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Macrophages and their classification 
Since their initial description in the late 19th century, the role of 
macrophages in inflammation and disease has been studied in 
depth; however, owing to their plasticity and tissue-specific func-
tions, much remains to be defined. Macrophages are unique in 
that they are found in virtually all tissues and carry out diverse 
physiological roles integral to tissue homeostasis: phagocytosis 
of cellular debris and microbes, tissue repair, and the mount-
ing of immune responses through cytokine production (1). With 
advancement in lineage tracing techniques in recent years, it is 
now understood that there are two major populations of macro-
phages: tissue-resident macrophages (TRMs), which are seeded 
early in fetal development, and monocyte-derived macrophages 
(MDMs), which, as the name suggests, are derived from the dif-
ferentiation of monocytes when they exit the circulation into tis-
sue. Both TRMs and MDMs act similarly as phagocytic cells that 
can mount an immune response while simultaneously promoting 
repair and homeostasis. However, TRMs have the capacity for 
self-renewal and take on specific roles and characteristics depend-
ing on tissue type. TRMs can be identified via shared expression 
signatures independent of tissue type in mice (e.g., CD64 and 
MerTK) but can be further marked by tissue-specific gene expres-
sion signatures (e.g., F4/80+Clec4F+ Kupffer cells in the liver; 
TRAP+CD61+ osteoclasts in bone) (2–5).

In contrast to TRMs seeded during development, MDMs are 
primarily derived from hematopoietic stem cells in the bone mar-

row and spleen, which differentiate into monocytes, then macro-
phages, in the presence of specific signals. In steady state, MDMs 
exist in low levels within tissues and are replenished through 
monocyte recruitment and differentiation via growth factors like 
macrophage colony-stimulating factor (6, 7). A subset of classical 
monocytes is ready to be recruited into the subendothelial space 
upon the first sign of inflammation or injury. These monocytes are 
marked by high expression of Ly6C (in mice) or CD14 (in human) 
and, depending on the stimulation they receive, can take on dif-
ferent phenotypes toward either proinflammatory (also known as 
M1/classically activated) or pro-resolving (also known as M2/alter-
natively activated). The extremes of these phenotypes have been 
extensively studied in cell culture, but MDMs will likely take on 
more transient versions of these phenotypes in vivo due to the com-
plexity of stimulation they receive (8). In vitro M1 macrophages are 
polarized through the engagement of Toll-like receptor 4 (TLR4) 
by pathogen-associated molecular patterns, such as lipopolysac-
charide derived from infection with Gram-negative bacteria or 
other receptors, e.g., by stimulation with IFN-γ. Upon polarization, 
M1 macrophages have increased bactericidal capacity, increased 
reactive oxygen species (ROS), a preference for glycolytic metabo-
lism, release of numerous inflammatory cytokines, such as TNF-α 
and IL-1β, and expression of inducible nitric oxide synthase (iNOS) 
(9–11). Alternatively activated M2 macrophages become polarized 
upon IL-4 or IL-13 stimulation, promoting increased phagocytic 
capacity, a preference for oxidative metabolism, and a release of 
pro-resolving factors that promote angiogenesis, tissue repair, and 
immunoregulation, such as IL-10 and TGF-β (7). 

Our understanding of the unique properties of TRMs and 
MDMs has enabled a better understanding of macrophages in all 
diseases, including atherosclerosis (Figure 1). Proinflammatory or 
M1-like macrophages are commonly found in progressing plaques 
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cytes are recruited. This recruitment of MDMs is a highly regulat-
ed process whereby monocytes roll, adhere, and crawl via inter-
actions with endothelial cells (ECs), then transmigrate from the 
vascular lumen into the intima.

The release of inflammatory cytokines by the TRMs, such as 
TNF-α and IL-1β, induces the rapid expression of EC adhesion 
molecules like E- and P-selectin, intercellular adhesion molecule 1  
(ICAM1), and vascular cell adhesion molecule 1 (VCAM1). This 
expression of adhesion molecules and the presentation of tether-
ing chemokines by monocytes (i.e., CCL2, CCL5) allow them to 
roll on the vascular EC monolayer, overcoming the force of blood 
flow. Rolling is dependent on the interaction between selectins 
and monocyte P-selectin glycoprotein ligand 1 (PSGL1), VCAM1, 
monocyte-expressed very late antigen 4 (VLA4), and CD44, 
which enables monocytes to shift from a roll to firm attachment 
(16–19). C-C and C-X-C chemokines such as CCL2 and IL-8 also 
aid in monocyte firm attachment (20). Rolling and attachment 
are followed by crawling, a chemotactic step by which monocytes 
spread laterally to find the best location for transmigration. Intra-
luminal crawling depends on the monocyte factors lymphocyte 
function–associated antigen 1 (LFA1) and macrophage-1 antigen 
(Mac1) interacting with endothelial ICAM1 and ICAM2 (21). The 
final step of monocyte transmigration can happen at either tran-

