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ABSTRACT 

It has been recently shown that opportunistic transmit 
beamforming using partial channel state information (CSI) 
achieves the same throughput scaling obtained from dirty 
paper coding for a broadcast channel with fixed number of 
transmit antennas and many receivers [ 11. In this paper, we 
study the generalization of this scheme to wideband broad- 
cast channels. By using orthogonal frequency division mul- 
tiplexing, an L-tap wideband channel can be decomposed 
to N parallel narrowband channels, where N is larger than 
L. Neighboring subchannels are therefore highly correlated, 
and it is intuitive to say that each group of neighboring sub- 
channels (forming a duster) can be characterized by one 
channel quality. We show in this paper that users need only 
feedback the best signal-to-noise-plus-interference ratio at 
the center of each cluster. Our results indicate that for clus- 
ter size of order &, where K is the number of users, 
this feedback scheme maintains the same throughput scal- 
ing as when full CSI is known. Simulation results show that 
larger cluster sizes (&) can also be implemented for a small 
throughput hit. 

1. INTRODUCTION 

There has been growing interest in the study of the capacity 
region of multiple-input muItiple-output (MIMO) broadcast 
channels [Z, 3, 41 . Recently, it has been shown that dirty 
paper coding achieves the capacity region of the Gaussian 
MIMO broadcast channel [SI. This scheme assumes per- 
fect channel state information (CSI) at the transmitter, and 
achieves throughput that scales linearly with the number of 
transmit antennas [6 ] .  However, full channel knowledge 
is not always attainable or practical. It was therefore sug- 
gested in [ 11 that, using M random beams and partial feed- 
back, opportunistic beamforming is  performed at the trans- 
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mitter. Each user (receiver) need only feedback its maxi- 
mum signal-to-noise-plus-interference ratio (SINR) and the 
index of the transmitting antenna at which this maximum 
value exists. This scheme requires less feedback and is 
computationally feasible, still it achieves the linear scaling 
in throughput that is achieved when full CSI is available. 
This has been shown for narrowband broadcast channels 
with a fixed number of transmit antennas and large num- 
ber of users, which is a typical setting in practical cellular 
systems. 

We investigate the generalization of this scheme to an 
L-tap wideband broadcast channel (with independent and 
identically distributed (Lid.) taps). Wideband channels are 
desireable due to the increased need to drive bit rates higher. 
Using orthogonal frequency division multiplexing (OFDM), 
an L-tap wideband channel can be decomposed to N par- 
allel subchannels. However, neighboring subchannels are 
highly correlated (as N is bigger than L), and therefore 
with high probability they have similar channel qualities. 
Recently, it has been suggested in [7] that neighboring sub- 
channels are grouped in a cluster. Then each user need onIy 
feedback the signal-to-noise ratio (SNR) values and indices 
of its strongest clusters to the transmitter. Based on this 
opportunistic reduced feedback, the transmitter sends one 
beam to the user with the highest S N R  value per cluster. 
Using simulation results, [7] shows that this scheme can be 
implemented without significantly sacrificing performance. 
There have also been recent publications that looked at vari- 
ations of this problem. for exampIe 18, 91 among others. 

In this paper, we look into the effects of partial feedback 
on the throughput of wideband broadcast channels. More 
specifically we address the question of how much feedback 
is necessary in order to maintain the same throughput scal- 
ing as when full CSI is available. The amount of feedback 
is inversely proportional to the cluster size, therefore this 
question also addresses the issue of cluster size. Through 
analysis and simulations of a wideband broadcast channel 
with A/r transmit antennas and K single-antenna users, we 
prove that for cluster size of order h, each user need 
only feedback its best SINR value at the center subcarrier 
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of each cluster in order for the transmitter to perform oppor- 
tunistic beamforming (by constructing A4 random beams 
ratherthan a single beam). With this cluster size, this scheme 
achieves the same throughput scaling as when full CSI is 
available at the transmitter with less complexity and feed- 
back. Our simulation results show that larger cluster size 
(&) can also be implemented for a small loss in through- 
put. 

