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We implement a linear stability analysis of the convective instability in superposed 
horizontal fluid and porous layers with throughflow in the vertical direction. It is 
found that in such a physical configuration both stabilizing and destabilizing factors 
due to vertical throughflow can be enhanced so that a more precise control of the 

buoyantly driven instability in either a fluid or a porous layer is possible. For g = 

0.1 (6, the depth ratio, defined as the ratio of the fluid-layer depth to the porous-layer 
depth), the onset of convection occurs in both fluid and porous layers, the relation 
between the critical Rayleigh number R& and the throughflow strength ym is linear 
and the Prandtl-number (Pr,) effect is insignificant. For [ 2 0.2, the onset of 
convection is largely confined to the fluid layer, and the relation becomes R& - yk  
for most of the cases considered except for Pr, = 0.1 with large positive ym where the 
relation R& - y& holds. The destabilizing mechanisms proposed by Nield (1987 a, b)  
due to throughflow are confirmed by the numerical results if considered from the 
viewpoint of the whole system. Nevertheless, from the viewpoint of each single layer, 

a different explanation can be obtained. 

1. Introduction 

We consider the effect of throughflow on the convective instability of a combined 
fluid and porous layer system which is heated from below. The boundaries at  the top 
and bottom are rigid and held at constant temperatures. The throughflow effect on 
the convective instability in either the fluid or the porous layer has been extensively 

discussed by several investigators. In the porous layer, these include Wooding 
(1960), Sutton (1970), Homsy & Sherwood (1976), Jones & Persichetti (1986), and 
Nield (1987~) ;  in the fluid layer, examples are Shvartsblat (1968, 1969, 1971), 
Krishnamurti (1975), Gershuni & Zhukhovitskii (1976), Somerville & Gal-Chen 
(1979), and Nield (1987b). The throughflow effect in the fluid layer is of interest 
because of the possibility of controlling the convective instability by adjusting the 
throughflow. In the porous layer, the in situ processing of energy resources such as 

coal, oil shale, or geothermal energy often involves the throughflow in the porous 
medium. The importance of buoyancy-driven instability in such systems may 

become significant when precise processing is required. 
The throughflow effect in a porous medium was first considered by Wooding 

(1960), who treated the case in which the base-state temperature field is dominated 
by the convective effects on the throughflow. The domain in his analysis is semi- 
infinite in the vertical direction, in which a large upward throughflow is provided. 
Later Sutton (1970) presented a linear stability analysis for small throughflow with 
rigid and conducting boundaries at both top and bottom and insulating walls a t  the 
sides. Homsy & Sherwood (1976) extended the analysis of Sutton to larger 
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throughflow and considered a laterally infinite domain. These investigations all 
concluded that the throughflow stabilized the convection in the porous layer. In 

considering the applications in packed beds, such as the reaction zone in a catalytic 
reactor or an ion exchange column, Jones & Persichetti (1986) studied the stability 
limits in a porous medium bounded at top and bottom by either impermeable or 

porous boundaries. On the impermeable (or rigid) boundary the perturbed vertical 
velocity vanishes while on the porous (or free) boundary the perturbed vertical 
velocity can be non-zero. They found that a small amount of throughflow can 

provide a destabilizing effect in a t  least one situation, when the throughflow is from 
a rigid boundary towards a free boundary. They stated that the origin of the 
destabilizing mechanism was not completely understood, although they eliminated 

numerical error as a possible one. 
As pointed out by Homsy & Sherwood (1976) as well as by Gershuni & 

Zhukhovitskii (1976), however, the effect of throughflow is to confine significant 
thermal gradients to a thermal boundary layer a t  the boundary toward which the 
throughflow is directed. The effective lengthscale is thus smaller than the layer 
thickness and so the effective Rayleigh number of the porous layer, which is 
proportional to the lengthscale, is much less than the actual Rh. A larger value of Rh 
is thus necessary to initiate the convection. The throughflow, therefore, is a 
stabilizing effect. The cause of the destabilizing effect uncovered by Jones & 
Persichetti (1986) was not immediately clear until the analytical solution was 
provided by Nield (19874. He indicated that destabilization occurs when the 
throughflow is away from the more restrictive boundary (the dynamically rigid 

boundary) and toward the less restrictive boundary (the dynamically free boundary). 
The throughflow then decreases the temperature gradient near the restrictive 
boundary and increases it in the rest of the medium. Consequently, the maximum of 
perturbed temperature occurs a t  a place where the perturbed vertical velocity is 
largest. This leads to an increase in energy supply for destabilization. In that case, 
the throughflow is destabilizing. 

The effect of throughflow in the fluid layer is more complex because the Prandtl 

number (Pr)  comes into play. Being interested in the vertical asymmetry associated 
with the stability of hexagonal cells, Krishnamurti (1975) and Somerville & Gal-Chen 
(1979) investigated the effects of small amounts of throughflow. Gershuni & 
Zhukhovitskii (1976) summarized the results obtained by Shvartsblat (1968, 1969, 

1971) and concluded that the effect of throughflow is stabilizing and is independent 
of the direction of flow. Nield (1987b) pointed out, as he did for the porous layer 

(Nield 1987a), that assuming that the effect of the throughflow is invariably 
stabilizing is misleading, and proposed an explanation that the combination of 
different types of boundary condition may result in the throughflow having a 
destabilizing effect. The new features uncovered by Nield (1987 b )  are summarized as 

follows. First, the asymptotic relation RC - yn, where R" is the critical Rayleigh 
number of the fluid layer, is found as y becomes large, where y is the throughflow 
strength and n is either 0 , 1 , 2 , 3 ,  or 4 depending on the boundary conditions imposed. 
Secondly, the destabilizing effects of the throughflow when the flow is from a 
dynamically rigid and thermally conducting boundary to a dynamically free and 
thermally insulating boundary may be due to three mechanisms. Third, when Pr is 
close to unity the amount of destabilization is small, but this is not true when Pr is 
either large or small. We will examine these features in detail in $53 and 4. 

