	18	5.8	10.1	4,679 (1/23.3x)

- 38x area reduction.
- 33% Q improvement

- Background and Motivation
- Introduction
- Micro-Channel Shield Technique
- Experimental Results
- Conclusions

Conclusions

- A micro-channel shield technique to drastically improve the quality factor and the inductance is proposed.
- 21x and 17x increase of Q and L respectively are observed using the technique.
- 38x smaller area and 33% higher Q compared with spiral inductors can be achieved with this technique for TSV inductors.

Thank you!