with active inflammation, and the reparative M2-like macrophages 
are seen more in regressing and stable plaques during repair (12–
14). Macrophages may be the source of inflammation within a 
plaque, but they also change and shift phenotype according to the 
needs of the tissue and are required for the stabilization and reso-
lution programs that accompany plaque regression in mice. Mac-
rophages have complex and intricate dynamics within all the dif-
ferent components of an atherosclerotic plaque. This Review will 
summarize what is known about these complex dynamics layer by 
layer and discuss how this information may lead to the identifica-
tion of novel targets that promote disease regression.

Macrophages and their roles in atherosclerosis
The endothelial-macrophage interface. The endothelial monolayer 
lining the vascular lumen is the primary physical barrier between 
blood and tissue. The healthy endothelium regulates vascular tone 
and cell adhesion and maintains vascular homeostasis through 
anticoagulant, antithrombotic, and antiinflammatory activity. 
During atherosclerosis, these homeostatic properties are lost. 
Across the resting, nonstimulated endothelium, less than 1% of all 
patrolling monocytes are thought to cross into the subendotheli-
al space (15). However, upon activation, like that which occurs in 
hypercholesterolemia or at sites of disturbed blood flow, mono-

Figure 1. Overview of macrophage function through the stages of atherosclerosis. In the early stages of atherosclerosis, when cholesterol is abundant 
in the intima, MDMs are recruited via endothelial interactions and differentiation and, together with TRMs, engulf excess lipids to become foam cells. 
Certain macrophages adopt a proinflammatory M1-like phenotype that promotes inflammation and the formation of a necrotic core. During disease 
progression, endothelial cells can undergo EndoMT, and SMCs dedifferentiate into macrophage-like SMCs to become foam cells, all of which contribute to 
the growing plaque. To accommodate the growth in plaque size, ECM remodeling occurs through MMPs and, if the ECM is reduced and the SMC fibrous cap 
thins, plaques are prone to rupture. During disease regression and if cholesterol metabolism and efflux are efficient, macrophages take on a pro-resolving 
M2-like phenotype. An increase in M2-like macrophages alongside SPMs promotes inflammation resolution and plaque regression.
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(EndoMT). EndoMT is the process by which ECs transition into 
multipotent mesenchymal stem cells, which can then differenti-
ate into fibroblasts, SMCs, and osteogenic progenitors (37). In the 
context of atherosclerosis, loss of fibroblast growth factor receptor 
(FGFR) in ECs, which occurs in response to the inflammatory cyto-
kines IL-1β, TNF-α, and IFN-γ found in the atherosclerotic plaque, 
activates TGF-β signaling, leading to a loss of endothelial pheno-
type and gain of mesenchymal phenotype. TGF-β promotes the 
activation of Smad-dependent and -independent pathways, induc-
ing the expression of the transcription regulators Snail Snai1), Slug 
(Snai2), Twist, and Zeb, and resulting in activation of α-smooth 
muscle actin (αSMA, encoded by ACTA2) expression and loss of 
endothelial NOS (38, 39). FGFR expression can also be decreased 
by disruptions in laminar shear stress, as observed in atheroscle-
rosis-prone areas of the arteries (40). This increase in EndoMT 
under chronic atherosclerosis conditions can further explain the 
fibroblasts found in unstable plaques, and the process of EndoMT 
alters the collagen/matrix metalloproteinase ratio, making the 
plaque more prone to rupture. On the other hand, EndoMT differ-
entiation into SMCs is thought to promote plaque stability through 
the formation of a thick fibrous cap (41). TGF-β–mediated EndoMT 
also increases the expression of the monocyte adhesion mole-
cules ICAM1 and VCAM1, promoting atherosclerosis progression 
through monocyte recruitment as outlined above (40).

Macrophages in the intimal and medial layers. The endotheli-
um may be the primary barrier between the blood and the tissue, 
but the intima is where plaque fate and development ultimately 
occur. The retention of LDL-derived lipids from the circulation 
within the intima is the primary step in atherosclerotic lesion ini-
tiation. Under homeostatic conditions, lipids in the extracellular 
space are handled by TRMs via intracellular metabolic pathways 
(such as autophagy), storage (via lipid droplet formation), or 
efflux (via free cholesterol transfer to available HDL particles). 
During atherosclerosis progression, however, there is a lack of 
cholesterol management. The trapped LDL easily becomes mod-
ified by aggregation (agLDL) and/or oxidation (oxLDL) and thus 
becomes readily recognized by innate immune scavenger cells 
and TLRs. Additionally, large aggregates of LDL are digested by 
TRMs through the exocytosis of lysosomes, leading to cholester-
ol crystal formation and downstream activation of the inflam-
masome (42). TRMs attempt to efflux the excess lipid, but this 
process quickly becomes overwhelmed, transforming the macro-
phages into “foam cells” (43).