In  this study, we consider the throughflow effects on the buoyantly driven 
instability in superposed fluid and porous layers. The interface between the fluid and 
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porous layers is a rather unrestricted boundary in terms of momentum and heat 
transfer. On the interface, we impose continuity of vertical velocity, temperature, 

heat flux, and normal stress, and so on, although none of them is fixed. Accordingly, 
this interface boundary is much less restrictive both dynamically and thermally than 
either a rigid, or free, or conducting, or insulating boundary. Thus, according to 
Nield (1987a, b ) ,  the destabilizing effect of the throughflow may be enhanced in the 
combined-layers system because of the presence of a much less restrictive boundary. 
Another interesting point of the current study is the influence of Prandtl number on 
the throughflow effect. In the porous layer, the convective stability is independent 

of Pr,, the Prandtl number of the porous layer, whereas in the fluid layer Pr has a 
considerable influence on the stability characteristics. In the superposed fluid and 
porous layer system with a rather unrestricted boundary in between, the Prandtl 
number may thus play a complicated role in determining the stability characteristics 
of the system. 

Without considering throughflow, several investigators have investigated the 
problem of convective instability in superposed fluid and porous layers. Nield (1977) 
accounted for surface-tension effects at  a deformable upper surface. Somerton & 
Catton (1982) included viscous effects on the boundary of the porous layer by 

including the Brinkman term in the Darcy equation. Chen & Chen (1988), using the 

Darcy equation in the porous layer and Beavers & Joseph’s (1967) boundary 
condition on the interface between the fluid and porous layers, found that the depth 
ratio 6 plays a crucial role on the stability characteristics. Their theoretical results 
were later verified by their experiments (Chen & Chen 1989). Taslim & Narusawa 

(1989) studied the convective stability in both a fluid layer sandwiched between two 
porous layers and a porous layer sandwiched between two fluid layers. No 

publication, to the author’s knowledge, has incorporated a throughflow effect into 

the superposed-layers problem. 
For the present study, the depth ratio, Prandtl number, and the throughflow 

strength are the parameters which are considered to be influential. A wide-ranging 

parametric study is conducted so that an extensive discussion on throughflow effects 
on the convective stability of a superposed-layers system can be made. The critical 
Rayleigh number and associated wavenumber account for the stability character- 
istics. The eigenfunction of the perturbed vertical velocity and temperature and the 
corresponding streamline patterns and isotherms provide physical insight into the 
nature of the instability. 

2. Problem formulation 

We consider a porous layer of thickness d ,  underlying a fluid layer of thickness d 
with throughflow of constant vertical velocity w,,. The layers are horizontal and of 
infinite extent in the horizontal direction. The top and bottom boundaries are 
dynamically rigid walls maintained at different constant temperatures, which are 
low at the top and high at the bottom. A Cartesian coordinate system is chosen with 
the origin at the interface between the porous and fluid layers and the z-axis 
vertically upward. The continuity, momentum, and energy equations for the fluid 
layer are, respectively, 

v - u  = 0, (1) 

Po -+u vu = -VP+pV2U-poq[ l -o l (T-T, ) ]k ,  - ] 
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aT 
--+u.WT= K~V'T.  
at 

(3) 

The corresponding equations for the porous layer are (Somerton & Catton 1982) 

v - u ,  = 0, (4) 

G,-+u,-VT, aTm = K ~ V ' T , .  
at 

In both sets of equations, the Boussinesq approximation has been applied and the 
thermal expansion coefficient a is defined as 

The permeability of the porous medium is denoted by K .  For a porous medium in 
which the solid phase consists of glass spheres, K is obtained from the 
Kozeny-Carmen relation (Combarnous & Bories 1975), 

d 2  $3 K = A -  
172.8 (1  - $)' 

in which d, is the diameter of the spheres and $ the porosity. 
In these equations, u denotes the velocity vector, P the pressure, T the 

temperature, and k the unit vector in the z-direction. The subscript m denotes the 
porous medium and f the fluid layer, and subscript 0 denotes a condition at  the 
interface. p is the dynamic viscosity, G ,  the ratio of heat capacity of the two layers 

(po C,)?/(p,, C,),, g is the gravitational acceleration, K, the thermal diffusivity of 
the fluid, and K, the thermal diffusivity of the porous medium, where K, = #K*+ 

(1 -$) K ~ ,  K~ being the thermal diffusivity of the solid part of the porous medium. 
It is known that in a porous medium the inclusion of inertial effects by adding 

u,.Vu, cannot be correct. Beck (1972) pointed out that this term vanishes 
identically if the flow is unidirectional and hence cannot represent the inertial effect 
(increase in drag) in that case. For many naturally occurring porous media, Nield & 
Joseph (1985) showed that Iu,Iu, is the appropriate inertia term in the momentum 
equation, which implies that the effect of inertia is a drag term quadratic in the 
velocity u,. The coefficient B, which is called the form drag constant, is independent 
of the viscosity and the other properties of the fluid, but is dependent on the 
geometry of the medium. It can be expressed as (Georgiadis & Catton 1986) 

1 .75dg 
B =  

150( 1 - $) 
(9) 

Experimental support for this form of the quadratic drag is described by Ward 
(1964), while the many experimental results summarized by MacDonald et al. (1979) 
are consistent with this form. 

