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This paper presents a 2D, fully coupled and comprehensive transient model that accounts for micro-structural features of various cell
layers. The model benefits from state of the art sub-models for reaction kinetics and incorporates the polymer relaxation dynamics.
Furthermore, a mixed wettability model is utilized to simulate the transient two phase conditions in the porous layers. The model is
validated with transient experimental data under various conditions. A comprehensive simulation study is presented to investigate
the impact of operating temperature and relative humidity on the transient response. The effects of cathode Pt loading and operation
mode, i.e., current control versus voltage control, are also studied. The cell response is found to be dominated by water transport
through its thickness. Additionally, it is found that reducing the Pt loading can influence the performance by changing the water
balance in the cell, which has rarely been highlighted in the literature. In particular, at low temperature more water is transported
toward the anode when the cathode Pt loading is reduced, since the resistance to water back diffusion is lowered with reduced
thickness of the cathode catalyst layer. This trend is reversed at a higher temperature due to increased volumetric heat generation with
reduced thickness. The model can help in understanding various transport phenomena and is expected to be useful for inspecting
spatio-temporal temperature, potential, and species distributions across the cell’s thickness and optimizing the cell design and choice
of materials.
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Some of the significant technological challenges to commercial-31

ization of polymer electrolyte membrane (PEM) fuel cells have been32

addressed in the past two decades through extensive theoretical and ex-33

perimental research. As a result, the PEM fuel cell technology has ad-34

vanced considerably. In particular, the amount of precious metal used35

in the catalyst layers (CL) has been significantly reduced while achiev-36

ing remarkable performance improvements.1,2 Nevertheless, impor-37

tant challenges related to cost and durability remain. While further38

material development is indeed beneficial, some of the existing is-39

sues may be addressed through effective control and hybridization40

of these systems. This will require a good understanding of the pro-41

cesses that govern the fuel cell dynamics. Moreover, in-depth studies42

of the transients can improve the current understanding of various43

electrochemical and transport phenomena. Therefore, there is a need44

for better understanding of the transient response to further enhance45

performance and lifetime of PEM fuel cells.46

Arguably, the dynamic studies of PEM fuel cells have been over-47

shadowed by the significant efforts dedicated to steady state mea-48

surements and modeling. However, fuel cell transient response has49

attracted some attention lately, as it can be used to elucidate and de-50

convolve complex transport phenomena.3–8 Several transient models51

have also been proposed in the literature.9–15 These models usually52

use simplified reaction kinetics and do not account for the micro-53

structure of various cell layers and the anisotropic material properties.54

Therefore, these models typically do not have the required fidelity to55

allow detailed investigation of the transient phenomena affecting the56

cell performance. Accordingly, it is the main objective of this work57

to develop a transient model that captures the most salient features of58

the cell’s dynamics across its thickness. Furthermore, we execute the59

model under a variety of operating conditions to delineate the criti-60

cal transient phenomena that determine the overall cell dynamics. It61

should be noted that the model presented here is only helpful in un-62

derstanding transient phenomena through the thickness of a unit cell63
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with small active area. In other words, the compressor and channel 64

flow dynamics, along the channel redistributions, and stack thermal 65

dynamics are not discussed here. Nevertheless, the results of this work 66

may be extended along the flow channel and across multiple cells to 67

study the transients at those scales. 68

Specific to our objective is creating a model that, as much as possi- 69

ble, directly translates the physically measurable parameters and op- 70

erating conditions into the knowledge about spatio-temporal distribu- 71

tions of critical variables such as temperature and water concentration 72

in different layers. To this end, it is imperative to effectively capture 73

the physical characteristics of the porous layers including the catalyst 74

layers and diffusion media (DM). It is worth pointing out that, as has re- 75

cently been shown, a representative elementary volume (REV) cannot 76

be clearly defined in the through-plane direction for commercial DM16
77

and the REV for the in-plane direction is on par with the land-channel 78

sizes used in fuel cells.16,17 Therefore, while the macroscopic models 79

can capture the aggregate behavior, their predictions may significantly 80

deviate from the local predictions by microscopic models.16,18 This 81

result bears significance, as it points to the need for more elaborate 82

description of transport in the porous layers. Nevertheless, the exces- 83

sively high cost of such simulations limits their application to very 84

few conditions and a limited material set. Therefore, the macroscopic 85

models remain the main tool to investigate the internal distributions 86

in a full cell model and including some level of description of the 87

microstructure is the approach adopted in this work to improve their 88

prediction capability. This is achieved here by using a recently devel- 89

oped mixed wettability model for the porous layers.19,20 To the best 90

of the authors’ knowledge, this is the first time that a full implemen- 91

tation of the mixed wettability model is being used in a 2D transient 92

model. In addition to the mixed wettability model for porous layers, 93

the presented model accounts for ionomer relaxation dynamics and 94

CL micro-structure, which have been neglected in most of the previ- 95

ous models. Moreover, the effective material and transport properties 96

of the different layers are identified through an extensive literature 97

review of commercially available materials. Therefore, this model is 98

expected to offer higher fidelity than the state of the art models for 99
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Figure 1. Modeling domain.

the purpose of studying transient phenomena that impact performance100

and durability.21
101

The rest of the paper is organized as follows: First, the model for-102

mulation is presented along with a detailed review of the literature103

relevant to each sub-model to justify the choices made during model104

development. Simulation results and discussions are provided next,105

followed by a brief summary and concluding remarks. Model vali-106

dation with experimental data from the literature is presented in the107

accompanying Supplementary Information.108

Model Formulation109

The modeling domain of interest is shown in Fig. 1. The model110

draws from prior work by Balliet et al.,10 Zenyuk et al.,22 and Zhou111

et al.23 with modifications to several sub-models. Therefore, the model112

is presented here in its entirety for completeness. A complete list of113

model parameters is provided in the accompanying Supplementary114

Information.115

Governing equations.—The comprehensive 2D model solves the116

following governing equations, where the various source terms are117

given in Tables I and II:118

εg

∂ci

∂t
= ∇ · (cgDeff

i ∇xi ) − ∇ · (cgxiug) + Si, [1]

∂ (ρlεl )

∂t
= ∇ ·

(

ρl K
eff
l

µl

∇pl

)

+ Sliquid, [2]

∂ (ρgεg)

∂t
= ∇ ·

(

ρgKeff
g

µg

∇pg

)

+ Sgas, [3]

εion

ρion

EW

∂λ

∂t
= ∇ · (Nw,mb) + Sλ, [4]

∑

α

εαραcp,α

(

∂T

∂t
+ uα · ∇T

)

= ∇ · (keff
T ∇T ) + ST , [5]

∇ · (σeff
1 ∇φ1) = Se− , [6]

∇ · (σeff
2 ∇φ2) = SH+ . [7]

The first equation describes species transport in the microporous layers 119

(MPLs), gas diffusion layers (GDLs), and CLs, where εg is the porosity 120

of the layer available for gas transport (εg = ε(1 − s), with s the 121

liquid saturation and ε the compressed layer porosity), cg is the total 122

gas concentration, ug = −
Keff

g

µg
∇pg is the velocity of the gas phase, 123

and ci, Deff
i , and xi denote the concentration, the effective diffusivity, 124

and the molar fraction of species i, respectively. The first and second 125

terms on the right hand side model the diffusive and convective fluxes, 126

respectively, while the last term (Si) is the relevant source term for 127

the specific gas species (see Table I). In the anode, the equation is 128

solved for water vapor molar fraction (xH2O) and the hydrogen molar 129

fraction (xH2
) is calculated by xH2

= 1 − xH2O. On the cathode side, 130

this equation is solved for water vapor (xH2O) and oxygen (xO2
) and 131

the nitrogen molar fraction is found from xN2
= 1 − xO2

− xH2O. 132

Equations 2 and 3 describe the mass conservation of the liquid and 133

gas phases, respectively. These equations model the pressure drop of 134

each phase in the CLs, MPLs, and GDLs according to Darcy’s law. 135

Here, ρα, εα, Keff
α , µα, and pα denote the density, volume fraction, effec- 136

tive permeability (relative permeability times absolute permeability), 137

viscosity, and pressure of phase α. Note that εg = ε(1− s) and εl = εs. 138

Finally, Sliquid/gas denotes the source term for the corresponding phase 139

(see Table I). Note that liquid saturation that appears in these equations 140

through the volume fractions is a variable that depends on capillary 141

pressure. Therefore, closure equations that relate the saturation level 142

to the capillary pressure are required. In this work, the mixed wetta- 143

bility model is used to derive water retention curves (liquid saturation 144

vs. capillary pressure) as well as effective property values such as gas 145

and liquid permeability for the different layers (see Mixed wettability 146

model for porous layers section). 147

Equation 4 governs water transport in the ionomer phase through- 148

out the catalyst coated membrane (CCM). Therefore, its domain of 149

application is the anode and cathode catalyst layers and the mem- 150

brane. In this equation, εion, ρion, and EW denote the ionomer volume 151

fraction, density, and equivalent weight, respectively, while λ is the 152

dimensionless number that quantifies the water content in the ionomer, 153

i.e., the number of water molecules per sulfonic acid group. Finally, 154

Sλ is the source term (see Table I) and Nw,mb is the water flux in the 155

ionomer phase across the CCM, which includes the effects of electro- 156

osmotic drag (EOD), diffusion, and thermo-osmosis and is calculated 157

as follows: 158

Nw,mb = −nd

σeff
2

F
∇φ2 −

ρion

EW
Deff

w,mb∇λ + DT ,mb∇T, [8]

Table I. Mass conservation source terms.

Domain SO2
SH2O Sliquid Sgas Sλ

Anode CL (ACL) – Spc − Sad −MH2OSpc −MH2

iHOR
2F

+ MH2O(Spc − Sad ) Sad

Cathode CL (CCL)
iORR
4F

Spc − Sad −MH2OSpc MO2

iORR
4F

+ MH2O(Spc − Sad ) Sad −
iORR
2F

MPL and GDL 0 Spc −MH2OSpc MH2OSpc –

Table II. Energy and charge conservation source terms.

Domain ST SH+ Se−

Anode CL (ACL) −MH2OSpcHpc + SadHad + HHOR +
i1·i1
σeff

1

+
i2 ·i2
σeff

2

iHOR −iHOR

Cathode CL (CCL) −MH2OSpcHpc + SadHad + HORR +
i1·i1
σeff

1

+
i2 ·i2
σeff

2

iORR −iORR

Membrane
i2 ·i2
σeff

2

0 –

MPL and GDL −MH2OSpcHpc – 0
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where nd is the EOD coefficient, φ2 is the ionic potential, F is the159

Faraday’s constant, σeff
2 is the effective conductivity in the ionic phase,160

Deff
w,mb is the effective water diffusion coefficient in the membrane161

and DT ,mb is the thermal water diffusivity in the membrane. Note162

that thermo-osmosis is shown to drive water from the cold to the hot163

side for a hydrophilic membrane.24 As a convention, a positive flux164

denotes water flux toward the cathode. The membrane water transport165

properties are given in Table III.166

Equation 5 is the energy conservation equation, which governs167

the temperature distribution. In this equation, ρα, εα, cp,α, and uα =168

−
Keff

α

µα
∇pα are the density, volume fraction, specific heat capacity, and169

velocity of phase α, where α can be the gas, liquid, or solid phase.170

In addition, keff
T is the effective thermal conductivity (see Calculation171

of effective properties sec.) and ST denotes the heat source term (see172

Table II). Note that this equation captures heat transfer by conduction173

(first term on the right hand side) as well as convection (second term174

on the left hand side).175

Equations 6 and 7 are the Ohm’s law for electronic (φ1) and ionic176

(φ2) potentials, respectively. Here, σeff
1 and σeff

2 denote the effective177

conductivities of the respective phases and SH+/e− is the relevant source178

term (see Table II).179

The source terms for mass conservation equations (Equations 1–4)180

are given in Table I. Here, Mi is the molar mass of species i, iHOR/ORR181

is the volumetric HOR/ORR reaction current density, and Spc is the182

source term due to phase change and is given by:19
183

Spc =

⎧

⎨

⎩

kevpaLG

[

pv−pK
sat (pc,T )

pK
sat (pc,T )

]

if pv > pK
sat (pc, T )

kcndaLG

[

pv−pK
sat (pc,T )

pK
sat (pc,T )

]

if pv ≤ pK
sat (pc, T )

[9]

where kevp/cnd denotes the rate of evaporation/condensation, aLG is the184

interfacial area between the liquid and gas phases (calculated by the185

mixed wettability model), pv is the vapor pressure, and pK
sat (pc, T )186

is the corrected saturation pressure that takes the Kelvin effect into187

account. The corrected saturation pressure is given by:188

pK
sat (pc, T ) = psat (T ) exp

(

MH2O pc

RρvT

)

