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������ � Various flight navigation strategies for birds have been identified at the large 9 

spatial scales of migratory and homing behaviors. However, relatively little is known about close�10 

range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, 11 

we tracked pigeons (C. livea) flying through an artificial forest of vertical poles. Interestingly, 12 

pigeons adjusted their flight path only ~1.5m from the forest entry, suggesting a reactive mode of 13 

path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the 14 

visual experience of the pigeons throughout obstacle flights. Assuming proportional�derivative 15 

(PD) control with a constant delay, we searched the relevant parameter space of steering gains and 16 

visuomotor delays that best explained the observed steering. We found that a pigeon’s steering 17 

resembles proportional control driven by the error angle between the flight direction and the 18 

desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated 19 

obstacle flights and showed that pigeons do not simply steer to the nearest opening in the 20 

direction of flight or destination. Pigeons bias their flight direction toward larger visual gaps when 21 

making fast steering decisions. The proposed behavioral modeling method converts the obstacle 22 

avoidance behavior into a (piece�wise) target�aiming behavior, which is better defined and 23 

understood. This study demonstrates how such an approach decomposes open�loop free�flight 24 

behaviors into components that can be independently evaluated.   25 

!�"�
���� pigeon flight; flight guidance; obstacle negotiation; path planning; PD controller 26 
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#�� $%��&'���$&%31 

Animals moving in the natural environment need to routinely avoid obstacles on route to a 32 

destination. This task becomes critically challenging when moving at high speeds, such as in 33 

flight. Many flying animals have evolved impressive abilities to avoid obstacle collisions (1). For 34 

example, echolocating big brown bats (Eptesicus fuscus) forage at night, avoiding obstacles while 35 

tracking flying insects, whereas diurnal goshawks (Accipiter gentilis) chase aerial preys through 36 

dense woodlands at high speed. Apart from these specialists, other flying birds and bats must also 37 

routinely deal with obstacles. For example, sparrows and pigeons have successfully colonized 38 

cities, which are highly three�dimensional (3D) environments, similar to their natural habitats (2). 39 

These birds maneuver around lampposts, buildings and vehicles with proficiency, relying on 40 

vision to navigate through their environment. Here, we examine guidance strategies that pigeons 41 

(Columba livia) use to successfully navigate cluttered environments using a combined 42 

experimental and modeling approach.  43 

Limitations of the visual system necessarily affect any visually guided locomotion. Similar to 44 

other birds at risk of aerial predators, pigeons have a wide >300° panoramic field of view for 45 

predator detection. The associated retinotopic trade�off limits a pigeon’s binocular field to ~20° 46 

(3�5). Binocular stereoscopic depth perception has been demonstrated in falcons, owls and 47 

pigeons, but only in close�range discrimination tasks (6�8). Hence, binocular vision is unlikely to 48 

provide depth sensing for flight. A pigeon’s broad panoramic visual field also reduces their 49 

overall visual acuity: pigeons can resolve up to 12 sinusoidal cycles/degree within their lateral 50 

visual field, which declines toward their frontal view, much less than predatory eagles (~140 51 

cycles/deg) and humans (~70 cycles/deg) (9). Although high resolution is important for distant 52 

target tracking (which raptors do routinely), it is not a requirement for flight control. Most insect 53 
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compound eyes have even worse visual acuity (<4 cycles/deg) (10), yet flying insects have quite 54 

robust flight control (11�15). Finally, in order to perceive rapid motion in flight, birds generally 55 

possess flicker fusion frequencies above 100 Hz (pigeon: 116�146Hz) (16). Taken together, these 56 

properties of pigeon vision suggest a more reactive approach to obstacle negotiation. In contrast 57 

to a conventional path�planning paradigm where sensory information is used to construct an 58 

internal model of the world for evaluation (17�19), we hypothesize that pigeons may react to 59 

obstacles over short distances and time scales based on local information and simple rules.  60 

Such a view of visual guidance is shared by others in the field. In particular, Warren and 61 

colleagues termed this “information�based control”, which they used to derive various behavioral 62 

models for humans navigating in virtual reality (20�23). These models treat goals as attractors and 63 

obstacles as repellers. The superposition of attraction/repellence potential fields continuously 64 

shapes steering, causing the locomotor trajectories to “emerge” (23). This �
������������(��	
� 65 

describes human goal�directed walking well (22) and also is a classic approach in reactive robotic 66 

obstacle avoidance (24�27). However the main limitation to this method (attractor�repeller) is the 67 

treatment of multiple goals and obstacles (28). For instance, if there are two goals affecting the 68 

agent (robot, human or other animal), the model might predict an average path that misses both 69 

targets. Similarly, an agent approaching three obstacles might steer head�on to the middle obstacle 70 

due to the average repellence from the two side obstacles. This so�called “cancellation effect”, as 71 

recognized by Fajen et al. (29), can be solved by differentiating the “valence” of different 72 

obstacles and goals. Indeed, it seems conceptually unlikely that a navigating agent would avoid 73 

all obstacles simultaneously or steer toward an average goal direction, in which no real goal exists. 74 

