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a b s t r a c t

This paper provides a statistical characterization of the individual achievable rates in bits/s/

Hz and the spatial throughput of bipolar Poisson wireless networks in bits/s/Hz/m2. We

assume that all cognitive transmitters know the distance to their receiver’s closest interfer-

ers and use this side-information to autonomously tune their coding rates to avoid outage

events for each spatial realization. Considering that the closest interferer approximates the

aggregate interference of all transmitters treated as noise, we derive closed-form expres-

sions for the probability density function of the achievable rates under two decoding rules:

treating interference as noise, and jointly detecting the strongest interfering signals treat-

ing the others as noise. Based on these rules and the bipolar model, we approximate the

expected maximum spatial throughput, showing the best performance of the latter decod-

ing rule. These results are also compared to the reference scenario where the transmitters

do not have cognitive ability, coding their messages at predetermined rates that are chosen

to optimize the expected spatial throughput – regardless of particular realizations – which

yields outages. We prove that, when the same decoding rule and network density are con-

sidered, the cognitive spatial throughput always outperforms the other option.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, the demands for more efficient,

reliable wireless systems induced network designers to

think about alternative ways to supplement centralized

cellular models. One interesting idea is to build a multi-tier

network where macro-base-stations coexist with a great

number of smaller cells, which in their turn operate in a

more distributed fashion (e.g. the concept of femto-cell

networks [1]). Departing from the centralized approach

whose capacity are fairly well characterized by Shannon

theory, the limits of distributed systems that work in inter-

ference-limited regimes are unknown except for few speci-

fic cases, as discussed in [2]. In the following, we will

discuss the main results on interference networks and

how the concept of cognitive radio introduced in [3] is

important in this context.

1.1. Capacity of interference networks

In 1978 Carleial formally stated the interference chan-

nel problem using arguments from information theory

[4]. Since then, several results have been proposed for

the interference channel as discussed in [5, Ch. 6].

Although these works shed light on the problem, even

the capacity region of the simplest two-source-two-desti-

nation setting is still an open problem. Moreover, when
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multiples sources and destinations are considered, such

capacity regions become even more elusive.

Knowing such difficulties, some researchers began to

investigate alternative approaches to better understand

the limits of wireless networks with multiple communica-

tion pairs. Gupta and Kumar introduced in [6] the transport

capacity metric to determine how many bits-meter a wire-

less network with uniformly distributed nodes can reliably

sustain when its density grows to infinite (asymptotic anal-

ysis). After this milestone, many other papers have focused

on a similar ideas, finding the transport capacity scaling

laws for different scenarios and under different assump-

tions. The monograph [7] compiles some of such studies.

Franceschetti et al. presented another important result

in [8], where they applied an unconventional method to

find the physical limit of wireless networks by using laws

of electrodynamics. The authors further extended this

approach in [9] and determined the degrees of freedom

of wireless networks based on the electromagnetic theory.

Nevertheless both Franceschetti’s and Gupta’s lines of

research strongly rely on asymptotic behaviors when the

number of nodes infinitely grows, which may give an

unclear picture of the actual physical ormediumaccess con-

trol network layers’ design. Bearing this aspect in mind,

Weber et al. applied in [10] a statistical approach to charac-

terize the throughput ofwireless networks and thendefined

the transmission capacity as thehighest spatial throughput1

achievablewithout exceeding amaximum link outage proba-

bility, using the density of active links as the optimization

variable. An important aspect of this work is the use of

stochastic geometry [13] to characterize the node spatial dis-

tribution as a Poissonpoint process (PPP). Thereafter different

strategies used in the wireless communications have been

investigated such as interference cancellation, threshold

transmissions, guard zones, bandwidth partitioning amongst

others; the Ref. [14] compiles these results.

In addition to them, we find in the literature other con-

tributions using a similar approach. For example, Vaze

studied in [15] the throughput-delay-reliability trade-off

in multi-hop networks using the metric random access

transport capacity, which is an extension of the transmis-

sion capacity for multi-hop systems [14, Section 4.2]. In

[16], the authors derived closed-form expressions for the

throughput optimization under packet loss and queue sta-

bility constraints. In [17] a revisited version of the trans-

mission capacity was proposed to compare different

modulation-coding schemes. The work [18] presented the

transmission capacity optimization in term of the number

of allowed retransmissions considering different medium

access control protocols, which can be either synchronous

or asynchronous. Ganti et al. generalized in [19] the trans-

mission capacity for different fading and node distribu-

tions for the high signal-to-interference regime.

Apart from these papers that focus on the statistic quan-

tification of the spatial throughput of wireless networks,

the use of models from stochastic geometry dates back

the early 80s, when Takagi and Kleinrock firstly introduced

the idea of evaluating the aggregate interference power of

Poisson distributed interfering nodes [20]. Thereafter, the

subject has greatly developed and we can cite [21–24] as

relevant tutorials on how to apply stochastic geometry

when analysing wireless systems. Considering the above

discussion, this approach is important when dealing with

cognitive networks, where self-organizing solutions are

employed in a distributed manner.

1.2. Complex systems and cognitive radio

Let us start presenting a brief description of complex

systems from [25]: ‘‘A complex system consists of diverse

entities that interact in a network or contact structure –

a geographic space, a computer network, or a market.

These entities’ actions are interdependent – what one pro-

tein, ant, person, or nation does materially affects others. In

navigating within a complex system, entities follow rules,

by which I mean prescriptions for certain behaviors in par-

ticular circumstances’’.

For example, the tragedy of the commons problem

described in [26] illustrates a counter-intuitive feature of

many independent and rational agents sharing a common

pool of limited resources. In this scenario, the agents opti-

mize their own pay-offs in a selfish manner, i.e. find their

individual global optimum, regardless of the others.

Consequently, if every single agent takes the same rational

decision, the shared resource will fade away after some

time. This problem is very context-dependent; for exam-

ple, both fishing in a lake and forest harvesting can be

viewed as a tragedy of the commons class of problem,

but the solution applied for each case tends to differ as

the internal constraints of each system are different. For

wireless networks, the authors in [16] showed that the

spatial throughput optimization under packet loss and

queue stability constraints can be also viewed as a tragedy

of the commons problem.

Another issue related to complex systems refers to the

interplay between coordination and cooperation. In game

theory, the prisoners’ dilemma is a good example of how

coordination based on side information is important to

optimize the system [27]. In this game, rational agents,

which cannot communicate to each other, should choose

whether to cooperate or not. If both cooperate, they get a

higher pay-off than do not. However, if one cooperate

and the other does not, the non-cooperative agent will

obtain a higher pay-off. This fact leads to both agents not

cooperating, which in turn provides lower pay-offs. One

interesting work was recently proposed by Nowak [28],

where the author describe different ways that cooperative

behavior can emerge in evolutionary systems.

Cooperative solutions are also important when dealing

with co-channel interference in wireless networks. For

example, the authors in [29] employed game theory to

build an algorithm to find coalitions of femto-cells that

are willing to cooperate. In [30] distributed coordination

mechanisms were employed to control the aggregate

interference level in stand-alone femto-cell networks.

Interestingly, these examples are based on self-organiz-

ing solutions, which refers to decentralized systems that

are functional even without any central controlling entity

1 In the literature, spatial throughput can be also referred to as area

spectral efficiency [11] or density of throughput [12].
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(even though following interaction rules). Many illustra-

tions of this can be found in nature as, for instance, ants

working in colonies, neurons building a capable brain,

etc. [25]. It is important to say that, different from these

solutions that have emerged naturally, engineering sys-

tems do not accept outputs without a minimum quality

requirement and therefore self-organization should be

carefully designed, where the cognitive abilities and inter-

action rules should be well understood.