. [10]

In the above equation, pc is the capillary pressure (pc = pl − pg), R is189

the universal gas constant, ρv is the density of water vapor, and psat (T )190

is the saturation pressure as a function of temperature given by:191

psat (T ) = 0.61121 exp

[(

18.678 −
T

234.5

)

T

257.14 + T

]

[11]

where T is in Celsius and the calculated pressure is in kPa.192

In Table I, Sad denotes the source term due to water exchange193

(absorption/desorption) between the ionomer phase and the pore space194

and is given by: 195

Sad =
kad · ρion

δCL · EW
(λ∗ − λ), [12]

where kad is the interfacial water transfer coefficient (see Table III), 196

δCL denotes the CL thickness, and λ∗ is the dynamic variable for equi- 197

librium water content in the ionomer (see Ionomer water uptake Sec.). 198

Note that water production with electrochemical reaction contributes 199

to Sλ. In other words, the produced water is assumed to be in absorbed 200

phase. This is in agreement with the assumed structure for the CL in 201

this work and has also been used by others.9 202

The source terms for energy and charge conservation (Equations 203

5–7) are given in Table II. In the table, i1 and i2 are the electronic and 204

ionic current densities, respectively: 205

i1 = −σeff
1 ∇φ1 [13]

i2 = −σeff
2 ∇φ2 [14]

Moreover, HHOR/ORR denotes the reversible and irreversible heat of 206

reaction given by: 207

HHOR = iHOR(ηHOR+�HOR ) = iHOR

[

(φ1 − φ2 − E an
rev ) − 0.013

T

298.15

]

[15]

208

HORR = iORR(ηORR + �ORR ) = iORR

[

(φ1 − φ2 − E ca
rev ) − 0.24

T

298.15

]

[16]

where �HOR/ORR is the Peltier coefficient for HOR/ORR,30 E an
rev = 0, 209

and E ca
rev = 1.229 − 8.5 × 10−4 × (T − 298.15) + RT

4F
ln(pO2

) are the 210

reversible potentials in each electrode. 211

The enthalpy of phase change, Hpc, is : 212

Hpc = −2.367 × 10−5T 4 + 1.882 × 10−2T 3 − 4.672T 2

− 2.098 × 103T + 3.178 × 106[J/kg] , [17]

where T is in Kelvin. Finally, Had is the heat of sorption (due to water 213

exchange between the ionomer and the pore space, i.e., water vapor) 214

and is given by:31
215

Had =

⎧

⎨

⎩

MH2OHpc − 28.28 × 103
[

erf
(

18.68λMH2 O

EW
+ 0.4016

)

− 1
]

sorption

−MH2OHpc + 55.65 × 103
[

erf
(

10.39λMH2 O

EW
+ 1.116

)

− 1
]

desorption

[18]

Ionomer water uptake.—It is imperative for any transient model 216

of a PEM fuel cell to properly capture the dynamics of water sorp- 217

tion, desorption, and transport across the membrane. Historically, 218

diffusive29 and hydraulic32 type models have been used for this pur- 219

pose. However, there is abundant evidence in the literature suggest- 220

ing that interfacial transport phenomena as well as swelling of the 221

Table III. Membrane water transport and uptake properties.

Property [Units] Equation

nd [−]25 1.2 tanh
(

λ
2.5

)

Deff
w,mb [ cm2

s
]26 0.0539 × (1 +

MH2Oρion

EW
λ)−2(1 + 0.0027λ2 )

[

1 + tanh
(

λ−2.6225
0.8758

)]

exp
(

−3343
T

)

DT,mb [ mol
(cm·K)

]24 1.04×10−4

Mw
exp(− 2362

T
)

kad [ cm
s

]27 1.14 × 10−5 fv exp
[

2416
(

1
303

− 1
T

)]

for absorption

4.59 × 10−5 fv exp
[

2416
(

1
303

− 1
T

)]

for desorption

fv = 18λ
EW
ρion

+18λ
is the water volume fraction in ionomer

λeq [−]27–29 (1 − s)
[

λ303 +
λ353−λ303

50
(T − 303)

]

+ 22s

λ303 = 0.043 + 17.81a − 39.85a2 + 36.0a3

λ353 = 0.300 + 10.8a − 16.0a2 + 14.1a3

a = RH , and s is the local liquid saturation
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polymer backbone may play a significant role in water uptake and222

transport dynamics.33,34 In particular, the gravimetric water uptake223

experiments conducted by Satterfield et al. have shown very long time224

constants for membrane water sorption while the desorption time con-225

stants were found to be an order of magnitude smaller.34 They sug-226

gested that the sorption behavior may be explained through the con-227

tributions of interfacial water transport and stress relaxation in the228

polymer, whereas the desorption dynamics are dominated by the in-229

terfacial phenomena. Their experiments included a step in the hu-230

midity from fully dry to fully saturated conditions that resulted in231

significant relaxation behavior. Other studies have found much less232

pronounced impact of the relaxation dynamics when the membrane233

was subjected to smaller changes in the humidity conditions.35 Similar234

results have been reported for ionomer thin films.36 Dynamic vapor235

sorption (DVS) experiments by Kusoglu et al. have also shown rela-236

tively long water uptake times with a time constant that increases with237

membrane hydration.37,38 Their results also indicate that the asym-238

metry between sorption and desorption is not as pronounced as that239

observed in Satterfield et al.’s experiments. Such significant difference240

was also challenged by Silverman et al. who found the desorption to241

be only about twice faster than sorption.39 In situ measurements of242

membrane swelling and hydration by GM researchers have also found243

the hydration and dehydration rates to be similar.40
244

Based on the preceding discussion, it stands to reason to incorpo-245

rate the slow ionomer water uptake process into the model. Silverman246

et al. have developed a coupled transport and mechanical model that247

captures such phenomena.31,39 However, adding the mechanical model248

will result in additional complexity that must be avoided for the pur-249

pose of performance modeling. Therefore, we simply use a dynamic250

variable to represent the quasi-equilibrium water content:15,41,42
251

λ∗ = (1 − ϕ)λeq + srelax, [19]

where ϕ determines the contribution of relaxation phenomena to the252

ionomer water uptake (a value of 0.15 is used for the simulations in253

this work), and srelax is a variable accounting for the dynamics of stress254

relaxation. In particular, its dynamics are assumed to be first order:255

ṡrelax = −
1

τ
(srelax − ϕλeq), [20]

where λeq is the equilibrium water content given in Table III and τ is256

the relaxation time constant defined as:257

τ = exp(2 + 0.2λ). [21]

Note that the time constant was chosen to vary with the ionomer258

water content in accordance with evidence in the literature for this259

dependence.37 Moreover, the stress relaxation is supposedly a ther-260

mally activated process.34,43 Therefore, it would be reasonable to as-261

sume an Arrehnius type temperature dependence for the associated262

time constant, which is not included here. Moreover, the effects of263

compressive stresses on membrane water uptake,40,44 and the con-264

tentiously debated discrepancy between water uptake by ionomer thin265

film and bulk ionomer36,37 are not taken into account in the model.266

Future parametric studies should aim at investigating these effects267

along with the effects of changes to the relaxation model parameters268

to understand their impact on the overall dynamic response of the cell.269

Catalyst layer model.—Conventional catalyst layers of PEM fuel270

cells consist of Pt catalyst particles dispersed on ionomer bound car-271

bon primary particles. The Pt particle size is in the range of 2-15 nm,272

while the primary carbon particles may have sizes of up to 80 nm based273

on the type of carbon support used. Early models of PEM fuel cells274

regarded CLs as interfaces with no consideration of their structural275

features. However, the significance of these structural features to the276

cell performance has been established. A particularly important issue277

that has resulted in significant efforts in CL modeling is the additional278

transport resistance observed at lowered Pt loading or with high loaded279

electrodes after degradation inducing cycles.45,46 The experimental ap-280

proach has utilized limiting current measurements with varying gas281

composition and/or pressure to separate the pressure dependent and282

pressure independent transport resistances.47 The transport resistance 283

in the CL is almost entirely independent of pressure and can be esti- 284

mated with such limiting current measurements. Using this approach, 285

it has been found that the CL transport resistance increases at lower Pt 286

loadings48–53 and this increase is strongly dependent on the available 287

Pt area for reaction. Therefore, the resistance appears to be due to 288

the increased flux near each active site at lower loadings.1 Tempera- 289

ture sensitivities were used to determine the contributions of Knudsen 290

diffusion and permeation through the ionomer thin film to the elec- 291

trode transport resistance.54 The ionomer thin film was found to be the 292

dominant cause of transport resistance in the CL. More recently, the 293

impact of carbon support and its porous structure on the local reactant 294

and bulk protonic transport resistances have been highlighted.2,55 Par- 295

ticularly, micro-pores with an opening smaller than 2 nm have been 296

found to limit the reactant access to the Pt deposited inside the carbon 297

pores. Despite such efforts, the root cause of the increased resistance 298

remains largely unknown.56 Several hypotheses have been made, but 299

neither has been thoroughly validated. 300

Numerous models have been proposed to investigate the distri- 301

bution of critical variables throughout the CLs and unveil the cause 302

of increased transport resistance at lower loadings. The agglomerate 303

model has been the most popular one for this purpose. In this model, 304

the Pt particles are assumed to be dispersed on the primary carbon 305

particles, many of which are assumed to aggregate during the fab- 306

rication process to form larger agglomerates covered by an ionomer 307

thin film. The pore space in the CL is divided into two parts: the pri- 308

mary pores between carbon particles in each agglomerate, and the 309

secondary pores formed between the agglomerates. Several variations 310

of this model have been proposed where the intra-agglomerate space is 311

either filled with water (i.e., water-filled agglomerates)57,58 or ionomer 312

(i.e., ionomer-filled agglomerates).59,60
313

Initially, a wide range of agglomerate sizes (100-1000 nm) had 314

been used and significant variations of the ionomer film thickness 315

(10-100 nm) had been reported to match the experimental data.61,62
316

Cetinbas et al. have developed a hybrid method for reconstruction of 317

CL microstructure63,64 and reported an agglomerate size distribution 318

between 25 to 300 nm with most agglomerates having a radius in the 319

range of 75 to 200 nm.64 Furthermore, the upper limit of the modeling 320

values for the agglomerate size and film thickness is not corroborated 321

by microscopy studies.65 Therefore, the validity of this structural pic- 322

ture has come under further scrutiny. In light of these experimental 323

observations, some have argued that the agglomerates probably do 324

not exist and have proposed homogeneous models for the electrode.62
325

Others have continued to use the agglomerate models with agglom- 326

erate radii as small as 40 nm,22,66 which is essentially the size of a 327

carbon primary particle. Of particular interest is the work by Nissan 328

researchers66 who showed that the conventional flooded-agglomerate 329

model is not capable of reproducing experimental results with small 330

agglomerate size and partial ionomer coverage. They modified the 331

model to incorporate transport resistance near the electrochemical sur- 332

face and showed that the modified model successfully predicted the 333

experimental trends. Generally, more recent models rely on interfacial 334

resistance at either the ionomer-gas or the Pt-ionomer interface or both 335

to reproduce experimental transport resistance values. Jinnouchi et al. 336

used molecular dynamics simulations to associate such resistance with 337

a dense ionomer layer near the Pt surface.67 Overall, attributing the ad- 338

ditional resistance to interfacial phenomena has become increasingly 339

common in the literature. 340

Despite its commonality, the interfacial resistance has not been 341

experimentally verified. In fact, Liu et al. measured transport re- 342

sistance in ionomer thin films and found no evidence of interfa- 343

cial resistance when 3D diffusion was taken into account.68 The un- 344

certainty surrounding ionomer thin film properties, such as water 345

uptake,36,69–71 ionic conduction,72 and gas permeation,65 which can 346

be significantly affected by confinement and substrate interactions,73
347

has further contributed to the ambiguity of the source of this increased 348

resistance. Some recent works have disputed the interfacial resistances 349

or downplayed its significance. Darling has proposed an agglomerate 350

model in which the increased resistance is mostly attributed to the 351
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spherical diffusion through the agglomerate.74 Others have investi-352