In practice, the agent only needs to guide movement through one opening (or gap) at a time. A 75 

natural alternative to the potential field method is to always aim for a gap (30). Although all 76 
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available gaps affect the gap selection process, once the choice is made the actual steering should 77 

be unaffected by the other, non�selected gaps. Here, we propose a new procedure for modeling 78 

avian obstacle flight by introducing the ���)��(���(��	
� with two underlying assumptions: 1) 79 

we treat obstacle avoidance as a series of gap aiming behaviors; and 2) we assume that the agent 80 

steers toward one selected opening (gap) at each instance and never attempts to simultaneously 81 

aim for multiple openings  Under these assumptions, obstacle flight becomes a piece�wise target�82 

aiming behavior, in which the selected gaps are the steering aims. 83 

In this study, we examine short�range guidance of pigeons flying through randomized sets of 84 

vertical obstacles. Under our proposed framework, the pigeon must first identify relevant 85 

obstacles and then select a suitable gap aim. A general strategy for gap selection may be 86 

decomposed into two concurrent and possibly competing objectives (31): maximizing clearance 87 

between obstacles and minimizing required steering (i.e. change in path trajectory). Whereas a 88 

bird should select the largest gap to maximize clearance, it should simultaneously select the gap 89 

most aligned with its flight direction in order to minimize steering. We refer this decision process 90 

as the �������� ����. Once the desired flight direction is chosen, the bird must implement the 91 

steering that changes the flight path. A ���������
���
���� that dictates the motor behaviors and 92 

ultimately the flight dynamics is needed to accomplish the required steering. Sensory and 93 

biomechanical delays exist for any motor controller. Here, we formulate the steering controller by 94 

simply combining the delays and steering dynamics into a generic proportional�derivative 95 

controller with a constant visuomotor delay.  96 

We strategically simplified the sensory task by presenting the pigeons with a vertical pole 97 

array of relatively short depth (Fig. 1), minimizing the birds’ depth perception challenge and 98 

inducing steering cues only about the yaw axis. The scale of the flight corridor also minimized the 99 
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global navigation challenge for the pigeon. The direction along the corridor is practically the 100 

direction of the destination (Fig. 1a). Using proportional�derivative (PD) control theory (32), we 101 

established a steering controller assuming that the pigeon steers to one gap at a time. We 102 

subsequently reproduced pigeon flight trajectories using several different guidance rules, each 103 

based on the same, established steering controller, with varying levels of perception noise. In 104 

particular, we ask whether pigeons prioritize clearance over steering minimization during the 105 

obstacle flights. 106 

*�����+�$����%'�+�,&'�107 

2.1.�Animal training and the obstacle course  108 

Seven wild�caught adult pigeons (Columba livia) were trained to fly through an indoor corridor 109 

without obstacles. The four birds that flew most consistently between the perches were selected 110 

for experiments. All pigeons were housed, trained, and studied at the Concord Field Station 111 

(Bedford, MA) according to protocols approved by Harvard University’s Institutional Animal 112 

Care and Use Committee. 113 

To study path planning and maneuvering flight in a cluttered environment, we challenged 114 

pigeons to fly between two perches (1.2 m high) through an indoor flight corridor (20 m long, 3 m 115 

high, 3 m wide) with an obstacle field located 10 m from the take�off perch (Fig. 1a). The 116 

obstacle field comprised a 3 × 3 m area over which 15 PVC poles (3.81 cm o.d.) were erected 117 

vertically in predetermined random distributions. In order to maintain the overall obstacle density 118 

while introducing random variations, random pole distributions were based on a standard grid, in 119 

which each pole had an equal probability of being placed at one of 5 positions: At the center 120 

position or at one of four corner positions ~30cm from the center position (Fig. 1b). For every 121 

obstacle flight, the poles were repositioned according to this randomizing procedure, so that the 122 
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pigeons experienced a new obstacle distribution for each flight. Each obstacle pole was digitized 123 

every flight to verify its placement. The walls of the flight corridor were lined with translucent 124 

white plastic sheeting to provide a homogenous visual environment. The front and rear borders of 125 

the obstacle field were guarded by 0.9m high paper to ensure the pigeon flight paths remained 126 

within a calibrated 3D volume (Fig. 1e).�127 

2.2.�Pigeon flight tracking 128 

Each pigeon carried two pairs of infrared, surface mount high�intensity LED markers (Vishay 129 

Intertechnology, Inc., Malvern, PA) for tracking purposes: one pair defined the head vector and 130 

one pair defined the body vector (Fig. 1c). These were securely strapped on the head and torso 131 

along with a battery (overall weight: 16.5 g). We limited the added components to less than 5% of 132 

the pigeon’s body mass to minimize the effect on maneuvering. Multiple views of the flight 133 

trajectories were obtained by five synchronized Photron high speed cameras (three SA3; two PCI�134 

1024, Photron USA, Inc. San Diego, CA) mounted on the ceiling, operating at 500Hz. This 135 

provided a calibrated volume covering the obstacle field and 5 m of the flight corridor leading up 136 

to the obstacle field (Fig. 1a). 3D reconstruction of the marker trajectories was achieved using 137 

DLTdv5 and EasyWand2 Matlab scripts (33). 138 

To establish the birds’ indoor flight characteristics, 8 flights per bird were recorded without 139 

obstacles (32 flights total). Following this, a total of 64 obstacle flights were recorded for novel 140 

obstacle distributions from the four birds, after training the birds with 5�8 obstacle flights. The 32 141 

initial flights without obstacles were used to establish a behavioral reference. From the 64 142 

obstacle flights, we used 8 flights per bird from the first three pigeons to tune the steering 143 

controller (24 flights). The remainder of the flights from the first three pigeons and ten obstacle 144 

flights from the fourth pigeon were used to test the guidance strategy simulations (10 obstacle 145 
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flights per bird). This data allocation allowed us to demonstrate the universality of the PD 146 

controller, as well as test for the robustness of the guidance rules simulations.    �147 

2.3.�Data processing and flight path analysis 148 

Pigeons’ body and head positions were computed from sampled 500 Hz 3D marker data. Because 149 

we were only interested in the body trajectory and the visual experience determined by the body 150 

velocity vector (the flight direction), head and body orientations were not computed for this study. 151 

Specifically, we used the rear head marker to compute in�flight visual information (i.e. obstacle 152 

angular position, angular velocities and distance), and the rear body marker (close to the estimated 153 

body center of mass) to derive the pigeon trajectory. The visual input data were down�sampled to 154 