Efflux of cholesterol to HDL and/or its apolipoprotein A1 
(apoA1) relies on the activity of the ATP-binding cassette trans-
porters ABCG1 and ABCA1, respectively (44). When efflux accep-
tors are not available (e.g., low or dysfunctional HDL) (45, 46) 
or when the metabolism of lipid droplets is compromised (e.g., 
reduced autophagy) (47), ER stress is triggered and/or foam cells 
undergo programmed apoptotic (blebbing) or necroptotic cell 
death (rupture). Initially, apoptosis coupled with efficient effe-
rocytosis by other macrophages keeps the plaque from grow-
ing. In late stages of atherosclerosis, when apoptosis is either 
overwhelmed or inhibited, foam cells can undergo necroptosis 
through the receptor-interacting serine/threonine-protein kinase 
1 (RIPK1), RIPK3, and mixed-lineage kinase domain–like pseu-
dokinase (MLKL) cascade, resulting in the bursting of the cellu-

scellular or paracellular endothelial junctions. ECs lack proper 
tight junctions; instead, they have vascular endothelial cadher-
in (VE-cadherin), the gatekeeper of transmigration. Cell signals 
received from adherent monocytes disassociate adherens junc-
tions through phosphorylation of VE-cadherin, allowing the mac-
rophages to enter the subendothelial intimal space (22).

The diverse mechanisms that activate the expression of adhe-
sion and transmigratory signals on ECs during atherosclerosis 
have been covered elsewhere (23) but begin when lipoproteins 
that become trapped in the subendothelial space are engulfed by 
TRMs, leading to the secretion of TNF-α and chemokines that act 
on luminal ECs to induce chemokines and adhesion molecules. 
Additionally, given that atherosclerosis predominantly forms 
at arterial branches and sites of disturbed/nonlaminar flow, the 
low–shear stress environment allows the expression of adhesion 
molecules and induces EC permeability via the developmental 
regulators TGF-β, BMP, and Wnt, among others (24). This notion 
is further supported by recent evidence that neuronal guidance 
cues (e.g., semaphorins, netrins, and ephrins), which normally act 
as migratory signals to neurons during development, play a prom-
inent role in the interaction of ECs with monocytes in the athero-
sclerotic environment (25–28). Likely, the interplay between lipo-
protein retention and low shear stress over the course of decades 
acts in concert to exacerbate plaque development: as the lesion 
grows, blood flow patterns are disturbed, activating EC permea-
bility programs and allowing more passage of excess lipids; simul-
taneously, as ECs become more activated by TRMs in response to 
excess cholesterol, they express additional adhesion molecules 
and further increase permeability and immune cell recruitment.

The endothelium also plays a key role in the progression or 
regression of atherosclerosis through the release of extracellu-
lar vesicles (EVs). EVs are membrane-bound vesicles released as 
a form of intracellular communication to regulate homeostasis 
through the transport of microRNAs, lipids, and proteins (29). 
Endothelial cell–derived exosomes have been shown to contain 
microRNA-10a (miR-10a) and downregulate NF-κB signaling in 
monocytes, dampening the overall inflammatory response (30). 
Intravenous injection of endothelial cell–derived microvesicles 
(EMVs) containing miR-143/145 prevented smooth muscle cell 
(SMC) phenotypic switching and reduced atherosclerosis lesion 
size in Apoe–/– mice (31). While EMVs can be protective, there is 
also an association between elevated levels of EMVs in the blood 
and clinical atherosclerosis, which may mean EMVs could serve as 
a biomarker of disease (32). There is an intriguing suggestion that 
the success of statin therapies may be due to decreasing EMVs in 
the blood in addition to cholesterol lowering (33, 34). Lastly, endo-
thelial cell–derived apoptotic transfer of miR-126 and miR-222 to 
other ECs has been shown to enhance EC proliferation and migra-
tion while inhibiting monocyte adhesion from controlling vascu-
lar homeostasis (35, 36). The study of EVs and how they impact 
atherosclerosis progression is continuously evolving, but it is clear 
that the contents of these vesicles dictate their roles. As the tech-
nology to better isolate and identify subpopulations of these vesi-
cles develops, in addition to standardization of isolation protocols, 
so too will our understanding of their function and clinical utility.