The boundary conditions are that at the upper boundary T = T, and the 
horizontal velocity components vanish and the vertical velocity is wo; at the lower 
boundary T = q, and the vertical component of the velocity is w,,. At the interface 
the temperature, the normal component of the heat flux, and the normal stress are 
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continuous. Since in the Darcy equation there is no viscous stress, continuity of shear 
stress across the interface cannot be enforced. Thus, we use the condition proposed 

by Beavers & Joseph (1967) in which the slip in the tangential velocity is 
proportional to the vertical gradient of the tangential velocity in the fluid. In the 
horizontal directions we have periodic boundary conditions. 

The basic state is steady and the velocity is w,, in the vertical direction and zero 

in the horizontal directions : 

u = U, = w o k .  (10) 

After applying the boundary conditions on the energy equations, we obtain the basic 
temperature distributions in the two layers : 

where T, is the interface temperature, and y = w,, d/Kf and ym = w,, dm/K, represent 
the throughflow strength, or the PQclet number, in the fluid and porous layers, 

respectively. The subscript b denotes the basic state. 
The governing equations are linearized in the usual manner. For the momentum 

equations (2) and (5), we operate with V x V x and then take the vertical component 
to eliminate the pressure. To render the equations non-dimensional, we choose 
separate lengthscales for the two layers so that both are of unit depth (Nield 1977). 
In  this manner, the detailed flow fields in both the fluid and porous layers can be 
clearly discerned for all depth ratios ([ = d/d , ) .  For the fluid layer, we choose the 
characteristic length as d ,  time as d2/K,,  velocity as Kf/d ,  and temperature as T,-T,. 
For the porous layer, the corresponding characteristic quantities are d,, dk/K,, 
K,/d,, and T - T,. 

The non-dimensional equations, written in the same notation as their dimensional 
counterparts, are 

All the variables are small perturbation quantities and Vi = a2/as2+a2/ay2 is the 
horizontal Laplacian, and V, and Vim are the Laplacian and horizontal Laplacian of 
the porous medium. The quantity B,  = Bd,/K is a constant. The Rayleigh number 
for the fluid layer is 

For the porous layer, the Rayleigh number is defined in terms of the permeability as 

R = g a ( T , - T u ) d 3 / ( ~ ~ , ) .  (17) 

(18) R ,  = ga(T,- %)d,K/(VK,) = R[-4(bT)2 ,  
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where 8 = Ki/d ,  is the Darcy number, eT the thermal diffusivity ratio K f / K , ,  Pr = 

v / K f  and Pr,= v / K ,  the Prandtl numbers for the fluid and porous layers, 

respectively, and v the kinematic viscosity of the fluid. 
The dimensionless boundary conditions a t  the top and bottom walls are 

W,=T,=O at  z ,= -1 ,  J 
and those at the interface are 

In  addition, the Beavers-Joseph boundary condition, 

is enforced a t  the interface, where the constant p ranges from 0.1 to 4 as determined 
experimentally by Beavers & Joseph (1967). From the experimental viewpoint, to  
reconcile the perturbation boundary condition W = 0 with the presence of a 
prescribed finite vertical throughflow, it is physically reasonable to expect that the 
upper and lower rigid boundaries have very low permeability such that the pressure 
drop across each boundary is sufficiently large to sustain the throughflow. This is a 
challenge in the experiment. 

We perform a normal mode expansion of the dependent variables in both the fluid 
and porous layers as follows: 

( W ,  T )  = [ Q ( z ) ,  W ) l f ( x ,  y) est, (24) 

where Vif+a2f = 0,  

and similarly for the variables in the porous layer. The growth factors s and s, for 
both layers are generally complex. We use D and D, to denote the differential 
operators d/dz and d/dz,, respectively, and obtain an eigenvalue problem consisting 
of the following ordinary differential equations : 

[& (s + Y ~ )  - ( ~ 2 -  a2) ( ~ 2 -  a2) n = - GRO, 1 (25) 

y eyz 

1 -eY 
[S + yD - (D2 -a2)] 0 + D- = 0, 
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In  these final equations, we have non-dimensional horizontal wavenumbers a and a,, 
which are the separation constants of the normal mode expansion. Since the 
dimensional horizontal wavenumbers must be the same for the fluid and porous 
layers if matching of solutions in the two layers is to  be possible, we must have 
ald = am/d, and hence 5 = a/a,. The boundary conditions on the top and the 
bottom are 

(29) sZ(1) = 0 ( 1 )  = DO( 1 )  = sZ,( - 1)  = Om( - 1) = 0, 

and those at the interface are 

DO = DO,, (31) 

The eigenvalue problem consists of a sixth-order ODE in the fluid layer and a fourth- 
order ODE in the porous layer, with ten boundary conditions. 

