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Through the looking glass: why the ‘cosmic horizon’ is not a horizon�
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ABSTRACT
The present standard model of cosmology, � cold dark matter (�CDM), contains some intrigu-
ing coincidences. Not only are the dominant contributions to the energy density approximately
of the same order at the present epoch, but we also note that contrary to the emergence of
cosmic acceleration as a recent phenomenon, the time-averaged value of the deceleration pa-
rameter over the age of the Universe is nearly zero. Curious features like these in �CDM give
rise to a number of alternate cosmologies being proposed to remove them, including models
with an equation of state w = −1/3. In this paper, we examine the validity of some of these
alternate models and we also address some persistent misconceptions about the Hubble sphere
and the event horizon that lead to erroneous conclusions about cosmology.
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1 IN T RO D U C T I O N

There is growing observational evidence for the existence of a non-
zero cosmological constant (Perlmutter et al. 1998; Riess et al. 1998;
Spergel et al. 2003; Tegmark et al. 2004), yet there are many alter-
native theories for cosmic acceleration as a number of outstanding,
fundamental questions concerning the � cold dark matter (�CDM)
paradigm remain unsolved. A key problem with the cosmological
constant is that its energy density derived from observations, ��, is
≈120 orders of magnitude smaller than what we would expect from
the predictions of quantum field theory (Weinberg 1989). Also, it is
sometimes remarked that the near equality between the best-fitting
values of �� and �m obtained for �CDM presents a ‘coincidence
problem’, since it implies that we are placed at a special time in
cosmic history when the energy densities are approximately equal.
There have been numerous attempts to remedy these problems,
such as evolving dark energy (for a review, see Barnes et al. 2005),
but none of these is particularly convincing or well supported by
observations and �CDM remains the standard model of cosmology.

One recent alternative model was dependent upon the proper-
ties of the ‘cosmic horizon’, Rh, defined by Melia (2007) as a
Schwarzschild radius Rh = 2GM(Rh) (throughout this paper, the
speed of light is set equal to unity). In a Friedmann–Lemaı̂tre–
Robbertson–Walker (FLRW) universe, with flat spatial geometry,
Rh is equal to 1/H , where H(t) is the Hubble parameter. Melia
(2009) showed that the time derivative (denoted by an overdot) of
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the ‘cosmic horizon’

Ṙh = 3(1 + w)

2
, (1)

for a single component universe in which the cosmic fluid has an
equation of state w. Note that Ṙh = 1 only for the special case
of w = −1/3; thus Rh is exactly equal to t at all times in such a
universe.

From the present-day best-fitting value ��,0 = 0.726 ± 0.015
(Komatsu et al. 2009; the subscript zero denotes the value of a
quantity at the present time) and assuming a spatially flat universe, it
can be derived that our Universe is approximately 13.7 billion years
old. Using the value H 0 = 70.5 ± 1.3 km s−1 Mpc−1 (Komatsu et al.
2009), this age can be written as 0.989 Hubble time (1/H 0); thus

t0 ≈ 1

H0
= Rh(t0). (2)

Melia (2009) and Melia & Abdelqader (2009, hereafter M09)
argue that this equality (or near equality) should signify that the best
cosmological model is one in which these quantities are equal for all
cosmic times, i.e. the w = −1/3 model mentioned above, and not
just for a brief crossing that happens to occur now. However, as we
shall argue in Section 2, this model relies on the ability of ‘anthropic’
reasoning to discriminate between cosmologies. Furthermore, the
model proposed by M09 requires Rh to act as a true horizon, such
that the redshifting of photons emanating from this surface becomes
infinite. We shall show in Sections 4 and 5 that this assertion is
erroneous and that the conclusions presented in M09 rely on a
misapplication of the Hubble sphere. The goal of this paper is
to clarify some of the pernicious misconceptions surrounding the
Hubble sphere and to address the validity of the ‘cosmic horizon’
as a test of cosmology.
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2 C U R I O U S E R A N D C U R I O U S E R : O N E
COINCIDENCE PROBLEM BECOMES TWO