100 Hz (or 10 ms time�steps) to approximate a pigeon’s flicker fusion frequency of 116�146 Hz 155 

(16). t = 0 was defined when the pigeon’s rear body marker crossed the entry line of the obstacle 156 

field. In order to generate continuous steering dynamics, we evaluated steering using the same 10 157 

ms time�step for all modeling procedures. 158 

-�� +./+�$�+%����+�����159 

Without obstacles, the four pigeons flew in straight lines near the central axis of the corridor (Fig. 160 

2a, light grey paths). When randomly distributed obstacles were introduced, pigeons deviated 161 

from the center straight path to avoid obstacles, by initiating maneuvers ~1.5m before the obstacle 162 

field (Fig. 2b, dark grey paths). Occasional head turns were observed during obstacle flights. 163 

However, previous work suggests that head turns are more relevant to visual stabilization than 164 

targeting during obstacle avoidance (34).   165 

Despite pronounced maneuvers, pigeon obstacle flight paths were only up to 8% longer than 166 

straight�line paths (Fig. 2c). Summed changes in flight direction over a flight, or total steering, 167 

ranged from 10° to 80° for obstacle flights (Fig. 2d). 87% of these obstacle flights contained <60° 168 
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of steering. Pigeons generally re�aligned their flight direction with the corridor central axis, which 169 

suggests a maximum of 30° steering to either left or right. The pigeons flew by obstacles with a 170 

clearance of 15.6±5 cm (referenced to the bird’s body midline), with a minimum of 9.3 cm. Given 171 

that a pigeon’s torso is ~10 cm wide, this represents a surprisingly tight clearance for obstacle 172 

avoidance.    173 

Cruising speeds of pigeons exceed 10 m/s in open space (35). In our 20 m indoor flight 174 

corridor, however, pigeons only achieved an average speed of 6.95±0.64 m/s (Fig. 2e). When 175 

obstacles were introduced, pigeons reduced their average flight speed to 3.86±0.52 m/s and 176 

increased their wingbeat frequency from 6.58±0.63 Hz during straight corridor flights (Fig. 2f) to 177 

7.95±0.59 Hz when negotiating obstacles, a typical wingbeat frequency for maneuvering flights 178 

(36). This higher frequency likely satisfied the additional power demand of slower flight and 179 

increased maneuverability by providing more opportunity for changing flight direction. Without 180 

obstacles, the four pigeons maintained flight altitude at 88.1±3.3cm, 111.1±4.8cm, 63.5±2.3cm, 181 

and 78.0±1.9cm respectively. Maneuvering through the obstacles, the four pigeons flew at similar 182 

heights but displayed more altitude fluctuation (75.8±42.5 cm; 103.7±41.8 cm; 106.1±45.6 cm; 183 

110.7±39.4 cm). However, given that the flight negotiation task was to steer around vertical 184 

obstacles, we ignored these altitude fluctuations and analyzed only the horizontal components of 185 

the flight trajectories for developing and evaluating the following guidance modeling work.  186 

0�� /$1+&%&2�����+3�$1,��&'+�187 

According to our framework, we consider obstacle avoidance behavior as two levels of control: 188 

the �������� �
���
����, which directly produces the flight trajectories, is embedded within an 189 

outer ������������ loop that determines the gap selection and thus steering direction (Fig. 3a). 190 
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In the following sub�sections, we introduce each component and the underlying assumptions of 191 

the model.  192 

4.1.�The attention zone 193 

To limit the parameter space, we first considered only 30° on either side of the pigeon’s flight 194 

direction as obstacles to which the pigeon must attend. Since most flights (87%) exhibited <60° 195 

total turning (~30° left or right) (Fig. 2d), we assumed that pigeons only considered steering 196 

within that 60° zone centered about their flight direction (Fig. 3b, solid lines). We estimated the 197 

effective range of this “attention zone” by considering the typical response time of the looming 198 

sensitive neurons of 0.48 s (37) in the pigeon’s tectofugal pathway (38). For the free�flight indoor 199 

flight speed (6.95 m/s) of the pigeons in our study, 0.48s converts into a detection range of 3.34 200 

m. Because the obstacle array was only 3 m in depth, we assumed that the pigeon could 201 

practically attend to all obstacles within the specified 60° attention zone, once it arrived at the 202 

obstacle forest.�203 

4.2.�Gap aiming behavior and side wall avoidance 204 

There is some established evidence regarding gap aiming behaviors in birds, especially in the 205 

context of flying through tight spaces. Budgerigars balance contra�lateral optical flow when 206 

choosing a flight path through narrow spaces (39). This is consistent with aiming at the angular 207 

center between two poles when flying through a gap. Thus, we represented potential steering aims 208 

by the angular centers (and not the geometric center) of available gaps (Fig. 3b, dashed lines). 209 

This assumption discretized the steering aims into a handful of gap choices. In addition, the flight 210 

corridor had side�walls with homogeneous visual texture, which the pigeon clearly could see (as 211 

observed during training). In order to impose this boundary constraint in the guidance model, we 212 

represented the side�walls as two dense arrays of vertical obstacle poles spaced 20 cm apart (Fig. 213 
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3b). These virtual obstacles created extremely small visual gaps that the model pigeons would 214 

never attempt to fly through.�215 

4.3.�Steering controller approximation 216 

To test and compare gap selection strategies, we first identified a steering controller that captured 217 

the steering dynamics of the pigeons under the experimental conditions. We incorporated 218 

visuomotor delay in this phenomenological model. Even though such delay is sometimes 219 

negligible in low�speed locomotion such as human walking (23), or tracking a distant target such 220 

as prey interception by raptors (40), it is likely non�trivial for a pigeon in flight through a 221 

relatively densely cluttered environment. According to the convention in flight guidance (41), we 222 

identified the pigeon’s flight direction angular velocity  as the control variable and 223 

constructed a simple proportional�derivative (PD) controller with a visuomotor delay τd and three 224 

constant steering gains (Fig. 3c): the proportional gain for the steering aim KP, the derivative gain 225 

for the steering aim KD and the stabilizing gain for self�motion KS. This steering controller is 226 

given by: 227 

, (4.1) 228 

where t is time and θpigeon is the flight direction. θ is the angular deviation from the steering aim 229 