From previous studies we know that the principle of exchange of instabilities holds 
for thermal convection with throughflow in both the fluid layer (Nield 1987b) and the 
porous layer (Homsy & Sherwood 1976; Jones & Persichetti 1986; Nield 1987a). We 
assume that the principle also holds for the present situation so that in the 
calculations s and s, are set to be zero identically. We use a shooting method along 
with the so-called unit disturbance method to solve these ODES with corresponding 
boundary conditions. For details of the computational procedure, the reader is 

referred to  Chen, Chen & Pearlstein (1991). 

3. Results 

Since the parameter space of this problem is large, we summarize the parameters 
for convenience as follows: we have 6, B,, P, eT,  and qi as given, Rh (and RC) is 
the eigenvalue to  be solved with varying a, (and a ) ,  Pr, (and Pr) ,  and ym (and y ) .  

Note that Rh, a,, Pr,, and y, are related explicitly to  RC, a, Pr, and y ,  respectively. 
The details of the values used are illustrated in the following. We assume that the 
porous medium consists of 3 mm diameter glass beads with random packing, which 
results in a porosity qi = 0.389. According to (8) and (9), the permeability K and the 
form drag constant B are thus equal to  8.2123 x cm2 and 5.7283 x lop3 cm, 
respectively, and thus B,  = 209.25. We also assume the depth of the porous layer to 
be d, = 3 cm, giving a Darcy number 6 = 3.02 x The BeaversJoseph constant 
/3 is chosen to be 0.1 and the thermal diffusivity ratio eT is fixed to be 0.725 in the 
calculations. 

Four different depth ratios 5 = 0.1, 0.2, 0.5, and 1 are considered. The Prandtl 
number of the porous medium Pr,, related to the Prandtl number of the fluid layer 
Pr by Pr = Pr,/eT, is considered to be either 0 . 1 , 1 ,  or 100. The PBclet number of the 
porous medium y,, related to y of the fluid layer by y = ym c / e T ,  varies from - 10 

to 10. The Rh (and RC) and associated critical wavenumber ah (and aC) are used to 
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-10 -8  -6  -4 -2 0 2 4 6 8 10 

Y m  

FIGURE 1. Variation of critical R, with ym at f; = 0.1 : -, Pr, = 100; . . . . . , Pr, = 1;  
_ _ _ _  , PT, = 0.1. 

Present Homsy & Sherwood 

Y m  a', R', 

0 3.14 39.4703 
2 3.29 45.0682 
4 3.79 61 5487 
6 4.73 86.5861 
8 6.09 114.7731 

10 7.61 143.4251 

a; % 
3.1 40 
3.3 45 
3.8 62 
4.7 86 
6.1 114 
7.6 143 

TABLE 1. Comparison between the present results at  f; = and those of 
Homsy & Sherwood (1976) 

Present Chen & Chen 

f; a; R', a', R', 

0.1 2.15 19.5467 2.15 19.571 8 
0.2 13.01 3.3982 13.03 3.397 9 
0.5 5.46 0.00930 5.46 0.00928 
1 .o 2.79 0.006654 2.79 0.006651 

TABLE 2. Comparison between the present results and those of 
Chen & Chen (1988, S = 0.003012, eT = 0.725) for various f; 
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measure the stability characteristics. The eigenfunctions of the perturbed vertical 
velocity Q, (and Q) and temperature 8, (and 0) serve to give physical insight into 
the nature of the instability. 

3.1. VeriJication of computer code 

Before we discuss the calculation for the superposed fluid and porous layers, the case 

of an approximately pure porous layer 6 = is studied so that the results can be 
checked with the existing results of Homsy & Sherwood (1976) to verify the accuracy 
of the computer code to be used. Note that the momentum equation for the porous 

medium used in the current study and that in Homsy & Sherwood differ by the 
inertia term. After non-dimensionalizing, nevertheless, the inertia term becomes 

negligible as stated previously and thus the formulations of these two studies are 
essentially the same. The calculated results in terms of Rk and a; for various ym are 

shown in table 1. One can see that the present results are in excellent agreement with 

those of Homsy & Sherwood (1976, figure 1). 
Another computational check is possible for the case of ym = 0, considered by Chen 

& Chen (1988). Note that if y = O  and ym = 0 then both the denominator and 
numerator of the last term of (26) and (28) are, respectively, zero. Thus, use of 
L’HBpital’s rule on these terms is necessary. In table 2, one can see that the present 
results and those of Chen & Chen are in very good agreement. 

3.2. Depth ratio 6 = 0.1 

For 5 = 0.1, we consider three Prandtl numbers, Pr,  = 0.1, 1 ,  and 100, and - 10 < 
ym < 10. The positive ym accounts for the upward throughflow (hereafter we call it 
upflow) and the negative y, for the downward throughflow (downflow). One can 
see from figure 1, for all Pr, values considered, that the downflow stabilizes the 

motionless state, and the upflow destabilizes it for 0 d y, d 1.8 and stabilizes it for 
higher 7,. The effect of downflow is much larger than that of upflow. The influence 
of Pr, on RL is insignificant. It is also found that the minimum critical a& occurs at 

y, = 0; which means that at  6 = 0.1 the throughflow always tends to reduce the 
critical wavelength. The effect of Pr, on the critical a, is also insignificant. Notice 
that the calculations stop a t  y, = - 7 for Pr, = 100, at ym = - 8 for Pr,  = 1, and at 
y, = -9 for Pr, = 0.1 because of divergence of the shooting iteration. 

