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Through-wall detection and classification are highly desirable for surveillance, security, and military applications in areas that
cannot be sensed using conventional measures. In the domain of these applications, a key challenge is an ability not only to
sense the presence of individuals behind the wall but also to classify their actions and postures. Researchers have applied
ultrawideband (UWB) radars to penetrate wall materials and make intelligent decisions about the contents of rooms and
buildings. As a form of UWB radar, stepped frequency continuous wave (SFCW) radars have been preferred due to their
advantages. On the other hand, the success of classification with deep learning methods in different problems is remarkable.
Since the radar signals contain valuable information about the objects behind the wall, the use of deep learning techniques for
classification purposes will give a different direction to the research. This paper focuses on the classification of the human
posture behind the wall using through-wall radar signals and a convolutional neural network (CNN). The SFCW radar is used
to collect radar signals reflected from the human target behind the wall. These signals are employed to classify the presence of
the human and the human posture whether he/she is standing or sitting by using CNN. The proposed approach achieves
remarkable and successful results without the need for detailed preprocessing operations and long-term data used in the
traditional approaches.

1. Introduction

The ability to image targets behind building walls or to detect
people under debris also including the classification of the
human body has been drawing attention since the last
decade. For this reason, unlike image processing, ultrawide-
band (UWB) radars as radio frequency sources more pre-
cisely achieve this kind of purpose applicable to real-world
problems. UWB radars are used for different applications
such as the detection and classification of aircrafts, collision
avoidance, detection of a target, or the heart and respiration
rate of a human. This kind of radar has several key advan-
tages over narrowband continuous wave radars like having
a very high downrange resolution of a target, allowing better
separation between targets and clutter due to the large band-
width; multiple target detection capability; good immunity
against multipath interference; and detection of both an
object and its position [1]. The concept underlying

through-wall human detection using UWB radars lies on a
similar approach with that of radar imaging. A fraction of
the transmitted RF signals is traversed from a nonmetal wall,
reflected from the objects—even humans, and returned to the
receiver imprinted by passing the nonmetal wall again having
some signature of the objects within the room. By using this
received signal, imaging of the objects is possible [2].

As a form of UWB radar, stepped frequency continuous
wave (SFCW) radar approaches are commonly used in many
practical applications including through-wall radar imaging
and target ranging [3–7], medical imaging [8], and many
applications utilizing ground penetrating radar (GPR), a kind
of SFCW radar, for civil engineering [9, 10], structural static
testing [11], quality estimation of the road surface layer [12],
detection of pipes and cables buried in the ground [13, 14],
archeological purposes [15], and unexploded ordnance dis-
posal [16, 17]. These studies rely on using SFCW radar sig-
nals since they make the spectrum accessible directly to the

Hindawi
International Journal of Antennas and Propagation
Volume 2019, Article ID 7541814, 10 pages
https://doi.org/10.1155/2019/7541814

http://orcid.org/0000-0002-1567-0213
http://orcid.org/0000-0002-2503-1482
http://orcid.org/0000-0003-0146-4221
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7541814


user. SFCW radar techniques also have benefits including
high mean transmitter power and high receiver sensitivity
[2, 4]. Not only do they provide the ability to detect targets
or events but SFCW radars also enhance the range accuracy,
enable clutter rejection, and help reduce the multipath.

Convolutional neural networks (CNNs) have been used
for solving many different artificial intelligence problems,
providing significant advantages over other machine learning
approaches in solving complex learning tasks. In conven-
tional classification approaches, features were manually
extracted and designed and then followed by a traditional
classifier such as a support vector machine (SVM). Due to
having several feature extraction and signification layers,
CNNs are capable of performing automatic preprocessing
along with their neural network characteristics [18–21].

In the literature, studies that classify targets by processing
radar signals can be divided into two categories: studies based
on creating images from radar signals and studies based on
extracting different features of the target traditionally. The
first category suggests either operating at very high frequen-
cies (e.g., millimeter wave or terahertz) [22] which do not
penetrate walls or using the SAR (synthetic aperture radar)
algorithm [23]. The second category proposes to extract the
specific features of the target such as vital signs [24–26] or
movement characteristics [27–29] of the target. Micro-
Doppler signatures [30] are commonly used to detect vital
signs or to classify the target’s specific activities such as run-
ning, walking, or even falling. However, the most important
feature and disadvantage of this approach is the need for con-
tinuous data for a certain period (5-30 secs) for preprocessing
and classification. This approach may not be practical for
security, counterterrorism, or mission-critical operations
where immediate decisions are important. Although the
SAR algorithm provides detailed information for the absolute
position and shape of the target, there are difficulties in
implementing it in practice. Therefore, there is a need to
develop methods which have the simplest configuration
and can make instant classification without the need for
long-term data.