θaim  given by: 230 

 ,        (4.2) 231 

Similar controllers (frequently implemented without the derivative terms) have been applied to 232 

houseflies (42), blowflies (43), bats (44), and tiger beetles (Gilbert et al, in preparation). 233 

However, these controllers were developed in the context of pursuit or flight stabilization, in 234 

which the animal has a clear steering aim (θaim). In the context of obstacle negotiation, however, 235 

both the controller parameters and steering aim need to be determined. Consequently, here we 236 
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first determine the steering controller parameters with a PD controller tuning procedure and 237 

subsequently test between several potential guidance rules by means of simulations. �238 

4.4.� PD controller tuning 239 

Unlike in a conventional controller tuning process, our parameters for the steering controller were 240 

determined without a priori knowledge of the steering aims. Instead, our controller tuning relied 241 

on a fitting procedure using all possible candidate gaps. In essence, we tested every possible 242 

combination of gain�delay on every possible gap steering aim. This was done by first imposing a 243 

specific set of controller parameters (three gains and one delay) for one particular flight. Gap 244 

angular centers that fell within the attention zone (±30
o
 of current flight direction) were identified 245 

as candidate gaps. At each time step (10 ms), the angular centers of all candidate gaps were 246 

determined. The specific set of gains and delays were then applied to each candidate gap angular 247 

center to predict the necessary steering angular velocity, which was in turn compared with the 248 

observed pigeon angular velocity. We picked the candidate gap that gave the minimum deviation 249 

for that time step and proceeded to the next time step. The average deviation over the entire 250 

trajectory became a fitting index for this set of controller parameters. We repeated this process for 251 

every possible combination of the four controller parameters within the relevant ranges (21 delays, 252 

21 proportional gains, 21 derivative gains, and 21 stabilization gain values; yielding 194481 sets 253 

total). To tune the controller that governs turning, time steps in which there was no appreciable 254 

steering (<10 deg/s) were excluded, covering maneuvering sections from 0.5m before entering the 255 

forest to 0.2m before exiting the forest. This tuning process resulted in a four�dimensional map of 256 

the PD controller fit in the parameter space for each flight and the weighted average (weighted 257 

flights by the time steps with steering) across trails gave the animal specific map. From this map 258 
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we could extract the controller parameters that best described the pigeon’s steering (see Modeling 259 

Results for details). 260 

4.5.�Guidance rule simulations 261 

To study guidance rules, we used the determined steering controller (derived from pooled data 262 

from three pigeons) to simulate pigeon flights based on different guidance rules. The complete set 263 

of rules used by pigeons for obstacle flight guidance likely includes many behavioral variables 264 

and their interactions. Here, we merely ask which of the following two navigation objectives is 265 

more important: maximizing clearance or minimizing steering. We tested three simple rules for 266 

gap selection: 1) choosing the gap most aligned with the flight direction; 2) choosing the gap most 267 

aligned with the destination direction; or 3) choosing the gap with the largest visual size (Fig. 5a).  268 

A simple way to test these different guidance rules is to apply the steering controller (with the 269 

parameters from Table 1) with each rule and simulate the pigeon’s flight paths given only the 270 

initial conditions (position, flight direction and speed). In each time step, the guidance rule 271 

determined the steering aim, which was subsequently implemented by the steering controller that 272 

determined the steering angular velocity as described in Eqn 4.1. The flight speed was assumed 273 

constant at the average speed of the particular flight being simulated. The simulations produced 274 

some trajectories that closely matched the actual pigeon obstacle flights (blue trace in Fig. 5d). 275 

Others led to different navigation paths (green trace in Fig. 5d). Based on the modeled pigeon 276 

flight trajectories, we quantified the model match to observed flight paths by evaluating the poles 277 

which the model pigeon ‘correctly’ passed by on the observed side. We then quantified the 278 

percentage of flights that each guidance rule predicted (termed ��������4� �
���) from 279 

simulations of a separate set of 40 pigeon obstacle flights. For clarity, we define one ��(�����
�280 
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��� as the ensemble of these 40 flights simulated under the same condition, such as a particular 281 

guidance rule. Each ��(�����
���� thus produced a predictive power value. 282 

4.6.�Obstacle repellence model as a reference  283 

For comparison, we reconstructed a more conventional obstacle repellence model in relation to 284 

the gap�aiming paradigm proposed here. In order to do so, we established an obstacle repellence 285 

function similar to (23), which can fit into our PD controller (equation 4.1):  286 

   (4.3) 287 

where αi is the desired steering aim relative to the obstacle to avoid, θi is the angular location of a 288 

particular obstacle, Ri is the distance from this obstacle. We only considered this repellent 289 

function when the obstacle was within the avoidance attention zone thresholds (Fig. 5b). This 290 

avoidance attention zone had the same angular threshold (θth = ±30°) as the gap�aiming model. 291 

We empirically varied the range threshold Rth  (from 1.5m to 0.25m) in the guidance rule 292 

simulation and found the best range to be 0.5m. If an obstacle sat at 30° to either side and 0.5m 293 

away from the model pigeon, αi became and the steering aim became the pigeon’s 294 

flight direction (no steering). As the obstacle distance and angle decreased, αi increased rapidly 295 

and drove the steering aim away from the obstacle(s). We summed the contributions from all 296 

obstacles within the attention zone to find the steering aim: 297 

  (4.4) 298 

We used this model to establish a baseline comparison with respect to our gap aiming simulations.  299 