2. PROBLEM FORMULATION 

We start with a discrete-time baseband model of the chan- 
nel. At time t and sampling at multiples of 6, where W is 
the bandwidth of the input signal, the input-output relation- 
ship can be written as 

L-1 

Y [ ~ I  = C hr z[t - E] -I- ~ [ t ] ,  (1) 

where y is the sampled output at time I!, z is the sampled 
input transmitted at time t - 1 and w is additive white noise. 
hl is the It' complex channel filter tap, where the number 
of taps L is dictated by the delay spread of the channel T d  
( L  = T d  x TV), and the coherence bandwidth W, = &. 
In practice, wideband channels can be represented by 4 or 5 
channel taps [lo]. We assume i.i.d channel taps, and form 
a vector of the circularly symmetric complex Gaussian ran- 
dom variables H = [h, hl .,* h ~ - ~ ] ~ .  Using OFDM, data 
symbols modulate N subcarriers separated by The dis- 
crete Fourier transform of the L-tap channel gives the fre- 
quency response at frequency q as follows, 

1 4  

L-2 

H ( q )  = hl e - j z r g +  , q =  1, ..., N .  (2) 
1=0 

In matrix form, (2) can be written as H ( q )  = V, U where 

The autocorrelation function depends solely on the fre- 
quency separation between subcarriers. It is therefore clear 
that a separation of W, is required between subcarriers in 
order to de-correlate. Since the width of each subchannel is 
%, it is straightforward to show that there are roughly 5 
neighboring subchanneks that are highly correlated [lo]. For 
this reason, we group neighboring subchannels in a cluster 
171, and adopt a transmission scheme on each subchannel 
that requires partial feedback while maximizing the through- 
put Ill. 

We construct M random orthonormal beams 4m ( M  x 1) 
form = 1, .*., M, and at time t, the mth vector is multiplied 
by the transmit symbol sL. The transmitted signal on sub- 
channel g is then, 

1.  v - 11 e - j z ~ q A  ... e - j Z s q w  
q -  

A4 

m=l 
( 3 )  

The L x 1 vector of channel gains at the mth beam is de- 
noted by H,. We assume that the k th  receiver knows H k  
for m = 1, . . . : A4 (can be readily available through train- 
ing), and can therefore compute the following A4 SINR:,, 
values by assuming that s, is the desired signal and the 
other si signals are interference as follows, 

(4) 
p in (4) is the SNR for all the users, assuming a homoge- 
neous network. 

We consider a feedback scheme that requires one feed- 
back per cluster for each user. We propose that each user 
feeds back the best SINR value at the center subcarrier of 
each cluster. This feedback can be expressed as (in addition 
to cluster and transmit antenna indices), max SINR;,,, 

l<m<lM 
where p here is the center subcarrier in the cluster. The 
transmitter assigns the mth beam to the user with the high- 
est SINR; max SINR;,,. The throughput of each sub- 

channel is estimated by, 
l < k < K  

and the throughput of the system is R = R,. Note 
that for K 4 00, ( 5 )  is a tight estimate [l]. 

In order to further reduce the amount of feedback, we 
further assume that SINR;,, 2 y where y is a specified 
threshold of order log K .  We are able to set this threshold 
since we know that max SINR;,, behaves like (logK) 

with high probability [l], and therefore we restrict feed- 
back of only SINR vaIues 2 y. The amount of feedback 
from each user then reduces to the number of cIusters x 
Pr(SINR, > y). 

In summary, we tackle two main questions in this paper. 
The first is concerned with justifying that the channel qual- 
ity at the center subcarrier is indeed a valid representative of 
the channel qualities at (most of) the subcarriers in a clus- 
ter. And the second question is related to how big clusters 
should be (and subsequently how much feedback should we 
have) in order to maintain the same throughput scaling as 
when full CSI is available. We will answer these questions 
in the following section. 