This paper focuses on the classification of the human
posture behind the wall using through-wall radar signals
and a convolutional neural network (CNN). Thus, due to
the advantages of CNN, detailed preprocessing is not
required for classification. The SFCW radar is used to collect
radar signals reflected from the human target, and these sig-
nals are employed to classify the human target whether
he/she is standing or sitting by using CNN.

The paper is organized as follows: the SFCW radar con-
cept as a form of UWB radar and CNNs are briefly intro-
duced. After presenting the detection and classification
approach of the study, the experimental setup and results
are given and discussed. The study is concluded in Section
6, also proposing some future works.

2. SFCW Radar

The SFCW radar is a UWB radar form with advanced fea-
tures having considerable capabilities for a variety of applica-
tions. The main advantage of the SFCW radar is the high

dynamic range and low noise floor. Furthermore, with the
ability to avoid certain frequencies for transmission, the
SFCW is preferred for certain restricted applications.
Depending on these advantages of the SFCW radar, these
radar systems are better choices on through-wall imaging
due to the range, resolution, and propagation characteristics
of UWB signals through a dielectric wall [31, 32]. Detailed
information about the SFCW radar can be found in [33].

Assuming that the total period of repeated pulses of the
SFWC signal is T , the initial (minimum) frequency is f0,
the frequency step increment is ∆f , and the stepped fre-
quency isN ; then, the stepped frequency St t may be written
as follows [3]:

St t = 〠
N−1

n=0

rect
t − n + 1/2 ∗ T

T
exp j 2π f0 + n∆f t + φ0 ,

1

where φ0 refers to the initial phase of the transmitted
signal and

rect
t

T
=

1, −
T

2
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2
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The transmitted signal is reflected and echoed back from
the target at the radial distance. The target echo signal Sr t
may be described as follows:

Sr t = 〠
N−1

n=0

rect
t − n + 1/2 ∗ T − τ t

T
ρn exp j 2π f0

+ n∆f t − τ t + φ0 ,

3

where τ t = 2R t /c refers to the time delay of the echoed
signal considering a two-way distance of the object at R t
and c refers to the speed of light. ρn in (3) refers to the back-
scattering coefficient of the objective. ρn is assumed constant
and set as uniformly within the observation period of the
radar signal.

The maximum unambiguous range that the radar can
detect is decided by the step size ∆f . The resolution which
is the ability to distinguish the two closely spaced targets is
determined by the bandwidth N∆f .

In radar systems, the signal collected in any point of mea-
suring is called an A-scan (1D data). The received signal
obtained in the frequency domain from the entire band-
width, namely, the A-scan data, is converted into the time
domain by performing the Inverse Fast Fourier Transform
(IFFT). As the time delay between the transmitted and
received signals is related directly to the radial distance of
objects in the radar’s range, the spatial domain can easily be
calculated by using IFFT.
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3. Convolutional Neural Networks

This section aims to introduce and clarify some concepts of
convolutional neural networks. Detailed definitions of CNNs
can be found from the literature [34–37].

A CNN is a class of deep multilayer feed-forward neural
network machine learning algorithms that was inspired by
the visual cortex of the brain. These network models are
based on local receptive fields, shared weights, and spatial
or temporal subsamplings that ensure some degree of shift,
scale, and distortion invariance [38]. The CNN architecture
allows the computer to “see”—recognize images by propagat-
ing raw natural images from an input layer, a feature extrac-
tion module and a classification module, to class scores in the
output layer [39]. The feature extraction module (made up of
convolutional and subsampling (pooling) layers) automati-
cally gathers relevant information such as colors, blobs, cor-
ners, oriented edges, endpoints, and higher order features
through a feature learning process by filtering the input for
useful hierarchical abstract information [40].

In the traditional classical machine learning approaches
which are used for pattern recognition, a hand-designed fea-
ture extractor such as the Histogram of Oriented Gradients
(HOG), Bag of Features (BOG), scale invariant feature trans-
form, bank of Gabor filters, Linear Binary Pattern (LBP), and
Fisher vectors is used for feature extraction in a domain-
specific feature-engineered process. Training such models
on natural images would lead to problems such as the curse
of dimensionality due to their high dimensionality and
sparseness [36]. However, when training a CNN model,
a filter/kernel is used to perform a cross product with
the 2-dimensional input—that is, a convolution operation
is performed across the input volume—to produce a 2-
dimensional feature map. The convolution operation (hence,
they are called CNN) is followed by an additive bias and
squashing function (such as the sigmoid function, hyperbolic
tangent function, and Rectifier Linear Unit (ReLU)). A cross-
correlation interpretation of the kernels is seen as the input
or feature map detectors for certain nonlinear features that
are large on a given activation map [37].