gated the inhomogeneity of mass fluxes near the Pt particles in ag-353

glomerates and the overlap between several agglomerates as possible354

culprits.75,76 Most recently, Muzaffar et al.77 have investigated litera-355

ture data with a previously developed agglomerate model78 and found356

that the reduction in Pt loading probably leads to higher levels of flood-357

ing in both the CL and GDL due to reduced vaporization capability of358

the CL with decreased thickness. They also elevated the fact that both359

experimental79 and numerical studies80,81 show only partial coverage360

of catalyst particles with ionomer, leaving an alternative transport path361

for oxygen to reach the active sites without facing the interfacial re-362

sistance at the Pt-ionomer interface. Therefore, they concluded that363

the increased transport resistance may be attributable to reduced oxy-364

gen diffusivity due to pore blocking effects of liquid water and the365

interfacial resistance does not play a significant role. The importance366

of water management in successful use of low loaded electrodes was367

also pointed out by Srouji et al.82
368

The preceding literature review shows that the structural picture of369

the electrodes and the understanding of the factors that contribute to370

the transport resistance are still incomplete. Therefore, further model371

development and experimental investigations are required. Neverthe-372

less, it should be noted that for the purpose of a full cell simulation,373

most of the proposed models can be parameterized to capture the lo-374

cal oxygen transport resistance, which is the most critical outcome375

of such models. Moreover, Kulikovsky has demonstrated that under376

certain conditions that are most relevant to typical fuel cell operation,377

the agglomerate model is not required.83 Therefore, unless the goal378

of the model is to investigate different electrode designs at the nano-379

scale, a homogeneous model will be sufficient. Here, we use the model380

proposed by Hao et al.,62 which was shown to appropriately capture381

the increased resistance at lower loadings. The model achieves this382

by assuming full ionomer coverage and introducing rather significant383

interfacial resistances, which, in light of the above discussion, are dis-384

putable. Nevertheless, it is the general trend of the variations in the385

transport resistance that is required for our purposes. The model is386

briefly presented here and the reader is referred to the original publi-387

cation for further details.62
388

The model assumes Pt particles are deposited on primary carbon389

particles that are covered by an ionomer thin film. Liquid water in the390

pores of the electrode forms a thin film on top of the ionomer. This391

structural picture is used to derive the volume fraction of each phase392

(Pt, carbon, ionomer, and pore space) in both the anode and cathode393

CLs. However, the local transport resistance to hydrogen in the anode394

CL is assumed negligible and the calculations are only carried out for395

oxygen transport resistance. The oxygen in the pore space has to (1)396

dissolve in water, (2) diffuse through the water film, (3) dissolve in397

ionomer, (4) diffuse through the ionomer film, and (5) be adsorbed398

on the Pt surface. The model does not account for spherical diffusion,399

but uses instead a 1D diffusion equation to calculate the local flux of400

oxygen:401

NO2
=

c
pore

O2
− cPt

O2

RT

, [22]

where NO2
, c

pore

O2
, and cPt

O2
are the oxygen flux near the Pt surface,402

oxygen concentration in the CL pore space, and its concentration at403

the Pt surface, respectively. RT is the total local transport resistance:404

RT = Rw,int +
δw

DO2,w

+ Rion,int +
δeff

ion

DO2,ion

+ Reff
Pt,int, [23]

where the first, third, and last terms describe the interfacial resistances405

at the liquid film, ionomer film, and Pt surfaces, respectively. The406

fractional terms denote diffusional resistance through the water and407

ionomer thin films. A key argument made in developing the model408

is a geometrical one, where an effective diffusion length through the409

ionomer is calculated based on the effective surface area of a single410

Pt particle and the effective ionomer surface area available for that411

particle:412

Aeff
Pt = 4πr2

PtθPt, [24]

Aeff
ion =

4π(rc + δion )

nPt

, [25]

where rPt and rc are the Pt and carbon primary particle radii, respec- 413

tively, θPt denotes the fraction of Pt surface not covered with oxide 414

species (see Reaction kinetics Sec.), δion is the ionomer film thick- 415

ness, and nPt is the number of Pt particles deposited on a single carbon 416

particle. The effective ionomer film thickness is then calculated by: 417

δeff
ion =

Aeff
ion

Aeff
Pt

δion. [26]

The same scaling factor is used to scale the interfacial resistance at 418

the Pt surface: 419

Reff
Pt,int =

Aeff
ion

Aeff
Pt

RPt,int. [27]

This scaling is one of the most important features of the model as it 420

compensates for the fact that 3D spherical diffusion is neglected, and 421

allows for the effects of high fluxes near sparsely deposited Pt particles 422

to be captured by the model. It is imperative, however, to be cautious 423

and not put too much emphasis on the source of the local transport 424

resistance in this model. As mentioned earlier, the electrode structure 425

assumed in this model is contentious. Nevertheless, on a macro-level, 426

the predictions match the experimental observations, which is the most 427

important aspect for full cell simulations. 428

Finally, another important assumption made in the model is that the 429

interfacial resistances are proportional to the diffusional resistances. 430

This is done due the lack of measured data for the interfacial resistances 431

at various interfaces. In particular, three fitting parameters k1, k2, and 432

k3 are introduced: 433

Rion,int = k1

δion

DO2,ion

, RPt,int = k2

δion

DO2,ion

, Rw,int = k3

δw

DO2,w

[28]

Therefore, the various terms contributing to the transport resistance 434

are identified. Noting that: 435

NO2
= −

iORR

4Facx
, [29]

where iORR is the volumetric ORR current density, ac is the volumetric 436

surface area of the ionomer, and x is the number fraction of carbon 437

supported Pt particles (used to model the effects of catalyst dilution 438

by bare carbon), Equation 22 can be written as: 439

RT =
4Facx(c

pore

O2
− cPt

O2
)

iORR

. [30]

This algebraic equation can be solved numerically to find the oxygen 440

concentration at the Pt surface. It is worth pointing out that an ana- 441

lytical solution is possible in the case that reaction order is assumed 442

to be unity for ORR.62 Nevertheless, such an assumption may be un- 443

realistic and in some cases inconsistent with the ORR kinetics model 444

(see Reaction kinetics sec.). Therefore, we use the numerical solu- 445

tion with no assumption on the reaction order for ORR to avoid such 446

inconsistencies. 447

It is also important to have a consistent set of structural parameters 448

for the CLs. In particular, volume fraction of different phases ought to 449

be known. These volume fractions can be calculated as follows:60,63
450

εc =
1

ρc

Lc

δCL

, [31]

εPt =
1

ρPt

LPt

δCL

, [32]

εion = (I/C)εc

ρc

ρion

(

1 +
MH2Oρion

ρl EW
λ

)

, [33]

where εi is the volume fraction of i, Lc/PT is the carbon/Pt loading, 451

ρi is the density of i, δCL is the CL thickness, and (I/C) denotes the 452

ionomer to carbon ratio. The remaining CL volume constitutes its pore 453
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space (εCL = 1− εc − εPt − εion). Finally, the ionomer and liquid water454

film thicknesses are given by:455

δion = rc

[

(

εion

εc

+ 1

)(1/3)

− 1

]

, [34]

δw =

[

sεCL

(

r3
c

εc

)

+ (rc + δion )3

](1/3)

− (rc + δion ). [35]

This completes the CL model used in this work. The reader is referred456

to62 for further details about this model. As for the parameter values,457

an I/C ratio of 1.1 and an electrochemically active area (ECSA) of 65458

m2
Pt/grPt are assumed for both anode and cathode CLs. The anode Pt459

loading is assumed to be 0.1 mg/cm2 with a Pt/C weight percentage460

of 30%, while the cathode Pt loading is changed between 0.4 and 0.05461

mg/cm2, considering a Pt/C weight percentage of 40% in all cases.462

Reaction kinetics.—Accurate models for the HOR and ORR half463

reactions are required for the model. HOR is known to have facile ki-464

netics and does not result in significant performance loss under most465

typical conditions. Therefore, it is typically described using a sim-466

plified Butler-Volmer kinetics model. Here, we use the dual-pathway467

kinetics model proposed by Wang et al.,84 where the volumetric current468

density is found by:469

iHOR = aPt

cH2

cref
H2

[

i0T

(

1 − exp(−
2FηHOR

ϑRT
)

)

+ i0H

(

exp

(

FηHOR

ϑRT

)

− exp(−
FηHOR

ϑRT
−

FηHOR

2RT
)

)]

, [36]

where aPt is the active volumetric surface area of Pt, i0T and i0H are470

the exchange current densities for the Tafel and Heyrovsky pathways,471

respectively, ϑ is a potential constant, and ηHOR is the anode overpo-472

tential.473

The ORR kinetics are more complicated than the HOR and require474

further attention. Again, various forms of the Butler-Volmer model475

have been used to describe the ORR kinetics. More recently, the effects476

of surface coverage have been considered to derive a modified Tafel477

expression:85
478

iORR = −i0,caaPt (1 − θPtO)

(

cPt
O2

cref
O2

)γca

exp

[

−
αca

RT
FηORR −

ωθPtO

RT

]

,

[37]

where i0,ca, αca, ηORR, γca, are the cathode exchange current density,479

transfer coefficient, ORR overpotential and reaction order, respec-480

tively, and ω denotes the energy parameter for the Temkin isotherm.481

The model results in a potential dependent Tafel slope. The oxide482

coverage is potential and time dependent as cyclic voltammograms483

(CV) show considerable difference between the anodic and cathodic484

sweeps.85 A simple sigmoidal curve can be fitted to steady-state485

measurements:62
486

θPtO =
1

1 + exp [22.4(0.818 − E )]
, [38]

where E is the cathode potential vs. reference hydrogen electrode487

(RHE).488

A more elaborate model for ORR kinetics is the double trap (DT)489

model originally proposed by Wang et al.86,87 The model includes490

two pathways for oxygen adsorption: a reductive adsorption (RA) and491

a dissociative adsorption (DA) pathway. The latter is followed by a492

reductive transition (RT) to adsorbed OH. In either case, the adsorbed493

OH is desorbed through a reductive step (RD) to form water. The494

original formulation neglected the reverse RD step and concluded that495

ORR activity is limited by the desorption of strongly adsorbed O and496

OH. Moore et al.88 modified the model by including the backward497

reactions and refitting the parameters and found ORR to be adsorption498

limited. Moreover, the coverage of adsorbed species predicted by the499

modified model tends to zero at high overpotentials, whereas a constant500

nonzero value was predicted with the original model.86 The modified 501

model is in better agreement with the experimental coverage values 502

reported by Subramanian et al.85
503

Other modifications to the DT model have been proposed as well. 504

Markiewicz et al.89 added two elementary reactions to the model: a 505

reductive addition of a proton to oxygen molecule, producing an ad- 506

sorbed protonated superoxide, and another reductive addition of proton 507

followed by dissociation into adsorbed OH. Through these modifica- 508

tions, they reported a significant coverage of Pt sites by adsorbed HO2 509

species at high overpotentials. More recently, Jayasankar et al.90 re- 510

placed the DA step with an associative adsorption (AA) into adsorbed 511

HO2, which is followed by dissociative transition steps into adsorbed 512

O and OH. They have also extended the model to include oxide growth 513

mechanisms. Their results corroborate those of Markiewicz et al., as 514

they also find an increase in HO2 coverage at high overpotentials. 515

This can have significance for studies with low loaded catalysts, as 516

it provides another possible explanation for the reduced performance 517

observed experimentally. 518

In this work, we use the modified DT model proposed by Moore,88
519

as it has been parameterized for fuel cell polarization curves and used 520

by others in full cell simulation.19,22 In this model, the ORR current 521

can be described as the current from a single RD step: 522

iORR = aPti
∗

[

exp(−
�G∗

RD

kT
)θOH − exp(−

�G∗
−RD

kT
)(1 − θO − θOH )

]