Recently it was revealed that ECs contribute to the con-
tent of the plaque through endothelial-mesenchymal transition 
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beginning to understand the diversity of macrophages and mac-
rophage-like cells within the intima. Advances in the understand-
ing of plaque development and its macrophage content have been 
possible because of the advancement in lineage tracing tech-
nology, which marks the cells in vivo along their differentiation 
pathway, making them easily identifiable by fluorescent or other 
genetic markers. This tracing technology, coupled with the power 
of single-cell RNA sequencing, has allowed for an unprecedent-
ed, detailed mapping of all the cells in a tissue or sample. Entire 
systems have been mapped through this technique, such as the 
hematopoietic system, lung, kidney, and heart (80). Through this, 
we have uncovered that the intima of the plaque is more complex 
than once believed. Notable examples include the realization that, 
as described in the section above, SMCs adopt a macrophage-like 
phenotype and express CD68 during the progression of atheroscle-
rosis (64, 68, 70, 71, 73, 74). Fate mapping and high-resolution 
transcriptomics also allowed for the identification of aortic intima- 
resident macrophages, also known as MacAIR cells, a unique sub-
type of macrophages that are deposited in the aortic arch at birth 
and maintained through CSF1-dependent local proliferation and 
that are largely replaced by recruited MDMs during atherosclerosis 
progression (81). These MacAIR cells were originally categorized as 
the dendritic cells that were thought to be the earliest phagocytes 
in the aortic arch in mice. The contribution of local proliferation 
versus MDM replacement from the circulation in maintaining this 
distinct cell cluster is still under debate (81). What was surprising in 
this study was that MacAIR cells were found to express high levels of 
Il1b transcript, but almost undetectable Nlrp3, a component of the 
inflammasome complex necessary for IL-1β activation. Therefore, 
unlike what was previously assumed about macrophages in pro-
gressing mouse atherosclerotic plaques, there are distinct subtypes 
that preferentially take up excess lipid or that produce potent proin-
flammatory cytokines. Many of these observations had been made 
previously using other techniques, but the combination of lineage 
tracing and high-resolution transcriptomics has allowed for a more 
refined characterization of these cells (80, 81, 82).

Extracellular matrix and macrophage interactions. Another 
macrophage relationship that has a direct role in atherosclerosis 
progression is the interaction of macrophages with the extracel-
lular matrix (ECM), composed of biologically active proteins like 
collagens (I, III, IV, and V), elastin, glycoproteins (fibronectin, 
thrombospondin, vitronectin, and osteopontin), and proteogly-
cans, which confers tensile strength and elasticity to the arterial 
wall (83). During the early stages of atherosclerosis, the ECM acts 
as a net, trapping cholesterol within the arterial wall. The proteo-
glycans in the subendothelial space interact directly with apoB 
on the LDL particle because of its strong positive charge and the 
negative charge of proteoglycans — the so-called response-to- 
retention hypothesis (84). ECM components in the subendotheli-
al space are primarily secreted by modulated SMCs, while matrix 
metalloproteinases (MMPs) — enzymes that cleave ECM and oth-
er proteins — are released primarily by macrophages. The ratio of 
ECM to MMP is tightly regulated and is sensitive to inflammatory 
stimulation such as TGF-β, promoting collagen and elastin synthe-
sis. In addition, tissue inhibitors of metalloproteinases (TIMPs) are 
secreted by those same cells as endogenous inhibitors to allow for 
quick regulation of MMP-mediated ECM remodeling (83). TGF-β 

lar membrane and release of its inflammatory content (48, 49). 
The released contents then act as an inflammatory signal for the 
recruitment of MDMs. Moreover, foam cells have high levels of 
CD47 (a potent “don’t eat me” signal) and reduced expression of 
MerTK (a key efferocytic receptor), rendering efferocytosis inef-
ficient (50). In addition, other forms of cell death can contribute 
to lesion development. Pyroptosis is a form of inflammatory cell 
death mediated by caspase-1 whereby a pore-induced intracellu-
lar trap is created, releasing the cell’s cytosolic contents (51, 52). 
Ferroptosis, a more recently described form of inflammatory cell 
death induced by iron-dependent lipid peroxidation, has recent-
ly been proven critical in the initiation of atherosclerosis (53–55). 
The combined inefficiency in both efferocytosis and increased 
cell death, particularly necrotic forms of cell death, results in the 
formation of a necrotic core, a pocket of dead and dying macro-
phages, cell debris, and modified lipid (56, 57). The presence of a 
necrotic core is an indicator of an advanced and unstable lesion.

