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Abstract

To date, brain imaging has largely relied on X-ray computed tomography and magnetic resonance 

angiography with limited spatial resolution and long scanning times. Fluorescence-based brain 

imaging in the visible and traditional near-infrared regions (400–900 nm) is an alternative but 

currently requires craniotomy, cranial windows and skull thinning techniques, and the penetration 

depth is limited to 1–2 mm due to light scattering. Here, we report through-scalp and through-skull 

fluorescence imaging of mouse cerebral vasculature without craniotomy utilizing the intrinsic 

photoluminescence of single-walled carbon nanotubes in the 1.3–1.4 micrometre near-infrared 

window. Reduced photon scattering in this spectral region allows fluorescence imaging reaching a 

depth of >2 mm in mouse brain with sub-10 micrometre resolution. An imaging rate of ~5.3 

frames/s allows for dynamic recording of blood perfusion in the cerebral vessels with sufficient 

temporal resolution, providing real-time assessment of blood flow anomaly in a mouse middle 

cerebral artery occlusion stroke model.

Introduction

The essential functions of the brain dictate that any significant cerebral dysfunction or 

disease, such as the cerebrovascular disease, could lead to severe morbidity or mortality.1 
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Brain imaging has relied on X-ray computed tomography (CT) and magnetic resonance 

angiography (MRA) to reach sufficient penetration depth,2–4 but these modalities are limited 

in spatial resolution (~ sub-millimeter) and long scanning times (~ minutes),5–7 impairing 

the resolution of small vessels and dynamic blood flow in the brain. On the other hand, 

fluorescence-based optical imaging of the brain in the visible and traditional near-infrared 

regions (400–900 nm) has relied on craniotomy, cranial windows and skull thinning 

techniques8–11 and the penetration depth for in vivo brain imaging has been limited to a 

depth of 1–2 mm8,12–14 by light scattering.15,16

Recently, we and others have shown that biological imaging with carbon nanotube and 

quantum dot fluorescent agents in the long near-infrared region (1.0–1.7 µm, named NIR-II 

region) can benefit from reduced tissue scattering and autofluorescence, reaching deeper 

penetration depths in vivo than traditional NIR (NIR-I, 750–900 nm) imaging 

techniques.17–29 Photon scattering scales as λ−α, where α = 1.2 to 4 for biological tissues. 

The reduced scattering in the NIR-II region has allowed in vivo fluorescence imaging of 

blood vessels in the hindlimb of mice with ~30 µm lateral resolution at > 1 mm depth.22 

Here, we report the first non-invasive brain imaging in a narrow 1.3–1.4 µm region (named 

as the NIR-IIa region), allowing penetration through intact scalp and skull and resolving 

cerebral vasculatures with a previously unattainable spatial resolution of sub-10 µm at a 

depth of >2 mm underneath the surface of the scalp skin in an epifluorescence imaging 

mode. The 1.3–1.4 µm NIR-IIa window is rationally chosen for in vivo imaging so as to 

minimize scattering by rejecting shorter wavelength photons than 1.3 µm while avoiding 

increase light absorption by water vibrational overtone modes above ~1.4 µm. Further, 

dynamic NIR-IIa cerebrovascular imaging with high temporal resolution (< 200 ms/frame) 

was used to reveal drastically reduced blood flow due to arterial occlusion in an acute stroke 

model on mice.

Results

Phantom Imaging in NIR-I, NIR-II and NIR-IIa Regions

We first used a highly scattering medium (Intralipid ®, 1 wt% aqueous solution) as a mimic 

to biological tissue20 and studied the penetration depths of fluorescence imaging in the NIR-

I (<900 nm), NIR-II (1.0–1.7 µm) and NIR-IIa (1.3–1.4 µm) regions. High pressure CO 

conversion (HiPCO) single-walled carbon nanotube30 (SWNT)-IRDye800 conjugates 

excited by an 808-nm laser were used as emitters fluorescing in a wide 800 – 1700 nm span 

(for side-by-side comparing imaging with IRDye800 that emits in the 800–900 nm NIR-I 

window, and with SWNT that emits in the 1000–1700 nm NIR-II window),31,32 using 

optical filters to select detection and imaging wavelength ranges (Fig. 1a). When a capillary 

tube filled with the SWNT-IRDye800 solution was immersed in an Intralipid solution at 1 

mm depth, sharp images were obtained in all three spectral windows (Fig. 1b, top). 