,

[39]

where i∗ is a reference prefactor (similar to the exchange current den- 523

sity in the Butler-Volmer model), k is the Boltzmann constant, �G∗
RD 524

and �G∗
−RD are the potential dependent activation energies of the for- 525

ward and backward RD step, respectively, and θi denotes the coverage 526

of species i. The expressions for the activation energies and species 527

coverage can be found in Ref. 88 528

The DT model is used for simulation case studies. However, when 529

comparing with experimental data, we have chosen to work with the 530

Tafel model in Equation 37 as its parameters are more intuitive and 531

allow for easier parameterization of the model and can also reproduce 532

the kinetic current predicted by the DT model with a varying reaction 533

order.91
534

It should be noted that several effects have been neglected to sim- 535

plify the model and avoid ambiguity in the results. First, the steady- 536

state coverage profiles are used in the kinetic equations and the dy- 537

namics of oxide growth are ignored. These dynamics can be very slow 538

as observed in low frequency impedance spectra92,93 and coulometric 539

measurements.94 Such dynamics can result in a hysteresis loop in the 540

Tafel plot obtained through CVs even when a low potential prehold 541

is used to reduce the oxide layer.95 Therefore, oxide growth dynamics 542

can have a profound impact on current transients, especially at higher 543

potentials. However, including these dynamics adds to the complex- 544

ity of a model, whose main focus is on mass transport and hydration 545

effects. Hence, the oxide growth dynamics are neglected in this work. 546

It should also be pointed out that the ORR activity is shown to be af- 547

fected by presence of ionomer.96–98 This effect is not explicitly taken 548

into account in the current model, since doing so will add to the uncer- 549

tainty in the parameter set. Nevertheless, the exchange current density 550

values (or the reference prefactor in the case of the DT model) used 551

are supposed to capture this reduced activity. 552

Finally, the dependence of ORR kinetics on the relative humidity 553

(RH) is also neglected in this work. This effect was reported by Xu 554

et al.99 to be significant, resulting in up to 100 mV difference at dry 555

condition, even when protonic resistance in the CL was taken into 556

account.100 However, work by GM shows much less pronounced ef- 557

fects of RH on ORR kinetics.101,102 This discrepancy in the reported 558

values could also be partly due to the effects of RH on water oxidiza- 559

tion and subsequent catalyst poisoning.103 The accessibility of Pt in the 560

inner pores of porous carbon support is also shown to decrease at low 561

RH values, which can result in loss of electrochemically active area.104
562

Regardless, the RH effects on ORR kinetics may be included in the 563

model by scaling the exchange current density in the BV model (i0) or 564
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the reference prefactor in the DT model (i∗). A scaling factor varying565

linearly with ionomer water content has been used for this purpose566

by Gerteisen et al.9 More recently, a scaling factor that changes with567

ionomer water content in a sigmoidal fashion has been proposed,42
568

which is in a better agreement with the experimental trends. Such569

scaling factors may be treated as fitting parameters in performance570

models to enhance the predictive capabilities. Nevertheless, we have571

chosen to leave this factor out, in order to simplify the model and allow572

for a clearer understanding of the transport phenomena.573

Mixed wettability model for porous layers.—The main goal of574

a model for the porous layers is to define a mapping from operat-575

ing conditions and material properties to effective charge, heat, and576

mass transport properties. This problem has been studied on a variety577

of length scales ranging from microscopic lattice Boltzmann16 and578

pore network modeling studies105 to macroscopic models with empir-579

ical relationships.106 The microscopic models, along with significant580

advances in experimental techniques to characterize porous layers at581

higher resolutions, can be used to develop a fundamental understand-582

ing of various transport phenomena in such layers. Even though such583

models cannot be used in full cell simulations due to significant com-584

putational requirements, they can be utilized to refine the macroscopic585

models of lower complexity.586

Understanding the water phase change process and its transport587

through the porous layers is also of crucial importance. To this end,588

one particular model for porous layers that has gained more popularity589

in recent years is the mixed wettability pore size distribution (PSD)590

model that was proposed by Weber et al.107 The model represents the591

pores as bundles of cylindrical capillaries that are randomly joined592

together using log-normal distributions. The key feature of the model593

is that it accounts for mixed wettability of the layers, which is ignored594

for the most part in many of the macroscopic models. Therefore, both595

hydrophilic (HI) and hydrophobic (HO) pores are considered to de-596

rive PSDs and contact angles. The original implementation by Weber597

et al.107 assumed the HI and HO PSDs to be identical. Furthermore, a598

two-point discrete contact angle distribution was assumed. A similar599

model was used by Eikerling for transport studies in the cathode CL,600

although he did not consider mixed wettability, choosing to investigate601

the PSDs due to primary and secondary pores in the CL.108 More re-602

cently, Villanueva studied effects of different PSDs for the HI and HO603

pores.20 However, recent implementation of the model in a full cell604

simulation by the same group seems to be using similar PSDs for both605

HI and HO pores.19 It is worth mentioning that this model was further606

extended by Weber to include a continuous contact angle distribution607

(CAD).109 This extension was shown to improve the predictive capa-608

bilities as well as the numerical robustness of the model for use in full609

cell simulations. A continuous CAD with a discrete PSD was used by610

Figure 2. Water retention curves used in this work for the different porous
layers.

Cheung et al.110 Nevertheless, adoption of the continuous CAD has 611

remained minimal in the literature due to unavailability of CAD for 612

most of the porous layers of interest. 613

This work utilizes the mixed wettability model with an implemen- 614

tation that allows for different PSDs to be used for HI and HO pores 615

and also includes the continuous CAD. However, we obtain PSDs and 616

contact angles from the literature, and therefore our implementation 617

coincides with the original implementation by Weber et al.107 when 618

continuous CAD is not available. 619

The model equations can be found in the literature20,109 and are 620

omitted here for space considerations. The inputs to the model include 621

the PSDs, the fraction of HI pores, and CADs (currently two-point 622

discrete CADs are used). The model is used to obtain water retention 623

curves (liquid saturation vs. capillary pressure), relative permeabilities 624

of the gas and liquid phases, Knudsen radii, and liquid-gas interfacial 625

area available for phase change in the CLs, MPLs, and GDLs. The 626

model calculations are conducted off-line and the resulting curves 627

are used in the full cell simulations using cubic-spline fitting. The 628

model parameters used for the simulation case studies in this work 629

are presented in Table IV and the resulting water retention curves 630

are shown in Fig. 2. The CL parameters used in this study are those 631

reported by Mashio et al.111 who obtained experimental PSDs through 632

nitrogen adsorption. In particular, the PSD for a CL with graphitized 633

Ketjen Black carbon support and an ionomer to carbon ratio of 0.9 634

is used here. The MPL and GDL PSDs are those reported by Zhou 635

Table IV. Mixed wettability model parameters.

Value

Parameter CL (GKB)111 MPL (SGL 24)23 GDL (SGL 24)19

Characteristic pore radii [µm] r1 0.002 0.072 14.2

r2 0.006 0.125 34

r3 0.025 2 –

r4 0.080 – –

Characteristic pore widths s1 0.60 0.35 1.00

s2 0.60 0.50 0.35

s3 0.45 0.90 –

s4 0.80 – –

Characteristic pore fractions f1 0.05 0.45 0.28

f2 0.12 0.10 0.72

f3 0.73 0.45 –

f4 0.10 – –

Hydrophilic volume fraction FHI 0.30 0.05 0.08

Hydrophilic contact angle θHI 55 84 70

Hydrophobic contact angle θHO 91 110 122
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et al.19,23 for SGL 34 series that are also applicable for the SGL 24636

series used in this work.637

It should be noted that, as has been shown by Zenyuk et al.,17
638

the GDL PSD changes with compression. Therefore, it seems rea-639

sonable to use a PSD corresponding to higher compression under the640

land compared to the one used under the channel. However, using the641

PSDs that were reported for SGL series by Zenyuk et al. under various642

compressions,17 we found that the effective transport properties of in-643

terest show little change with the PSD variations at the compression644

levels of interest (1 to 1.5 MPa). Therefore, the changes in the PSD645

with compression under the land are ignored in this work. Finally, as646

it has been alluded to by Weber,109 the bundle of capillaries model647

breaks down for wide PSDs, which in turn results in very low relative648

permeabilities predicted by the model. We have found this to be es-649

pecially problematic for the MPL. Therefore, a 5-th order power law650

is used to estimate the liquid and gas phase relative permeabilities for651

the MPL.652

Calculation of effective properties.—To complete the model for-653

mulation, effective properties, such as gas diffusivity and thermal con-654

ductivity values are needed. Some of the layers demonstrate rather655

considerable anisotropy due to their heterogeneous structure, which656

should be taken into account. Furthermore, the effects of nonuniform657

compression under the channel and lands should be considered to ob-658

tain an accurate in-plane distribution of the variables of interest.40,112
659

Accordingly, we have carefully examined the literature for the reported660

values of such transport properties. When applicable, the land-channel661

variations in parameter values are applied in a continuous fashion us-662

ing sigmoid functions. This is in better agreement with the observed663

pressure distribution and also simplifies numerical convergence.664

In this work, we use SGL 24BC and Nafion 211 as the diffusion665

media and membrane, respectively. These materials are chosen due to666

their standard application in the fuel cell literature and an abundance667

of experimental characterization data available for them. The layer668

thickness and porosities are listed in Table V. Note that a compressed669

GDL thickness is assumed based on a compressive load of 1 MPa,670

which is expected to result in a strain of about 0.2.115 While a uniform671

thickness is used for both the channel and land locations, the collapse672

of pore space is applied to the land area, where a reduced porosity673

of 0.69 is used for the GDL. The CL, and MPL are assumed to be674

incompressible. Furthermore, note that Nafion 211 has no reinforce-675

ment, yielding εion = 1 in the membrane region. Finally, it should676

be pointed out that an intermediate composite region is believed to677

exist between the MPL and GDL with transport properties that are678

considerably different from those of either layers. Since the proper-679

ties of this intermediate region are not well known, it is not explicitly680

modeled in this work. The material property variations between adja-681

cent layers are taken into account using smooth sigmoid functions to682

improve convergence. A detailed discussion of the effective transport683

properties used in the simulation studies follows.684

• Effective diffusivity - In calculating the diffusivity of species i,685

contributions from both molecular and Knudsen diffusion are taken686

into account:687

Di =

(

1

DKn,i

+
1

Dmix,i

)−1

, [40]

where DKn,i is the Knudsen diffusivity and Dmix,i is the molecular 688

diffusion coefficient. Knudsen diffusivity is given by: 689

DKn,i =
2rKn

3

√

8RT

πMi

, [41]

where rKn,i is the Knudsen radius of the porous layer, which is obtained 690

from the mixed wettability model in this work, and Mi is the molecular 691

mass of species i. The molecular diffusion coefficient is given by:116
692

Dmix,i =

⎛

⎝

Ns
∑

j=1, j �=i

x j

Di, j

⎞

⎠

−1

, [42]

where x j is the molar fraction of species j and Di, j denotes the binary 693

diffusion coefficient of species i in j.117 With Di available, the effective 694

diffusivity is calculated as 695

Deff
i = f (ε)g(s)Di, [43]

which accounts for the tortuous pathway for gas transport inside the 696

porous layers as well as the pore blocking effects of liquid water ac- 697

cumulation. Several microstructure-property functional relationships 698

have been proposed for both f (ε) and g(s) in the literature, most of 699

which take the form of a power law.118,119 Zamel et al. provide a good 700

review of the relevant literature on this topic.120 In this work, since 701

we consider SGL 24BC as the diffusion medium, we have used the 702

following relationship for f (ε) recently suggested by Holzer et al.:121
703

f (ε)IP = 1.074ε − 0.335, [44]

f (ε)TP = 0.906ε − 0.252, [45]

where the subscripts IP and TP stand for the in-plane and through- 704

plane directions, respectively. These relationships were suggested for 705

SGL 25BA series, which do not have the MPL coating. Due to lack of 706

data, the same relationships are used for the MPL. The reader should 707

be cautious in applying these relationships to other types of diffusion 708

layers, as they are explicitly derived for SGL carbon papers. Typi- 709

cal power laws are better applicable in general and are suggested for 710

different types of diffusion layers. 711

As for g(s), the following relationships are used:118
712

g(s)IP = (1 − s)2.25, [46]

g(s)TP = (1 − s)2.15. [47]

These relationships were determined for Toray carbon papers and are 713

used here due to lack of data for SGL series. It should be noted that 714

the nearly isotropic relationships were developed for local conditions, 715

i.e., domains with flat saturation distributions.122 In contrast, Niu et al. 716

found a more significant difference between the liquid saturation ef- 717

fects on the in-plane and through-plane diffusion coefficients, fitting 718

the results with cubic and quadratic power laws, respectively.119 There- 719

fore, such functional relationships should not be taken for granted. 720

Rather, we believe that it is a better practice to leave the order of de- 721

pendence as a fitting parameter when experimental performance data 722

are available. 723

Finally, the correction factor for effective diffusivity calculations 724

in the CL is calculated as follows:19,108
725

f (ε)g(s) = (1 − s)2

(

ε − εp

1 − εp

)2

H (ε(1 − s) − εp), [48]

Table V. Thickness and porosity of cell layers.