To gain physical insight into the onset of the convection, we illustrate the 
eigenfunctions of vertical velocity B and corresponding streamline patterns in figure 

2. For each case presented, the value of Q has been normalized so that its maximum 
magnitude is unity, and the width of the streamline plot is half the critical 

wavelength, which differs from case to case. In figure 2, Pr, = 1 is considered and y, 

is chosen to be -8, - 5 ,  0, 1.8, 5 and 10, of which ym = 1.8 is for the minimum Rk. 
For ym = 0 (see figure 2c), the case without throughflow, as indicated by Chen & 
Chen (1988), the onset of convection occurs in both fluid and porous layers and the 
lengthscale of a convection cell is the sum of the depths of the two layers. As the 
downflow increases in strength (increasing -ym), as shown in figure 2(b and a) ,  the 
convection cell at  onset gradually moves downwards and decreases in size 
simultaneously. Since the effective lengthscale of the onset of convection reduces as 

-ym increases, the motionless state becomes more stable and thus the downflow is 
stabilizing. For the upflow, figure 2 ( d )  shows that at  the most unstable state 
(7, = 1.8) the maximum of B is much closer to the fluid layer than the cases when 
y, d 0. The presence of the fluid layer above the porous layer causes the motionless 
fluid to be less stable when 0 < ym < 1.8 since more convection occurs in the less 
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FIGURE ~ ( u - c ) .  For caption see facing page. 

restrictive fluid layer. However, as y, > 1.8, the upflow causes the onset of 

convection to occur more in the fluid layer with smaller effective lengthscale, which 
causes the flow to be more stable. Thus, the stabilizing effect due to the reduction of 
effective lengthscale overcomes the destabilization due to the occurrence of more 

convection in the fluid layer. Moreover, one can see from figure 1 that the downflow 
stabilizes the system more than the upflow does. That is because the downflow makes 
the onset occur in the more restrictive porous medium and the upflow makes it occur 
in the less restrictive fluid layer. 

3.3. Depth ratio 6 = 0.2 

For g = 0.2, from observations of the streamline patterns (not shown) we found the 
onset of convection to be largely confined to the fluid layer, which is similar to the 
findings of Chen & Chen (1988, figure 3 c ) .  There is very little variation among the 

streamline patterns for different y,. The critical a, for - 10 < y, < 10 are all larger 
than 13. We illustrate the variation of Rh with y, for three Pr,  values in figure 3. 

One can see that the RL for Pr, = 1 and 100 are very close while that for Pr, = 0.1 
is much larger. Similar results are also found for the variation of ah with y, (not 
shown). In  contrast to the case of 5 = 0.1, the downflow destabilizes the system when 
- 1.5 < y, < 0 and - 1.9 < y, < 0 for Pr,  = 1 and 100, respectively. For Pr, = 

0.1, both downflow and upflow stabilize the motionless fluid. The upflow stabilizes 
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FIQURE 2. Streamline pattern (right) and (and a,) (left) for the onset of convection at C = 0.1 
and Pr, = 1 :  (a) Y,,, = -8, a; = 5.31; ( b )  7, = -5, u; = 3.05; (c) 7, = 0, a: = 2.15; ( d )  7, = 1.8, 

a; = 2.23; (e) 7, = 5, u; = 2.80; (f) 7, = 10, U; = 4.66. 

the system slightly more than the downflow does because the reduction of the scale 

of convection due to upflow is higher than that due to downflow. 

3.4. Depth ratio 5 2 0.5. 

For = 0.5, we calculated the R& and a: for - 10 < ym < 4 for Pr,  = 0.1 and 
- 10 < ym < 10 for both Pr, = 1 and 100. The results are shown in figure 4 for R&. 
The calculation stops at ym = 4 for Pr, = 0.1 because of divergence of the iteration. 
It is found that both the upflow and downflow stabilize the system for Pr, = 0.1. For 

Pr, = 1 and 100, the downflow is destabilizing when -0.5 < ym G O  and is 

stabilizing for the other ym considered. As with 5 = 0.2, the upflow stabilizes the 
system more than the downflow does although the difference is small. The 
destabilization due to throughflow for Pr, = 0.1 is much larger than that for 
Pr, = 1 and 100. The throughflow also reduces the critical wavelength of the 
convection cell because the minimum u& occurs at ym = 0. The convection cell for 
Pr, = 0.1 is generally smaller than those for Pr, = 1 and 100. 

The eigenfunctions of sd and corresponding streamline patterns for five different ym 
for Pr, = 1 are presented in figure 5.  It is seen that the onset of convection is largely 
confined to the fluid layer, and in the porous layer heat is mainly transferred by 
conduction. As the downflow increases in strength, the onset of convection occurs 

5 FLM 231 
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FIGURE 3. 
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Variation of critical R, with y, at 5 = 0.2: -, Pr, = 100; . . . . . , Pr, = 1 ; 
_ _ _ _  , Pr, = 0.1. 

-10 - 8  -6  -4  -2 0 2 4 6 8 10 

Y m  

FIQURE 4. Variation of critical R,  with ym at 5 = 0.5: -, Pr, = 100; . . ' . . 
_ _ _ _  , Pr, = 0.1. 

, Pr, = 1; 

closer to the interface between the fluid and porous layers. As the upflow strength 
increases, the onset of convection appears to be shifting upwards to the top 
boundary. The reduction of the size of the convection cell is accompanied by an 
increase of the stability of the motionless state. 

