
Wissenschaftliche Berichte des 
Institutes für Fördertechnik und Logistiksysteme des 

Karlsruher Instituts für Technologie  Band 76

Prof. Dr.-Ing. Kai Furmans (Hrsg.)

Christian Huber

Throughput Analysis of  
Manual Order Picking Systems  
with Congestion Consideration





Christian Huber

Throughput Analysis of Manual Order Picking Systems  

with Congestion Consideration



Wissenschaftliche Berichte des 

Institutes für Fördertechnik und Logistiksysteme

des Karlsruher Instituts für Technologie

Band 76



Throughput Analysis of  
Manual Order Picking Systems  
with Congestion Consideration

by

Christian Huber



KIT Scientific Publishing 2011 

Print on Demand

ISSN: 0171-2772

ISBN: 978-3-86644-759-2

Impressum

Karlsruher Institut für Technologie (KIT)

KIT Scientific Publishing

Straße am Forum 2

D-76131 Karlsruhe

www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales

Forschungszentrum in der Helmholtz-Gemeinschaft 

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz 

publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Dissertation, Karlsruher Institut für Technologie

Fakultät für Maschinenbau, 2011

Referent: Prof. Dr.-Ing. K. Furmans

Korreferent: Prof. Dr. K. J. Roodbergen

http://creativecommons.org/licenses/by-nc-nd/3.0/de/






Throughput Analysis of

Manual Order Picking Systems

with Congestion Consideration

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Maschinenbau
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Dipl.-Wi.-Ing. Christian Huber

Tag der mündlichen Prüfung: 27. Juli 2011
Hauptreferent: Prof. Dr.-Ing. K. Furmans
Korreferent: Prof. Dr. K.J. Roodbergen





Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wis-
senschaftlicher Mitarbeiter am Institut für Fördertechnik und Logis-
tiksysteme des Karlsruher Instituts für Technologie. Ich möchte mich
an dieser Stelle bei allen Personen bedanken, die zum Gelingen dieser
Arbeit beigetragen haben.

Herrn Prof. Dr.-Ing. Kai Furmans, Leiter des Instituts für Fördertech-
nik und Logistiksysteme, gilt mein besonderer Dank für die Übernahme
des Hauptreferats sowie für die Unterstützung meiner Tätigkeit als wis-
senschaftlicher Mitarbeiter. Die Möglichkeit zum selbstständigen Ar-
beiten, die zielführenden Diskussionen sowie die richtigen Fragen haben
maßgeblich dazu beigetragen, meine Promotion erfolgreich abzuschließen.

Herrn Prof. Dr. Kees Jan Roodbergen danke ich für die Übernahme des
Korreferats sowie die interessanten Diskussionen zu manuellen Kommis-
sioniersystemen. Herrn Prof. Dr. rer. nat. Alexander Wanner danke ich
für die Übernahme des Prüfungsvorsitzes.

Mein herzlicher Dank gilt allen ehemaligen Kollegen für die sehr an-
genehme Arbeitsatmosphäre, Ihre Unterstützung sowie die zahlreichen
Anregungen. Hervorheben möchte ich Jens Wisser, der maßgeblich für
die Beantragung des Forschungsprojektes, welches dieser Arbeit zugrunde
liegt, verantwortlich war und mir fortlaufend wertvolle Hinweise gegeben
hat. Besonders danke ich auch Melanie Schwab und Judith Stoll für die
Korrektur des Manuskriptes. Mein Dank gilt auch Eda Özden für die hilf-
reichen Diskussionen über geschlossene Bediensystemnetzwerke. Ebenso
danke ich den studentischen Hilfskräften, die meine Forschungsarbeit be-
gleitet haben. Im Speziellen Martin Epp, der mir bei der Umsetzung
der Ideen zur Berechnung der Netzwerkparameter eine große Hilfe war.
Florian Denz, Steffen Hedrich und Murtaza Bootwala danke ich für die

i



fruchtbaren Diskussionen zu Korrekturfaktoren in geschlossenen Bedien-
systemnetzwerken.