SMCs form the medial layer of healthy arteries and exist in a 
fully differentiated yet quiescent state, with contractile function 
marked by high levels of αSMA and smooth muscle myosin heavy 
chain (SM-MHC, encoded by MYH11) (58). During the early stages 
of atherosclerosis, medial SMCs dedifferentiate and migrate into 
the intimal space in the process of diffuse intimal thickening (DIT) 
(59–62). The early process of DIT is unique to human plaques, but 
intimal thickening can be experimentally induced in animals (62, 
63). Intimal SMCs lose their contractile function, partly as a result 
of reduced expression of αSMA and SM-MHC, and acquire phe-
notypes reminiscent of fibroblasts, osteoblasts, and macrophages 
(64). A number of years ago, studies in vitro (65–67) and in mice 
(63, 68, 69) found that in proatherogenic environments, SMCs 
downregulate the contractile markers Sm22a (encoding SM22α, 
or transgelin) and Acta2, Cd68, and Cd11b (64). Loss of these key 
functional differentiation markers of SMCs occurs, at least in part, 
via epigenetic silencing of contractile gene promoters and activa-
tion of genes associated with stemness, resulting in dedifferenti-
ated SMCs (70, 71). New evidence suggests that transitional SMCs 
in both mice and humans also have perturbed signaling in the ret-
inoic acid pathway, which may be manipulated therapeutically to 
reduce atherosclerosis (72). Collectively, these findings have led 
to the realization that foam cells in the plaque that have histori-
cally been ascribed to TRM or MDM origin are, at least in part, 
transdifferentiated SMCs (73, 74). In humans, it is suggested that 
over 50% of foam cells in intermediate human coronary artery 
atherosclerosis are SMC-derived (74). This population of macro-
phage-like SMCs are more prone to become foam cells owing to 
lower expression of ABCA1 and lysosomal acid lipase (LAL), both 
integral for efficient cholesterol efflux (75). Moreover, SM22α is 
required for efficient nuclear translocation of LXRα, a key antiin-
flammatory transcription factor that promotes cholesterol efflux, 
further contributing to the foam cell phenotype of these cells (76). 
Transdifferentiated SMCs also have been shown to expand in a 
clonal manner akin to cancer (76–78). As with cancer, the clonal 
expansion provides several survival advantages, such as adapta-
tions to toxic environments and suppression of efferocytosis by 
upregulation of CD47 (“don’t eat me” signal) (79).

Although macrophages in the intimal space have been the 
subject of intense study for almost a century, we are only now 
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pathway (100). When cholesterol efflux is activated in settings of 
high HDL, plaque macrophages take on a pro-resolving M2-like 
phenotype, releasing antiinflammatory cytokines such as IL-10 
and TGF-β, thereby promoting tissue repair and angiogenesis 
(101). The pro-resolving phenotype also promotes phagocytosis of 
debris and efferocytosis of apoptotic cells, helping to reduce the 
necrotic core. Indeed, the efferocytosis and degradation of apop-
totic cells promote macrophage proliferation, improving the num-
ber of macrophages available for efferocytosis, further promoting 
the regression process (102).

To mount an effective efferocytic response during inflamma-
tory resolution, macrophages alter their metabolic profile to favor 
oxidative metabolism and activation of the phagolysosome to 
degrade engulfed apoptotic cells. Without full efferocytic capac-
ity, or when the metabolic requirements for efferocytosis are not 
met, atherosclerosis regression cannot occur (103). During reso-
lution of inflammation, macrophages produce polyamines like 
putrescine, spermidine, and spermine to support proliferation and 
other processes during tissue repair. In the atherosclerotic envi-
ronment, pro-resolving macrophages require arginine — the pre-
cursor for polyamines — to continually efferocytose dead cells and 
regress atherosclerosis. Loss of the expression of arginase 1 (Arg1) 
and ornithine decarboxylase (Odc) in macrophages impairs ath-
erosclerosis regression in mice, owing to defective MerTK expres-
sion and inefficient efferocytosis (104, 105). Conversely, changes 
in the metabolic milieu can also alter macrophage pro- and anti-
inflammatory responses during atherosclerosis progression. Des-
mosterol, a precursor in the cholesterol biosynthetic pathway, has 
been found to reduce ROS and NLRP3 inflammasome activation 
in mice, and blocking desmosterol signaling promotes atheroscle-
rosis (106–108). Another product in the cholesterol biosynthetic 
pathway, mevalonate, can trigger epigenetic reprogramming and 
inflammatory activation of macrophages via trained immunity, 
and blocking mevalonate production with statins reduces this 
inflammatory activation (109). These studies collectively indicate 
that MDMs are likely flexible to adopt a pro- or anti-atheroscle-
rotic phenotype, depending on the inflammatory signals received, 
the metabolic environment, and the expression of necessary 
machinery to mount a progression or regression response.