Knowing the potential and the challenges of self-

organization in engineering, Haykin proposed in his

seminal work [3] the definition of cognitive radio: ‘‘(. . .)

intelligent wireless communication system that is aware

of its environment and uses the methodology of under-

standing-by-building to learn from the environment and

adapt to statistical variations in the input stimuli, with

two primary objectives in mind: highly reliable communi-

cation whenever and wherever needed; efficient utilization

of the radio spectrum’’. This work indicates the direction to

design more efficient wireless systems and thereafter the

cognitive radio research have been rapidly growing.

1.3. Contributions

Motivated by such concept, the present work analyzes

interference-limited networks wherein cognitive nodes

autonomously react to changes in the network topology.

It is worth mentioning that by ‘‘cognitive ability’’ we mean

that the nodes are capable of (i) ‘‘being aware of their envi-

ronment’’ using location information and (ii) ‘‘adapting’’

their coding rates according to position changes. These

changes in turn happen to keep the links within the net-

work capacity region, always targeting a more efficient

usage of the available resources.

Here it is also important to discuss some results related

to geographical networks where nodes use location infor-

mation to improve the system performance. The concept

of using nodes locations as side-information was originally

introduced in [31] in the context of network routing. In fact,

with location information nodes can establish multi-hop

communication even without knowing the overall network

topology [32]. In [33], the authors showed the importance

of location information to improve the throughput of mul-

ti-hop wireless networks. Besides, many solutions are

available to retrieve such location information in wireless

networks [34] including indoor systems [35].

From this perspective, this paper focuses on studying

wireless networks where transmitters – which are spa-

tially distributed as a 2-dimensional uniform Poisson point

process2 – are able to use in a cognitive way the knowledge

of their relative distances to the other transmitters for each

different spatial realization. Following the results due to

Baccelli et al. [37], we apply two different decoding rules:

treating interference as noise – the IAN rule – and joint detec-

tion of the strongest interferers’ messages and treating the

others as noise3 – the OPT rule.4

Assuming that the aggregate interference can be

approximated by the strongest interferer treated as noise,

we derive an approximate probability density function

(pdf) of the achievable rate in bits/s/Hz that a typical link

can sustain for the above decoding rules. If the network fol-

lows the bipolar model [21]5, the expected maximum spa-

tial throughput of the network in bits/s/Hz/m2 can be also

approximated using those pdfs.

For comparison purposes, we consider a non-cognitive

approach where nodes do not have location information.

In this scenario, transmitters use the same fixed coding

rates, regardless of the specific spatial realization consid-

ered (which is the most usual approach found in the liter-

ature, as in [14], [37,41, Sec. IV]). We then compute the

highest spatial throughput for this setting by optimizing

the expected spatial throughput over different spatial real-

izations, where the optimization variable is the (symmet-

ric) transmitters encoding rate. Differently from the

cognitive scenario where the coding rates are tuned to be

the highest achievable ones given the relative nodes’ posi-

tions for each different spatial realization, the fixed rate

scheme only cares about the average behavior of the net-

work. By doing so, decoding errors (outage events) will

happen for links whose capacity is below that predeter-

mined rate. We then analytically prove that, under the

same assumptions, the non-cognitive strategy always per-

forms worse than the cognitive one. Our numerical results

confirm this difference and illustrate the advantages of

using OPT over IAN.

We also carry out an extensive simulation campaign to

validate our findings and justify why our analysis is still

relevant even when our approximations are loose.

Specifically, our results show that, although the closest-

interferer approximation becomes looser in comparison

with the simulation point for high densities, the qualitative

relation and the quantitative ratio between the different

strategies are maintained. In addition, we discuss the

feasibility of the decoding rules and optimization

strategies for different mobility patterns: the cognitive

approach is a feasible solution for (quasi-) static topologies,

while the fixed rate optimization with IAN turns out

to be the most appropriate choice in highly mobile

topologies.

The rest of this paper is divided as follows. In Section 2,

we revisit the capacity region of Gaussian point-to-point

2 We assume such distribution for two main reasons: (i) it is the point

process distribution of highest entropy (locations are uniformly distributed

over the plane and the number of point follows a Poisson distribution); and

(ii) the existence of extensive results in the literature of interference-

limited wireless networks due to its mathematical tractability. When point

processes other than uniform Poisson point process are assumed, inhomo-

geneous intensity functions and/or spatial correlation between points

should be taken into account. In this way, the results may change since

points can be spatially clustered or repulsed, affecting the interference

characterization of the network. A detailed analysis of different point

processes for modeling wireless networks is found in [36].

3 This rule splits the set of interferers into two mutually exclusive

subsets: one contains the strongest interferers whose messages will be

joint decoded with the desired one, and the other contains the transmitters

with weaker detected power that will be treated as noise. This strategy is

proved in [37] the optimal for Gaussian point-to-point codes over

interference channels, as discussed later on.
4 We do not assume any interference cancellation (IC) technique as in

[14,38–40, Section 4.2] since the OPT rule used in this paper always

performs better than IC, as discussed in [37,41].
5 The details of this model will be described later on.
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codes over interference channels [37] and then define the

spatial throughput of wireless networks. Section 3 intro-

duces the network model and the expected maximum spa-

tial throughput using the cognitive approach. Section 4

analyzes the IAN decoder, while the OPT is the focus of

Section 5. A comparison between the cognitive and the

non-cognitive approaches is found in Section 6. We discuss

both the accuracy of our approximations and implementa-

tion issues in Section 7, followed by the final remarks in

Section 8.

2. Capacity region of Gaussian point-to-point codes

This section reviews the capacity region of Gaussian

point-to-point (G-ptp) codes for an arbitrary number of

communication pairs as stated by Baccelli et al. in [37,

Sec. II]. For convenience let us assume a network with area

A [m2] where K þ 1 source–destination pairs (also called

transmitter–receiver pairs) coexist. Each source node

i 2 ½0;K� transmits an independent message Mi 2 ½1;2nRi �

to its respective destination i at rate Ri [bits/s/Hz], where

n is the codeword length. Let Xj be the complex signal

transmitted by source j 2 ½0;K� and let Zi � CNð0;1Þ, a

the complex circularly symmetric Gaussian random vari-

able with zero mean and unity variance, represent the

noise effect at receiver i. The detected signal Y i at receiver

i is then:

Y i ¼
XK

j¼0

gijXj þ Zi; ð1Þ

where gij are the complex channel gains between transmit-

ter j (TXj) and receiver i (RXi). We assume that every trans-

mitted signal is subject to the same power constrain of Q

[W/Hz] such that the received signal between TXj and RXi

is constrained by Pij ¼ jgijj
2Q .

Each transmitter node uses a G-ptp code with a set of

randomly and independently generated codewords

xni ðmiÞ ¼ ðxi1; . . . ; xinÞðmiÞ following independent and identi-

cally distributed CN ð0;r2Þ sequences such that 0 < r2 6 Q ,

where mi 2 ½1;2nRi � and i 2 ½0;K�. RXi receives a signal yni
over the interference channel given by (1) and then esti-

mates the transmitted message as m̂i y
n
i

� �
2 ½1;2nRi �. An

error event in the decoding happens whenever the trans-

mitted message differs from the estimated one. Therefore

the error probability of the G-ptp code is:

pn ¼
1

1þ K

XK

i¼0

Pr½M̂i –Mi�; ð2Þ

where Pr½�� denotes probability that an event happens and

bM is the estimated message.