Parameters on a convolutional layer include input/-
feature map size nin, stride (s), zero padding (p), and filter
size (k). The spatial size of the activation map is computed
as follows:

nout =
nin + 2p − k

s
+ 1 4

Pooling layers handle a shift and scale invariance, thus
reducing the sensitivity of the output. Moreover, they help
reduce the model’s memory consumption by reducing the
number of parameters from the feature maps. Nonlinear
functions to implement pooling includemax pooling, average
pooling, and Region of Interest (ROI) pooling [37, 40, 41].

This CNN model resembles the unsupervised self-
organized multilayer neocognitron model by Fukushima
[42] that was inspired by experiments on the visual cortex
of the cat and monkey done by Hubel and Wiesel [42, 43].
The model was made up of cells in a single cell plane (S-layer
whose receptive fields are found on the input layer) as shown
in Figure 1.

CNN training uses the backpropagation algorithm where
a gradient descent search is performed to compute the
weights that minimize the classification error [37]. In the
backpropagation steps for training the CNN, the stochastic
gradient descent search is performed to update the weights.
This is done by evaluating gradient based on a single or a
small sample of a training sample to update the approximate
gradient rather than accumulating the gradients over the
entire training set. At each training iteration, a parameter is
updated as follows:

wk←wk − ϵk

∂Ep

∂wk

5

However, in the CNN network, the partial derivative is
the sum of the partial derivatives with respect to the connec-
tions that share the weight parameter.
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UC2
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UC3
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K1 = 4
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Programming

Figure 1: The proposed neocognitron architecture by Fukushima [52].
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Other training recommendations include the Gauss-
Newton or Levenberg-Marquardt algorithms, such as the
Broyden-Fletcher-Goldfarb-Shanno. The classification mod-
ule, usually a fully connected multilayer perceptron (MLP), is
a trainable classifier that categorizes the resulting feature vec-
tors into classes in the output layer by using loss functions
such as softmax [38, 41] which is given as follows:

softmax x i =
exp xi
∑jexp x j

6

A recent performance of the CNN has greatly improved
and surpassed humans in several tasks such as classification,
segmentation, object detection, and playing games [36]. This
is due to the increasing complexity of the model, increased
training samples, and implementation of new training tech-
niques [44, 45]. These new training techniques include ini-
tialization schemes [46, 47], deep rectifier networks [48],
batch normalization [49], dropout [50], and softmax loss
classifier networks [45, 46] and parallel programming with
GPUs [40, 51].

4. Detection and Classification of the
Human Posture

Using the powerful features of CNNs, it is aimed to detect
and classify a human posture and activities whether he/she
is standing, sitting, or absent behind a wall by using SFCW
radar signals in this study. To detect the human and to clas-
sify the posture behind the plastered brick wall, the test data
have been gathered by a SFCW radar system with a vector
network analyzer (VNA) and two horn antennas. Since the
SFCW radar signals carry valuable information about the
object behind the wall, the experiment is evaluated by acquir-
ing the SFCW radar signals for 3 different cases including an

empty scene, a scene with a standing human target, and a
scene with a sitting human target. The last two cases with
human targets are evaluated for the presence of a human
both 2.5 and 5 meters away from the wall. A brief demonstra-
tion of the experimental setup can be seen in Figure 2.

Two Sj12, S
j
21 S-parameter vectors are used for each

sample. The sample matrix which is utilized as the input data
for the CNN structure generated by using these two vectors
and the input data matrix SI has the form as 2x(N-1) which
is shown as follows:

SIj = S
j
12,0, S

j
21,0 , S

j
12,1, S

j
21,1 ,… , S

j
12,N−1, S

j
21,N−1

7

To classify the human target into three classes (empty,
standing, and sitting), the generated data matrix SI is utilized
as the input of the CNN. The CNN structure is constructed
sequentially including convolutional, batch normalization,
ReLU and pooling layers, second convolutional, batch nor-
malization, ReLU, and pooling layers and fully connected,
softmax, and classification layers at the last. Dropout is also
applied in the fully connected layer. A brief demonstration
of the suggested approach is given in Figure 3.