However, when the sample immersion depth increased to 1 cm in Intralipid, scattering of 

photons became obvious in the entire NIR-II (1.0–1.7 µm) region and was more severe in the 

NIR-I (< 900 nm) region, causing the image of the capillary tube to be smeared and invisible 

(Fig. 1b, bottom). In contrast, an image taken in the 1.3–1.4 µm NIR-IIa region resolved 

sharp edges of the capillary tube even at 1 cm immersion depth in Intralipid (Fig. 1b bottom 

Hong et al. Page 2

Nat Photonics. Author manuscript; available in PMC 2016 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



right image), suggesting reduced scattering. The observed wavelength dependence of 

phantom imaging (Fig. 1b & S1) could be rationalized by considering the measured 

scattering coefficient vs. wavelength for 1% Intralipid (red curve, Fig. 1c, in agreement with 

previously reported reduced scattering coefficient of , blue curve. In this case, 

and those to follow,  is the scattering coefficient in mm−1 and λ is the wavelength in µm, 

with the prefactor in appropriate unit to make units consistent on both sides of the 

equation).33 The curves exhibited photon scattering scaling inversely proportional with 

wavelength. Rejecting shorter wavelength photons below 1.3 µm led to drastically improved 

imaging by avoiding feature smearing and background signals caused by scattering of short-

wavelength photons. The increased absorption in the >1.4-µm region (peak shown in Fig. 1c) 

was due to light excitation of the first overtone vibration of water molecules in the Intralipid 

solution (Fig. 1c and S2)34 and was also excluded from the NIR-IIa imaging window.

Live Mouse Brain Imaging in NIR-I, NIR-II and NIR-IIa Regions

We performed non-invasive in vivo cerebrovascular fluorescence imaging of healthy 

C57Bl/6 mice with the same SWNT-IRDye800 conjugates in several spectral windows. A 

solution of SWNT-IRDye800 was injected intravenously through the tail (see Methods) of a 

mouse. The head of the mouse with hair shaved off (Fig. 2a) was imaged without 

craniotomy in the NIR-I (< 900 nm), NIR-II (1.0–1.7 µm) and NIR-IIa (1.3–1.4 µm) regions 

respectively (pixel size = 78 µm) under an 808-nm laser illumination (Fig. S3). In contrast to 

the blurry vasculatures imaged in the < 900 nm NIR-I region (Fig. 2b), much sharper images 

were obtained by detecting longer wavelength photons (Fig. 2c), and the sharpest and 

highest resolution images of brain vessels were seen in the 1.3–1.4 µm NIR-IIa region (Fig. 

2d). Similar to the Intralipid phantom imaging case, rejecting the shorter wavelength < 1.3 

µm photons significantly reduced background signals and vessel blurriness caused by 

scattering, and improved signal/background ratio and imaging quality. The cerebral 

angiogram taken in the 1.3–1.4 µm NIR-IIa region clearly showed the inferior cerebral vein 

(labeled as 1), the superior sagittal sinus (labeled as 2) and transverse sinus (labeled as 3) at 

~1–2 mm depths under the scalp skin (Fig. S4), along with other cortical vessels in both 

cerebral hemispheres (Fig. 2d). A 360-degree rotational view of the mouse head was also 

recorded in the 1.3–1.4 µm NIR-IIa region to show a 3D perspective of the mouse head 

(Movie S1).

The wavelength dependence of fluorescence imaging of mouse brain can be gleaned by 

inspecting the extinction spectra of the scalp skin and the cranial bone (i.e., the skull), both 

of which feature a water overtone vibration absorption peak above ~ 1.4 µm and a declining 

photon scattering profile (Fig. 2e). To examine the effect of scattering, we plotted reduced 

scattering coefficients  of these tissues versus wavelength λ (Fig. 2f), based on the 

empirical formulas given in previous literature ( , where the 

two terms are attributed to Rayleigh and Mie scattering respectively; ; 

and ) 8,35,36. It can be seen from the plotted scattering profiles 

that the reduced photon scattering coefficients in the NIR-IIa range (1.54 mm−1 for scalp 

and 1.42 mm−1 for skull at 1350 nm) were lower than in the traditional NIR-I window (1.96 
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mm−1 for scalp and 1.99 mm−1 for skull at 800 nm). A simple estimate suggested that the 

lower scattering coefficients in NIR-IIa corresponded to ~47% fewer scattered photons 

through the scalp and skull than in the NIR-I region based on the measured scalp thickness 

of 0.7 mm and the measured skull thickness of 0.6 mm. These factors led to drastically 

improved imaging of mouse cortical vessels underneath the cranial bone in the NIR-IIa 

region (Fig. 2d vs. 2b).