Next we use (2) to define the achievable rates and the

capacity region for G-ptp codes.

Definition 1 (Achievable rates and capacity region). Let pn
be the average error probability over G-ptp codes where n

is the codeword length. Then, a rate tuple R ¼ ðR0; . . . ;RK Þ

is said to be achievable if pn ! 0 when n ! 1. In addition,

the capacity region using G-ptp codes is the closure of the

set of achievable rate tuples R.

This definition is important to define the capacity

region of G-ptp codes as follows.

Theorem 1 (Capacity region from [37]). Let A be the set of

all K þ 1 transmitters in the network. LetAi denote a subset of

A that contains TXi with i 2 ½0;K� and �Ai its complement. The

receiver of interest RXi then observes a multiple access

channel (MAC) whose capacity region Ri is computed as

Ri ¼ R :

X

k2Ai

Rk 6 log2 1þ

P
k2Ai

Pik

1þ
P

j2�Ai
Pij

 !
8 Ai#A

8
<

:

9
=

;:

ð3Þ

The capacity region R of the Gaussian interference channel

with G-ptp codes is the intersection of the capacity regions

Ri of all TXi–RXi links with i 2 ½0;K�, i.e.

R ¼
\K

i¼0

Ri: ð4Þ

Proof. The proof of this theorem is found in [37, Sec. II]. �

This capacity region assumes a decoder that treats some

of the interferers as noise, while others have their mes-

sages jointly decoded with the desired one. In fact, this

result is the basis of the OPT strategy mentioned in the pre-

vious section and further studied in Section 5.

3. Spatial throughput of bipolar Poisson networks

In this section, we extend the results previously stated

to establish an approximation for the spatial throughput

of bipolar cognitive networks with transmitter nodes dis-

tributed according to a PPP. But before that, let us define

the spatial throughput and its maximum value using

Theorem 1 for a given spatial realization of the network

as follows:

Definition 2 (Spatial throughput). Let A [m2] be the net-

work area and K be the number of active links in A. Then

the spatial throughput, denoted by S and measured in bits/

s/Hz/m2, is defined as

S ¼
1

A

XK

i¼0

Ri: ð5Þ

Definition 3 (Maximum spatial throughput). The maxi-

mum spatial throughput, denoted by S�, is defined as

S� ¼ max
R2R

S; ð6Þ

such the rate tuple is achievable: R ¼ ðR0; . . . ;RKÞ 2 R.

The maximum spatial throughput reflects the highest

sum of achievable rates over a given area and it may vary

depending on the network topology. For example, clus-

tered topologies (where transmitter–receiver pairs are clo-

ser to each other, worsening the co-channel interference)
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tend to have lower individual channel capacities than more

sparse ones, leading to different spatial throughputs even

when the same area and number of links are considered.

To deal with this issue, we study Poisson distributed net-

works that are analytically tractable, allowing us to derive

approximate expressions for S� over different spatial

realizations.

Let U be a two-dimensional homogeneous Poisson

point process (PPP) with density k [nodes/m2] that charac-

terizes the spatial distribution of transmitters (TXs) over

R
2. We assume that each TX is associated with one receiver

(RX) located at a fixed distance d from it in a random ori-

entation6 to establish a communication link – also known

as Poisson bipolar model [21]. We consider that all TXs com-

municate with their intended RXs over the same frequency

band (narrow-band) and using the G-ptp codes as described

in Section 2.

For each realization of U, the network may have a dif-

ferent capacity region R and consequently different max-

imum spatial throughputs S�. When the network area is

the infinite plane (i.e. R2), the capacity region given by

Eq. (4) becomes impossible to be computed.7 Knowing

these limitations, we analyze the expected maximum spa-

tial throughput, which allows us to evaluate the perfor-

mance of bipolar Poisson networks over different spatial

realizations of U.

Definition 4 (Expected maximum spatial throughput). Let

R ¼ ðR0; . . . ;RKÞ be a rate tuple and R be the capacity

region for a given network realization, then the expected

maximum spatial throughput C is defined as

C ¼ E½S�� ¼ E max
R2R

1

A

XK

i¼0

Ri

" #
; ð7Þ

where E½�� represents the expected value.

We can now apply properties from the point process

theory [13] to approximate the average maximum

spatial throughput for this class of Poisson networks as

follows.

Proposition 1 (Expected maximum spatial throughput for

bipolar Poisson networks). For the bipolar Poisson network

described in this section, the expected maximum spatial

throughput C is given by:

C � kE½R��; ð8Þ

where k is the network density and R� is the random variable

that characterizes the maximum spatial throughput

achievable rates of a typical link over the network

realizations.

Proof. Let us first recall that the spatial process U takes

place in R
2 and then A ! 1;K ! 1 and R ¼ ðR0;R1; . . .Þ.

Then, we proceed with the following manipulation:

C ¼ E max
R2R

lim
A!1

1

A

X1

i¼0

Ri

" #
; ð9Þ

¼
ðaÞ
E lim

A!1

1

A

X1

i¼0

R�
i

" #
; ð10Þ

�
ðbÞ

kE½R��: ð11Þ

Specifically, (a) considers the value of R� ¼ ðR�
0;R

�
1; . . .Þ 2 R

that leads to the maximum spatial throughput for a given

network realization, resulting in S�. Since the PPP under

analysis is homogeneous, we can apply Slivnyak theorem

[13, Ch. 3] to determine the statistical proprieties of any

node in U over different spatial realizations based on a

‘‘typical link’’ – a receiver node added at the origin, whose

transmitter node is d meters away from it. Denoting the

optimal coding rate employed by such a transmitter as

R�, we can make the approximation (b) by multiplying

the network density k and R�. �

Remark. Equality in (b), instead of approximation in Eq.

(10), is not possible since we cannot guarantee that the

limit in Eq. (9) exists. It is also worth saying that, in this

case, neither the spatial ergodic theorem nor the

Campbell’s theorem can be applied due to the interdepen-

dence between the elements of the optimal rate set R� in

each specific spatial realization. In the following sections,

we show that it is still possible to assess the performance

of a typical link over different realizations based on

closed-form expressions, which validates our approxima-

tion (8).

From (8), one can see that the main problem is now to

derive the distribution of the maximum spatial throughput

achieving rates R�, which is our focus in the next two sec-

tions. We would like to mention that Baccelli and

Blaszczyszyn have presented in [22, Section 16.2.3] a

closed-form solution to the average rate of the typical link

for IAN decoders using Laplace transforms, which however

is not invertible. In this case, our framework contributes to

the field due to their geometric appeal and simpler formu-

lation. Then, we explicitly compute upper bounds to the

Shannon rates of the typical link based on the separation

distance between the typical receiver and its closest inter-

ferer that is treated as noise, allowing for the cognitive use

of location information. In this way, our contribution

extends such previous work by analyzing (i) OPT decoders;

(ii) the spatial throughput; and (iii) differences between

the ‘‘cognitive’’ and ‘‘non-cognitive’’ networks.

4. Interference as noise decoding rule

In this section we assess the decoding rule whereby the

receivers treat the interference as noise – IAN decoders.

The following corollary shows its achievable rates.