4.7.�Sensory uncertainty 300 

Deterministic behavior models with exact inputs often fail to capture real�world decision 301 

processes, which involve tolerating sensory uncertainties. For instance, the pigeon might choose 302 
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either of two gaps with similar qualities in real�life due to sensory uncertainty, but the model will 303 

always choose the slightly better one consistently. To address this discrepancy, we introduced 304 

random noise into the sensory information of guidance rule simulations, following the approach 305 

of Warren and Fajen (23). For our application, we assumed a Gaussian distribution of the obstacle 306 

angular position centering at the actual angular position of each obstacle (Fig. 5c). At each 307 

modeling time step, we randomly sampled from this Gaussian distribution as the sensory input of 308 

each obstacle position. We varied the standard deviation of this Gaussian distribution from 0° (no 309 

sensory noise) to 30° (sufficient noise that obstacle locations are virtually unknown) at 1° 310 

increments to determine whether the introduction of noise resolved this modeling discrepancy. To 311 

obtain statistics for the effect of sensory noise, we ran each sensory noise condition 100 times for 312 

each simulation set. From these 100 simulation sets, we extracted the mean and maximum 313 

predictive power (Fig. 5e2g).  314 

 315 

5���&'+�$%1�+�����316 

The steering controller tuning process generated a four�dimensional steering deviation map in the 317 

parameter space. We found the minimum deviation in this map and generated heat�maps for two 318 

parameters at a time in order to examine the gradient around this minimum in the 4D parameter 319 

space (Fig. 4). The proportional controller was broadly tuned with the gain centered at ~4 s
�1

 that 320 

varied only slightly across different delays (Fig. 4, column 1). In contrast, the derivative term 321 

showed much less variation with respect to visuomotor delay, being centered at ~130ms (Fig. 4, 322 

column 2). The stabilizing gain (negative by definition) showed a small contribution to the 323 

steering (Fig.  4, column 3).  324 

To extract parameter values from the controller tuning maps, we first recognized the 325 

pronounced visuomotor delay selection in the derivative controller map. We averaged the delay 326 
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values across the range of derivative gains reported in (Table 1). From this delay value, we found 327 

the corresponding proportional gain (Fig. 4, column 1) for each pigeon individually and for the 328 

three�pigeon�pooled data set. This analysis showed that the controller was dominated by the 329 

proportional term, with negligible derivative gain and small stabilizing gain (Table 1). These PD 330 

controller parameters were then used in the steering simulations. We could also evaluate the 331 

steering controller tuning by re�running the tuning procedure with these near�optimal controller 332 

parameters. As before, the steering aim could be any gap that gave the most consistent fit given 333 

these parameters. We plotted the observed flight angular velocity of individual pigeons against 334 

the model predicted angular velocity derived for each pigeon. The resulting regressions showed 335 

extremely strong fits (R
2 

= 0.97 for all cases; Fig. 4, column 4). The pooled data for all three 336 

pigeons showed similar fits for controller tuning and predictive performance as for the individual 337 

data (Fig. 4, row 4).   338 

The guidance rule simulations produced interesting predictive power tuning curves with 339 

respect to sensory uncertainty (Fig. 5e2g). For clarity, we present the smoothed data for both the 340 

mean predictive power (thick solid traces) and maximum predictive power (dashed traces). The 341 

behavior of the simulation was similar for the three pigeons on which the steering controller 342 

tuning was based, as well as for the fourth pigeon. Thus we considered the pooled steering 343 

controller parameters generic to pigeon flight under the experimental conditions. The 344 

conventional obstacle avoidance paradigm produced a best mean predictive power of 58% at a 345 

threshold reaction range of 0.5m (Fig. 5e). As the sensory uncertainty increased, the predictive 346 

power decreased steadily. The maximum predictive power never exceeded 65%. With 347 

inappropriate reaction range (e.g. 1m), the mean predictive power started below 30% and 348 

approached 40% with increasing sensory uncertainty. A comparable set of simulations using the 349 
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gap�aiming paradigm would be a random gap selection model with a minimum gap size threshold 350 

(Fig. 5f). The best mean predictive power for the random gap model with a 5
o
 threshold averaged 351 

close to 60% at zero sensory uncertainty and exhibited a maximum of ~70%. The predictive 352 

power dropped quickly with increasing sensory uncertainty. Simulations with different gap size 353 

threshold values all converged to a predictive power of ~44% at maximum sensory uncertainty.  354 

Instead of randomly selecting gaps above a certain size threshold, we individually applied the 355 

three different gap selection rules (Fig. 5a) as previously described. At zero sensory uncertainty, 356 

the flight direction aim strategy predicted 32.5% of the flights, whereas the destination aim 357 

strategy predicted 42.4% (Fig. 5g), showing that these gap selection rules perform worse than 358 

random gap selection. The maximum predictive power of these two gap selection rules 359 

approached 44%, similar to that observed for random gap selection (Fig. 5f). In contrast, the 360 

largest gap strategy predicted 70% of the flights accurately. With increasing sensory uncertainty, 361 

the maximum predictive power approached 80% (at ~6
o
 noise). The largest gap selection strategy 362 