The results for 6 = 1 of the variation ofRh with ym are shown in figure 6. The effect 
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FIQURE 5. Streamline pattern (right) and 8 (and 8,) (left) for the onset of convection at C = 0.5 
and Pr, = 1 : (a)  y, = -10, u& = 7.27; ( b )  y, = -5, a& = 5.99; (c) y, = -0.5, a& = 5.46; ( d )  ym = 

5, a& = 6.20; (e) ym = 10, a& = 7.56. 

of throughflow on the stability characteristics for c = 1 is similar to that for 6 = 0.5. 
The throughflow stabilizes the system for Pr, = 0.1. For Pr, = 1 and 100, the 

throughflow again stabilizes the system except in the range of -0.2 < ym < 0 in 
which the downflow is destabilizing. The streamline patterns (not shown) illustrate 
similar phenomena to those of figure 5 while the shift of the convection cell at onset 

is enhanced due to the larger depth of the fluid layer. The reduction of effective 

lengthscale due to throughflow (except in the range of -0.2 < ym < 0) leads to a 
more stable motionless state. 

4. Discussion 

Nield (1987 a, b)  explained the destabilization by throughflow as the result of the 
combination of three different mechanisms. They are: first, the distortion of the 
basic-state temperature distribution which leads to the occurrence of maxima of Q 
close to the position of the maxima of 8 ; secondly, the momentum transport, which 
opposes the stabilizing effect of viscous diffusion when the throughflow is from a 
rigid to a free boundary ; and thirdly, the thermal energy transport, which opposes 
the stabilizing effect of thermal diffusion when the throughflow is directed to an 
insulating boundary from a conducting boundary. The above conclusions apply to 

5-2 
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FIGURE 6. Variation of critical R ,  with ym at [ = 1 : -, Pr, = 100; . . . . . , Pr, = 1 ; 
_ _ _ _  , Pr, = 0.1. 

both fluid and porous layers. He also pointed out that in a fluid layer the 

destabilizing effect of throughflow is smaller when Pr is close to unity, but can be 

significant when Pr is either smaller or larger than unity. Regarding the asymptotic 
relation between the RC and the throughflow strength y ,  Nield (1987 b )  proposed that 
RC - yn, in which n is either 0, 1 ,  2, 3, or 4 depending on the boundary conditions 

imposed. In  the following, we focus on these statements and discuss them in relation 

to the results obtained in this study. 

4.1. Asymptotic relation RC - y" 

Gershuni & Zhukhovitskii (1976, p. 236) addressed the situation wherein a fluid layer 
RC increases with the throughflow strength y according to RC - y3 .  Nield (1987b) 

later presented a more comprehensive discussion in which RC - y 3  holds only for the 

case with two rigid boundaries. The relation becomes RC - y for two free insulating 
boundaries, RC - y 3  for two rigid insulating boundaries or two free conducting 
boundaries and RC - y4 when the throughflow is from a rigid insulating boundary 
and toward a rigid conducting boundary. In a porous layer, as ym becomes large, 
Nield (1987a) stated that the relation R& - yk holds for two free insulating 
boundaries, and R; - lyml both for two rigid insulating boundaries and for one rigid 
insulating and one free insulating boundary when the throughflow is away from the 

latter. 
I n  the present situation, the combination of a fluid and a porous layer makes the 

relation between the critical Rayleigh number and the throughflow strength different 
from a case involving just a single layer. For 6 = 0.1, from figure 1 one can see that 

as lyml becomes large R& increases with lyml according to the linear relation R; - 
Iyrnl. In  this case, the porous layer dominates the system by convection so that the 
effective layer thickness is proportional to  dm/]yrn1. Therefore the relation R& - I yml 

holds according to the definition of R, in (18). We compared the slope of the curve 
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s \ P r m  0.1 1 100 

0.1 - 0.1082 -0.1037 - 0.102 8 
0.2 0 -0.00837 -0.011 92 
0.5 0 -0.005 87 - 0.007 04 
1 .o 0 -0.004 15 -0.00457 

TABLE 3. The destabilizing factor in terms of (Em - R",,)/R;,, in which R;, is the RT, without 
throughflow, for various Pr, and 5 

in figure 1 with that of Homsy & Sherwood (1976, figure 1 )  and found that the 

presence of a shallow fluid layer above the porous layer considerably influences the 

stabilizing effect due to throughflow in the porous layer. It is found that the 
downflow enhances the stabilizing effect and upflow reduces it. This is because the 
downflow ensures that the onset of convection is confined mostly to the more 
restrictive porous layer while the upflow causes the onset of convection to occur more 
in the less restrictive fluid layer. 

For the case of c 2 0.2, the relation between RC, and y, is nonlinear as y, becomes 
large. For 5 = 0.2, figure 3, the relation Rk - yf holds for most cases except Pr, = 

0.1 with large positive y, in which RC, - yk holds. For c = 0.5 and 1, figures 4 and 
6, respectively, the results support the relation B& - y; for all the cases considered. 

The results for Pr, = 0.1 when ym is large positive are not available owing to the 
divergence of iteration. 