Mein persönlicher Dank gilt meiner Familie und insbesondere meinen El-
tern, die mir den eingeschlagenen Bildungsweg als Grundstein dieser Ar-
beit ermöglicht haben. Sie, meine Schwiegereltern und meine Schwägerin
haben mich stets unterstützt, Interesse am Fortschritt meiner Arbeit
gezeigt und an mich geglaubt. Mein größter Dank gilt meiner Frau
Corinna und meinem Sohn Jannik für ihre Liebe, Unterstützung und
für ihr Verständnis. Sie haben mir die notwendige Kraft und Motivation
zum Gelingen dieser Arbeit gegeben und zeigen mir jeden Tag aufs Neue,
was die wirklich wichtigen Dinge im Leben sind.

Waldbronn, September 2011 Christian Huber

ii



Kurzfassung

Christian Huber

Durchsatzanalyse manueller

Kommissioniersysteme unter Berücksichtigung

von Blockiereffekten

Kommissionierung ist der wichtigste Prozess in Distributionszentren.
Typischerweise sind Kommissioniersysteme manueller Art, da Arbeits-
kräfte zu den Kommissionierplätzen laufen oder fahren, um dort Ar-
tikel für einen Kundenauftrag zu entnehmen. Im Rahmen der Planung
solcher Systeme stellt die Gangbreite einen relevanten Entscheidungspa-
rameter dar. Durch enge Gänge können Flächenkosten und Wegstrecken
reduziert werden. Jedoch kann es zu Blockiervorgängen kommen, da
Kommissionierer sich gegenseitig nicht überholen können. Dadurch re-
sultierende Wartezeiten haben einen negativen Einfluss auf das Durch-
satzverhalten. Der Großteil existierender Forschungsarbeiten behandelt
Systeme mit einem Kommissionierer und ermittelt die zurückzulegende
Wegstrecke ohne auf Abhängigkeiten zwischen Kommissionerern einzuge-
hen. Nur sehr wenige Veröffentlichungen berücksichtigen Blockiereffekte,
haben aber aufgrund getroffener Annahmen einen eingeschränkten An-
wendungsbereich.

In der vorliegenden Arbeit werden bedientheoretische Modelle genutzt,
um den Durchsatz in manuellen Kommissioniersystemen mit Blockieref-
fekten zu berechnen. Die Modelle behandeln Systeme, denen eine Durch-
gangstrategie sowie eine zufällige bzw. klassenbasierte Belegungsstrategie
zugrunde liegen. Die Verfahren sind analytischer Natur und ermöglichen
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Kurzfassung

daher die Untersuchung zahlreicher Alternativen in vergleichsweise kurzer
Zeit.

Im Rahmen der Modellierung werden die Parameter eines manuellen
Kommissioniersystems Schritt für Schritt in die Parameter des bedien-
theoretischen Modells übertragen. Die Modellierung führt dazu, dass
einzelne Bedienstationen keine Puffer und die Bedienzeiten eine generelle
Verteilung besitzen. Bestehende Approximationsansätze werden erwei-
tert und in einer neuen Methode integriert. Eine sehr gute Ergebnisgüte
für den Großteil der durchgeführten Experimente validiert den entwick-
elten Ansatz.

Die neue Approximationsmethode wird anhand zahlreicher Parame-
terkonfigurationen angewandt, um die Effeke der Blockierungen zu quan-
tifizieren. Die Ergebnisse zeigen, dass die Durchsatzverluste auch für eine
geringe Anzahl an Kommissionierern im System nicht zu unterschätzen
sind. Bestehende Handlungsempfehlungen zu Planung und Betrieb von
manuellen Kommissioniersystemen sind zum Teil neu zu definieren, wenn
Blockiereffekte auftreten. In Systemen mit wenigen langen Gängen treten
Blockierungen häufiger auf als in Systemen mit vielen kurzen Gängen. In
Bezug auf die Belegungsstrategie wird gezeigt, dass eine klassenbasierte
Belegung nicht zwangsläufig besser abschneidet als eine zufällige. So kann
es für bestimmte Szenarien empfehlenswert sein, häufig nachgefragte Ar-
tikel gleichmäßig auf das System zu verteilen, anstatt sie in bestimmten
Zonen zusammenzufassen.
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Abstract