(Fig. 5g) therefore performed significantly better than any of the other strategies (including those 363 

for obstacle avoidance (Fig. 5e). 364 

6�� '$�����$&%365 

6.1.�Flight trajectory planning versus reactive navigation 366 

We observe that pigeons can negotiate through a forest�like vertical obstacle field with <60 cm 367 

typical gap spacing at near 100% proficiency. Despite prior training and repeated trials recorded 368 

to negotiate the obstacle field, the pigeons showed no evidence of maneuvering until 1.5 m before 369 

the obstacle field (Fig. 2a, b) and tolerated frequent wing�obstacle collisions. We did find that 370 

pigeons fly slower and use higher wingbeat frequencies during obstacle flights, compared to 371 

unobstructed flights (Fig. 2e). These flight changes likely reflect the demand for enhanced 372 
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maneuverability to steer between obstacles. In general, flight paths through obstacle fields were 373 

only 8% longer than straight paths, and 87% of these flights exhibited <60° of total steering (Fig. 374 

2d). 375 

The lack of steering could be an energetic strategy or a consequence of the bird’s relatively 376 

fast entry speed. However, once in close range of the obstacles, pigeons showed deliberate 377 

steering. Pigeons also timed their wingbeats or folded their wings to avoid contact with nearby 378 

obstacles. The closest fly�by relative to the bird’s midline body axis was measured at 9.3 cm 379 

(providing ~4.3 cm clearance from the obstacle to the side of the body). These observations 380 

suggest that, under our experimental conditions, obstacle flight is a reactive behavior that relies 381 

on local information, rather than following a pre�planned trajectory. 382 

6.2.�Proportional versus derivative control 383 

The steering controller tuning showed that obstacle negotiation is best described as proportional 384 

control with a constant delay. The visuomotor delay of ~130 ms (Table 1) was comparable to, yet 385 

slightly greater than, the delay measured for the pigeon’s peak flight muscle activity after the 386 

firing onset of looming�sensitive cells (38). The visual angular velocities of obstacles did not 387 

seem to affect this control. This is an interesting and somewhat unexpected result given that most 388 

flying animals use angular velocity�based optical flow to assess their flight states, such as ground 389 

speed and drift (45�47). However, during flights through the obstacle ‘forests’ employed in our 390 

experiments, the angular drifts of obstacles were fast and highly nonlinear. Consequently, our 391 

results suggest that pigeons focus on the angular positions of the obstacles, rather than their 392 

angular velocities induced by the bird’s self�motion. This feature distinguishes obstacle flights 393 

from normal cruising flight, particularly at altitude, when most optical flow arises from distant 394 

visual features. 395 
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 396 

6.3.�     The effect of sensory noise 397 

An effective obstacle negotiation strategy must tolerate some sensory noise. In principle, the 398 

increase of sensory uncertainty should reduce the mean predictive power (Fig. 5f, blue trace). 399 

However, in the case of a weak or poor guidance rule, increasing the sensory uncertainty allows 400 

the model to occasionally obtain correct steering aims by chance. This leads to an increase of 401 

mean predictive power with sensory uncertainty (Fig. 5f, magenta trace). When the sensory 402 

uncertainty increases dramatically, the model loses any knowledge of obstacle position, leading 403 

all guidance rules to converge to a baseline predictive power that represents random steering. 404 

These simulated flight trajectories are generally straight since it is equally probable to steer left or 405 

right. As a result, the baseline predictive power is slightly below 50% (almost half of the flights 406 

match the observed trajectories, which were generally fairly straight). Interestingly, in the case of 407 

the largest visual gap strategy, the maximum predictive power actually increases with a sensory 408 

uncertainty of up to 6°, after which predictive power decreases as expected. Closer inspection 409 

reveals that the increase in predictive power at low sensory uncertainty is associated with 410 

instances of choice degeneracy. Specifically, when two gaps are close in visual size, the model 411 

lacking sensory uncertainty always aims for the slightly larger gap. However, this may not be the 412 

actual choice of the pigeon due to the naturally present sensory uncertainty. These instances are 413 

captured by the maximum predictive power. Based on this, our simulations indicate that pigeon 414 

obstacle negotiation can be best described by a largest visual gap aiming strategy (given the 415 

obstacle field is short) with a sensory uncertainty of ~6°. 416 

 417 

6.4.� Steering to a gap as a navigational objective for obstacle negotiation 418 
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Modeling obstacle negotiation as avoiding individual obstacles (e.g. 20�24) has a major difficulty 419 

when more than two obstacles must be considered at the same time (high obstacle density), in 420 

which the summation of the obstacle repulsion may lead to unreasonable guidance. This problem 421 

can be avoided by limiting the avoidance attention to a small region in the flight direction, as we 422 

demonstrate here. However, in a dense obstacle field, in which multiple obstacles must often be 423 

attended to, the superposition of multiple repellent effects ultimately degrades the predictive 424 

power of an obstacle avoidance model. As described here, we instead treat obstacle negotiation as 425 

a gap�aiming behavior. This allows us to transform the avoidance problem (which can be 426 

challenging to define) to a guidance problem. There are two major advantages to this alternative 427 

approach for phenomenological modeling of animal guidance behaviors. First, the local minima 428 

of the steering potential field due to superposition of conflicting obstacle repellence no longer 429 

exist. The agent selects an opening at any given time and, when there is no immediate need to 430 

steer, aims for the destination. Second having one steering aim at any given time enables PD 431 

controller tuning and allows separation of the fundamentally different guidance rule and the 432 

steering controller. The guidance rule comprises decision criteria, which dictate where the agent 433 

chooses to go, whereas the steering controller represents the mechanics and skills that allow the 434 

agent to implement the steering. This separation allows for examination of different guidance 435 

rules for one individual and for comparison of the same guidance rule in different individuals. 436 

Different individuals may share the same guidance rule, but may have differing steering ability.  437 