M09 argues that since Rh would equal t just once in the entire his-
tory of the universe if w �= −1/3, it is an unacceptably improbable
coincidence that Rh ≈ t0 at present. In this section, we shall discuss
the near equality of Rh and t0 and show that it indeed poses an ad-
ditional coincidence problem for �CDM. However, we argue that
equation (2) cannot be used as the basis for constructing a cosmo-
logical model that is competitive with �CDM. Furthermore, instead
of expressing the coincidence in terms of Rh, we shall express it in
terms of the average value of the deceleration parameter q(t) over
the age of the universe, 〈q(t0)〉.

The deceleration parameter is defined in terms of the scalefactor
a(t), which embodies the evolutionary path of the universe, and it
can be shown that for a flat FLRW universe (see e.g. Barnes et al.
2005)

q ≡ − äa

ȧ2
= 1 + 3w

2
. (3)

Comparing equations (1) and (3), we see that Ṙh = q + 1. This
yields that the time-averaged deceleration parameter

〈q(t)〉 = 1

t

∫ t

0

[
Ṙh(t ′) − 1

]
dt ′ = 1

tH
− 1. (4)

Inserting the above-mentioned values for t0 and H0, this expression
gives 〈q(t0)〉 = 0.0113 ± 0.0154 and the present average decelera-
tion of the universe is remarkably close to zero. We shall assign the
fact that 〈q(t0)〉 is consistent with zero as a coincidence, but we note
that it is a separate coincidence from the well-known ‘coincidence

problem’ and in fact the duration of this event in cosmic history
is so brief that it is a ‘greater’ coincidence in this respect than the
approximate equality of the dominant energy densities.

Fig. 1 shows both coincidences for a flat FLRW universe with
matter and dark energy. We use the present-day value of �X,0 =
0.726 from Komatsu et al. (2009) for the density parameter of dark
energy and assume that the universe is spatially flat. The evolution of
〈q〉, visualized by the solid lines, can be read on the left axis, while
the change of �m over time, visualized by the dashed lines, can be
read on the right axis. The colours represent different values of the
equation of state of dark energy, w. Red corresponds to w = −1,
which is true for the cosmological constant. While the red dashed
line drops from 1 to 0 in about two Hubble times, the red solid line
indicates that 〈q〉 ≈ 0 only for a fraction of a Hubble time. Thus,
the fact that the average value of the deceleration parameter over
the age of the universe is nearly zero for �CDM is really a ‘greater’
coincidence then the well-known ‘coincidence problem’.

Of course, it can be argued that perhaps we do not reside in the
concordance cosmology and that this actually signifies a failing of
the standard model. In fact, this ‘new’ coincidence was previously
noted by Lima (2007), who thereafter suggested that the universe
evolves through a cascade of alternately accelerating and decelera-
tion regimes. But the origin of the physical mechanism responsible
for these oscillations remains unknown, such that this model raises
more questions than it answers. Similarly, in response to the coin-
cidence that Rh ≈ t0, M09 proposes that a model containing only
a single fluid with w = −1/3 is a better fit to the observational
data, since this would give rise to a ‘cosmic horizon’ that is fixed
for all time. But, as soon as we include matter in our cosmology, Rh

approaches t0 only in the infinite future, and the fact that we observe

Figure 1. The solid lines represent the time-averaged value of the deceleration parameter 〈q〉 for flat cosmologies with a density parameter of dark energy,
�X,0 = 0.726 and different equations of state, w, for the dark energy component. The dashed lines represent the evolution of the density parameter of matter,
�m, in the same models. The dot–dashed line at t = 0 corresponds to the present epoch, while the dot–dashed line at 〈q〉 = 0 corresponds to a time-averaged
deceleration of 0. Note that only the red solid line (corresponding to �CDM) goes through the intersection of these two lines.
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the near equality of Rh and t0 today suggests that the equation of
state of dark energy is probably not −1/3 (the blue solid line in
Fig. 1 clearly does not cross 〈q〉 = 0).