(a) (b)

(c)

Figure 2: Experiment scene: (a) test setup, (b) human standing at 2.5m, and (c) human sitting at 2.5m.

S21

SI SI′
IFFT

CNN
■ Empty
■ Standing
■ Sitting

S12

Figure 3: Brief demonstration of the suggested approach.
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5. Experimental Setup and Results

In order to collect RF data reflecting a human behind the
building wall, one Copper Mountain S5065 model vector net-
work analyzer (VNA) having the frequency range of up to
6.5GHz is used. The stepped frequency waveforms are gener-
ated within the range of 2.0GHz and 4.0GHz (2GHz band-
width (BW)) having a step size ∆f = 5 MHz. Hence, the
number of frequency points N f = 201. Also, 1000 readings

per sample are collected regarding the given configuration.
According to this setup, the maximum unambiguous radar
range can be calculated as follows;

Rmax =
c N f − 1

2BW
= 15 00m,

∆r =
Rmax

N − 1
=

c

2BW
= 7 5 cm,

8

where Rmax denotes the maximum range, c stands for the
speed of light, and ∆r refers to the radar’s downrange resolu-
tion. Horn antennas for transmitting and receiving RF sig-
nals are used during the experiments, and the distance
between antennas is set to 40 cm. Both transmit and receive
antennas are placed about 80 cm above the ground, and the
distance between the wall and the antennas is approximately
zero (see Figure 2(a)). Despite the 201 points being set as the
frequency steps for better downrange resolution, the first 100
data are considered for ease of calculation since the measure-
ment distance in our test scenario is less than 7.5m. Accord-
ing to the experimental setup, micro movements can be
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Figure 4: CNN structure.

Table 1: CNN structure definitions of the proposed approach.

Layer Parameters Value

Input layer Input size 2 × 100

Convolutional layer

Kernel size 2 × 2

# of filters 16

Transfer function ReLU

Batch normalization layer Transfer function ReLU

Pooling layer

Kernel size 2 × 2

# of filters 16

Transfer function ReLU

Convolutional layer

Kernel size 2 × 2

# of filters 32

Transfer function ReLU

Batch normalization layer Transfer function ReLU

Pooling layer

Kernel size 2 × 2

# of filters 32

Transfer function ReLU

Fully connected layer

# of neurons 100

Transfer function ReLU

Dropout 0.5

Fully connected layer
# of neurons 3

Classifier Softmax

Output layer

# of outputs 3

Classes
{empty,

standing, sitting}
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defined as the minimal movement of the human, just heart
beats and aspiration are valuable, and macro movements
can be defined as the movement of the head and extremities
including the heart beats and the aspiration.

The experimental data is obtained for 9 different scenario
measurements. These scenarios can be defined as the absence
of a human (empty) scene, standing human scene in which
the human is standing at 2.5m and 5m away from the wall,
and sitting human scene in which the human is sitting on a
chair at 2.5m and 5m away from the wall. In all scenes
excluding the empty scene, the micro and macro movement
variations of the scenarios are also collected. Therefore, the
experiments are evaluated on 9 totally different scenario data.
Each scenario has 1000 readings related with 3 classes which
are empty, standing, and sitting. All experiments are evalu-
ated without the wall, states as free space, and two different
dielectric wall structures which are a brick wall and a drywall.
The plastered brick wall is made of standard 135mm thick-
ness bricks, and the plaster thickness is approximately
10mm and is not homogeneous. The drywall was formed
by combining 5 pieces of 12.5mm thick plates side-by-side.
There is a nonhomogenous air gap of less than 10mm
between the plates.

In the classification process, a CNN structure is generated
specific to the study. The demonstration of the proposed
CNN structure is given in Figure 4, and the CNN structure

and the detailed layer definitions are given in Table 1. The
training dataset is constructed by using 80% of the randomly
selected readings, and the test dataset is constructed by using
the remaining part of the readings. Therefore, 7200 readings
are used in the training phase and 1800 readings are used for
the test phase of the experiment. The proposed approach is
run 30 times with different random seeds, and the results
are presented by using the means of the 30 runs. The confu-
sion matrices of experimental results are given in Tables 2–4
for the free-space, brick wall, and drywall scenarios, respec-
tively, and the overall experimental results are given in
Table 5.