High Resolution Cerebral Imaging in the NIR-IIa Window

We then used microscopic objectives to image cerebral vessels with high resolution at 15-

fold (pixel size ~ 5 µm) and 30-fold (pixel size ~ 2.5 µm) higher magnification than used for 

Fig. 2. A home-made stereotactic platform was used to eliminate motion of the mouse head 

and a 3D translational stage with digital readout allowed us to measure the imaging focal 

depth inside the brain (Fig. 3a&b). Further, chemical separation of large-diameter 

semiconducting (LS) nanotubes in the HiPCO material (see Methods for separation details) 

was performed and the LS tubes with fluorescence emission biased towards the favorable 

1.3–1.4 µm region were used for brain imaging to optimize signal on the per unit mass basis 

of the injected nanotube dose (Fig. 3c and S5). We imaged the entire mouse head (Fig. 3d), 

zoomed into its left hemisphere (Fig. 3e) and then performed microscopic imaging near the 

location of a cortical vessel branching from the superior sagittal sinus. A typical microscopic 

image of the brain vessels taken in the 1.3–1.4 µm NIR-IIa region focused at a depth of 2.6 

mm below the surface of the scalp (Fig. 3f; depth of focal plane was determined by the axial 

travel distance of the digitally controlled stage relative to the objective, as described in 

Methods) revealed many tiny capillary vessels branching from the larger vessels. Cross-

sectional intensity profile of one of the capillary vessels in Fig. 3g showed a Gaussian-fitted 

full width at half maximum (FWHM) of 6.6 µm (Fig. 3g inset). Based on our ex vivo 

measurement of the total thickness of scalp skin, skull and the meninges as ~1.3 mm (Fig. 

S4), this capillary vessel located at a depth of 2.6 mm was ~ 1.3 mm deep (2.6 mm–1.3 mm) 

within the brain tissue. This represented the highest resolution non-invasive fluorescence 

imaging of brain capillary vessels reported to date (see Fig. 3h-k and Fig. S6 for more brain 

capillaries imaged with 3 different mice at 1–3 mm depths).

Statistical analysis of measured capillary vessel widths revealed an average vessel width of 

9.4 ± 2.5 µm, based on 63 different capillary vessels with widths ranging from 5 µm to 15 

µm taken from a series of microscopic cerebral vascular images (Fig. S7). The brain imaging 

depth was limited to < 3 mm for our wide-field epifluorescence microscopic imaging setup. 

This limit was likely set by the interference from out-of-focus signals, most notably 

fluorescence from foreground vessels on the path of the laser beam prior to the focal 

plane.37 We envisage a two-photon fluorescence microscope with NIR-IIa excitation should 

solve this problem and generate optically sectioned images with three-dimensional 

reconstruction of capillary networks to even deeper penetration depths in the brain, using 

traditional fluorescent dyes excitable around 600–700 nm in the one-photon absorption 

process.
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Dynamic NIR-IIa Fluorescence Imaging of Cerebral Blood Perfusion

Immediately after tail-vein injection of SWNTs into a healthy control mouse (Mouse C1), 

we performed dynamic brain imaging (frame rate = 5.3 frame per second) and observed the 

NIR-IIa signal arising from the lateral sulcus on both sides of the cerebrum within 3 s (Fig. 