Corollary 1 (Achievable rates for IAN decoders). Assuming

the noise is Gaussian and considering that TXs employ G-ptp

codes as described in Section 2, the rate Rk associated with a

given link TXk–RXk is achievable when IAN decoders are used

if, and only if, the following inequality holds:

6 Note that the RXs are not part of the process U.
7 It is important to keep in mind that the number of links K ! 1 when

A ! R
2 .
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Rk 6 log2 1þ
Pkk

1þ
P

j2AnfkgPkj

 !
; ð12Þ

where A represents the set of active transmitters.

Proof. This is a special case of (3) assuming that RXk only

decodes the message of TXk while the other TXs are treated

as noise. �

We now apply this corollary to the scenario described

in Section 3 to assess the maximum expected spatial

throughput of Poisson networks when receivers use IAN

decoders. Before we start, however, we still need to charac-

terize the propagation phenomenon. We consider here the

distance-dependent path-loss model with exponent a > 2

[42] so the channel gain between TXj and RXi is

jgijj
2 ¼ x�aij , where xij denotes the separation distance

between them.8 We assume the noise power is negligible

in comparison to the interference power (interference-lim-

ited regime).

We further consider that the aggregate interference

experienced by RXk can be approximated by power Pk;clo

related to its closest interferer. Mathematically we have

the following9: 1þ
P

j2AnfkgPkj � Pk;clo.

Based on these assumptions, we approximate the pdf of

the highest achievable rate of the typical link when IAN

decoders are employed.

Proposition 2 (Approximate pdf of the highest achievable

rates for IAN). The pdf of highest rate R� achieved by the

typical link can be approximated by

f R� ðxÞ � ln 4
2 x

kpd2
ð2 x � 1Þ

2
a

að2 x � 1Þ
e�kpd2ð2 x�1Þ

2
a
; ð13Þ

where x > 0.

Proof. Let us analyze the typical link TX0–RX0 added to the

PPP U. From the Slivnyak theorem (refer to [13, Th. 3.1]),

this inclusion does not affect the distribution of U.

Without loss of generality, we assume that the origin of

the plane is located at RX0 and label the interferers TXi

accordingly to their distances to RX0, i.e. TX1 is the closest,

TX2 is the second closest and so on. From our assumptions,

we have 1þ
P1

k¼1Pk � P1. We then apply the path-loss

model to the IAN decoder presented in (12), considering

that the distances from TX0 and TX1 to RX0 are respectively

d > 0 and r1 > 0, resulting in

R0 6 log2 1þ
d
�a

r�a1

� �
; ð14Þ

where r1 is a random variable.

To compute the pdf of r1, we use the definition of

contact zone [13, Defs. 1.9 and 3.2] (the distance between a

typical point and its first neighbor), resulting in [44]

f r1 ðxÞ ¼ 2kpxe�kpx2 ; ð15Þ

such that x > 0. Defining b�
0 ¼ d

�a
=r�a1 such that inequality

(14) still holds, then we have the following relation

r1 ¼ db
�1a
0 (see Fig. 1). We now apply this variable transfor-

mation to (15) and hence the pdf of b�
0 > 0 can be obtained

as

f b�
0
ðxÞ ¼

2kpd2
x
2
a

ax
e�kpd2x

2
a ; ð16Þ

where x > 0.

To conclude this proof, we proceed with the transfor-

mation R�
0 ¼ log2ð1þ b�0Þ remembering that PPPs are sta-

tionary so we can characterize any node of the network

based on a typical node, dropping the index 0 (refer to [13,

Section 3.4]). �

Remark. The maximum value can be achieved only when

TX0 knows the distance r1 for each different spatial realiza-

tion. Our results consider that TX0 implements a cognitive

solution to first acquire local network topology and auton-

omously use it as side information so as to set its coding

rate to be achievable based on the propagation model

and the defined TX0–RX0 distance d.

The result just stated provides us an approximation10 of

pdf for IAN decoders over an infinite plane and over different

spatial realizations of the process U. Then, we apply (13) to

approximate the expected maximum spatial throughput

given by (8), resulting in

CIAN � k

Z 1

0

xfR� ðxÞdx; ð17Þ

which does not have a closed-form solution and a numer-

ical integration is required. For this reason, next we derive

some proprieties11 of (17) that help us understand the CIAN

behavior.

Property 1 (Concavity of the cognitive spatial

throughput). A function f ð�Þ is said to be quasi-concave if,

and only if, f ðpx1 þ ð1� pÞx2ÞP minff ðx1Þ; f ðx2Þg, where

0 6 p 6 1. Considering that the rate that leads to the cognitive

spatial throughput, R�, is a function of the network density k

(i.e. R� ¼ f ðkÞ), then CIAN given by (17) is quasi-concave in

terms of k, where R� is a random variable characterized by the

pdf (13).
8 This is in fact a simplified model that may lead to meaningless results

for xij < 1. As pointed in [43], modified versions of this model just increase

the complexity of the analysis without providing significant differences. We

can also include into our channel modeling the effects of random

fluctuations due to shadowing and multi-path as in [14, Section 4.1]. For

our purposes, though, the incorporation of these phenomena only compli-

cates the mathematical formulation without giving any further insight on

the network behavior.
9 This approximation is analyzed in [38] and it usually applied to

compute lower bounds of the interference power based on dominant

interferers [14,33]. We also discuss more about it in Section 7.

10 We discuss the tightness of the closest-interferer approximation later

in Section 7.
11 Such properties rely on the closest interferer approximation that will

be discussed later on. For conciseness we hereafter refer to the approximate

expected maximum spatial throughput as cognitive spatial throughput.

6 P.H.J. Nardelli et al. / Ad Hoc Networks 33 (2015) 1–15



Proof. Let us first consider two different network densities

k1 and k2 such that k1 < k2. Then, defining that

k ¼ pk1 þ ð1� pÞk2 with 0 6 p 6 1, we proceed with the

following manipulation

CIANðkÞ ¼ ðpk1 þ ð1� pÞk2ÞE½f ðpk1 þ ð1� pÞk2Þ� ð18Þ

P

ðaÞ

k1E½f ðpk1 þ ð1� pÞk2Þ� ð19Þ

¼
ðbÞ

k1E½f ðk1Þ� ¼ CIANðk1Þ ð20Þ

P

ðcÞ

k2E½f ðk2Þ� ¼ CIANðk2Þ: ð21Þ

Notice that (a) comes from the fact that

k1 6 pk1 þ ð1� pÞk2 whereas (b) is obtained by setting

p ¼ 1 since the first inequality holds for all 0 6 p 6 1.

This proves the quasi concavity of the analyzed function

when k1E½f ðk1Þ� < k2E½f ðk2Þ�. Finally, (c) is straightforward

when k1E½f ðk1Þ�P k2E½f ðk2Þ�, which concludes this

proof. �

Property 2 (Highest cognitive spatial throughput). The net-

work density k� that leads to the cognitive spatial throughput

given by (17) is obtained as the density k > 0 which is solu-

tion to the following equation:
Z 1

0

x
2
a�1log2ð1þ xÞe�kpd2x

2
adx

¼

Z 1

0

x
2
a�1 kpd2

x
2
a � 1

� �
log2ð1þ xÞe�kpd2x

2
adx: ð22Þ

Proof. Let us first rewrite the cognitive spatial throughput

formulation using the pdf f b� ðxÞ given by (16), yielding

CIAN ¼ k

Z 1

0

log2ð1þ xÞf b� ðxÞdx: ð23Þ

As shown in Property 1, the CIAN is quasi-concave in

terms of k so we find its maximum value based on the

derivative equation dCIAN=dk ¼ 0. After some algebraic

manipulation, we obtain (22), which concludes this

proof. �

Property 3 (Lower bound). A lower bound of the cognitive

spatial throughput given by (17) is computed as

CIAN P kye�kpd2ð2 y�1Þ
2
a
; ð24Þ

where y > 0.