Layer Thickness [µm] Volume Fraction/Porosity [−]

MB 25.4 1

ACL 5 (Pt loading of 0.1 mg/cm2) 0.431

CCL 15/7.5/3.75/1.875 (Pt loading of 0.4/0.2/0.1/0.05 mg/cm2) 0.479

MPL 60113 0.6114

GDL 140 0.8 (Channel) and 0.69 (Land)
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where εp is the percolation threshold, which is assumed to be 0.25 in726

this work, and H is the Heaviside function.727

• Absolute permeability - A range of values for absolute gas and728

liquid permeabilities are reported in the literature. In most of the cases,729

the absolute permeability of the GDL is found to be on the order of730

10−11 m2.123 The MPL permeability values are typically one to two731

orders of magnitude smaller than those for the GDL.124 In spite of732

such measurements, it has been shown that these permeability val-733

ues will result in a negligible pressure drop across the porous layers734

due to oversimplification of the capillary dominated transport through735

the use of Darcy’s law.22,125 Therefore, it has been suggested that the736

experimentally reported values should be reduced by several orders737

of magnitude to obtain a realistic pressure drop.22 In addition to these738

considerations, Holzer et al. recently found that the through-plane per-739

meability values are slightly higher than the in-plane values for SGL740

25BA GDLs.123 Taking these into account, the absolute permeabilities741

assumed in the model are given in Table VI.742

• Thermal conductivity and heat capacity - There is an exten-743

sive literature on the thermal conductivity of the PEM fuel cell layers744

through both modeling and experimental means with somewhat scat-745

tered results. In selecting the thermal transport parameters, one has to746

pay attention to the changes in thermal conductivity with liquid satu-747

ration, in addition to the anisotropy and compression effects. Another748

difficulty is in distinguishing between the thermal properties of the749

MPL and the GDL from the data obtained from a composite layer.750

Here we briefly review the existing literature for SGL papers.751

One of the earliest works in this area was by Khandelwal et al.752

who measured the TP thermal conductivities of various cell layers.126
753

They reported a value of 0.31 W/(m · K) for SGL BA series (with no754

MPL). Unfortunately, they did not report the number specification of755

the GDL. This can bear some significance as the SGL 24 series have756

more binder that can improve the fiber to fiber contact and increase757

the thermal conductivity.127 Nevertheless, this value is well within758

the range of 0.26-0.37 W/(m · K) reported by others for the same759

type of GDL.127–130 Accordingly, the base value of GDL TP thermal760

conductivity is set to 0.3 W/(m · K) under the channel and to 0.45761

W/(m · K) under the land due to the inhomogeneous compression.130
762

As for the IP thermal conductivity, a base value of 12 W/(m · K)763

is used131,132 for both the channel and land locations as the effect of764

compression on IP conductivity is assumed to be minimal.765

For the MPL thermal conductivity, the reported values are far more766

inconsistent than those for the GDL. Such discrepancies stem mostly767

from unknown contact resistances, uncertainties about the MPL thick-768

ness in a combined layer, assumed compressibility or incompressibil-769

ity of the MPL with applied pressure, and the nature of the transi-770

tion region between the MPL and GDL. These have resulted in re-771

ported values for the TP thermal conductivity ranging from 0.035133
772

to 0.6 W/(m · K).130 An interesting observation was made by Burheim773

et al.,134 who argued that the MPL has a lower thermal conductivity774

than the GDL (0.08 W/(m · K)), with an intermediate composite re-775

gion between the two layers that has the highest thermal conductivity776

with an essentially flat temperature distribution. Here we use a value777

of 0.15 W/(m · K) for both the channel and land locations. This is778

based on the assumption of incompressibility of the MPL, which has779

been questioned recently.134,135 Nevertheless, this value is in the range 780

of reported values in the literature. The base value for the IP thermal 781

conductivity of the MPL is chosen to be 3 W/(m · K) based on the 782

literature.131
783

The reported TP thermal conductivities for the CL range from 784

0.04136 to 0.34 W/(m · K).137 In this work, we use the base value 785

of 0.27 W/(m · K) reported by Khandelwal et al.126 for both the IP 786

and TP thermal conductivities assuming no anisotropy for the CL.137
787

Liquid accumulation in the pores can alter the thermal conductivity 788

of the porous layers. In this work, we use the following approximation 789

to capture this effect for the TP thermal conductivity of the GDL:115
790

keff
T = kT,base + 1.44s, [49]

where kT,base is the base value reported in Table VI. For the TP thermal 791

conductivity of other layers (CL and MPL) and the IP conductivity of 792

all porous layers, volume averaging is employed: 793

keff
T = kT,base + εskT,l , [50]

where kT,l = 0.569W/(m · K) is the thermal conductivity of liquid 794

water. 795

Finally, the thermal conductivity of the membrane in both the IP 796

and TP directions is given by:138
797

keff
T,mb = 0.177 + 3.7 × 10−3λ [W/(m · K)]. [51]

The volumetric specific heat capacities (ρcp) used in the model are: 798

1.9, 1.562,10 1.98,10,139 and 1.5827139,140 J/(cm3 ·K) for the membrane, 799

CL, MPL, and GDL, respectively. 800

• Electronic and ionic conductivity - The electronic conductivity 801

of the porous layers should be subject to similar considerations as the 802

thermal conductivity. The values used for the various layers in this 803

work are obtained from the work of Sadeghifar et al.141 and are listed 804

in Table VI. As for the ionic conductivity of the membrane and the 805

CLs, the conductivity is calculated as:107
806

σeff
2 = εion

1.5 · 0.35( fv − 0.045)1.5 exp

[

15000

R

(

1

303.15
−

1

T

)]

.

[52]

The debated suppression of ionic conductivity in thin ionomer films 807

is not taken into account in this work.142 Future work should aim at 808

investigating such effects through parametric studies. 809

• Evaporation and condensation rates -A value of 2 × 10−2
810

mol/(cm2 · s) is used for the condensation rate to avoid the non- 811

physical case of oversaturated gas phase.19 The evaporation rate is 812

set to 2 × 10−3 mol/(cm2 · s). Even though this value is lower than 813

the condensation rate, it yields rather fast evaporation kinetics, which 814

agrees with the experimental findings of Zenyuk et al.143 that showed 815

the evaporation to be transport-limited. The discrepancy between the 816

evaporation and condensation rates is corroborated by experimental 817

findings in the literature.144 Furthermore, the rate of phase change is 818

expected to decline with temperature,144 which is not taken into ac- 819

count in this work. It should be noted that the evaporation rate is a 820

critical parameter and may have a significant impact on water balance 821

in the cell depending on the operating conditions. Future work should 822

Table VI. Transport parameters used in the model.

Through-Plane In-Plane

CL MPL GDL CL MPL GDL

Channel Kabs
l [cm2] 2 × 10−13 3 × 10−11 4 × 10−9 2 × 10−13 3 × 10−11 3 × 10−9

Kabs
g [cm2] 2 × 10−12 3 × 10−11 4 × 10−9 2 × 10−12 3 × 10−11 3 × 10−9

kT [ W
m·K

] 0.27 0.15 0.3 0.27 3 12

σ1[ S
cm

] 2 2 6 2 50 51

Land Kabs
l [cm2] 2 × 10−13 3 × 10−11 4 × 10−9 2 × 10−13 3 × 10−11 3 × 10−9

Kabs
g [cm2] 2 × 10−12 3 × 10−11 4 × 10−9 2 × 10−12 3 × 10−11 3 × 10−9

kT [ W
m·K

] 0.27 0.15 0.45 0.27 3 12

σ1[ S
cm

] 2 2.5 9 2 50 51
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aim at a sensitivity analysis for this parameter to better understand its823

impact on the performance in the two phase regime.824

Boundary conditions.—The model boundary conditions (BCs)825

are given in Table VII, where n denotes the unit normal vector. Sym-826

metry boundary conditions (i.e., zero flux) are applied at the top and827

bottom boundaries of the modeling domain shown in Fig. 1. The tem-828

perature BCs include two heat flux BCs at the channel and land loca-829

tions. The channel heat flux corresponds to convective heat transport830

with the gas stream (hconv = 0.2 W

cm2 ·K
), while the land BC accounts for831

the thermal contact resistance (RT,cont = 2 cm2 ·K

W
) between the plate832

and the GDL. The molar fractions of gas species are also modeled833

with mass flux BCs at the channel location to account for the con-834

vective mass transport resistance. In the corresponding equation, Dfree
i, j835

denotes the bulk diffusivity of species i in species j, Sh is the dimen-836

sionless Sherwood number (=2.7), and Dh is the hydraulic diameter837

of the channel. Dirichlet BCs are used for gas pressures at the channel838

boundaries. The liquid pressure BC requires further attention. Various839

types of BCs have been used for this purpose, including Dirichlet BC840

for liquid saturation or capillary pressure,145 as well as Neumann type841

BC.9 In this work, we use the following BC:842

−n · (−
ρl K

eff
l

µl

∇pl ) = Nl = −kl,fluxs

[

0.5

(

1 + tanh

(

s − s0

σs

))]

,

[53]

where kl,flux is a parameter determining rate of water outflow, s0 con-843

trols the liquid saturation at which water outflow begins, and σs is844

a dimensionless parameter used to smooth the transition between no845

flux BC and the outflow BC. Note that the parameter s0 essentially ac-846

counts for the break-through pressure, which is the capillary pressure847

required for liquid water to flow out of the porous GDL. The values848

of the three parameters used in this work are: kl,flux = 8 × 10−4 g

cm2 ·s
,849

s0 = 0.1, and σs = 0.01. It should be pointed out that this BC can be850

parameterized to be identical to the BC used by Zhou et al.19 However,851

it has the advantage that the parameters are more intuitive, which can852

simplify the parameterization process.853

Numerical implementation and model validation.—The model854

is implemented in the commercial finite element software COMSOL855

Multiphysics 5.3a. A mapped mesh consisting of 5080 quadrilateral856

elements is used throughout the domain with increased mesh density857

in the membrane and catalyst layers. Furthermore, the mesh density is858

exponentially increased near the boundaries between adjacent layers to859

accommodate the different material properties. The backward differ-860

entiation formula (BDF) method is used for time stepping and the max-861

imum time step size is limited to 200 milliseconds. The resulting linear862

system is solved using the MUMPS direct solver provided in COM-863

SOL. To improve the computational efficiency, an under-relaxation864

scheme is employed, where the value of liquid saturation at the pre-865

vious time step is used to calculate effective properties such as the866

diffusion coefficients at the current time step. This was achieved us-867

ing the Previous Solution operator in COMSOL 5.3a. In a preliminary868

study, it was found that the under-relaxation scheme can result in up to869

five times faster solutions in the two-phase regime. The results for the 870

340 seconds long simulation case studies in this paper were computed 871

in 5 to 12 hours depending on the condition, with the most difficult 872

cases being the ones where the transition from dry to wet conditions 873

takes a long time. The simulations were run on a desktop computer 874

with a 3.5 GHz processor and 16 GB of RAM. 875

The model is validated with experimental data by Gerteisen et al.9 876

The results can be found in the Supplementary Information accompa- 877

nying this paper. 878

Simulation Case Studies 879

To better understand the transient behavior of the cell, several sim- 880

ulations are conducted using the model developed in this work. In 881

particular, the transient performance under a variety of temperature 882

and humidity conditions as well as different Pt loadings in the cath- 883

ode CL is investigated. Furthermore, we investigate the cell dynamics 884

under both potential and current control operating modes. The former 885

constitutes running the model with voltage as an input, while the lat- 886

ter takes the cell current density as the input. As will be shown, the 887

dynamics of the cell response can be dramatically different depending 888

on the operating condition. All of the simulations in this work were 889

conducted at a pressure of 1.5 bar for both sides. The gas feeds are 890

assumed to be pure hydrogen and air for the anode and cathode sides, 891

respectively. Finally, same RH values are used for both the anode and 892

cathode sides and initial conditions for all simulations are identical. 893

Potentio-dynamic simulations.—The first set of simulations are 894

those under voltage control or potentio-dynamic mode of operation. 895

Here a voltage profile is applied and the current density is allowed to 896

vary with time. The time varying current density also means that the 897

rate of water production changes with time, which complicates the 898

analysis of the dynamics to some extent. Nevertheless, useful insights 899

can be obtained from these simulations. 900

The voltage profile for these simulations is shown in Fig. 3. The 901

profile is made up of the following voltage steps: 0.8-0.6 V, 0.6-0.4 V, 902

0.4-0.6 V, and 0.6-0.8 V. Note that the step changes are smooth and 903

happen over a period of 1 second for numerical convergence. This 904

profile allows us to inspect the transients during both load increments 905

and decrements. The 100 second hold time used at 0.6 and 0.4 V 906

does not allow the system to fully reach its steady state conditions. 907

Nevertheless, this hold time is limited due to computational reasons 908

and is long enough for the model to settle to a quasi steady state before 909

another change in the load. 910

Overall, 36 simulations are conducted under the potentio-dynamic 911

mode based on a full factorial design for variations in RH (30, 60, 912

and 90%), operating temperature (40, 60, and 80°C), and cathode Pt 913

loading (0.4, 0.2, 0.1, and 0.05 mg/cm2). Note that the CL thickness 914

is assumed to scale linearly with the Pt loading. The resulting current 915

density dynamics for all 36 simulations are shown in Fig. 4. The cor- 916

responding average water contents in the membrane for all the cases 917

are shown in Fig. 5. Furthermore, for the conditions that result in liq- 918

uid buildup in the GDL, the average liquid saturations in the cathode 919

Table VII. Model boundary conditions (∗denotes zero flux BC for the corresponding variable).