While data are available for longer ranges, data regarding
a shorter distance is used in these tests and experiments.
This reduced unwanted data such as the reflection and mul-
tipath effects the most. Since the reflected RF signals contain
important information about the obstacles at the radial dis-
tance, the CNN will be able to successfully differentiate situ-
ations where dimensional differences are high. Increasing
the resolution of downrange by increasing bandwidth will,
therefore, increase the success of discrimination. By increas-
ing the number of SFCW frequencies, more data will be
obtained, and again, classification success will be increased
for longer distances.

Although researchers focus on the reduction of negative
effects of the wall, this approach may reduce success in the

Table 2: Confusion matrices of experimental results for the free-space scenario.

(a)

Actual

Empty
Standing Sitting

Micro Macro Micro Macro
@ 2.5m @ 5m @ 2.5m @ 5m @ 2.5m @ 5m @ 2.5m @ 5m

Predicted

Empty 200 1 3 1 1 1 3 3

Standing

Micro
@2.5m 198 1

@5m 196 1

Macro
@2.5m 196 2

@5m 196 1

Sitting

Micro
@2.5m 1 198

@5m 1 196

MACRO

@2.5m 3 198

@5m 3 196 Total

Total 200 200 200 200 200 200 200 200 200 1800

Accuracy 100% 99% 98% 98% 98% 99% 98% 99% 98% 98.56%

(b)

Actual
Empty Standing Sitting

Predicted

Empty 200 6 7

Standing 0 786 5

Sitting 0 8 788 Total

Total 200 800 800 1800

Accuracy 100.00% 98.25% 98.50% 98.56%
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learning phase. The use of micro-Doppler methods would be
appropriate for imaging and detection; the tests would need
to be deepened for classification. Preprocessing is applied
with the assumption that the wall is constant, and filters will
destroy some valuable data on the environment.

The influence of the permeability parameter in the tests is
clearly observed. For example, it can be said that the classifi-
cation success rate has been slightly reduced because there
are fewer signals from especially plastered brick walls with
lower permeability.

In the tests and experiments, the micro movements
which are more difficult to detect by the conventional
methods and the macro movements whose effects are
observed on the whole frequency band are evaluated sepa-
rately. Macro movements which reduce valuable information
about the environment behind the wall have reduced the
classification success. However, increasing the amount of
data in the learning and training process will reduce this
effect. Thus, by increasing the training data, similar high clas-
sification accuracy has been achieved for both micro and
macro movements as seen in Table 5.

6. Conclusion

This study focuses on the assessment of the classification of
the SFCW radar (as a form of UWB radar) signals in order

to detect the absence of a human and the human posture
using CNNs. In the literature, there are techniques and
methods using micro-Doppler signatures and the slow time
data of target movements. However, in this study, long-
term data are not needed, and classification is done instanta-
neously. Consequently, remarkable results have been
obtained with this study, which is the first (to the best of
the authors’ knowledge) in the scope of using CNN to classify
raw data obtained from through-wall radars without both
detailed preprocessing and slow time data.

SFCW radar signals of the generated test scenes are
obtained using a VNA, and after constructing the dataset
by utilizing the readings, it is used to classify the presence
of the human and the human posture whether he/she is
standing or sitting by using CNN.

In another form of UWB, frequency-modulated continu-
ous wave (FMCW) radar signals could be used as the data
source for CNN. Since SFCW radar techniques have benefits
including high mean transmitter power and high receiver
sensitivity, the SFCW radar has been used in this study.

The proposed approach achieves remarkable and suc-
cessful results without detailed preprocessing operations
used in the traditional approaches. Future works include
the usage of synthetic aperture radar (SAR) for dataset con-
struction, evaluating the performance of different kinds of
deep learning classifiers for the study concept.

Table 3: Confusion matrices of experimental results for the brick wall scenario.

(a)

Actual

Empty
Standing Sitting

Micro Macro Micro Macro
@ 2.5m @ 5m @ 2.5m @ 5m @ 2.5m @ 5m @ 2.5m @ 5m

Predicted

Empty 200 1 4 1 7 4 7 2 8

Standing

Micro
@2.5m 196 2

@5m 194 1

Macro
@2.5m 194 4

@5m 190

Sitting

Micro
@2.5m 3 194

@5m 2 192

Macro
@2.5m 5 194

@5m 3 192 Total

Total 200 200 200 200 200 200 200 200 200 1800

Accuracy 100% 98% 97% 97% 95% 97% 96% 97% 96% 97%

(b)

Actual
Empty Standing Sitting

Predicted

Empty 200 13 21

Standing 0 774 7

Sitting 0 13 772 Total

Total 200 800 800 1800

Accuracy 100.00% 96.75% 96.50% 97%
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