Proof. To prove this property, we apply the Markov

inequality as presented below:

Pr½R�
P y� 6

E½R��

y
) E½R��P ye�kpd2ð2 y�1Þ

2
a
; ð25Þ

where Pr½R�
P y� ¼ 1�

R y

0
f R� ðxÞdx and 2 y � 1 > 0.

Then, we multiply both sides by k, resulting in (24). �

Property 4 (Upper bound). An upper bound of the cognitive

spatial throughput given by (17) is computed as

CIAN 6 klog2 1þ
1

kpd2

� �a
2

C 1þ
a
2

� � !

: ð26Þ

where Cð�Þ is the Euler gamma function defined as

CðzÞ ¼
R1

0
tz�1e�tdt.

Proof. Let us apply Jensen’s inequality based on the con-

cavity of (17) (refer to Property 1), yielding

CIAN ¼ kE½R�� ð27Þ

¼
ðaÞ

kE½log2ð1þ b�Þ� ð28Þ

6
ðbÞ

klog2ð1þ E½b��Þ; ð29Þ

where (a) comes from the fact that R� ¼ log2ð1þ b�Þ and

(b) is the Jensen inequality for quasi-concave functions.

Then, we compute the expectation of the random variable

b� using (16), which proves (26). �

Property 5 (Asymptotic equivalence). Let � denote the

asymptotic equivalence of two functions, then

CIAN � ck1�
a
2; ð30Þ

when k ! 1 and c ¼ 1

pd2

� �a
2

C 1þ a
2

� �
.

Proof. To prove that two functions f ðxÞ and gðxÞ are

asymptotically equivalent, i.e. f ðxÞ � gðxÞ, we should show

that limx!1f ðxÞ=gðxÞ ¼ 1. Let us first consider the behavior

of the random variable b�, characterized by (16) when

k ! 1, yielding

lim
k!1

f b� ðxÞ ¼ dðxÞ; ð31Þ

where dðxÞ is the Dirac impulse function.

d

r1 = dβ
∗

1

α

0

TX0RX0

TX1

Fig. 1. Illustrative example of the typical link TX0–RX0 employing the IAN

decoding rule, where TX1 represents the closest interferer to RX0. To reach

the highest achievable rate R�
0 , the relation r1 ¼ db

�1a
0 must be respected

such that r1 is the random variable that represents the distance between

RX0 and TX1.
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This indicates that the random variable b� tends to have

the value 0 with high probability when the network

density increases. Now, let us consider that b� ! 0, then

we have the following limit

lim
b�!0

log2ð1þ b�Þ

b� ¼
1

ln 2
: ð32Þ

Using these limits and recalling (16), we can manipu-

late the expression of the cognitive spatial throughput

CIAN as follows.

lim
k!1

CIAN ¼ lim
k!1

kE½log2ð1þ b�Þ� ¼ lim
k!1

k
E½b��

ln 2
: ð33Þ

Proceeding similarly with the upper bound in (29), we

have

lim
k!1

klog2ð1þ E½b��Þ ¼ lim
k!1

k
E½b��

ln 2
: ð34Þ

Now, we recall that the division of limits is the limit of

the division, resulting in

lim
k!1

kE½log2ð1þ b�Þ�

klog2ð1þ E½b��Þ
¼ 1: ð35Þ

From this fact, we can state from (26) that

CIAN � klog2 1þ
1

kpd2

� �a
2

C 1þ
a
2

� � !
; ð36Þ

when k ! 1.

To conclude this proof, we verify that

1

kpd2

� �a
2
C 1þ a

2

� �
! 0 when k ! 1 and then we apply the

approximation logð1þ xÞ � x valid when x ! 0 into (36)

resulting (30). �

Fig. 2 illustrates the behavior of the cognitive spatial

throughput CIAN and its proposed bounds as a function of

the network density k. Firstly, one can notice that the cog-

nitive spatial throughput has a maximum point which is

expected from its concavity stated in Property 1 and the

density k� that achieves the optimal is given by Eq.

(22).12 When densities lower than this maximum are con-

sidered, the network is spatially not saturated in terms of

interference and the cognitive spatial throughput of the net-

work is still not in its highest value. In this situation, any

increase of k leads to an increase of CIAN until the inflexion

point is achieved. After that point, the network spatial

throughput degrades due to the proximity of the interferers,

strongly reducing the average of the link rates R�.

Consequently, CIAN becomes a decreasing function of k.

From Fig. 2, we can also evaluate the proposed upper

and lower bounds of the cognitive spatial throughput. As

one can notice the lower bound proposed in Property 3 is

loose, regardless of k. In fact, the main use for this bound

is to prove the relation between the cognitive spatial

throughput and the maximum spatial throughput achieved

with fixed rates, as it will be discussed later on. Regarding

Property 4, when k increases, the upper bound become

tighter, as predicted by Property 5. In other words, the

upper bound has the same value as the cognitive spatial

throughput CIAN when k ! 1 as shown in Fig. 2.

In the next section, we apply the same approach used

here to derive the cognitive spatial throughput and its

properties when OPT decoders are considered.

5. Optimal decoding rule

As previously discussed, the optimal decoding strategy

when Gaussian point-to-point codes are used in wireless

networks with multiple transmitter–receiver pairs consists

in jointly decoding some messages from the strongest

interferers, while the rest is treated as noise. Based on this

observation, we obtain the achievable rates for links whose

receivers use OPT decoders as follows.

Corollary 2 (Achievable rates for OPT decoding

rule). Assuming Gaussian noise and considering that TXs use

the G-ptp codes as described in Section 2; then the rate Rk

associated with a given link TXk–RXk is said to be achievable

when the OPT decoder is employed if, and only if, the following

inequality holds:

Rk 6 log2 1þ

P
i2A�

k
Pki

1þ
P

j2�A�
k
Pkj

 !
�

X

i2A�
k
nfkg

Ri; ð37Þ

where A�
k represents the subset of transmitters whose mes-

sages are decoded by receiver k and A�
k [

�A�
k ¼ A is the set

of all active transmitters in the network.

Proof. To obtain (37) we proceed with a simple manipula-

tion of Eq. (3), isolating the rate Rk related to TXk–RXk link

by considering the subsets A�
k that lead to achievable

rates. �

Next we will apply the theorem stated above to statisti-

cally characterize the achievable rates over different spatial

realizations using the OPT decoding rule and then approxi-

mate the expectedmaximum spatial throughput of the net-

work described in Section 3, which is given by (7). However,

the analysis is more complicated under the assumption of

OPT decoding rule, since the receiver node should choose

the subset of messages that will be jointly decoded and

then verify whether the coding rate of its own transmitter

is achievable given all other coding rates. By construction,

all receivers proceed in the same way and hence the analy-

sis becomes a very intricate combinatorial problem. For this

reason, we need to approximate the pdf of the highest

achievable rates for the OPT decoders and resort to some

assumptions that will be justified afterwards.