Variable CH LAND MPL‖CL CL‖MB

φ1 ∗ an:0, ca:Ecell/icell — ∗

φ2 — — ∗ —

T −n · (−keff
T ∇T ) = hconv(Tcell − T ) −n · (−keff

T ∇T ) = 1
RT,cont

(Tcell − T ) — -

xi −n · (−cgDfree
i, j ∇xi ) = Sh

Dh
(cg,CHxi,CH − cgxi ) ∗ - -

pl −n · (−
ρl Keff

l
µl

∇pl ) = Nl ∗ — ∗

pg pCH ∗ — ∗

λ — — ∗ —
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Figure 3. Voltage and current profiles used for potentio- and galvano-dynamic
simulations, respectively.

GDL are shown in Fig. 6 (the cases with T = 60°C, RH = 60% and Pt920

loadings of 0.4 and 0.2 mg/cm2 also result in some liquid saturation921

during the voltage hold at 0.4 V, but are not shown in the figure). The922

anode side remains dry for the simulated conditions, which is mostly923

due to the high EOD.924

Based on these results, several conclusions can be made about the925

through-the-membrane phenomena affecting the transient response of926

the cell. The following analysis of the average response is organized927

based on the step change in the load. Discussions on the distribution 928

of the critical variables are provided later in the paper. 929

Voltage step from 0.8 to 0.6 V.—During this step change, the 930

current responds monotonically with varying settling times that de- 931

crease with channel RH, i.e., a faster response for more humidified 932

conditions, which can be attributed to sufficient membrane humidifi- 933

cation. This can be observed in Fig. 5, which shows the membrane 934

water content dynamics, where the transient response is found to sig- 935

nificantly depend on the operating conditions. In particular, under dry 936

conditions that dry out the membrane prior to the voltage step down, 937

the membrane water content increases monotonically with the step 938

change in voltage. This increase is less pronounced at higher temper- 939

atures, where further increase in temperature at higher loads results in 940

lower water uptake by the membrane. As the humidity increases and 941

the membrane holds enough water in its initial state prior to the step 942

change, we observe some cases with reverse response, i.e., an initial 943

decrease in the membrane water content followed by an increasing 944

trend (see, for example, the case with T = 40°C, RH = 60% and a Pt 945

loading of 0.4 mg/cm2 in Fig. 5). This reverse response is due to EOD 946

that tends to dry out the anode side of the membrane and is only seen 947

at higher current densities. Another observation is that the changes in 948

the membrane hydration are much more pronounced at lower temper- 949

ature, where slight variations in water production rate can significantly 950

alter the membrane water content. The slow relaxation dynamics dis- 951

cussed in the Model Formulation section are also evident in Fig. 5. 952

In particular, we note that the relaxation dynamics become slower at 953

higher water contents. These relaxation effects are not observable in 954

the current dynamics, since the ohmic drop at this relatively low load 955

R
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Figure 4. Average current dynamics for the potentio-dynamic simulations.
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Figure 5. Average membrane water content dynamics for the potentio-dynamic simulations.

is insignificant. Finally, as shown in Fig. 6, some liquid water builds956

up in the cathode GDL after the voltage step down for three condi-957

tions with low temperature and high humidity. As expected, the build958

up of liquid is faster under cooler and wetter conditions, while for959

some conditions the dynamics are slow and the liquid saturation does960

not reach a steady state within the 100 second hold at 0.6 V (see, for961

example, the case with T = 40°C, RH = 60% and a Pt loading of 0.4962

mg/cm2 in Fig. 6).963

The figures also demonstrate that the cathode Pt loading has an im-964

pact on the transient response by influencing the current generation,965

membrane hydration, and liquid saturation dynamics. More specif-966

ically, Fig. 4 shows that higher current densities are achieved with967

higher loadings, which in turn affect the membrane humidification968

process, especially under drier conditions, where the membrane is969

humidified with the electrochemically generated water. This can be970

clearly seen in Fig. 5 for T = 40°C and RH = 30%. It is observed that971

with higher loadings, the water generation is high enough to humidify972

the membrane, whereas with a loading of 0.05 mg/cm2, the membrane973

remains dry after the step change in the voltage. Additionally, Fig. 5974

shows that the membrane water content is indeed influenced by the975

Pt loading, which can be associated with different levels of current976

and heat generation as well as a change in the overall water balance in977

the cell with the CL thickness. It can also be observed that the cases978

with higher cathode Pt loading show higher levels of liquid saturation979

in the GDL (Fig. 6). This can be attributed to the fact that higher Pt980

loading results in higher current density and therefore higher rate of981

water generation. In addition, the resulting variations in the CL thick-982

ness with changes in Pt loading mean that lower loaded CLs generate983

more heat on a volumetric basis, which creates a stronger drive for984

water evaporation. The impact of Pt loading on the overall water bal- 985

ance in the cell is discussed in further detail below as well as in the 986

discussion of the galvano-dynamic simulations, where the results are 987

not convoluted by varying levels of water generation. 988

Voltage step from 0.6 to 0.4 V.—The second voltage step results 989

in more involved dynamics in some cases, but the current response 990

can be categorically identified as being monotonically increasing or 991

displaying an overshoot. In particular, the drier conditions tend to re- 992

sult in a monotonic increase in the current density (see the first row 993

of Fig. 4). Similar to the previous step, this monotonic response is 994

associated with a hydrating membrane. This is mostly evident, for in- 995

stance, at T = 60°C and RH = 30%, where the relaxation dynamics 996

for the membrane water uptake also play a role in the slow increase 997

in current density. Under wetter conditions, however, the gas phase 998

in the cathode CL is saturated with vapor and the membrane protonic 999

resistance is low enough prior to the step change. This low protonic re- 1000

sistance can support high current generation immediately after the step 1001

change. The high current density dries out the anode side of the mem- 1002

brane with EOD and increases the protonic resistance, which results 1003

in a performance drop as seen in Fig. 4. The overshoot response due to 1004

EOD is relatively fast and settles within 5 seconds of the step change, 1005

when the generated water on the cathode side diffuses back toward the 1006

anode and rehydrates the dry portion of the membrane.146 It is also ob- 1007

served that the overshoot becomes progressively less significant as the 1008

temperature increases. The large overshoots at low temperatures can 1009

be attributed to the high sensitivity of the membrane hydration state 1010

to changes in the current density. This high sensitivity stems from 1011

more rapid changes in the environmental conditions (T and RH) in the 1012
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Figure 6. Average liquid saturation dynamics in the cathode GDL for the potentio-dynamic simulations.

CL and the increased protonic resistance at these lower temperatures.1013

It should be noted that flooding of the porous layers, discharging of1014

the electrochemical double layer, and mass transport limitations are1015

also believed to lead to this type of behavior.4 However, the over-1016

shoot in the presented results is due to membrane dry out with EOD,1017

which is in agreement with other experimental results.146 Following1018

this overshoot, the wetter conditions display a relatively slow drop in1019

performance during the hold at 0.4 V (e.g., see the case with T = 60°C1020

and RH = 90% in Fig. 4). This slow drop in performance is attributable1021

to liquid build up in the GDL that incurs a mass transport resistance1022

and is most significant for the cases where the current density goes1023

above 1.5 A/cm2.1024

The case with T = 60°C, RH = 60%, and a Pt loading of 0.41025

mg/cm2 displays interesting dynamics after the voltage step. An ini-1026

tial overshoot due to EOD is observed that causes the current density1027

to drop by about 0.1 A/cm2 within 2 seconds of the step change.1028

This drop is then followed by an increase of about 0.06 A/cm2 during1029

the next 15 seconds. This increase is due to liquid accumulation in1030

the CL that helps the membrane humidification without causing mass1031

transport limitations. Afterwards, the slow current decay due to liquid1032

accumulation in the cathode GDL can be observed, which continues1033

until the next voltage step. In fact, this particular order of liquid build1034

up in the porous layers (the CL pores followed by those of the MPL1035

and GDL) is seen under most typical conditions. However, the observ-1036

ability of this behavior from measurements of current alone depends1037

on the water retention capabilities of the different layers as well as the1038

operating conditions used for the experiments.1039

As for the membrane water content, the most notable observation1040

is that for drier conditions where the gas phase in the CL remains un-1041

saturated, this voltage step results in better membrane humidification1042

due to higher rates of water generation (Fig. 5). However, this trend1043

is reversed for wetter conditions, where the water content drops after1044

this voltage step. This drop is again attributable to water removal to1045

the cathode through higher EOD at higher current densities. Addition-1046

ally, the variations in membrane water content with the voltage step 1047

are more significant at lower temperatures as was the case during the 1048

previous step change. Average liquid saturation in the cathode GDL 1049

also exhibits trends similar to those for the previous step (Fig. 6). 1050

Voltage step from 0.4 to 0.6 V and from 0.6 to 0.8 V.—Similar to 1051

the previous steps, the current response to the step increase in voltage 1052

is either monotonically decreasing (as is the case at T = 60°C and 1053

RH = 30%) or exhibits an undershoot. Again, this behavior can be 1054

directly correlated with membrane water content and further discus- 1055

sion is omitted here. Instead, we focus on the trends during the dry-out 1056

phase when the voltage is increased. In particular, we note that under 1057

some drier conditions, the performance starts to decay after a while. 1058

This is seen, for instance, for all Pt loadings at T = 40°C and RH = 1059

30% in Fig. 4. Looking at the membrane water content dynamics in 1060

Fig. 5, we note that this decay in performance is directly related to 1061

membrane water loss. This behavior can be explained by a moving 1062

evaporation front that starts in the GDL and progresses toward the 1063

CL as time goes on. Therefore, immediately after the step change the 1064

ionomer in the cathode CL is in contact with a liquid reservoir, which 1065

improves water uptake. As the evaporation front reaches the CL and 1066

the accumulated liquid evaporates, the membrane starts to lose water, 1067

which results in further performance decay. In these simulations, the 1068

time delay between the step change in voltage and the evaporation of 1069

CL liquid water depends on the operating conditions as well as the CL 1070

thickness, with hotter conditions and thinner CLs generally resulting 1071

in the shortest time delays. More generally though, this time delay is 1072

determined by the HI contact angle of the CL as well as the evaporation 1073

rate used in the model. A lower HI contact angle makes evaporation 1074

of water in the HI pores more difficult and prolongs the time delay, 1075

whereas a high evaporation rate reduces this delay. 1076

Finally, it should be mentioned that based on experimental results, 1077

a better performance may be expected at 0.6 V after the hold at 0.4 V 1078

(220-320 seconds) compared to the performance at 0.6 V before the 1079
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hold at 0.4 V (20-120 seconds). This performance gain is attributable to1080

better membrane hydration as well as clearing of the Pt sites from oxide1081

coverage at low potentials. This improved performance will diminish1082

slowly as the membrane dehydrates and oxide species grow on the Pt1083

surface again. As explained in the Model Formulation section though,1084

this work only captures the former dynamics, as the oxide growth is1085

ignored in our model and steady state coverage values are used.1086

The characteristic responses observed after the last voltage step are1087

similar to those discussed so far and further discussion is omitted here.1088

To further investigate the transient phenomena through the cell’s1089

thickness, Fig. 7 illustrates the average liquid saturation in the CL and1090

GDL under both channel (CH) and land (LN) regions of the cell, the1091

average ionomer water content in the anode and cathode CLs, and the1092

normalized membrane water flux defined as:1093

β =
Nw,mb

icell/2F
, [54]

which is averaged over the area of the membrane. As a convention, a1094

positive value denotes water flux toward the cathode. The presented1095

results are for the cold and dry conditions (T = 40°C and RH = 301096

%) with high (0.4 mg/cm2) and low (0.05 mg/cm2) Pt loading in the1097

cathode CL.1098

First, we observe that immediately after the second step decrease in1099

voltage (0.6 to 0.4 V at 120 seconds), the cathode CL becomes flooded.1100

This flooding takes place within 10 seconds of the step change. Also,1101

note that the CL flooding occurs slightly faster under the land location1102

compared to the channel location. After all the hydrophilic pores in the1103

CL are filled, water starts to condense in the GDL. Most of the conden-1104

sation happens under the land, where lower temperature and higher1105

resistance to vapor transport promotes the phase change process. This1106

liquid water then flows toward the channel location. This can be seen1107

in the figure, as there is a delay between liquid accumulation under the1108

land and channel regions of the GDL. This delay is governed by the1109

time it takes for the liquid water condensed under the land to reach the1110

channel location. After the voltage is increased back to 0.6 V at 2201111

seconds, we see that the GDL dry out is initiated under the channel.1112

The dry out happens at a slower pace under the land location. Once1113

the GDL is completely dry, the CL starts to lose its liquid water. As1114

for the ionomer water content in the CL, two main observations can1115

be made. First, at lower loads the ionomer water contents in both CLs1116

are close and as the load is increased, a more significant distribution1117

develops across the membrane thickness with intensified EOD and1118

back diffusion. Second, we note that after the load is decreased, the 1119

CLs maintain a high ionomer water content as long as the liquid water 1120

in the CL has not evaporated. After that liquid water has evaporated 1121

though, the cathode ionomer loses water to its pore space, which also 1122

diminishes the water back diffusion to anode, which in turn results in 1123

dry out of the anode CL. This behavior can also be seen in the last 1124

column of Fig. 7, where the smallest values for β are obtained when 1125

the cathode CL has liquid water while the anode CL is dry, which is in 1126

agreement with experimental measurements by Adachi et al.147 It is 1127

also seen that this flux is significantly reduced after the liquid reservoir 1128