4a & Movie S2), before the interior cerebral vein, the superior sagittal sinus and the 

transverse sinus started showing up after 4 s owing to the outflow of SWNTs into the venous 

vessels (Fig. 4b&c). Principal component analysis (PCA) was applied to the time-course 

images over a time course of ~20 s and discriminated the arterial vessels (red, Fig. 4d) from 

the venous vessels (blue, Fig. 4e) based on their haemodynamic difference (Fig. 4f).20,22 

The injected SWNTs kept circulating in the blood for at least 3 h post injection, allowing for 

static imaging in this time window (Fig. S8). We then repeated the study in mice with 

surgically induced middle cerebral artery occlusion (MCAO) as a model for stroke to the left 

cerebral hemisphere. After injection of an SWNT solution into a mouse with MCAO (Mouse 

M1), the right hemisphere exhibited very similar blood flow to the healthy Mouse C1, while 

the left hemisphere with MCAO showed a marked delay of blood flow revealed by NIR-IIa 

fluorescence (Fig. 4g-i, Movie S3). PCA analysis of Mouse M1 revealed a more extended 

venous vessel network (blue) in the right cerebral hemisphere than in the left, and the arterial 

vessels (red) only showed up in the intact right hemisphere (Fig. 4j-l). Similar results were 

reproduced with several healthy mice (Fig. S9a-h) and MCAO diseased mice (Fig. S10a-l).

The dynamic NIR-IIa fluorescence imaging allowed us to quantify cerebral blood perfusion 

by measuring average NIR-IIa intensity in the region of MCAs.22 In the healthy Mouse C1, 

the linearly rising fluorescence signals in both cerebral hemispheres had almost identical 

slopes, suggesting a relative perfusion of ~1 (see SI for perfusion analysis) (Fig. 4m; Fig. 

S9i&j for repeat). However, in Mouse M1 with MCAO, the relative perfusion in the 

occluded left hemisphere was only 0.159 (Fig. 4n; Fig. S10m-o for repeat). Another group 

of mice (n=4) with cerebral hypoperfusion as a model of circulatory shock was imaged (Fig. 

S11) to reveal a decrease of blood perfusion of ~20% compared to a dramatic decrease of 

blood perfusion of ~85% in the MCAO group (red bars, Fig. 4o). The data agreed with laser 

Doppler measurements (blue bars, Fig. 4o). One advantage of NIR-IIa dynamic fluorescence 

imaging is that it tracks blood flow in a wide-field imaging setup, which allows for 

simultaneous tracking of blood flow in multiple vessels and could potentially provide a 

complementary method to two-photon microscopy based blood flow measurement, which 

performs line scan along the direction of one single vessel at a time with kHz temporal 

resolution.38–40

Discussion

The NIR-IIa fluorescence imaging method is advantageous for brain imaging in terms of 

high resolution, deep penetration depth and non-invasive nature without the need for 

craniotomy. Previously, imaging in the traditional NIR-I region (750–900 nm) has observed 

sub-10 µm capillary vessels at ~350 µm depth with craniotomy to remove scattering 

extracerebral tissues,12 much shallower than the imaging depth of >2 mm below the scalp in 

the NIR-IIa region without craniotomy. This striking difference can be rationalized by 

considering the highly scattering nature of the brain tissue, with a large scattering coefficient 
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of ~ 7.49 mm−1 at 800 nm versus ~ 2.54 mm−1 at 1350 nm (Fig. 2f), suggesting ~104 times 

greater scattered photons in NIR-I than in NIR-IIa through a ~ 2 mm thick brain tissue. Two- 

and multi-photon microscopy techniques have reported a typical penetration depth of 1–2 

mm in the brain tissue, facilitated by highly localized non-linear excitation and 

detection;8,13,14,41 but scalp and skull usually need to be removed and replaced with a 

cranial window,8,9 or polished and thinned10,11 to allow for deeper penetration depth. 

Similarly, the invasive removal of the overlying tissues such as the scalp and the skull is 

involved for brain angiography with laser speckle contrast imaging (LSCI)42,43 and optical 

frequency domain imaging (OFDI),44 which have been reported to reach a high spatial 

resolution of ~10 µm in vivo.44,45 To avoid the invasive treatment of the extracerebral tissue, 

optical coherence tomography (OCT) and photoacoustic microscopy have both shown the 

capability of visualizing cortical vasculature at the cost of spatial resolution (10–100 µm), 

unable to resolve sub-10 µm capillary vessels in vivo. In light of the possible inflammatory 

responses such as altered pial blood vessels induced by invasive extracerebral treatment,10 

the NIR-IIa fluorescence based brain angiography provides a completely non-invasive 

method to visualize the brain vasculature in live mouse with unprecedented resolution and 

penetration depth.