With existing observational data, we can provide robust con-
straints on the equation of state parameter of dark energy, which
currently imply a value of w = −1.12 ± 0.12 (Riess et al. 2009).
For a model to be competitive with the standard model, it is not only
sufficient to remove a single outstanding problem with �CDM, but
must also satisfy the areas where the �CDM model does well. Set-
ting aside these objections, in the following sections, we investigate
the cosmological model proposed by M09 to solve the coincidence
problem by focusing on the conceptual arguments that underpin the
model instead.

3 TH E C O S M O L O G I C A L F R A M E WO R K

The application of the cosmological principle of perfect homogene-
ity and isotropy uniquely determines the space–time geometry of the
standard cosmological model, which is most simply encapsulated
by the FLRW metric as follows:

ds2 = dt2 − a2(t)

[
dr2

1 − kr2
+ r2(dθ 2 + sin2θdφ2)

]
, (5)

where t represents the cosmic time (the time measured by an ob-
server that is spatially stationary in the above coordinates) and (r ,
θ , φ) are spherical comoving coordinates. The curvature parameter
k is +1 for a closed universe, 0 for a flat universe or −1 for an open
universe.

This metric may be written in a number of different, but equiva-
lent forms via a coordinate transformation for convenience. In our
discussion, it is most expedient to use conformal and the observer-
dependent coordinates of M09, while restricting our attention to a
flat universe with two dimensions (t , r). Note that the discussion
could be trivially extended to include all four dimensions, but this
does not affect the main thrust of our arguments.

After applying the transformation d η = dt/a(t) to equation (5),
the conformal form of the FLRW metric reads as

ds2 = a2(η)(dη2 − dr2). (6)

The time coordinate is now given by η, but it does not correspond
to any observer.1 Since photons travel along null geodesics (ds =
0) in the radial direction, we find from equation (6) that light cones
in conformal coordinates are determined by

dr = ±dη; (7)

thus light rays follow straight lines at ±45◦ angles when the metric
is conformal, which makes them useful for making causal compar-
isons, such as those implied by cosmic horizons.

The observer-dependent form of equation (5), as derived by M09,
is given by

ds2 = �

[
dt +

(
R

Rh

)
�−1dR

]2

− �−1dR2, (8)

where � ≡ 1 − (R/Rh)2 and the radial coordinate R(t) is related to
the comoving distance r via

R ≡ a(t)r, (9)

1 Often, the conformal radial coordinate is denoted by χ , but since we
consider a flat universe, we can keep the symbol r.

that is, R is equivalent to the proper distance and a comoving ob-
server does not remain stationary with respect to the spatial co-
ordinates of this metric. The significance of the term Rh will be
addressed in the following sections, but for now it is sufficient to
note that a singularity occurs in the metric when R → Rh.

4 H O R I Z O N S I N C O S M O L O G Y

There are three main features when considering cosmological
space–time diagrams in general: the event horizon, the particle
horizon and the Hubble sphere. The event horizon is defined by
the surface in space–time that encloses all events that can ever be
detected for a comoving observer at t → ∞, that is, it consists of
a light cone projected backwards at the end of conformal time (see
the thin solid line in Fig. 2). The existence of an event horizon is
determined by the convergence of the integral

ηmax ≡
∫ ∞

t0

dt

a(t)
, (10)

which also implies that the conformal time is bounded in the future;
indeed, the two conditions are equivalent. Just as we have defined
the conformal time remaining in equation (10), we are equally at
liberty to determine if the universe had a finite conformal past.
The limits on equation (10) would then be changed to integrate
from t = 0 to t = t0. Finite values of either integral correspond
to the beginning, ηmin, and end, ηmax, of the universe in conformal
coordinates.