The contribution of non-macrophage foam cells, like trans-
differentiated SMCs, to atherosclerosis regression has not been 
fully investigated; however, transdifferentiated SMC foam cells 
in both mice and humans express low levels of ABCA1 compared 
with macrophages, which suggests that approaches that promote 
cholesterol efflux to regress existing plaques would be defective 
in lesions rich in SMC foam cells (110). On the other hand, SMCs 
from both the medial and intimal layers contribute to plaque sta-
bility by forming a fibrous cap through the secretion of ECM pro-
teins (64). Therefore, controlling the phenotype of SMCs within 
the lesion is essential for ensuring the removal of excess cholester-
ol and promoting plaque stability, and both of these processes are 
important therapeutic targets. And just like the crosstalk between 
macrophages and T cells that is necessary for the progression of 
inflammatory atherosclerosis, the interaction of T cells, specifi-
cally Tregs, with macrophages in regressing plaques is necessary 
to activate M2 macrophage resolution programs (111). Therefore, 
macrophages cannot be considered only as perpetrators of inflam-

is produced by ECs or other cells; this enhances collagen produc-
tion, while proinflammatory TNF-α and IFN-γ secreted by inflam-
matory cells decrease collagen synthesis (83, 85). In parallel, when 
MMPs are higher because of the presence of macrophages in the 
lesion, this is associated with decreased plaque stability through 
both a reduction in structure and the release of inflammatory 
cytokines, which also get trapped within the ECM. When there are 
fewer MMPs, the plaque is more stable through the ECM, helping 
form a robust fibrous cap (85). As such, the communication and 
interplay between macrophages and SMCs dictate the state of the 
ECM and thus the structural stability of a plaque.

Interactions with other immune cells. During atherosclerosis pro-
gression, macrophages interact with other cells of the innate and 
adaptive immune systems. These pathways and interactions have 
been covered extensively in other reviews (12, 86, 87), but there is 
an increasing appreciation for the adaptive immune system in the 
clinical contribution to and protection from atherosclerosis. By vir-
tue of being antigen-presenting cells, macrophages and dendritic 
cells present oxLDL as a foreign body on their major histocompati-
bility complex to activate T lymphocytes, further stimulating B cell 
activation (88–90). M1 macrophages and Th1 cells promote ath-
erosclerosis by producing proinflammatory cytokines and chemo-
kines, while M2 macrophages, Tregs, and B-1 cells suppress inflam-
mation, reduce plaque size, and promote plaque stability (91, 92). 
IgM autoantibodies, which can be endogenously produced and 
react to the oxidized phospholipid found on oxLDL, have recently 
been applied as a treatment for advanced stages of atherosclerosis 
(93–96). Cherepanova et al. generated a novel IgM autoantibody, 
10C12, targeting similar oxidized phospholipids and showed that 
administration of this autoantibody in Igm–/– Apoe–/– mice fed a 
low-fat diet led to a 40% decrease in lipid accumulation within the 
aorta (95). Using a similar concept, Zhang et al. developed a novel 
human single-chain variable fragment antibody against an oxida-
tion epitope of oxLDL called ASA6, which decreased atheroscle-
rotic lesion area in Apoe–/– mice by regulating fatty acid metabolism 
and inhibiting M1 macrophage polarization (97). In addition, con-
jugation of ASA6 to MRI/near-infrared II (NIR-II) dual-function 
nanoparticles enabled a dual therapy and diagnostic tool, allowing 
for noninvasive imaging of atherosclerotic lesions — something 
that has been very challenging previously (97).

Macrophages in the regression and resolution of atherosclerosis. 
Although accumulation of macrophages and their interactions 
with other cells in the vessel wall directly cause atherosclerosis, 
they are also necessary for the stabilization and regression of 
plaques. The process of atherosclerosis regression requires new-
ly recruited monocytes from the circulation in response to CCR2, 
and without these MDMs, regression does not occur (7). In con-
trast, MDMs unable to become inflammatory macrophages (e.g., 
by deletion of TRAM downstream of TLR4 activation or deletion 
of the proinflammatory neuronal guidance cue netrin-1) can be 
pushed toward the pro-resolving phenotype to promote regression 
of atherosclerosis (98, 99). Both clinically and experimentally, the 
main mechanism by which existing atherosclerotic lesions begin 
to regress and repair is through lowering of circulating plasma lip-
id. In mouse models, this is usually accompanied by the removal 
of excess lipids from foam cells by increasing cholesterol efflux 
via ABCA1 to apoA1/HDL via the reverse cholesterol transport 
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mation and disease in the vessel wall but instead are equally 
responsible for the reversal and stabilization of disease that are of 
utmost therapeutic importance.