Christian Huber

Throughput Analysis of Manual Order Picking
Systems with Congestion Consideration

Order picking is the most important warehouse process. It is typically
organized in a manual way, meaning that humans walk or drive to a loca-
tion, collecting items for customer orders. When designing manual order
picking systems, the width of an aisle is one parameter of interest. Nar-
row aisles will initially reduce surface costs and travel distance. However,
such configurations might suffer from congestion as pickers cannot pass
each other, resulting in waiting times which negatively influence through-
put performance. The majority of existing literature deals with single-
picker operations, mostly focusing solely on travel distance and thus not
regarding interdependencies between pickers. A few publications have
incorporated congestion but they have very strict assumptions, resulting
in a limited scope of application.

In this work, we use queueing models to calculate throughput of manual
order picking systems with congestion consideration. We analyze systems
with traversal routing and random as well as class-based storage policy.
Being of analytical nature, the models are able to estimate throughput
for many alternative designs in a relatively short amount of time.

We perform a step-by-step transformation of order picking systems’ pa-
rameters into parameters of the queueing network. This results in some
distinct queueing model characteristics, namely non-existing buffers and
generally distributed service times. Existing approximation approaches
are extended and integrated to obtain a new method for this type of net-
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work. The accuracy of the new approach is analyzed, showing a small
error for the overwhelming majority of experiments.

The approach is applied to numerous order picking system parameter
configurations to quantify the effects of congestion. The results suggest
that a considerable percentage of throughput is lost, even for a small
number of pickers in the system. Furthermore, existing guidelines on
how to design and operate manual order picking systems are at least
partly not valid if congestion occurs. In terms of layout design, we con-
clude that systems with few long aisles suffer more from congestion than
systems with many short aisles. Furthermore, we show that in terms of
throughput, class-based storage does not necessarily outperform random
storage. It might therefore be advisable to distribute frequently picked
items evenly over the whole system instead of clustering them in distinct
zones.
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1 Introduction

When managers and experts from traditional industrial countries learned
that mass production was not the only and most efficient organizational
strategy to fulfill customer demand, the so-called Lean Management be-
came popular. Being associated with terms such as waste elimination and
minimum inventory, some people even started to dream about warehouse-
free supply chains. Warehouses with large inventories, waiting for cus-
tomers who might not even exist, were identified quite simply as waste,
which in theory should be eliminated. However, people pursuing this vi-
sion were never able to answer questions like how a production facility
could carry on operating if important suppliers were located overseas and
a transportation problem emerged. Or whether a customer in Germany
would be willing to wait several days for a car spare part to be delivered
from an Eastern European production site.

Today, the importance of warehouses for efficient, robust and quick supply
chain processes has mostly been realized. Frazelle (2002, p. 1) states
that warehouses will always play a major role in connecting companies
to consumers and according to Sheth (1995, p. 153), the cost of keeping
stock is preferred to the unavailability of material. Even Taiichi Ohno
(1988, p. 128) - founder of the famous Toyota Production System and
inspirator for many inventory reduction efforts - concludes that a certain
amount of inventory is needed to enable a running process. Consequently
the focus should not be on eliminating warehouses in general but to
reduce the waste within its processes.

Order picking is the most important warehouse process. Gudehus (2005,
p. 685) defines it as the process of retrieving items from an assortment
of goods according to individual customer orders. The main reason for
its importance is the fact that on average 45-55% of total warehousing
costs can be attributed to order picking (de Koster et al. 2007, p. 481,
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Warehouse Excellence Study 2011). Additionally, in many industries
order patterns are changing from a few large orders to many small orders
(van den Berg 1999, p. 751), thus increasing the importance for flexible
and efficient order picking operations. To concentrate on the efficiency
of such operations when trying to continuously improve the warehouse
performance is therefore advisable.