The event horizon is distinct from the particle horizon, which is a
surface that divides all fundamental particles into two classes: those
that have already been observable at the present, t0, and those that
have not. [See Rindler (1956) for further details.] In other words, the
particle horizon is equal to the path of a photon originated from the
big bang (see the dot–dashed curve in Fig. 2). We already noted that
an event horizon only exists in a universe with a finite conformal

Figure 2. Space–time diagram in conformal coordinates to illustrate the
event horizon (thin solid line), particle horizon (dot–dashed line), Hubble
surface (dotted line) and the past light cone (thick solid line). The dashed
lines illustrate the paths of comoving observers. The cosmological parame-
ters used were ��,0 = 0.726 and �m,0 = 0.274. Clearly, the Hubble sphere
never coincides with the event horizon, rather it asymptotically approaches
it as η → ηmax. [See also fig. 2 in Gudmundsson & Björnsson (2002), fig. 1
in Davis & Lineweaver (2004) or fig. 12.2 in Longair (2008).]
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future, likewise a particle horizon only exists in a universe that have
a finite conformal past.

If the universe has a flat spatial geometry and if it contains only
a single cosmic fluid with an equation of state w �= −1, then a(t)
∝ tn, with n = 2/[3 (1 + w)]. For a de Sitter universe (��,0 = 1,
�m,0 = 0), w = −1, and we have the special case that a(t) = eH0 t .
From these expressions for the scalefactor, we can see that the in-
tegral in equation (10) remains finite if and only if w < −1/3. If
we change the limits to integrate from t = 0 to t = t0, the inte-
gral would remain finite if and only if w > −1/3. Thus, a single
component flat universe with w < −1/3 has an event horizon only,
while it has a particle horizon only if w > −1/3. If w = −1/3, then
such a universe neither has an event horizon nor a particle hori-
zon. Because our universe was previously dominated by radiation
(wr = +1/3) and matter (wm = 0), it has a particle horizon, and it
also has an event horizon because it is currently dominated by dark
energy, which must have an equation of state w < −1/3 for cosmic
acceleration.

4.1 The Hubble sphere

The Hubble sphere marks the surface at which comoving systems
are receding from an observer at the speed of light according to
Hubble’s law:

vrec ≡ HR, (11)

that is, an object sitting on the Hubble sphere would have a reces-
sional velocity, vrec = c (Harrison 1991; Davis & Lineweaver 2004).
Any object more distant than the Hubble sphere is receding from us
at a speed greater than the speed of light. An object at a distance R
away has two components to its velocity, which may be written as
in terms of a recessional and peculiar velocity as follows:

Ṙ = ȧr + aṙ = vrec + vpec. (12)

It is important to distinguish between these velocities; although
the recessional velocity may be greater than c, locally the peculiar
velocity is always subluminal. In fact, a greater than light speed
velocity is only inferred from non-local comparisons; if the velocity
vectors were parallely propagated along a null geodesic and then a
measurement of the redshift was taken, the resultant velocity would
be less than the speed of light (Bunn & Hogg 2009). Thus, the
definition of the Hubble sphere alone is sufficient to conclude that
we must be careful when drawing conclusions with regards to its
physical meaning.

The ‘cosmic horizon’, or characteristic radius at which Rh = 1/H

in Melia (2007, 2009) and M09, is nothing more than the boundary
of the Hubble sphere, the Hubble surface. Remembering that we had
set c = 1 earlier in this paper, the equality between the ‘cosmic hori-
zon’ and the Hubble sphere becomes clear. It is well documented
in the literature that the Hubble sphere does not constitute a true
horizon nor are events outside the Hubble sphere permanently hid-
den from the observer’s view (Harrison 1981; Davis & Lineweaver
2004). Although photons emitted towards the observer by objects
inside the Hubble sphere approach the observer, those emitted by
galaxies outside the Hubble sphere recede, if the Hubble parameter
H decreases with time and Rh increases and overtakes light rays
which were initially beyond the ‘cosmic horizon’. It is the particle
horizon rather than the Hubble sphere that defines the farthest dis-
tance from which we can receive a signal at the present time. In
fact, for the concordance cosmology, the Hubble surface currently
lies at z ≈ 1.5 (Davis & Lineweaver 2004) and, as any extragalactic

astronomer will attest, is certainly not a limit to how far we can
observe.