As before, we only consider the deterministic path-loss

(refer to Section 4) and and that the closest interferer,

whose power is denoted Pk;clo, approximates the sum of

the interfering signals observed by RXk which are treated

as noise. If the noise power is negligible compared to

Pk;clo, then 1þ
P

j2 �A�
k
Pkj � Pk;clo. Based on these assump-

tions, we can state the following proposition.

12 A closed-form solution is unknown for this equation but standard

numerical methods solve it. In our case, we use FindRoot from Wolfram

Mathematica 9.
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Proposition 3 (Approximate pdf of the highest achievable

rates for OPT). Let us denote the rate tuple that achieves the

maximum expected spatial throughput for the network

described in Section 3 as R� ¼ ðR�
0;R

�
1; . . .Þ 2 R. If the pdf of

R�
k; 8k 2 A follows the pdf of a typical rate R� and denoted by

f R� ðxÞ, then

f R� ðxÞ �
X1

i¼0

ðkpd2
Þ
i

CðiÞ
e�kpd2 f R� jnðxjn ¼ iÞ ð38Þ

where f R� jnðxjnÞ is the pdf of R� given that 1þ n messages are

jointly decoded and is approximated by

f R� jnðxjnÞ � ln 4
2ð1þnÞx

kpd2

a
2ð1þnÞx � 1

1þ n

 !2
a�1

e
�kpd2 2ð1þnÞx�1

1þn

� �2
a
�1

� �

;

ð39Þ

such that x > logð2þnÞ
1þn

.

Proof. Let us first deal with the typical link TX0–RX0.

Without loss of generality, we place the origin of the

Cartesian plane at RX0 and assume that all nodes that are

closer to RX0 than TX0 have their messages jointly decoded

with TX0 message (see Fig. 3). From the distance-depen-

dent path-loss model, the closer the TX, the higher the

power, and then this choice of the subset A�
0 is justified.

For each network spatial realization, we consider that a

number n associated with the transmitters whose mes-

sages are decoded by RX0 is known, which yields the

following inequality

log 1þ
ð1þ nÞP00

P0;clo

� �
< log 1þ

P00 þ
Pn

i¼1P0i

P0;clo

� �
: ð40Þ

One can observe from (37) and (40) that rate tuples that

satisfy R0 þ
Pn

i¼1Ri < log 1þ ð1þnÞP00
P0;clo

� �
are always

achievable.

Defining b�0 ¼ P00=P0;clo, we use similar steps to the ones

used in the proof of Proposition 2, but considering now

that r1 > d to compute the pdf f b�0 ðxÞ as

f b�
0
ðxÞ ¼

2kpd2
x
2
a

ax
e�kpd2 x

2
a�1
� �

; ð41Þ

where x > 1 and f b�
0
ðxÞ ¼ 0 when x 6 1.

Then, we assume that R0 þ
Pn

i¼1Ri � ð1þ nÞR0 to obtain

ð1þ nÞR�
0 ¼ log 1þ ð1þ nÞb�0

� �
. By applying such a transfor-

mation, we can find the pdf of R�
0 given n. From the

assumption that the all links perform similar to the typical

one, we can drop the index 0, resulting in Eq. (39). To

unconditioned thepdf f R�jnðxjnÞ, we compute theprobability

that there exist_n ¼ i points of the PPP in the area pd2. �.

Remark. In addition to the closest interferer treated as

noise approximation, this proposition is based on other

two strong assumptions: (i) the detected power at RX0

related to the 1þ n jointly decoded messages is equal to

ð1þ nÞP00; and (ii) the sum rate associated with those mes-

sages is given by ð1þ nÞR0. Assumption (i) uses the lower

bound given by (40), which indicates that we underesti-

mate the aggregate power and (ii) approximates the sum

of 1þ n random variables that follows the same distribu-

tion by one random variable multiplied by 1þ n. We argue

that the underestimation by-product of (i) leaves us some

room for variations in the sum rate approximation used in

(ii). In addition, due to the homogeneity of the spatial pro-

cess, R0 þ
Pn

i¼1Ri � ð1þ nÞR0 leads to a reasonable approx-

imation. Simulations results are presented in Section 7

where we discuss such approximations.

Here we approximate the expected maximum spatial

throughput13 COPT when the OPT decoding rule is employed

as

COPT � k
X1

i¼0

ðkpd2
Þ
i

CðiÞ
e�kpd2

Z 1

logð2þiÞ
1þi

xfR� jnðxjn ¼ iÞdx; ð42Þ

where f R� jnðxjn ¼ iÞ is given in Proposition 3.
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Fig. 2. Actual values, lower and upper bounds of the cognitive spatial throughput, CIAN , versus the network density k for a ¼ 4 and d ¼ 1. The lower bound is

obtained using y ¼ 1 in (24). The actual values and upper bound are computed using (17) and (26), respectively.

13 As in the previous section we use the term cognitive spatial throughput

to refer to the approximate expected maximum spatial throughput.
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The integral in (42) is analytically unsolvable (we can

rely on numerical solutions, though). To gain more insights

on the system performance, we next derive some proper-

ties of the cognitive spatial throughput.

Property 6 (Concavity). Considering that the rate R� is a

function of the network density k, then COPT given by (42) is

quasi-concave in terms of k, where R� is a random variable

given by (38).

Property 7 (Lower bound). A lower bound of the cognitive

spatial throughput given by (42) is computed as

COPT P k
X1

i¼0

ðkpd2
Þ
i

CðiÞ
ye�kpd2 2ð1þiÞy�1

1þi

� �2
a

; ð43Þ

where y > log2ð2þiÞ
1þi

for all iP 0.

Property 8 (Upper bound). A upper bound of the cognitive

spatial throughput given by (42) is computed as

COPT 6 k
X1

i¼0

ðkpd2
Þ
i

CðiÞ

�
e�kpd2

1þ i
log2 1þ ð1þ iÞ

1

kpd2

� �2
a

C 1þ
2

a
; kpd2

� �
ekpd

2

 !
;

ð44Þ

where Cð�; �Þ is the incomplete Gamma function, which is

defined as Cðz; aÞ ¼
R1

a
tz�1e�tdt.

Property 9 (Asymptotic equivalence). Let � denote asymp-

totic equivalence of two functions, then

COPT � k
X1

i¼0

ðkpd2
Þ
i

CðiÞ

�
e�kpd2

1þ i
log2 1þ ð1þ iÞ

1

kpd2

� �2
a

C 1þ
2

a
; kpd2

� �
ekpd

2

 !
;

ð45Þ

when k ! 1.

The proofs of these properties follow the same princi-

ples used in the previous section so we do not present

them here. It is worth pointing though out that the proofs

of (43)–(45) begin by assuming that the number 1þ n of

jointly decoded messages is known. Then, we use the fact

that the unconditioned cognitive spatial throughput is a

linear combination of the conditioned cognitive spatial

throughputs with weights given by the Poisson probabili-

ties that n ¼ i nodes lie in a area of pd2
, i.e. ðkpd2Þ

i

CðiÞ
e�kpd2 .

d

r1 = dβ
∗

1

α

0

TX0

RX0

TX1

TX

Fig. 3. Illustrative example of the typical link TX0–RX0 employing the OPT

decoding rule. The blue TX has its message jointly decoded with TX0

message and TX1 is the closest interferer to RX0 whose signal is treated as

noise. The random variable r1 denotes the distance between RX0 and TX1

such that r1 > d. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Actual values, lower and upper bounds of the cognitive spatial throughput, COPT , versus the network density k for a ¼ 4 and d ¼ 1. The lower bound is

obtained using y ¼ 2 in (43). The actual values and upper bound are computed using (42) and (44), respectively.
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Fig. 4 presents the cognitive spatial throughput COPT

given by (42) as a function of k together with its proposed

upper and lower bounds. One can observe that the lower

bound given by Property 7 is very loose for the value of

the constant y that was arbitrarily chosen (y ¼ 2). This

bound, however, can be improved by tuning the constant

y in accordance to the number of jointly decoded mes-

sages. Such an improvement in the proposed bound will

be discussed in the next section when we apply it to ana-

lytically assess the performance of networks where prede-

termined fixed rates are imposed.