l < k l K  

3. FEEDBACK SCHEME ANALYSIS 

Due to correlations between adjacent subchannels, their cor- 
responding adjacent SINR values are also correlated. This 
means that it should be satisfactory to have much less feed- 
back than N per user in order to obtain sufficient channel 
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Table 1. Joint Characteristic Function 

knowledge at the transmitter. The fewer the number of clus- 
ters is, the lesser feedback the transmitter will need. How- 
ever, the size of the cluster influences how correlated the 
subchannels are. Small cluster sizes guarantee that the sub- 
channels are highly correlated and that their channel quality 
is almost the same, therefore resulting in higher throughput. 
Whereas wider cluster sizes will include less correlated sub- 
channels especially toward the edges of the cluster, which 
will. subsequently decrease the throughput. We consider that 
channel quality at the center subcarrier as a valid represen- 
tative (and therefore sufficient feedback) for the quaIity of 
the channels at (most of) subcarriers in a cluster. 

In fact we know that the best SINR over all users be- 
haves like IogK. As the cluster size increases, the like- 
lihood of the edge subcarrier (the farthest) being of order 
log K decreases. In this section, we show that if the size of 

. the cluster is of order &, then with high probability 
the SXNR. at the edge subcarrier is also of order log K .  In 
other words, we show that the following probability, 

is close to one when p - q = i* I ,  M is fixed and K 
increasing, "19 = crq log K ,  yp  = cyp log K and cyq > crp+ 

og 

By making the following variable definitions, 

M 

r i=l,i+72 

(6) can be rewritten as 

In order to calculate (7), we start by evaluationg the joint 
probability. Using properties of the unit function, this joint 

'In fact, in our analysis, we eqnivdenuy assume that the correlation 
coefficient of p and q is 1 - o( &) 

probability can be written as, 

where @ stands for the characteristic function and the inte- 
gration limits are from --CO to 03. Note that the marginal 
terms {second and third terms in (8)) can be easily evalu- 
ated from the marginal distribution of SINR [I], and we 
can show that 

-2%- lJ!$!adwq = - - - -  1 1 e P L M  

47r JWq 4 2 (1 + T q ) A f - l  

4 T  3% 

1 1 e-& IJ$Bdwp = - - _ -  4 2 (1 +"ip)"-l . (9) 

However, these terms cancel out with terms that appear dur- 
ing the evaluation of the double integral in the fourth term 
of (8). Therefore, the main analysis of the joint probabil- 
ity lies in evaluating the joint characteristic funtion and the 
resuIt of the double integral in (8). 

3.1. Joint Characteristic Function 

The joint characteristic function of P and Q is described as 
@(P, Q) = E ( e J w p P + J w q Q ) .  We assume that the transmit 
antennas are far enough from each other to assume indepen- 
dent channels, and use properties of the joint pdf of Gaus- 
sian random variables [ 1 I] in order to obtain the result for 
the joint characteristic function in closed form as indicated 

s i n 2 ( x [ p - q ) 4 )  
in table 1, where f = s in2( r r (p -g ) 'J ) .  

Note that whenp-g 5 f ,  f = 0 which results in P and 
Q being independent. Also if we assume that the cluster size 
is 1 subcanier, and thereforep = q, (L2 - f) = 0,  and the 
joint characteristic function reduces to a marginal function 
as in (9). 

3.2. Complex Analysis 

In order to evaluate (X), we need to obtain the double in- 
tegral in the fourth term. Substituting jw,  with sP and 
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jw, with sq, we perform contour integration where sp and 
s9 go from -00 to 00 on the complex axis, and the con- 
tour's direction is clock-wise. First, we integrate with re- 
spect to sp  using Cauchy integral formula 1121. The region 
where sp = 0 results in a constant term that cancels out, 
therefore the only pole that we consider is a simple pole 
sp = s,n.rs(L22f,-Lhf I The double integral then reduces 
to a single integral in terms of sp as shown in (10). Solving 
this second integral is more involved than solving the first 
integral. In order to proceed, we need to obtain the roots of 
the polynomial (raised to the power M - I). 
3.3. Asymptotic Analysis 

For the rest of the analysis, we assume that the correlation 
coefficient of p and q is 1 - o( A) as K increases. This 
implies that (L2 - f )  4 0, or equivalently that p - q = 