Although the maximum penetration depth of < 3 mm in this work prevents it from clinical 

imaging of much deeper vasculature inside the human brain, our new brain imaging method 

based on the long-wavelength NIR-IIa fluorescence can serve as a non-invasive biomedical 

imaging tool of understanding the mechanisms of the impaired neurovascular and 

neurometabolic regulation on both cortical and sub-cortical levels in animal model studies. 

Besides the cerebrovascular dynamics probed with NIR-IIa fluorescence in this work, we 

also envisage non-invasive brain imaging of neuronal and/or glial network activity with 

cellular resolution in live mice using neuronal activity indicators labeled with NIR-IIa 

fluorophores. In the long term, we anticipate fluorescence imaging using novel, 

metabolizable fluorophores with even longer emission wavelengths and less scattering to be 

eventually applied to diagnosis and monitor of cerebral vascular anomaly such as 

arteriovenous malformation and brain tumor, and other neurovascular disregulations 

involving rapid modification of cerebral blood flow, such as migraine.

Conclusions

In this work, we explored a new biological transparent sub-window in the 1.3–1.4 µm, i.e., 

NIR-IIa region and performed non-invasive brain imaging in this window by penetrating 

through the intact skin and skull. We resolved cerebral vasculatures with a high spatial 

resolution of sub-10 µm at a depth of >2 mm in an epifluorescence imaging mode. Compare 

to previous NIR-II work, we found that the 1.3–1.4 µm NIR-IIa window for in vivo imaging 

can further reduce tissue scattering by rejecting shorter wavelength photons than 1.3 µm. 

The truly non-invasive nature and dynamic imaging capability of NIR-IIa cerebrovascular 

imaging could allow for high spatial and temporal resolution imaging to follow biological 

processes in the brain at the molecular scale. Future work will develop novel high quantum 

yield NIR-IIa fluorophores, 3D in vivo imaging through confocal or two photon techniques, 

all of which could lead to further advances of in vivo optical imaging.
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Online Methods

A detailed Methods section can be found in the Supplementary Information.

Preparation of biocompatible SWNT-IRDye800 multicolor emitter

Raw HiPCO SWNTs (Unidym) were suspended in an aqueous solution containing 1 wt% 

sodium deoxycholate by 1 hour of bath sonication. This suspension was then 

ultracentrifuged at 300,000 g to collect the supernatant, and 0.75 mg·ml−1 of DSPE-mPEG(5 

kDa) (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol, 

5000)], Laysan Bio) along with 0.25 mg·ml−1 of DSPE-PEG(5 kDa)-NH2 (1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol, 5000)], Laysan Bio) was 

added to the supernatant. The resulting suspension was sonicated for 5 min and dialyzed 

against 1x phosphate buffer saline (PBS) at pH 7.4. These amine-functionalized SWNTs 

were conjugated with IRDye800 dye molecules. Briefly, the as-made SWNT solution was 

concentrated down to ~2 µM after removal of excess surfactant through 30-kDa centrifugal 

filters (Amicon) and was mixed with 0.1 mM IRDye800 NHS ester (LI-COR) dissolved in 

dimethylsulfoxide (DMSO). The reaction was allowed to proceed for 1 h at pH 7.4 before 

removing excess IRDye800 by filtration through the 30-kDa filters.

Sorting of LS nanotubes

A 1-cm diameter column filled with 20 ml of ally dextran-based size-exclusion gel 

(Sephacryl S-200, GE Healthcare) was used to perform diameter separation of HiPCO 

SWNTs. 2.5 mg of raw HiPCO SWNTs was sonicated in water with 1 wt% sodium cholate 

(SC) for 1 h, followed by ultracentrifugation at 300,000 g for 30 min. 80% of the 

supernatant was collected and diluted with same volume of 1 wt% sodium dodecyl sulfate 

(SDS) solution before adding to the gel column. Metallic SWNTs passed the column 

directly, while semiconducting SWNTs were trapped. Finally, a 0.6 wt% SC/0.4 wt% SDS 

mixed surfactant solution was added to wash out and collect the LS nanotubes.