4.2, Prandtl-number effect 

The stability characteristics due to throughflow are independent of Pr, in the porous 
layer but are dependent on Pr in the fluid layer. I n  the fluid layer, the results of 
Gershuni & Zhukhovitskii (1976, figure 106) show that with two rigid conducting 

boundaries RC increases with decreasing Pr and the difference, in terms of the RC 
and ac, between Pr = 0.1 and 1 is larger than that between Pr = 1 and 10. Regarding 
the destabilization when the throughflow is away from a rigid boundary and toward 
a free boundary, the conclusion of Nield (1987b) indicates that the destabilizing 

effect of throughflow reaches a minimum for Pr = 1 and is larger for other Pr. 
In  the combined fluid and porous layer system with rigid conducting boundaries a t  
top and bottom and a rather unrestricted interface in between, we found that the 
influence of Pr,  (and Pr) becomes complex owing to the competition between the 

fluid and porous layers. In the case of c = 0.1, the critical RC, values for Pr, = 0.1, 

1,  and 100 are little different so that the Pr, effect is negligible. By observing the 
streamline patterns for Pr, = 0.1 (not shown) and comparing those with the 
corresponding ones for Pr,  = 1 in figure 2, we do not find significant differences 
between them. As for the destabilizing effect, we summarize the destabilizing factor 
in terms of (RC,-Rho)/Rh0, in which RS0 is the RC, without throughflow, for various 

Pr, and 5 in table 3. For 5 = 0.1, the destabilizing factor decreases with increasing 
Pr,. It is noted that the destabilizing factor for 5 = 0.1 is generally much higher than 
that for a pure porous layer g = 0 (Jones & Persichetti 1986, figure 1). 

For c 2 0.2, the throughflow stabilizes the system much more for Pr, = 0.1 than 
for Pr, = 1 and 100; see figures 3, 4 and 6. This is consistent with the results for a 
pure fluid layer (Gershuni & Zhukhovitskii 1976, figure 106) because for 5 2 0.2 the 
fluid layer dominates the system by convection. The destabilizing factor of 
throughflow, see table 3, is zero for Pr, = 0.1 and decreases with increasing 6 but 
increases with Pr, for Pr,  = 1 and 100. This is different from the pure fluid-layer 
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FIGURE 7. Streamline pattern (right) and 8 (and 8,) (left) for the onset of convection at 5 = 0.5 
and Pr, = 0.1 : (a )  y, = -10, uk = 8.69; ( b )  y, = -5, a& = 6.88; (c) y, = -0.5, a; = 5.46. 

Pr, = 0.1 Prm = 1 Pr, = 100 

5 Y m  ah R& Y m  a& flm Y m  a: Rk 

0.1 1.8 2.20 17.4307 1.8 2.23 17.5199 1.8 2.24 17.5376 
0.2 0 13.0 3.3978 -1.5 13.0 3.3698 -1.9 13.0 3.3578 
0.5 0 5.46 0.09928 -0.5 5.46 0.09872 -0.5 5.45 0.09860 
1 .o 0 2.79 0.006654 -0.2 2.79 0.006626 -0.2 2.79 0.006623 

TABLE 4. The y, for minimum R& and associated a; for various 5 and Prm 

case (Nield 1987b) in which the destabilizing factor is a minimum for Pr = 1.  The 
existence of an underlying porous layer changes the destabilizing effect of the fluid 
layer owing to the variation of the Prandtl number. To gain some physical insight 
into the Prandtl-number effect, we present in figure 7 the streamline patterns for 
6 = 0.5 and Pr, = 0.1 to compare with the corresponding case of Pr, = 1 shown in 
figure 5.  It is found that for smaller Pr,  the onset of the convection cell is closer to 
the interface and with smaller effective lengthscale. The reduction of lengthscale 
causes the motionless fluid for 5 = 0.5 to be more stable for smaller Pr,. 

Note that, owing to the smallness of the Darcy number 13 chosen in this study, the 
insensitivity of the stability characteristics to Pr,  in a porous medium may be 
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inferred from the scaled version of (15), in which the value of Sz/($Prm) is very small. 
Nevertheless, if the quantity S2/($Pr,) is of order of unity, Pr, may play a 
significant role in determining the stability criteria. One, accordingly, might expect 
that S2/($Pr,) is a controlling parameter, rather than Pr, itself, in a system such as 
a liquid metal in a very porous material where S2/($Prm) may not be small. 

4.3. Destabilizing mechanisms 

For 6 < 0.1, the upflow is destabilizing for 0 < y, < 1.8. In the superposed-layers 

system, the upflow in the porous layer is away from a rigid conducting boundary to 
a boundary (the interface) on which both thermal and dynamical conditions are free. 
Therefore, according to Nield (1987a, b) ,  the upflow destabilizes the porous layer, 
which implies that it destabilizes the system because the porous layer for 6 = 0.1 

dominates the system by convection. According to Jones & Persichetti (1986, figure 
l),  the throughflow away from a rigid conducting boundary to a free conducting 

boundary destabilizes the fluid in a porous layer when 0 < ym < 1 with the 

destabilizing factor (defined in $4.2) being smaller than 0.04 (which is roughly 
estimated from figure 1 of Jones & Persichetti 1986). In the present situation of 6 = 

0.1, the destabilizing factor is more than 0.1 in a larger range, 0 < ym < 1.8. This 

means that the presence of a shallow overlying fluid layer, enhances the destabilizing 
factor of the porous layer due to upflow by more than 2.5 times that of the pure 
porous-layer case and the range of destabilizing ym is almost doubled. 