in the cathode CL has evaporated (see the plots between 220 and 300 1129

seconds). This is specially pronounced for the case with low Pt loading. 1130

Another important observation from the normalized water flux plots 1131

is the significant overshoots and undershoots during the step changes. 1132

This behavior is associated with EOD that immediately drives water to 1133

the cathode side, whereas the back diffusion requires time to establish 1134

a balancing water flux to counter EOD. Such transients qualitatively 1135

agree with experimental measurements.148,149 In addition, it can be 1136

seen that higher current densities generally tend to force more water 1137

toward the cathode (larger β values) due to intensified EOD, which is 1138

in agreement with experimental results.150,151
1139

Finally, the distribution of critical variables for some conditions are 1140

shown in Figs. 8-9. In particular, the distributions for the membrane 1141

and cathode temperatures, cathode liquid saturation, ionomer water 1142

content, and volumetric ORR current density are shown for high (0.4 1143

mg/cm2) and low (0.05 mg/cm2) Pt loadings. These distributions 1144

are obtained at the end of the hold at 0.4 V. The temperature plots 1145

show a rather significant temperature gradient (about 1.5°C) across 1146

the MPL thickness, which is due to its low thermal conductivity. This 1147

low conductivity also results in heating the CL and enhances water 1148

evaporation.23 The cathode MPL and GDL remain free of liquid wa- 1149

ter under these hot conditions, whereas the hydrophilic pores in the 1150

cathode CL are filled with liquid water for the hot and wet (T = 80°C, 1151

RH = 90%) conditions. A considerable gradient of water content is 1152

established across the thickness of the CCM, with a dry anode CL and 1153

a wet cathode CL. There is a close correspondence between the loca- 1154

tion of maximum water content in the cathode CL and the volumetric 1155

rate of ORR. In particular, under the dry conditions (Fig. 8), protonic 1156

resistance is a major contributor to performance loss. Therefore, the 1157

highest volumetric current is observed under the land location, where 1158

the membrane water content is highest. At higher humidities (Fig. 9) 1159

the location of maximum current generation moves toward the channel 1160

a)

b)

Figure 7. Average dynamics of liquid saturation, ionomer water content in the CLs, and normalized membrane water flux for the potentio-dynamic simulations
at T = 40°C and RH = 30 % with cathode Pt loading of a) 0.4, and b) 0.05 mg/cm2.
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Figure 8. Distribution of temperature, liquid saturation, ionomer water content, and ORR volumetric current density for the potentio-dynamic simulations under
the hot-dry (T = 80°C and RH = 30%) operating condition at t = 219 s (highest load just before the following voltage step up) with Pt loadings of: a) 0.4 and b)
0.05 mg/cm2.

region, where the mass transport limitations are minimal. Furthermore,1161

a higher portion of the Pt is utilized, as the region close to the MPL1162

is not severely limited by proton transport resistance. Comparing the1163

low and high Pt loading cases, the most notable difference is in the1164

volumetric current distributions, which stems from the thinness of the1165

CL with low Pt loading and the resulting increase in volumetric cur-1166

rent density. In particular, note that the current distribution across the1167

CL thickness is more uniform for the thin CL as seen previously.72
1168

Galvano-dynamic simulations.—For this set of simulations, a1169

current profile shown in Fig. 3 is applied and the cell voltage is calcu-1170

lated. The profile is made up of the following steps: 0.2-1.0 A/cm2,1171

1.0-1.8 A/cm2, 1.8-1.0 A/cm2, and 1.0-0.2 A/cm2. The magnitude of1172

the steps are chosen to be relatively high in order to excite the system1173

dynamics. Similar to the voltage steps, these step changes are smooth1174

and happen over a period of 1 second.1175

Overall, 16 simulations are conducted under the galvano-dynamic1176

mode with variations in RH (60, and 90%), operating temperature (60,1177

and 80°C), and cathode Pt loading (0.4, 0.2, 0.1, 0.05 mg/cm2). The1178

driest and coldest conditions used for the potentio-dynamic simula-1179

tions could not be simulated in the galvano-dynamic mode with the 1180

selected current profile. This is due to the severe anode dry out with 1181

EOD that occurs during a step change in current density12 and results 1182

in numerical issues under these dry conditions, where the membrane 1183

hydration is low prior to the increase in load. 1184

The resulting voltage dynamics for all 16 simulations are shown 1185

in Fig. 10. The corresponding average water content in the membrane 1186

for all the cases are shown in Fig. 11 and the average liquid saturations 1187

in the cathode GDL are shown in Fig. 12. Similar to the analysis for 1188

the potentio-dynamic case, below we organize the discussion in terms 1189

of the current density step. 1190

Current density step from 0.2 to 1.0 A cm2.—After the first step 1191

in the current density, the voltage drops and a steady state value is 1192

achieved within 20 seconds. Only the case with T = 80°C and RH = 1193

90% with a Pt loading of 0.4 mg/cm2 demonstrates a slight undershoot 1194

that is a characteristic response of PEM fuel cells due to dry out of 1195

the membrane by EOD as mentioned earlier.146 This dry out can also 1196

be observed in Fig. 11. It should be noted that mass transport limita- 1197

tions at higher loads can also contribute to this behavior.152 However, 1198
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Figure 9. Distribution of temperature, liquid saturation, ionomer water content, and ORR volumetric current density for the potentio-dynamic simulations under
the hot-wet (T = 80°C and RH = 90%) operating condition at t = 219 s (highest load just before the following voltage step up) with Pt loadings of: a) 0.4 and b)
0.05 mg/cm2.

membrane dry out is the only contributing factor in this case, since the1199

operation is well within the ohmic region and mass transport effects1200

are relatively insignificant. To finalize our discussion of the voltage1201

response, it is worth mentioning that higher Pt loading is observed to1202

consistently result in improved performance under all four simulated1203

conditions at 1.0 A/cm2.1204

As for the GDL liquid saturation, only the coolest (T = 60°C) and1205

most humidified (RH = 90%) condition results in vapor condensation1206

after this step change in the current density (Fig. 12). This condensa-1207

tion continues throughout the entire 100 seconds hold at 1.0 A/cm2,1208

where the higher Pt loadings result in slightly higher liquid accumula-1209

tion in the GDL. This higher liquid saturation is due to the fact that the1210

thicker catalyst results in higher cell voltage and reduced volumetric1211

heat generation, which lowers the overall cell temperature by about1212

0.4°C. The average saturation of 0.2 agrees with the in-operando re-1213

sults by Banerjee et al.153 They also propose fitting the time evolution 1214

of liquid saturation with a first order dynamic equation and obtain a 1215

time constant of 2.3 minutes for similar operating conditions using an 1216

SGL 25BC diffusion medium. Similar dynamics are observed by oth- 1217

ers as well.154 Our results indicate a time constant of about 33 seconds, 1218

which is more than 4 times faster than that reported by Banerjee et al.153
1219

This discrepancy between the model predictions and experimental re- 1220

sults may be attributed to differences in cell geometry, membrane and 1221

catalyst layers, and thermal properties assumed for SGL 24BC in this 1222

work. 1223

Current density step from 1.0 to 1.8 A/cm2.—The voltage re- 1224

sponse to the second step increase in current density is seen to be 1225

monotonically decreasing in most cases, while some cases (T = 60°C 1226

and RH = 60% in Fig. 10) exhibit the characteristic undershoot dis- 1227
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Figure 10. Average voltage dynamics for the galvano-dynamic simulations.
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Figure 11. Average membrane water content dynamics for the galvano-dynamic simulations.
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Figure 12. Average liquid saturation dynamics in the cathode GDL for the galvano-dynamic simulations.

cussed earlier. The monotonic voltage decay is a sign of well humidi-1228

fied membrane and increasing mass transport limitations with slowly1229

accumulating liquid water (e.g., T = 60°C and RH = 90% in Fig. 101230

and Fig. 12). For the operating condition where a voltage undershoot1231

is observed, the performance recovers to some extent after the step1232

change with water back diffusion and rehydration of the anode side of1233

the membrane. However, this voltage recovery is followed by a further1234

decay as the cathode GDL floods with liquid water (Fig. 12).1235

An important observation is the fact that at T = 60°C and RH =1236

90%, reducing the Pt loading from 0.4 to 0.2 mg/cm2 seems to improve1237

performance. This seemingly peculiar behavior is directly related to1238

the changes in the membrane water content with CL thickness. In par-1239

ticular, Fig. 11 shows that at 60°C and 1.8 A/cm2, thinner catalysts1240

consistently result in better membrane hydration. This is explained fur-1241

ther when discussing the water balance in the cell later in this section.1242

The higher membrane water content achieved at 0.2 mg/cm2 reduces1243

the ohmic drop, while the Pt reduction at this level does not impose1244

significant mass transport issues. Therefore, the performance is im-1245

proved. Yet another interesting observation is related to the impact of1246

Pt loading on voltage dynamics at T = 80°C and RH = 90%. Specifi-1247

cally, we observe that immediately after the load increase, the highest1248

Pt loading achieves the best performance. But this performance decays1249

more rapidly than the cases with lower Pt loading, to the point that at1250

the end of the 100 second hold at 1.8 A/cm2, the cell with a Pt loading1251

of 0.2 mg/cm2 has a higher voltage than that with a Pt loading of 0.41252

mg/cm2. This is directly related to faster liquid accumulation in the1253

GDL with a thick CL which is due to lower cell temperatures (Fig. 12).1254

The heat generation in the two thinnest CLs is high enough to inhibit1255

any liquid accumulation (Fig. 12), which results in lower membrane1256

water contents as seen in Fig. 11 and reduced performance.1257

Current density steps from 1.8 to 1.0 A/cm2 and from 1.0 to1258

0.2 A/cm2.—For the simulated conditions, the step decreases in cur-1259

rent density result in monotonic voltage increase with relatively fast1260

dynamics. A hysteresis effect may be expected due to membrane1261

hydration-dehydration and Pt oxide coverage dynamics. The former 1262

effect can be seen to some extent in the simulations results at T = 1263

60°C and RH = 60%. The most notable feature of the voltage re- 1264

sponse to load decreases at this condition is a drop in performance 1265

after a considerable time delay. This is due to evaporation of liquid 1266

water reservoir in the cathode CL and the ensuing loss of membrane 1267

water (Fig. 11) and was discussed in detail for the potentio-dynamic 1268

simulations. Other conditions show almost no hysteresis, since they 1269

are well humidified. Furthermore, as mentioned in the Model Formula- 1270

tion section, the Pt oxide growth dynamics are neglected in our model, 1271

which further contributes to the lack of hysteresis in our results. 1272

Further insight about the water balance in the cell can be gained by 1273

comparing the normalized membrane water fluxes (β) shown in Fig. 1274

13. The figure illustrates β values (defined by Eq. 54) for different 1275

operating conditions and cathode Pt loadings at 119 seconds, which 1276

corresponds to the hold at 1.0 A/cm2 just before the following step 1277

increase in the load. Some clear trends can be observed in these results. 1278

First, we note that increasing the RH increases β. This is due to the fact 1279

that the cathode CL typically has a high RH under all conditions due 1280

to the electrochemical water generation. A low RH dries out the anode 1281

CL and promotes water back diffusion, which explains lower β values. 1282

Another important observation is the impact of temperature on β. At 1283

lower RH conditions (RH = 60%), we observe that β increases with 1284

temperature. This is due to the fact that parts of the cathode CL remain 1285

subsaturated at low RH and high temperatures, which reduce water 1286

back diffusion and increases β. At higher RH conditions (RH = 90%), 1287

the cathode CL remains saturated at both low and high temperatures. 1288

Therefore, the water activity in the anode CL determines the driving 1289

force for water back flow. As this water activity diminishes at higher 1290

temperatures, the water back diffusion is more pronounced, which 1291

yields a lower value of β. 1292

Similar arguments can be used to explain the seemingly counterin- 1293

tuitive impact of Pt loading on the water balance. In particular, we note 1294

that at lower temperature, β increases with Pt loading and the resulting 1295

increase in CL thickness. This trend is reversed at higher temperature, 1296

Figure 13. Normalized average water flux in the membrane
(positive is toward cathode) at t = 119 s (medium load just
before the following current step up) for the galvano-dynamic
simulations.
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where a higher Pt loading reduces β. The trend at T = 60°C can be ex-1297