Turning our attention to the values of COPT given by (42),

one can easily see that it is an increasing function of k. For

lower densities, COPT increases faster since the probability

that an interfering TX has its message jointly decoded is

also low. Consequently, the rate is constrained by the

interferers that are treated as noise, indicating that COPT

is limited by the low spatial reuse. When k increases, on

the other hand, more messages from interfering TXs start

being jointly decoded, which diminishes the COPT rate of

increase. Furthermore, we can observe that the upper

bound proposed in Property 8 is a good approximation to

COPT for all densities k especially when k ! 1, corroborat-

ing Property 9.

By comparing the results shown in Figs. 2 (IAN) and 4

(OPT), one can see that the OPT decoding rule provides

higher cognitive spatial throughputs, regardless of the net-

work density. The performance gain obtained with the OPT

decoder indicates that the mechanism of joint detection

used here is a good way to cope with the strongest interfer-

ers. A more detailed comparative analysis between OPT

and IAN decoding rules is presented later.

In the following section, we compare the results

obtained so far with the non-cognitive approach: coding

rates are fixed for a given network density and set to opti-

mize the average spatial throughput, regardless of a speci-

fic network topology. In this way, the transmitters do not

use the local knowledge of the network topology as side

information, leading to more often outage events (i.e. some

pairs use coding rates above their channel capacity).

6. Spatial throughput optimization using

predetermined fixed rates

We now focus on scenarios where TXs, without location

information, set their coding rates to the fixed values that

leads to the highest expected spatial throughput.

However, the TXs are assumed to be aware of how many

messages are jointly decoded by their RXs. Using this

scheme, groups of TXs use the same fixed coding rates

and then an optimization problem is formulated to find

these rates such that the expected spatial throughput is

maximized. As a result the optimal choice of coding rates,

as discussed later on, is outside the network capacity region

(from Theorem 1) which leads to outage events for some

links. Next, we establish the aforementioned optimization

problem.

Definition 5 (Highest expected spatial throughput). The

expected spatial throughput optimization problem for a

network where TXs have fixed coding rates is defined as

T ¼ max
R

E½S�; ð46Þ

where T is the maximum expected spatial throughput,

R ¼ ðR0;R1; . . .Þ represents the set of fixed coding rates Ri

used by the TXs such that i is the number of jointly

decoded messages in addition to the desired one, and S

is the spatial throughput given by (5), by which only the

successful transmissions are taking into account.

When the IAN decoding rule is used, there are no jointly

decoded messages and then the optimization is only

related to one fixed coding rate.14 We now present two

propositions that state the highest expected spatial through-

puts for IAN and OPT decoders applying the network model

used before.15

Proposition 4 (Highest expected spatial throughput for

IAN). The highest expected spatial throughput T IAN achieved

when IAN decoders are used is given by

T IAN ¼ klog2ð1þ b�Þe�kpd2b�
2
a ; ð47Þ

where b� is the value of b > 0, which is solution of

b ¼
2

a
kpd2

ð1þ bÞ lnð1þ bÞ

� � a
a�2

: ð48Þ

Proof. Let us first rewrite the expected spatial throughput

given by (5) for this scenario as

S ¼ kRPs; ð49Þ

where R is the fixed coding rate used by all TXs and Ps is

the corresponding success probability.

We proceed here similarly to the proof of Proposition 2

and then apply the relation R ¼ log2ð1þ bÞ with R and b

positive. From the closest interferer assumption, an outage

event occurs whenever an interfering TX node lies inside

the area defined by the circumference centered at the RX

node and with radius db
1
a (see Fig. 1). Using the Poisson

distribution, we have that Ps ¼ e�kpd2b
2
a . Hence, we can

rewrite (49) as

S ¼ klog2ð1þ bÞe�kpd2b
2
a ; ð50Þ

which is a concave function of b.

Hence, we obtain b� which is the solution of the

derivative equation dS=db ¼ 0, after manipulating (48).

To conclude this proof, we use b� into (50), obtaining

(47). �

Proposition 5 (Highest expected spatial throughput for

OPT). The highest expected spatial throughput T OPT achieved

when OPT decoders are used is given by

T OPT ¼ k
X1

i¼0

ðkpd2
Þ
i

CðiÞ

e�kpd2

1þ i
log2ð1þ ð1þ iÞb�

i Þe
�kpd2 b

�2a
i
�1

� �

ð51Þ

14 This is the usual approach as in [14,41].
15 Once again we use the closest interferer treated as noise

approximation.
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where, b�
i is found as the value of bi > 1 for i 2 N, which is

solution of

bi ¼
2

ð1þ iÞa
kpd2

ð1þ ð1þ iÞbiÞ lnð1þ ð1þ iÞbiÞ

� � a
a�2

:

ð52Þ

Proof (Outline of proof). Here, we employ the same steps

previously used to prove Proposition 4, considering these

basic differences: bi ¼ d
�a
=r�a1 > 1 (since messages from

TXs closer to a given RX than its own TX are jointly

decoded and then r1 > d) and the optimization is pro-

ceeded for each i ¼ 0;1;2; . . . which yields (52). To con-

clude this outline, we average the expected spatial

throughputs by the Poisson probabilities that i nodes lie

in the area pd2
, resulting in (51). �

Here we apply Properties 3 and 7 to obtain an analytical

relation between the expected highest spatial throughput C

(cognitive) and the highest expected spatial throughput T

(non-cognitive) using fixed rates for either decoding rules.

Proposition 6 (C vs. T ). For a given density k and assuming

that all links use the same decoding rule (either IAN or OPT),

then

CP T : ð53Þ

Proof. This statement is a consequence of Property 3,

when we set the constant y ¼ logð1þ b�Þ in (24), yielding

(47). Similarly, we use Property 7, applying for each differ-

ent i 2 N a different constant y in (43) such that

yi ¼
logð1þð1þiÞb�

i
Þ

1þi
, which yields (51). �

Fig. 5 shows the maximum expected spatial throughput

following the formulation derived in this section. As

proved in Proposition 6, T is always lower than or equal

to C for the same density and decoding rule. This is justified

by the methodology used to derive the cognitive spatial

throughput, which allows for a choice of coding rate based

on the location information for each different realization.

When fixed rates are used, the transmitters encode their

messages using a fixed rate that depends only on the num-

ber of other messages that are jointly decoded by their own

receivers. By optimizing based only on the average behav-

ior, some RXs cannot successfully decode their messages

for specific topologies, which decreases the expected spa-

tial throughput. Therefore, the cognitive strategy has

always the best performance. Besides given the decoding

rule employed, the curves of T and C have a similar shape.