The gap�aiming method has additional benefits in practice. For example, the attention zone 438 

can incorporate steering as well as the sensory constraints of an agent. Gap�aiming is also 439 

fundamentally safe, because the agent always heads toward a safe direction and not just turns 440 

away from potential obstacles. A very similar gap aiming model has been implemented on a 441 
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robotic vehicle with great success (30). In essence, we methodically decompose obstacle flight 442 

into a well�defined target reference�point and a controller, so that we can apply what has been 443 

learned from studies of target aiming/pursuit (21, 48). 444 

6.5.�Modeling animal obstacle flights 445 

Obstacle flight is perhaps more difficult to model than other flight behaviors, such as fixation or 446 

optomotor responses, largely because it requires the animal to make consecutive decisions. Our 447 

study shows that a simple strategy of aiming to the largest visual gap seems to capture the 448 

pigeons’ obstacle flight behavior. However, such a simple strategy is likely only one of many 449 

decision criteria. Nevertheless, in the short obstacle field setting of our experiments, this strategy 450 

dominated the steering behavior. Most decision processes by an animal involve the integration of 451 

multiple behavioral parameters and sensory inputs. Optimal control theories are powerful tools 452 

that can be used to interpret animal behavior in relation to motor control and trajectory planning 453 

(49). In general, this approach involves evaluating a cost function that contains all variables 454 

relevant to the behavior and determining the optimal output based on some weighting of these 455 

variables. Modeling guidance, therefore, may well require construction of a decision function, in 456 

which most, if not all possible decision criteria (e.g. obstacle identification, visual gap size, 457 

destination direction, flight direction, steering bias, as well as internal states of the animal), are 458 

included (with different weights) to determine the steering decision. A good example of such an 459 

approach is the “open space algorithm” previously proposed to describe the guidance strategy 460 

used by echolocating bats to fly through an obstacle field (50, 51). This algorithm divides 360 461 

degrees into an arbitrary number of steering directions and computes the desirability of each 462 

direction based on a target direction and all detected obstacles. Then, a so called “winner�take�all” 463 

process selects the direction with maximum evaluation. This is similar to our approach, in that the 464 
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agent never steers to a summed direction of all the steering directions considered but instead only 465 

steers to a single “winner” direction. Using such a framework to integrate multiple decision 466 

criteria might be something worth�pursuing in the future.   467 

Another inherent challenge in studying obstacle flight is the treatment of free flight data. Due 468 

to the difficulty in providing full in�flight sensory feedback, virtual reality does not always work 469 

for complex flight behaviors. Interpreting free flight data is challenging because, although the 470 

behavioral objective of avoiding obstacles is clear, the steering aims are far less so. Additionally, 471 

under free flight conditions, animals generate sensory input via self�motion, making it difficult to 472 

independently manipulate and evaluate the visual stimuli experienced by the flying animal. Our 473 

current study provides a new modeling procedure for describing obstacle negotiation in a flying 474 

bird. It does so by first extracting the steering controller from the observed flight behavior and 475 

then testing different guidance rules by means of simulation�observation comparison. Such a 476 

framework was enabled by treating the obstacle negotiation as a gap aiming behavior instead of 477 

an obstacle avoidance behavior. The results not only help identify the visuomotor control 478 

properties of obstacle flight in birds, but also may inspire simple ways to develop real�time 479 

controllers for guiding flying robots through cluttered environments (52).  480 

 481 
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 595 

  596 

Table 1.  Steering controller tuning results for pigeon obstacle flights.  597 

 
Visuomotor  

delay (ms) 

Proportional 

gain (s
�1

) 

Derivative 

gain 

Stabilizing 

gain 

Controller 

fit (R
2
)

 

Pigeon 1 161±8.8 4.31 Irrelevant <1 0.97 

Pigeon 2 159±6.3 4.56 Irrelevant <0.5 0.97 

Pigeon 3 120±5.7 4.95 Irrelevant <0.5 0.97 

Pooled 134±5.0 4.74 Irrelevant <0.5 0.97 

598 

599 

3�����#�&��������4
����������	��
����
����(
��
���������� (a) Pigeons were trained to fly 600 

between two perches located at either end of a 20 m indoor flight corridor. An obstacle ‘pole forest’ was 601 

erected 10m from the take�off perch to elicit obstacle negotiation. Five high�speed cameras captured the 602 

flight trajectories (green section) throughout the entire obstacle forest, including 5 m of the approach. (b) 603 

Starting from a standard grid (red dots), for each flight obstacles were randomly assigned one of five 604 

positions (the grid center or one of four orthogonal locations 0.3 m from the grid center (illustrated by red 605 

arrows). (c) Four 2.4 mm LEDs were attached to the pigeon in combination with a small battery�pack (16.5 606 

Page 25 of 34

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For R
eview

 O
nly

Obstacle flight by pigeons  H-T Lin et al. p. 26 

g total) to facilitate positional tracking of the head and body. (d) 3D flight trajectories were reconstructed 607 

from the high�speed videos. An example trajectory (green trace) is marked every 200 ms (blue circles). To 608 

model steering through the obstacle field, we considered a section of the flight from 50 cm in front of the 609 

obstacle field to 20 cm before the pigeon left the obstacle field (blue arrow). (e) 3D head positions and 610 

pole�distributions were used to reconstruct the in�flight visual motion of obstacles with respect to the 611 

pigeon’s head (and eyes). The modeling process assumed that pigeons always aimed toward visual centers 612 

of gaps.     613 

3�����*��	�������������
�����
�
�����������	��(a) The pigeons flew straight, close to the corridor 614 

midline in the absence of obstacles (light grey traces). When challenged with obstacles (dark grey traces), 615 

flight trajectories diverged within the obstacle field. (b) Steering was first observed 1.5 m in advance of 616 

obstacles, determined when the standard deviation (dark grey dash lines) and the limit (dark grey solid 617 

lines) exceeded control trajectories (light grey dash lines and solid lines). (c) Flight trajectories without 618 

obstacles were extremely straight over the 6 m calibrated section of the flight corridor, with a normalized 619 

path length of 1.00+0.002. Obstacle flights were slightly longer, with a normalized path length of 620 