There are two exceptions, however, for which the Hubble sphere
does constitute a horizon that cannot be traversed. In these cases,
it is degenerate with the particle horizon or with the event horizon
for every cosmic instant. In other words, the slope of the Hubble
surface in a conformal diagram (the dotted line in Fig. 2) is always
±1, because the slope of the particle horizon in a conformal diagram
is +1 and the slope of the event horizon is −1. To express the
‘cosmic horizon’ in terms of the comoving coordinate r, we use
equation (9). This gives rh = Rh/a. The slope of the Hubble surface
in a conformal diagram is therefore equal to

drh

dη
= aṙh = − äa

ȧ2
, (13)

and we arrive at the definition of q given earlier in equation (3).
Note that q is only constant in a single component universe; thus
the Hubble surface is not a cosmological horizon at all, except
when it becomes degenerate with the particle horizon in universe
with radiation only (q = 1) and with the event horizon in a de Sitter
universe (q = −1). [See also Harrison (1991).]

5 R EDSHI FTI NG IN THE
OBSERV ER-DEPENDENT FORM
O F T H E ME T R I C

M09 originally showed that for dR = dθ = dφ = 0, the time
interval dt in the observer-dependent form of the metric (equation 8)
must go to infinity as R → Rh, leading them to conclude that the
‘cosmic horizon’ is like the event horizon of a black hole, infinitely
redshifting any emission coinciding with it. This in contrast to
Davis & Lineweaver (2004), who pointed out that redshift does not
go to infinity for objects on our Hubble sphere (in general) and for
many cosmological models we can see beyond it. Here, we examine
observed redshift of a photon exchanged between two observers in
the observer-dependent coordinates. As is apparent in Fig. 2, this
redshift should not go to infinity.

It is straightforward to demonstrate that the 4-velocity of any co-
moving observer (which has fixed spatial coordinates in the FLRW
metric) is given by

uα = (1, ȧr, 0, 0). (14)

Furthermore, from Killing’s equation, it can be demonstrated that
this space–time admits a Killing vector of the form

ξα = [0, ak(θ, φ), l(θ, φ),m(θ, φ)], (15)

where k, l and m represent three currently undetermined functions,
respectively; as we will be considering photon paths in the (t , R)
plane, their exact form is unnecessary. The existence of the Killing
vector allows us to define a quantity, e, which is conserved along
the geodesic path of the photon, namely

e = ξ · p =
(

R

Rh

)
apt − apR, (16)

where pt and pR are the components of the photon 4-momentum
and the function k is subsumed into the constant e.

If two observers exchange a photon, the energy of the photon as
seen by the receiver, Er, compared to the energy as measured by the
emitter, Ee, is simply given by

Er

Ee
= −ur · p(r)

−ue · p(e)
, (17)
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where the u are the 4-velocities of the receiver and the emitter,
while p is the 4-momentum of the photon. In general, we would
have to propagate the photon between the emitter and the receiver,
although the presence of the Killing vector allows us to simplify
this procedure by noting that

E = −u · p = −
{

�pt +
(

R

Rh

)
pR +

[(
R

Rh

)
pt − pR

]
ȧr

}
;

(18)

then

E = − e

a

(
R

Rh
− pR

pt

)
. (19)

The ratios of the components of the photon 4-momentum can be
determined from the metric (equation 8), remembering that photons
follow null paths (ds = 0) and so

dR

dt
= pR

pt
= −�(

R

Rh

)
± 1

. (20)

Following a photon from a positive R to the origin selects the solu-
tion that

pR

pt
= −

(
1 − R

Rh

)
(21)

and clearly

E = − e

a
. (22)

Given this, a photon exchanged between two observers on the
observer-dependent form of the FLRW metric (equation 8) will
be seen to have an energy dependent upon the scalefactor, a, at the
time of emission and receipt, such that