Fig. 5 also shows that the cognitive spatial throughput

obtained when OPT is used has a huge gain if compared

with the IAN option. This result reflects that the OPT rule

is able to avoid the strongest interferers by jointly decod-

ing their messages. When the density k is low, both OPT

and IAN decoders have approximately the same perfor-

mance since the probability that an interferer is closer to

a given RX than its own TX is very low. By increasing k, this

probability also increases and then the differences

between both strategies become apparent. In fact, the

closest interferer is the limiting factor for IAN, while such

node may have its message jointly decoded when OPT is

used, what decreases the harmful effects of the nearby

interferers.

7. Discussions

So far we have showed that, for same network density,

OPT decoders outperform IAN, and the cognitive strategy

outperforms the non-cognitive one when receivers employ

the same decoding rule. Nevertheless we still need to dis-

cuss some possible limitations of our finds, namely the

tightness of our approximations and the feasibility of each

decoding rule for practical implementations. In the follow-

ing subsections, both aspects are addressed: we identify

why our results are important even when our approxima-

tion is poor, and under which circumstances the design

setting that provides the worst performance is more suit-

able than the optimal.

7.1. Tightness of our approximation

Here we discuss the validity of the ‘‘closest interferer

treated as noise approximation’’ used to derive the approx-

imate performance of both decoding rules. Fig. 6 compares

the cognitive spatial throughput C obtained using our ana-

lytical approximation and Monte Carlo simulations16 as a

function of the network density k for both decoders.17 For

both IAN and OPT, the lower the density is, the better our

approximation works. Conversely, by increasing the density,

our approximated spatial throughput becomes looser.

The closest-interferer approximation is indeed a lower

bound of the aggregate interference [14], leading then to

an upper bound of the actual cognitive spatial throughput.

This bound have been proved to be asymptotically equiva-

lent to the actual values when k ! 0 [38,14].18 For higher

densities, the closest interferer treated as noise contributes

less to the aggregate interference experienced by the recei-

vers, which worsens our approximation. Besides, we

obtained our numerical results using the path-loss exponent

a ¼ 4 and Weber et al. showed that lower exponents lead to

looser bounds [10].

And yet we believe that the comparison between the

IAN and OPT decoders is fair since the results presented

in Sections 4 and 5 rely on the same approximation.19

16 The Monte Carlo simulation consists in the following steps [36]: (i)

generate N points following a Poisson distribution given a large network

area, in our case A ¼ 100� 100, such that the density is given by k ¼ N=A;

(ii) for each point, a position vector is generated following a uniform

distribution over the x and y axes; (iii) a typical link is added in the network

such that the typical receiver is located at the origin; (iv) the aggregate

interference is computed at the typical receiver using the path-loss

function; (v) the spatial throughput is computed based on the typical link;

(vi) the same procedure is repeated 10,000 times; and (vii) the simulation

result is an average of all realizations.
17 The results for the highest expected spatial throughput presented in

Section 6 have the same behavior and thus are not presented here.
18 In our point of view this asymptotic analysis is unsuitable for the study

carried out here; we assume an interference-limited network, which

opposes the idea of very low density of interferers. When k ! 0, we see the

network in its noise-limited regime.
19 We can argue in the same way that the analysis presented in Section 6

is also fair.
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We further argue that our approximation has no effect on

the trade-off analysis done in this paper and Fig. 6 illustrates

this fact by showing that the OPT always outperforms IAN in

similar scales: the ratios CIAN=COPT obtained via simulation or

via our approximations have similar values when consider-

ing the same k. As the proposed formulation provides a com-

putationally simpler way to assess the network performance

than numerical simulations, we reinforce the contribution of

this paper even when our approximations provide less accu-

rate bounds.

All in all, we believe that our main messages – OPT is

better than IAN, and cognitive strategy is better than the

non-cognitive one – are unaffected by our approximations,

which are shown by both qualitative relations and

quantitative ratios between our analytical and simulated

results. Despite of these facts, the optimal strategy is

infeasible for practical implementation as discussed in

the following.

7.2. Design setting and mobility pattern

Throughout this paper we have shown that the best

design option in terms of spatial throughput is to employ

OPT decoders and apply the cognitive scheme. This solu-

tion, however, has downsides: (i) RXs require the knowl-

edge of the codebooks of the jointly decoded messages;

and (ii) OPT decoders are computationally more complex

than IAN.

Knowing that, we argue that the use of either/both OPT

and/or cognitive strategy is infeasible for (highly) mobile

topologies. Under this topology, the neighbors of any given

receiver change very fast, rendering the joint decoding pro-

cedure impossible. Shopping malls and streets where peo-

ple move frequently can exemplify this scenario. If this is

the case, even though the configuration employing IAN

decoders with fixed rate optimization is far from the opti-

mal performance, it is a more suitable choice.

0.0 0.5 1.0 1.5 2.0
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0.2

0.4

0.6

0.8

1.0
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OPT

OPT

Fig. 5. The highest expected spatial throughputs T using fixed coding rates given by (47) and (51), and the cognitive spatial throughputs C given by (17) and

(42) as a function of the network density k for IAN and OPT decoding rules, d ¼ 1 and a ¼ 4.
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Fig. 6. Cognitive spatial throughputs C for IAN and OPT as a function of the network density k, d ¼ 1 and a ¼ 4. Approximate results given by Eqs. (17) and

(42), and simulations.
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Conversely, when (quasi-) static networks are consid-

ered, the optimal strategy becomes viable. In this case,

receiver nodes must know the codebooks of their strongest

interfering nodes and jointly decode their messages. In

addition, the links must coordinate their coding rates to

be in the network capacity region. Smart homes, industry

plants and other kind of machine-to-machine communica-

tions can exemplify this mobility pattern.

Besides, there are other aspects that may be prohibitive

for OPT. For instance, many applications require secrecy

and then the codebook knowledge makes OPT infeasible

even for static topologies. Other applications need fast pro-

cessing time, which is also infeasible when many interfer-

ing messages are jointly decoded. Anyway, this

dependence of the topology must be taken into account

when the network is designed. Furthermore, the mobility

pattern of the network can also change over time – for

example, offices during the night are quasi-static, while

being highly dynamic during parts of the working hours.

All these aspects indicate requirements for ad hoc adap-

tive algorithms that estimate the network state and pro-

ceed with their optimization according to their cognitive

ability. If the closest interferer treated as noise approxima-

tion gives a reliable indication, the results presented herein

might even provide a practical way of implementing them.

8. Final remarks

In this paper we studied the spatial throughput of cog-

nitive networks using the Gaussian point-to-point codes,

where transmitter nodes use the location information of

their receiver’s closest interferer to tune their encoding

rates. Assuming that the network follows the bipolar

Poisson model, we evaluated two different decoding rules:

(i) treat all interfering messages as noise – IAN; and (ii)

jointly decode the messages whose detected power is

higher than the desired message power while treating

the remaining interference as noise – OPT.

We proposed an approximation of the expected highest

spatial throughput for Poisson distributed networks where

transmitter nodes are able to autonomously tune their

coding rates (cognitive behavior) for each spatial realiza-

tion based on the location information of the closest inter-

ferer of their respective receivers. We then stated several

properties of our approximations using either decoder

and showed that, when the same network density and

decoding rules are assumed, the cognitive strategy always

outperforms the non-cognitive one using pre-determined

fixed rates regardless of a specific network realization.

These results can be actually used to implement an ad

hoc algorithm capable to adapt the coding rates based on

estimated information about distances, network density

and mobility profile. In fact, we have already identified the

work done in [45] as a potential starting point to further

develop the theory presented here in more practical

scenarios.
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