Specialized pro-resolving mediators (SPMs) have recently 
emerged as a new therapeutic target to promote inflammation 
resolution and regression. SPMs are a subclass of lipid mediators 
derived from arachidonate, eicosapentaenoic acid, docosahexae-
noic acid, or n-3 docosapentaenoic acid that are metabolized into 
lipoxins, resolvins, protectins, and maresins (112). Comparing sta-
ble versus unstable regions of human atherosclerotic lesions, there 
is an imbalance between pro-resolving SPMs and proinflammatory 
lipids; specifically, regions of plaque instability have a higher ratio 
of leukotriene B4 (LTB4) to resolvin D1 (RvD1). In Ldlr–/– mice with 
advanced lesions, administration of RvD1 restored the RvD1/LTB4 
ratio, decreased the necrotic core, and increased fibrous cap for-
mation, thus increasing plaque stability. Interestingly, this increase 
in fibrous cap thickness was not due to a change in either SMC or 
macrophage content overall; instead, it is believed that SPMs spe-
cifically promoted the resolution of inflammatory cells from the 
plaque and changed their phenotype to a pro-resolving program 
(113). SPMs act directly via their cell-surface receptors to promote 
macrophage phagocytic clearance and efferocytosis, which sub-
sequently feed back to increase SPM biosynthesis, synergistically 
promoting atherosclerosis regression. In the context of advanced 
atherosclerosis, RvD1 can also promote the clearance of necro-
ptotic cells by overcoming the CD47 “don’t eat me” signal through 
ER-mediated phagocytosis (50). New roles for SPMs continue to 
emerge as we begin to study this class of lipid mediators, and RvD1 
in particular is becoming a very promising new therapeutic target.

Emerging concepts about vascular macrophages
Our understanding of vascular macrophages and the role they play 
in atherosclerosis development has evolved greatly over the past 
decade. Until recently, macrophages were identified almost exclu-
sively by their expression of surface markers, such as CD68. And 
while high-resolution sequencing has allowed for a more unbiased 
definition of cell types using the aggregate of their transcriptomic 
expression signatures rather than a historical, predefined mark-
er, one major limitation is that this sequencing is often done at a 
single time point in disease progression, making it challenging to 
understand the kinetics of transitional cell phenotypes. As sin-
gle-cell transcriptomics becomes more affordable and accessible 
and is combined with other high-resolution approaches (e.g., spa-
tial transcriptomics, single-cell proteomics), we will undoubtedly 
learn even more about the functional consequences, if any, of these 
diverse cell types on atherosclerosis. Do different subtypes of mac-
rophages interact differently with other immune cells? Do these 
subtypes have different capacities for cholesterol efflux or resolu-
tion, two critical components of the regression of atherosclerosis?

An ongoing challenge in understanding macrophage subtypes 
and phenotypes is the lack of data from human disease. Many of 
the in-depth studies described above were performed in mice, 
and correlations were made to humans; it is not clear whether the 
same factors that influence macrophage interactions in the vessel 
wall also occur in human disease. For example, the exact quanti-
ty and role of TRMs in the early phases of plaque development in 
humans are under debate, as the characteristics of mouse TRMs 

differ in human plaques (114). Recently, a newly identified risk 
factor known as clonal hematopoiesis of indeterminate potential 
(CHIP) (115) was found to be strongly associated with coronary 
heart disease in humans (116). When CHIP occurs, hematopoi-
etic stem cells acquire somatic mutations that provide a survival 
advantage, resulting in clonal expansion of altered myeloid cells 
with enhanced proinflammatory and proliferative capacity (117). 
These clonal cells expand with age and increase the risk of can-
cer, cardiovascular disease, and death (116). The majority of 
mutations are found within the TET2, DNMT3A, and JAK2 genes. 
Patients with TET2 or DNMT3A mutations have poorer progno-
sis and long-term clinical outcomes for chronic heart failure (115). 
Tet2 (heterozygous and homozygous) mutations accelerated and 
worsened atherosclerosis progression in mice (118). Dnmt3a dele-
tion in macrophages was shown to promote inflammation (119), 
and Jax2 gain-of-function mutation was shown to increase ath-
erosclerotic lesion size in mice (120). Now, as we begin to unravel 
the complexities of macrophages in the vessel wall, it remains to 
be seen whether CHIP influences macrophage subtypes and their 
interactions with vascular cells. Given that CHIP is predominant-
ly associated with age, it is a distinct possibility that the biology 
of MDMs versus TRMs in young versus aged individuals is differ-
entially impacted by CHIP. Further functional analysis of each 
subtype in aged and young populations would greatly expand our 
understanding of atherosclerosis moving forward.