1.03±0.025.  The path length was normalized to the straight�line reference. (d) Control flights normally 621 

contained <5° of total steering; whereas obstacle flights involved total steering summing up to ~80°. 622 

However, 87% of obstacle flights contained <60° of total steering (thick arrow). (e) Flight speed was 623 

reduced 44.5% from 6.95±0.64 m/s to 3.86±0.52 m/s, and wing�beat frequency (f) increased by ~21% from 624 

6.58±0.63 Hz to 7.95±0.59 Hz when pigeons flew through the obstacles. 625 

3�����-��
���������(��
���
�����
�
����������
�����
��(a) The pigeon’s obstacle negotiation is 626 

expressed as a feedback control system with a steering controller embedded within a guidance rule (gap 627 

selection). The model determines a steering aim at each time step based on a guidance rule. Gap aiming 628 

behavior suggests that this aim is represented by one of the available gaps in the obstacle field, which then 629 

becomes the reference for the steering controller. The steering controller subsequently generates a steering 630 

command based on a given set of proportional and derivative gains. After a given visuomotor delay, the 631 
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steering is implemented under the influence of steering inertia. (b2d) The obstacle navigation behavior can 632 

be broken down into three subsequent steps: Obstacle detection, steering decision and steering 633 

implementation. (b) For each time step relevant obstacles are identified within a given attention zone, 634 

establishing the available gaps (dashed lines). The model pigeon focuses on those that fall within ±30° of 635 

the flight direction, which the model considers its ‘attention zone’ (solid lines; see texts for details). The 636 

side�walls were modeled as very dense rows of obstacles (black squares). (c) Depending on the guidance 637 

rule, one of the available gaps is selected as the steering aim. The deviation angle θ and its derivative are 638 

calculated based on flight direction and the steering aim. (d) The steering controller determines the amount 639 

of steering that occurs after the visuomotor delay τd.  640 

3�����0����������
���
����������� Tuning was based on the average deviation between model�641 

predicted and observed flight directions, determined every 10 ms time step for the best steering aim, for all 642 

possible combinations of gains and delay, and for all obstacle flights. To make the flight controller 643 

independent of the guidance rule, the tuning process assumed that the pigeon always aimed to one of the 644 

available gaps without imposing an a priori rule on gap selection, but instead selected the gap that resulted 645 

in the best fit with the observed flight path. The proportional controller was broadly tuned with a minimum 646 

deviation band centered about a gain of ~4 s
�1

 (column 1). For the derivative control, however, a 647 

visuomotor delay of ~130 ms was strongly selected but with a broadly tuned derivative gain (column 2). 648 

We implemented steering inertia as a stabilizing term. The stabilization gain is, by definition, negative and 649 

is generally quite small (column 3). We extracted the controller parameters that provided the best fit to the 650 

observed data; these are presented in Table 1 (see text for details). We then demonstrated that pigeon 651 

obstacle flights can be modeled as aiming to a gap by regressing the observed angular rate of change of 652 

flight direction against that predicted by the best fitting controller parameters. The steering controller 653 

predicted the observed steering extremely well (R
2
 0.97 for all four cases; column 4), under the paradigm 654 

of gap aiming.   655 
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3�����5�/���
�������	�������	����	��
����������������� (a) Based on the gap aiming paradigm, 656 

we proposed three potential guidance rules: 1) steer to the gap closest to the destination direction (red); 2) 657 

steer to the gap in the existing flight direction (magenta); or 3) steer to the largest visual gap (blue). (b) To 658 

establish a reference for our gap aiming paradigm, we reconstructed a conventional obstacle repellence 659 

model with a variable range attention zone (marked by dashed lines), in which the repellent effects from all 660 

obstacles within that threshold range and angle were summed. (c) To provide the simulations with more 661 

realistic sensory information, we incorporated sensory uncertainty by assuming a Gaussian distribution 662 

centered at each obstacle position for the model to sample from. The standard deviation of this Gaussian 663 

distribution was varied to test each steering strategy across a range of noise levels. (d) We simulated 40 664 

pigeon flights (not used for steering controller tuning) given only the initial conditions (i.e. body position, 665 

flight direction, entry speed) 0.5m before the obstacle field. Some simulations recapitulated the observed 666 

flight trajectories (blue trace), and some did not (green trace). We quantified the percentage of flight 667 

trajectory matches for each guidance rule in each simulation set (40 flights). To examine the effect of 668 

sensory uncertainty, we ran each simulation set 100 times under each sensory uncertainty condition. (e) 669 

We varied the threshold range of the obstacle repellence model and found that a threshold of 0.5 m yielded 670 

the greatest mean predictive power of 58% with zero noise (solid blue line). The corresponding maximum 671 

predictive power (blue dashed line) reached 64% at 6° sensory uncertainty. The obstacle repellence 672 

model’s predictive power was lower when reacting to the obstacles too late (<0.25m) or too early (<1m).  673 

(f) The gap aiming navigational paradigm requires that pigeons always aim to a gap between two obstacles. 674 

In this set of simulations, the modeled pigeon randomly aims to a gap over a given angular size threshold. 675 

As the threshold increases, the predictive power increases for sensory uncertainty ranging from 0 to 20
o
, 676 

signifying the importance of gap size in the decision making process. (g) Maintaining the gap size 677 

threshold at 5°, we ran simulations using the three basic guidance rules described in (a), The destination 678 

gap rule and flight direction gap rule both underperformed compared to random gap selection as in (f). The 679 

maximum predictive power of those simulations where the model pigeons aimed for the largest visual gap, 680 
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however, approached 80% around a noise level of 6°, outperforming the alternative gap selection rules, 681 

random gap selection (f), and the obstacle repellence model (e). 682 

 683 
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