NIR fluorescence spectroscopy of the SWNT-IRDye800 conjugate

NIR fluorescence spectrum was taken using a home-built NIR spectroscopy setup in the 

850–1650 nm region. The excitation light was provided by a 160-mW, 808-nm diode laser 

(RMPC lasers) and filtered by an 850-nm short-pass filter (Thorlabs), a 1000-nm short-pass 

filter (Thorlabs), an 1100-nm short-pass filter (Omega) and a 1300-nm short-pass filter 

(Omega). The excitation light was allowed to pass through the solution of SWNT-IRDye800 

conjugate in a 1-mm path cuvette (Starna Cells) and the emission was collected in the 

transmission geometry. The excitation light was rejected using an 850-nm long-pass filter 

(Thorlabs). The emitted fluorescence was directed into a spectrometer (Acton SP2300i) 

equipped with a liquid-nitrogen-cooled InGaAs linear array detector (Princeton OMA-V).

Mouse handling, surgery and injection

C57Bl/6 mice were obtained from Taconic Farms. All animal studies were approved by 

Stanford University’s Administrative Panel on Laboratory Animal Care. For induction of 

MCAO, an incision was made on the left common carotid artery (CCA) and a silicon-coated 

nylon filament was introduced into the left CCA and threaded forward into internal carotid 
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artery (ICA) until the tip occluded the origin of the middle cerebral artery (MCA). For 

induction of cerebral hypoperfusion, only the left external carotid artery (ECA) and common 

carotid artery (CCA) were ligated. The hair over the scalp was removed using Nair before 

tail-vein injection and imaging. All mice were anaesthetized before injection using 2 

L·min−1 O2 gas flow mixed with 3% Isoflurane. For comparative cerebrovascular imaging in 

different NIR sub-regions, a solution (200 µL) of 0.43 mg•mL−1 SWNT-IRDye800 was 

injected. For dynamic NIR-IIa imaging, a solution (200 µL) of 0.43 mg•mL−1 SWNT-DSPE-

mPEG without IRDye800 was injected. A 28-gauge syringe needle was inserted into the tail 

vein for injection. For steady-state imaging of the mouse brain, injection was done ~5 min 

before the mouse was placed on the imaging stage. For dynamic imaging, injection was done 

in the dark when the mouse was already placed on the imaging stage and the InGaAs camera 

started recording images continuously immediately after the nanotube solution was injected 

into the tail vein.

NIR fluorescence imaging in different sub-regions

A liquid-nitrogen-cooled, 320 × 256 pixel two-dimensional InGaAs array (Princeton 

Instruments) was used to take images in all sub-regions of NIR including the NIR-I, NIR-II 

and NIR-IIa regions. The excitation light was provided by an 808-nm diode laser coupled to 

a 4.5-mm collimator, and filtered by an 850-nm short-pass filter and a 1000-nm short-pass 

filter (Thorlabs), with an in-plane excitation power density of 140 mW·cm−2. The emitted 

fluorescence was allowed to pass through different filter sets to ensure the images taken in 

different NIR sub-regions. A lens pair consisting of two achromats was used to focus the 

image onto the detector with different magnifications (see SI for detailed information for 

selections of filter sets and lens sets).

Microscopic NIR-IIa imaging of cerebral vessels

High-magnification intravital imaging of cerebral vessels was carried out with a 160-mW, 

808-nm diode laser as the excitation source and two objective lens (4× and 10×, Bausch & 

Lomb) for microscopic imaging. The mouse with scalp hair removed was injected with a 

solution (200 µL) of 0.22 mg·mL−1 LS nanotubes and placed on a home-made stereotactic 

platform fixed on a motorized 3D translational stage with digital position readout (Newport). 

The resulting NIR photoluminescence was collected using the same 2D InGaAs camera in 

the NIR-IIa window as aforementioned. The depth of vessels was determined by recording 

the distance the 3D stage had travelled axially to the objective from focusing on the scalp 

surface. Snell’s law was applied to correct for the actual depth due to refractive index 

mismatch.8

Dynamic cerebrovascular imaging in the NIR-IIa window

The dynamic imaging setup was the same as the aforementioned NIR-IIa fluorescence brain 

imaging with lower magnification that covered the entire mouse head. The InGaAs camera 

was set to expose continuously with an exposure time of 100 ms, to which an 87.5-ms 

overhead time was added to result in a frame rate of 5.3 frames·s−1. The dynamic-contrast-

enhanced images were obtained by loading the first 100 consecutive frames with the 

MATLAB software for PCA analysis of arterial and venous vessels based on their 

haemodynamic difference.20,22,46

Hong et al. Page 8

Nat Photonics. Author manuscript; available in PMC 2016 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Imaging in various NIR sub-regions. (a) A fluorescence emission spectrum of SWNT-

IRDye800 conjugate in the range of 850–1650 nm under the excitation of an 808-nm laser. 