We also assume that the threshold for the SINR 
L" 
at the center subcarrier 7g behaves like aq Iog K,  while the 
edge subcarrier's threshold y p  behaves like ap log K where 
aq and ap are constants and ag > ap. We solve for the 
roots of the polynomial in (10) and obtain (1 1). Now we 
have two poles inside contour s q .  The first pole sp = -& 
is simple, and the second sq = Af(L2 -YlTq -' i;+Tpyp) is of order 
M - 1. In order to use Cauchy integral formula [lZ], we 
expand the exponential as follows, 

LM.5 -1 

and divide the summation into three regions. The first re- 
gion is when a = 0, the second is when a is finite ( 0 < 
a 5 A4 - 1 ) and the last is  when u goes to infinity. For the 
simplest case when a = 0, we first perform partial fraction 
expansion on the two poles inside contour sQ, and follow 
Cauchy integral formula at each pole to find the following 
result, 

Following in the same fashion, we solve (1 1) for the finite 
and infinite a regions2, and after simplifications we obtain 

'Both regions result in terms that go to 0 as K + 00. This is expected 
since the poles in the two regions inversely depend on (L2 - f ) ,  and there- 

the result of (8) as, 

and the conditional probability as, 

This proves that when SINR at the center subcarrier is of or- 
der iog K, and if we keep our cIuster size as *, then 
with high probability SINR at the edge subcarrier is also of 
order log K for large K .  This implies that all the subcarriers 
that are chosen for transmission have SINRs of order log K .  
Therefore, we obtain throughput scaling as M N  log log K 
using our scheme with much less complexity and feedback. 
In fact, each user need only feedback its best SINR at the 
center of each cluster only if it is greater than some thresh- 
old y. This threshold comes from the fact that we already 
know the order of the best SINR. This reduces the feedback 
to L x Pr(SINR,,, >_ 7) per user. Our simulation 
results show that wider cluster size is possible. This implies 
that L2 - f is a constant (not tending to zero), which we do 
not analyze in this paper. 

L og 

4. SIMULATION RESULTS 

To further verify our results, we conduct Monte Carlo simu- 
lations for a wideband broadcast channel with a three-antenna 
transmitter, single-antenna users, and 256 subcarriers. In 
this section, we discuss two simulation results. Figure (1) 
shows the throughput as a function of number of users for 
various cluster sizes. Due to subchannel correlation which 
depends on frequency separation, and due to the relation- 
ship between frequency coherence and channel delay spread, 
it is intuitive that cluster width of $ achieves good perfor- 
mance. Indeed, figure (1) shows that cluster size $ results 
in a small throughput loss, and we obtain throughput close 
to that when cluster size is 1 subcarrier (in which case the 
transmitter has information at each subchannel). However, 

fore go to w as K + 03. From the definition of our cluster, we predict 
that their residues are v&y close to 0. 
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Fig, 1. Throughput vs. Number of users for different Clus- 
ter sizes (N=256, L=4, M=3, S N R =  10). 

as suggested by our analysis, figure (1) indicates that clus- 
ter sizes of 7 and 10 resuIt in throughput scaling as with full 
CSI. This demonstrates that when we stay in the region of 
the highest SINR values {those that behave like log K )  and 
with L2 - f i 0, we preserve the throughput scaling as 
when we have full CSI. In figure (2), we plot the through- 
put versus the number of channel taps L for various clus- 
ter sizes. This figure indicates how much variation (spread) 
the channel i s  able to withstand (using a certain cluster size) 
without suffering in the throughput. Figure ( 2 )  also suggests 
that we can treat a small number of subcarriers as a single 
subcarrier, and still maintain flat channel response. This is 
an interesting result which requires further investigation. 

5. CONCLUSIONS 

In this paper we investigate the throughput of wideband 
multi-antenna broadcast channels. We prove that for clus- 
ter size &, each user need only feedback the best 
SINR value at the center subcarrier of each cluster so that 
the transmitter can perform opportunistic beamforming by 
constructing M beams on each subchannel and transmit to 
users with the best SINR values. This results in through- 
put scaling a5 when full CSI is available. Simulation results 
show that when cluster size is $, the loss in throughput is 
very small. 
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