Little is known about how external or environmental pertur-
bations, such as exercise, diet, or infections, may alter these newly 
identified macrophage subtypes in the vessel wall. Indeed, lifestyle 
factors influence the release of monocytes into the circulation and 
can either accelerate disease (e.g., perturbed sleep, psychological 
stress; refs. 121, 122) or reduce disease progression (e.g., exer-
cise or healthy diets; refs. 123, 124). The long-term influence of 
the environment on disease progression has been demonstrated 
to alter the epigenetic landscape of immune cells. In mice, exter-
nal challenges like long-term high-fat-diet feeding and chronic 
stress induce transcriptional reprogramming of myeloid progen-
itor cells due to changes in the histone methylation patterns. The 
reprogramming, or “memory” of the environmental challenge, 
results in increased monocyte proliferation and augmented innate 
immune cytokine production, promoting atherosclerosis devel-
opment (125, 126). In humans, a similar phenotype is observed 
in bone marrow and circulating progenitor cells from patients 
with coronary disease, which showed enhanced cytokine produc-
tion upon stimulation compared with cells from control patients 
(127). Once we have a better understanding of the phenotypic and 
functional landscape of newly identified macrophage subtypes 
and how they precisely propagate or protect from disease, we can 
determine whether modifiable risk factors directly influence dis-
ease by cell-specific mechanisms.

The gold standard for treating atherosclerosis are lipid-lower-
ing therapies, such as statins, to target high circulating cholesterol 
and thus ultimately reduce the underlying cause of inflammation 
in the arteries. However, a significant disease burden remains in 
many individuals even when cholesterol is low; therefore, there is 
now a push toward developing therapies that directly target inflam-
mation (128). Canakinumab, an antibody against IL-1β, has been 
shown to reduce recurrent cardiovascular events in the CANTOS 
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(Canakinumab Anti-inflammatory Thrombosis Outcomes Study) 
trial. This trial proved the efficacy of targeting inflammation as a 
therapy or the treatment of cardiovascular disease (129). Colchi-
cine, a widely available, safe, and low-cost antiinflammatory, was 
investigated as another potential therapy. The LoDoCo (Low-Dose 
Colchicine for Secondary Prevention of Cardiovascular Disease) 
trial showed a significant reduction in recurrent cardiovascular 
events over a 3-year follow-up when colchicine was added to statin 
therapy (128, 130). These two very successful trials have demon-
strated proof of concept of the targeting of macrophages and the 
inflammasome pathway. However, there are limitations with 
broad-spectrum antiinflammatory drugs, including risk of serious 
infection and off-target effects. To overcome these challenges, one 
approach is to use targeted nanoparticles to directly deliver medi-
cines to the atherosclerotic plaque. To this end, Tao et al. developed 
siRNA nanoparticles targeting CaMKIIγ in lesional macrophages, 
which impairs efferocytosis through the MerTK pathway, leading 
to fibrous cap thinning and an enlarged necrotic core, indicating a 
more vulnerable plaque prone to rupture. These siRNA nanopar-
ticles were shown to reduce CaMKIIγ expression in mouse aortic 
lesions and promote plaque stability (131). This combination of 
macrophage-targeted nanoparticles containing inflammation-tar-
geted therapies holds promise for reducing inflammation and 
improving lesion stability without weakening host defense.

Conclusion
Vascular macrophages, derived either from monocytes in the cir-
culation or at birth as tissue-resident cells, impact and direct ath-

erosclerosis through their interaction and communication with 
all the cell types in the vessel wall. Through interaction with ECs, 
macrophages get recruited to the subendothelial space, promote 
EndoMT, and accumulate in the nascent plaque. Intimal macro-
phages control the progression or regression of disease through 
their intercellular communication, cholesterol management, and 
influence on the ratio of MMPs to ECM, affecting plaque stabili-
ty. Lastly, macrophages communicate with other immune cells to 
direct atherosclerosis progression and regression and are critical 
for both processes. The diverse and dynamic relationship of vas-
cular macrophages with other cells in the vessel wall continues to 
be elucidated, and with the advent of high-throughput and -res-
olution sequencing and imaging tools, we continually learn more 
about macrophages in the vascular environment. Together with 
a better understanding of the diverse phenotypic and function-
al properties of macrophages in human atherosclerosis, this will 
one day allow us to develop better macrophage-targeted thera-
pies for vascular diseases.
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