Er

Ee
= ae

ar
= 1

1 + z
, (23)

precisely the form seen in comoving coordinates (as expected).
Fig. 3 shows a space–time diagram in the observer-dependent co-

ordinates used by M09 for a universe containing a single component
with w = 0. The solid line is a past light cone at the moment the
universe is about 4.5 Hubble times old. The dotted line is the ‘cos-
mic horizon’ and the dashed lines are worldlines from comoving
observers. As is seen in this figure, photon paths (a past light cone)
can extend through the ‘cosmic horizon’ and hence objects even on
the ‘cosmic horizon’ are seen with a finite redshift z. The shape of
the light cone would be exactly the same at any other moment of
time as would be the behaviour of the Rh for other values of w >

−1.
It is interesting to note that in examining the past light cone in

Fig. 3, the ‘cosmic horizon’ marks the turnaround point for a photon
path, a transition between the photon moving away and then moving
towards us, and hence our past light cone only encompasses events
with R ≤ Rh, although the emission from an object on the horizon is
not infinitely redshifted. We return to this point in the next section.

5.1 Metric divergence

As was shown in the previous section, Rh corresponds to a station-
ary point in the past light cone, where the trajectory changes from
moving away from the big bang to moving towards us. The anal-
ysis of M09 considers the path of objects with fixed R, such that
uR = 0; what do these correspond to? By examining the light cone
structure as we approach the ‘cosmic horizon’, it is apparent that

Figure 3. Space–time diagram in observer-dependent coordinates (t , R)
for an Einstein–de Sitter (w = 0) universe, using the metric in equation (8).
The Hubble sphere or cosmic horizon is given by the dotted curve, while
the solid line represents a light cone. Dashed lines represent the paths of
comoving observers with their light cones; although stationary in r, their
proper distance R increases.

such a trajectory is approaching the left-hand side of the light cone,
implying that compared to a comoving observer at that point they
are moving closer and closer to the speed of light. Remembering
that for our comoving observer, ut = dt/dτ = 1 (where τ is the
proper time registered by the comoving observer) and for the fixed
observer of M09 ut = �−1/2, it is apparent that the divergence is
time dilation between the comoving and the fixed observer, going
to infinity at Rh, where the fixed observer is forced to travel at the
speed of light. In summary, the divergence noted by M09 is due
to forcing unphysical properties on the emitter by requiring dR =
0. If these unphysical properties were not demanded, the observer-
dependent coordinates could be used to describe the space–time
geometry, as long as one neglects the singularity in the metric as
R → Rh.

6 C O N C L U S I O N

The inferred cosmic acceleration presents a conceptual dilemma;
there is abundant observational evidence that favours the existence
of a cosmological constant, yet some predictions and consequences
of �CDM remain so puzzling that modern cosmology is littered
with alternate mechanisms for reproducing the observational sig-
natures of accelerated expansion. The similarity between the 1/H 0

and the current age of the universe as pointed out by M09 and
Lima (2007), as well as the original coincidence that ��,0 ∼ �m,0,
is genuinely problematic. While it is surprising that the average
deceleration parameter should be close to zero at this particular in-
stant in cosmic time, and may signify that aspects of the standard
model are contrived, arguments of this nature cannot be priori-
tized over constraints from observations. The near equality of the
Hubble surface Rh and the age of the universe t0 requires a cautious
interpretation and does not immediately exclude a cosmological
model with a non-zero cosmological constant. Furthermore, it is
worth emphasizing that a single space–time geometry may be ex-
pressed in several different coordinate systems and not all features
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of the metric necessarily contain a physical meaning; a poignant
example is provided by the divergence at the event horizon in the
Schwarzschild metric, which may be shown to be a coordinate sin-
gularity when written in Eddington–Finkelstein coordinates. M09
used observer-dependent coordinates to argue that Rh is a true hori-
zon, while the theoretical framework to infer any conclusions about
cosmic horizons was already there. Since Rh is the Hubble surface,
it is not a physical horizon at which an infinite redshift is mea-
sured (except in a de Sitter universe), despite the divergence in the
observer-dependent form of the FLRW metric.
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