The emission spectra of IRDye800 and SWNT are plotted under different y axis scales to 

accommodate both into the same graph, due to the much higher fluorescence intensity of 

IRDye800 than SWNTs. (b) NIR fluorescence images of a capillary tube filled with SWNT-

IRDye800 solution immersed at depths of 1 mm (top) and 10 mm (bottom) in 1% Intralipid 

recorded in NIR-I, NIR-II and NIR-IIa regions respectively. (c) The extinction spectrum 

(black curve) and scattering spectrum (red curve, measured by subtracting water and 

Intralipid absorptions from the extinction spectrum, see Fig. S2) of 1% Intralipid in water 

with path length of 1 mm measured by UV-Vis-NIR spectrometer, along with reduced 

scattering coefficient profile (blue) of 1% Intralipid derived from literature.33
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Figure 2. 
In vivo mouse brain imaging with SWNT-IRDye800 in different NIR sub-regions. (a) A 

C57Bl/6 mouse head with hair removed. (b-d) Fluorescence images of the same mouse head 

in the NIR-I, NIR-II and NIR-IIa regions. The inferior cerebral vein, the superior sagittal 

sinus and transverse sinus are labeled 1, 2 and 3 in d, respectively. (e) Extinction spectra of 

scalp (red) and skull (blue) along with the water absorption spectrum (black). (f) Reduced 

scattering coefficients µs' of scalp skin (red), cranial bone (blue) and brain tissue (black) 

Hong et al. Page 13

Nat Photonics. Author manuscript; available in PMC 2016 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plotted against wavelength, based on the previously reported scattering properties for these 

tissues.8,35,36

Hong et al. Page 14

Nat Photonics. Author manuscript; available in PMC 2016 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Non-invasive, high-resolution NIR-IIa fluorescence imaging of mouse brain vasculature. (a) 

A photo showing the stereotactic microscopic imaging setup, where a red laser is used for 

alignment and shows the beam location. (b) A schematic showing the penetration of NIR-IIa 

fluorescence through brain tissue, skull and the scalp. (c) A photoluminescence versus 

excitation (PLE) spectrum of LS nanotubes in an aqueous solution. The 1.3–1.4 µm NIR-IIa 

region is shaded red. (d) A low-magnification cerebral vascular image taken with a field of 

view of 25 mm × 20 mm. (e) A cerebral vascular image of the same mouse head zoomed 
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into the left cerebral hemisphere, with a field of view of 8 mm × 6.4 mm. (f) A cerebral 

vascular image of the same mouse head taken using a microscope objective, with a field of 

view of 1.7 mm × 1.4 mm. The depth of these in-focus vascular features was determined as 

2.6 mm. (g) A zoomed-in image of a sub-region in f taken by a higher magnification 

objective, with a field of view of 0.80 mm × 0.64 mm. The inset shows the cross-sectional 

intensity profile (black) and Gaussian fit (red) along the yellow-dashed bar. (h-k) Two other 

high resolution cerebral vascular images with a field of view of 0.80 mm × 0.64 mm taken 

on another mouse (h&j), and their cross-sectional fluorescence intensity profiles (black) and 

Gaussian fit (red) along the yellow-dashed bars (i&k).
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Figure 4. 
Dynamic NIR-IIa fluorescence imaging of mouse cerebral vasculature. (a-c) Time course 

NIR-IIa images of a control, healthy mouse (Mouse C1). (d-f) PCA overlaid images 

showing arterial (red) and venous (blue) vessels of Mouse C1. (g-i) Time course NIR-IIa 

images of a mouse with MCAO (Mouse M1). (j-l) PCA overlaid images showing arterial 

(red) and venous (blue) vessels of Mouse M1. (m-n) Normalized NIR-IIa signal in the left 

(red) and right (black) cerebral hemispheres of Mouse C1 (m) and M1 (n) versus time. (o) 

Average blood perfusion of the left cerebral hemisphere of control group (n=3), MCAO 
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group (n=4) and cerebral hypoperfusion group (n=4), measured by NIR-II method (red) and 

laser Doppler blood spectroscopy (blue). Errors bars reflect the standard deviation of each 

group.
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