plained by the fact that at this lower temperature, the CL is saturated1298

for all Pt loadings. A lower Pt loading means that the water that is1299

produced in the CL close to the MPL has a lower resistance to diffuse1300

back to the anode, since the cathode CL is thinner and the diffusion1301

path is shorter. This means that a thinner CL reduces β. When the tem-1302

perature is increased, subsaturated conditions emerge in parts of the1303

CL as mentioned before. Therefore, an increase in the temperature di-1304

minishes the driving force for water back diffusion and increases β. As1305

thinner CLs generate more heat, the local CL temperature increases1306

further, which in turn increases β. This result bears significance as1307

it shows that in addition to changes in local transport resistance, Pt1308

loading impacts the performance by influencing the water balance in1309

the cell. This overall observation partially confirms the hypothesis by1310

Muzaffar et al.,77 who claimed that the performance changes with Pt1311

loading reduction may mostly stem from a tipping water balance in1312

the cell. However, their conclusion was based on the assumption that1313

the CL is the main source of vaporization in the cell and a thinner CL 1314

makes the cell inherently more susceptible to flooding. On the other 1315

hand, the phase change rate is assumed to be relatively high in our 1316

model based on the experimental evidence in the literature that sug- 1317

gest the phase change kinetics should be fast enough not to impose 1318

any limitations.143 This high rate of phase change allows the GDL to 1319

vaporize a relatively large amount of liquid. Nevertheless, our results 1320

also highlight the role of Pt loading and CL thickness in the cell water 1321

balance. 1322

Our discussion of the galvano-dynamic simulations has focused 1323

on average response of the cell so far. However, the distribution of 1324

temperature, water, and reaction rates are also of critical importance. 1325

An example of such distributions is provided in Fig. 14 for high (0.4 1326

mg/cm2) and low (0.05 mg/cm2) cathode Pt loading. The figure shows 1327

a rather significant in-plane temperature gradient in the membrane and 1328

CL, where a temperature difference of up to 4°C is observable. This 1329

temperature difference is due to the high current generation under the 1330

Figure 14. Distribution of temperature, liquid saturation, ionomer water content, and ORR volumetric current density for the galvano-dynamic simulations under
T = 60◦C and RH = 90% operating condition at t = 219 s (highest load just before the following current step down) with Pt loadings of: a) 0.4 and b) 0.05 mg/cm2.
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channel location along with the limited heat dissipation through the1331

channel boundary.1332

Furthermore, we see that the cathode GDL has a very high sat-1333

uration at this operating condition, which imposes significant mass1334

transport limitations and results in limited current generation under1335

the land area. It should be pointed out that a higher liquid saturation1336

is observed under the land while a rather uniform distribution is seen1337

through the GDL thickness. Zenyuk et al. found a higher liquid sat-1338

uration under the channel in a compressed GDL due to the in-plane1339

porosity distribution resulting from land compression.155 However,1340

the temperature distribution in an operating fuel cell usually shifts the1341

water accumulation toward the land region.153 This flooding under the1342

land has much less pronounced impact on the overall performance1343

compared to flooding under the channel,156 since the land region is1344

already transport limited by the longer diffusion paths. In terms of1345

the through-plane liquid distributions, there is evidence in the litera-1346

ture for increased saturation in higher porosity regions of the GDL.113
1347

Furthermore, Banerjee et al.153 found the highest level of saturation1348

to occur close to the land. Finally, capillary fingering is believed to1349

be a major transport mechanism for liquid water.155,157 The model in1350

this work assumes a constant GDL porosity through the thickness, so1351

the pooling effects cannot be captured. The rather uniform through-1352

plane liquid distribution stems from the temperature distributions in1353

our simulations. Finally, the macro-homogeneous model in this work1354

does not allow for simulation of capillary fingering. Therefore, the liq-1355

uid saturations predicted by the proposed model are only insightful on1356

an aggregate level and detailed knowledge about the micro-structures1357

are needed to obtain accurate distributions.16
1358

The non-uniform current generation pattern also affects water dis-1359

tribution in the ionomer phase. In particular, we see that under the1360

land, the water content is more uniform across the thickness of the1361

CCM, whereas significant gradients emerge under the channel, where1362

current generation is high. Comparing the low and high Pt loading1363

cases, we observe that the lower Pt loading results in slightly higher1364

temperatures, which in turn reduce liquid saturation in the cathode1365

GDL. Moreover, the current distribution through the thickness of the1366

cathode CL is more uniform for the lower loaded CL as discussed1367

earlier.72
1368

The preceding analysis provides some insight about the quasi 1369

steady state distributions of critical variables. To better understand 1370

the water transport transients during the following current step down, 1371

the distributions of liquid pressure in the cathode CL and the mem- 1372

brane water content before and after the step change are shown in Fig. 1373

15 and Fig. 16, respectively, for the high Pt loaded CL (0.4 mg/cm2). 1374

Fig. 15 shows that immediately before the step change at 219.5 sec- 1375

onds, liquid pressure is highest under the channel. The flow directions 1376

provided in the figure show an interesting pattern, where the liquid 1377

water is found to flow mostly toward the membrane in the land re- 1378

gion and mostly toward the MPL in the channel region. This behavior 1379

is closely tied to a similar flow pattern in the membrane as seen in 1380

Fig. 16, where a recirculation is observed at 219.5 seconds. More 1381

specifically, it is seen that at the furthest location under the land, the 1382

membrane water flux is toward the anode. As we move closer to the 1383

channel location, the flux turns progressively toward the cathode. As 1384

the load is reduced to 1.0 A/cm2, EOD is relieved and water back 1385

diffusion dominates during the transients (as was observed in Fig. 7 1386

for the potentio-dynamic simulations). This results in the membrane 1387

water flux to be dominantly toward the anode (Fig. 16 at 221 seconds), 1388

which also pushes liquid water toward the membrane to compensate 1389

for the back diffusion (Fig. 15 at 221 seconds). Two seconds after 1390

the step change, a smoother water profile is established across the 1391

membrane thickness and water back diffusion has diminished (Fig. 1392

16 at 222.5 seconds). This creates a dominant flux toward the cath- 1393

ode. At the same time, a higher liquid pressure is observed in the 1394

cathode CL, where a stagnation front has emerged in the middle (Fig. 1395

15 at 222.5 seconds). In particular, in the half of the CL close to the 1396

membrane, the flow is found to be toward the membrane, whereas in 1397

the other half to the right of the stagnation front, the flow is found 1398

to be toward the MPL. As time goes on and a quasi steady state is 1399

achieved at this reduced load, the stagnation front moves further to- 1400

ward the membrane (Fig. 15 at 230 seconds), while the membrane 1401

water flux turns toward the cathode throughout the membrane thick- 1402

ness (Fig. 16 at 230 seconds). The existence of the stagnation front 1403

is in agreement with our earlier observation that a thick catalyst layer 1404

increases the resistance to water flow toward the anode. The transients 1405

during a step increase in the load are the reverse of those presented 1406

here. 1407

Figure 15. Liquid pressure (in [Pa]) and flow in the cathode CL during load decrease from 1.8 to 1 A/cm2 at T = 60°C and RH = 90% (Pt loading of 0.4 mg/cm2).
From left to right: immediately before the step change, 0.5 seconds after the step change, 2 seconds after the step change, the quasi steady state achieved after the
step change.
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Figure 16. Membrane water content and flow during load decrease from 1.8 to 1 A/cm2 at T = 60°C and RH = 90% (Pt loading of 0.4 mg/cm2). From left to
right: immediately before the step change, 0.5 seconds after the step change, 2 seconds after the step change, the quasi steady state achieved after the step change.

The dynamics of in-plane current density distribution during load1408

changes can also improve understanding of the transient phenomena.1409

To this end, the corresponding distributions for the hot and wet operat-1410

ing condition (T = 80°C and RH = 90%) during the load increase from1411

1.0 to 1.8 A/cm2 are shown in Fig. 17 for both low (0.05 mg/cm2) and1412

high (0.4 mg/cm2) cathode Pt loading. We see that immediately before1413

the step change, both Pt loadings result in a relatively uniform in-plane1414

current distribution. However, as the load is increased to 1.8 A/cm2
1415

the region under the channel tends to generate more current with both 1416

Pt loadings. It can be seen, however, that the in-plane distribution is 1417

more uniform for the lower Pt loading case. This is attributable to the 1418

fact that the thinner CL results in higher cell temperatures and lower 1419

liquid build up, which reduces the mass transport limitations under the 1420

land region. We also note that current generation under the land is low 1421

even immediately after the load increase and before any liquid accu- 1422

mulation. This agrees with experimental results by Schneider et al., 1423

Figure 17. In-Plane current density distribution for the galvano-dynamic simulations during load increase from 1 to 1.8 A/cm2 at T = 80°C and RH = 90% for
high and low cathode Pt loadings. From left to right: immediately before the step change, mid-way through the step change, immediately after the step change has
completed, the quasi steady state achieved after the step change.
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Figure 18. In-Plane current density distribution difference between high- and low-loaded CLs during load increase from 1 to 1.8 A/cm2.

who found the land region to be transport limited even prior to any1424

liquid build up in the GDL.158,159
1425

To further investigate the impact of Pt loading on the dynamics of1426

in-plane current distribution, the difference between the current den-1427

sities with high and low Pt loadings during the same load change are1428

shown in Fig. 18 for all simulated operating conditions. The figure1429

shows that at 1.0 A/cm2 the difference between the current distri-1430

butions is relatively insignificant as was seen earlier. As the load in-1431

creases, however, the cathode Pt loading and CL thickness seem to1432

have varying impacts on the current distribution at different operat-1433

ing conditions. In particular, under drier conditions (RH = 60%), the1434

higher Pt loading and CL thickness result in improved performance1435

under the land region immediately after the step change. At T = 60°C1436

this performance enhancement under the land fades toward the new1437

quasi equilibrium state, as more liquid builds up in the GDL when a 1438

thicker CL is used. However, at the higher temperature (T = 80°C) 1439

that inhibits liquid accumulation, the new equilibrium results in a dis- 1440

tribution difference that is close to that obtained immediately after 1441

the load change. When the RH is increased to 90%, the response is 1442

dominated by liquid accumulation dynamics in the GDL. More specif- 1443

ically, thicker CLs make the GDL more susceptible to rapid liquid 1444

build up, as they generate less heat. Therefore, the performance is 1445

diminished under the land region. This results in a particularly sig- 1446

nificant difference at T = 80°C and RH = 90%, where the thick CL 1447

prompts considerable GDL liquid saturation at 219 seconds, whereas 1448

the thin CL leads to a relatively dry GDL. Therefore, the high Pt 1449

loaded cathode CL shows a remarkable performance drop in the land 1450

region. 1451
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Conclusions1452

A comprehensive model that captures the most salient transient1453

phenomena across the thickness of a unit cell is developed in this1454

work. The model draws from and extends the existing models in the1455

literature by incorporating state of the art reaction kinetics for the1456

HOR and ORR, the mixed wettability model for porous layers, a con-1457

sistent homogeneous model for the CL micro-structure, as well as the1458

ionomer relaxation dynamics. The model predictions are compared1459

with experimental data obtained through voltammetry and voltage step1460

experiments under a variety of conditions and a good agreement is ob-1461

tained.1462

The developed model is executed with different humidity and tem-1463

perature conditions under both current and voltage control operational1464

modes and varying Pt loadings in the cathode CL. The results of these1465

simulations shed light into the transient processes that determine the1466

dynamic response of PEM fuel cells to load changes. In particular, we1467

have found the transient response to be dominated by water redistri-1468

bution in the cell. The timescales of this redistribution are dependent1469

on the operating conditions and are controlled by the membrane wa-1470

ter uptake and two phase flow in the DM for dry and wet conditions,1471

respectively. Furthermore, the modeling results suggest that changing1472

the cathode Pt loading, and thereby, the cathode CL thickness, can1473

influence the performance by affecting the water balance in the cell.1474

Specifically, the thiner CL results in higher rates of heat generation on1475

a volumetric basis while leading to a shorter diffusion path for water1476

transport toward the anode. Our simulation results suggest that, based1477

on the operating conditions, the combination of these effects lead to1478

distinctly observable trends in normalized membrane water flux with1479

respect to changes in the cathode Pt loading. Additionally, we have1480

found that through its effect on water balance in the cell, the cathode1481

Pt loading can have a profound impact on the transient response to1482

load changes for some operating conditions. These findings can fur-1483

ther improve understanding of the impacts of Pt reduction on various1484

aspects of PEM fuel cell performance and its transient response. More1485

broadly, the model can be used to develop further insight into spatio-1486

temporal distribution of variables that are critical to performance and1487

degradation.1488
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