For < 3 0.2, the fluid layer dominates the system by convection and the downflow 
is destabilizing in some ranges of ym for Pr, = 1 and 100. The range of destabilizing 
ym decreases with increasing 6 (see table 4). The downflow in the fluid layer is away 
from a rigid conducting boundary towards a thermally and dynamically free 

boundary and therefore destabilizes the fluid of the system. According to table 3, the 
destabilizing factor increases with Pr, and decreases with increasing 6. On comparing 

table 3 of the present study to table 1 of Nield (1987b, the case of 6 = a), we found 
that the presence of an underlying porous layer enhances the destabilizing factor in 
the fluid layer for Pr, = 1 and reduces it for Pr, = 0.1 and 100. 

From the discussion above, we can conclude that the second destabilizing 
mechanism proposed by Nield (1987a, b)  also holds here from the viewpoint of the 

whole system. However, from the viewpoint of the fluid layer for 6 = 0.1, the upflow, 
which is away from a free boundary towards a rigid boundary, destabilizes the fluid 
in the range 0 < ym < 1.8. A similar statement can be made for the porous layer 
with 6 2 0.2 for some range of ym depending on 6 and Pr,. Accordingly, in the 

combined fluid and porous layer system, one can either stabilize or destabilize the 
motionless state in a particular layer by changing 6 or the direction and the strength 
of the throughflow or both. More precise control of stabilization or destabilization 
due to throughflow can possibly be obtained because both the stabilizing factor and 
destabilizing factor can be enhanced by a relatively large amount compared with 
those of each single layer. This discussion can also be applied to Nield’s third 
destabilizing mechanism, thermal energy transfer from a thermally rigid boundary 
to a free boundary. 

We now examine Nield’s first destabilizing mechanism, which states that the 
distortion of the basic-state temperature distribution leads to the occurrence of the 

maximum of SZ close to the location of the maximum of 8 when the destabilization 
occurs. To examine this statement, we present the eigenfunction of 8 and 
corresponding isotherms for various 6 for Pr, = 1. For 6 = 0.1, the eigenfunction of 
8 and corresponding isotherms are shown in figure 8. Comparing the maxima of 8 
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FIGURE 8(a-c). For caption see facing page. 

with those of SZ in figure 2, we found that the distance between the maxima of 8 and 
SZ increases as the downflow strength decreases from ym = -8 to 0, where their 
separation is the largest. As the upflow strength increases from ym = 0 to 10, the 
separation decreases. The smallest distance does not occur a t  ym = 1.8, where the 
maximum destabilization occurs. Nield's first destabilizing mechanism does not 
apply for 6 = 0.1 because the onset of convection occurs in both fluid and porous 

layers and the presence of the interface between the two layers makes the stability 
characteristics more complex than a single fluid or porous layer. 

However, for 6 2 0.2, the maximum of 8 does move closer to the, maximum of Q 
when the destabilizing effect dominates. We present the eigenfunction of 8 and 
corresponding isotherms for g = 0.5 in figure 9 to compare with the corresponding 51 
in figure 5.  It is found that the distance between the maxima of SZ and 8 is smallest 
a t  ym = -0.5, when the system is in the most unstable state. Similar results are 
found in the case of c = 1 where the vertical separation of the maxima of SZ and 0 
is smallest a t  approximately ym = -0.2, when the system is most unstable. 

5. Summary 

From the above analyses, we found that the stability characteristics of superposed 
fluid and porous layers depend crucially on both the depth ratio 5 and the 
throughflow direction. For g = 0.1, the upflow destabilizes the system when 
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0 < y, < 1.8 and stabilizes it otherwise. The downflow stabilizes the system more 
than the upflow because the downflow causes the onset of convection to be confined 

largely to the largely restrictive porous layer while the upflow makes the onset of 
convection occur more in the less restrictive fluid layer. For y 3 0.2, the downflow 
destabilizes the system and the range of destabilizing 7, varies with 6 and Pr,. The 
stabilizing factor of upflow is about the same as that of downflow and both decrease 
with increasing Pr,, consistent with the results obtained by Gershuni & 
Zhukhovitskii (1976) for the fluid layer. 

We also discussed the relation between Rk and 7, as lyml becomes large. For 
C = 0.1, the relation is linear, Rk N lyrnl. For g 2 0.2, the relation is second order, 
RL - yf, although there is an exception for Pr, = 0.1 at large positive 7, where 
the relation Rk N yk holds. 

Regarding the destabilizing mechanism, the first and second mechanisms proposed 
by Nield (1987a, b )  are confirmed by our results if considered from the viewpoint of 
the whole system. The third destabilizing mechanism is found to be valid for the case 

of 2 0.2 in which the convection is largely confined to the fluid layer but does not 
apply for g = 0.1 because the onset of convection occurs in both the fluid and porous 
layers. In applications, the configuration discussed here may provide more precise 
control of the buoyantly driven instability naturally arising in either a porous 
medium or a fluid layer by changing 5 or the strength and direction of throughflow 
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FIGURE 9. Isotherms (right) and 8 (and 8,) (left) for the onset of convection a t  6 = 0.5 and 

Pr = 1 :  (a) ym = -10; (b )  y, = - 5 ;  (c) 7, = 0.5; ( d )  ym = 5 ;  (e )  ym = 10. m 

or both because both the stabilizing and destabilizing factors can be enhanced more 
for a combined-layers systems than for a single-layer system and the range of 
destabilizing ym can be enlarged. 

The correction of the English of the manuscript by one of the referees is gratefully 
acknowledged. 
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