Order picking systems are typically operated such that a picker walks
or drives to the goods (picker-to-part system) and manually retrieves
them from a storage location. Because humans are involved in every
single step of this operation, we will use the term manual order picking
system. De Koster et al. (2007, p. 485) number the portion of manual
systems used in Western European order picking operations at 80%. Data
from the Warehouse Excellence Study (2011) support these statements
as of 220 order picking tasks surveyed approx. 83% use a picker-to-part
strategy. Despite many efforts towards more automated warehouses the
order picking process as a whole remains a very labor-intensive operation.

A major performance indicator in manual order picking systems is the
throughput. It is either measured by counting the completed orders or
the number of completed order lines per period of time. Both figures can
be used to judge whether the order picking system is able to perform
according to a certain customer demand. Being a labor-intensive oper-
ation, manual order picking usually involves not only one single picker
but multiple pickers working simultaneously in the system. Increasing
the number of pickers seems to be an intuitive way to increase through-
put and reduce order cycle time respectively. However, it might lead to
congestion which negatively affects throughput. In this thesis we present
analytical models capable of calculating throughput in an order picking
system with congestion consideration.

1.1 Problem Description

As in many processes involving multiple participants, the pickers have
to share the system and thus do not work independently of each other.
Initially, these interactions prevent an undisturbed order picking process
which we would experience if pickers worked alone. The interdependen-
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1.1 Problem Description

cies are apparent when pickers block each other at various locations of
the order picking system. Such a blocking situation results in congestion,
which ultimately reduces the systems’ throughput.

Besides the number of workers, the level of congestion heavily depends on
the width of the aisles. It is especially distinct in order picking systems
with narrow aisles that do not allow for passing of two or more pickers.
Thus one or several pickers have to wait for another picker even if they
do not need to access the occupied storage location. Some operational
strategies, e.g. a specific zone for high-demand items, might also worsen
the situation because then more pickers are likely to stay within a small
part of the system.

As a consequence, we might wonder why not all order picking systems
are built with wide aisles, thus only suffering from minor waiting times
while preventing heavy congestion. Even though this seems logical at
first sight, we should bear in mind the costs attributed to space. Each
square meter has to be either built or rented and constantly generates
surface costs, e.g. for insurance, air-conditioning or cleaning. There is a
trade-off between the costs of congestion and the costs of surface: if we
build wide-aisle systems, we will not suffer much congestion but will have
increased surface costs. If we operate a narrow-aisle system, we will have
more congestion but save surface costs. The effects of congestion can
presumably be quite high in layouts with narrow aisles. Because of this,
throughput in such systems is of special interest when evaluating different
design alternatives within the rough planning phase. Simulation models
are a possibility to estimate throughput, however they are quite time
consuming in both model building and experimenting. It is thus desirable
to have analytical models capable of quickly calculating throughput for
numerous alternative designs of narrow-aisle systems.

The overwhelming majority of existing scientific literature on manual
order picking systems has dealt with single-picker operations focusing
on travel distance without any consideration of congestion phenomena.
Only very few approaches have incorporated the effects of congestion
into the quantitative analysis of order picking systems. Besides some
simulation studies, just a few analytical approaches exist and they are
rather restricted in terms of input parameters and have tight assumptions.

3
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For instance they do not allow to choose arbitrary picking times or assume
that a picker visits all picking locations on each tour. Consequently it is
rather difficult to use these models for the evaluation and comparison of
different design alternatives.

The purpose of this thesis is to develop an analytical model of manual
order picking systems with congestion consideration by means of contin-
uous time queueing theory. Various input parameters of manual order
picking systems will be transformed into the parameters of the queueing
model. An approximation scheme is presented to calculate throughput
of such systems. We apply the models to a large set of input parameters,
enabling us to gain some insights on the behavior of systems with con-
gestion. Thus, we can show to what extent the waiting times caused by
congestion influence the throughput performance.

1.2 Organization of the Thesis

An overview on manual order picking systems, focusing on the main de-
sign decisions and operational policies such as layout, storage assignment
and routing will be presented in chapter 2. The aspects addressed in
this chapter are of interest as they will serve as reference points for the
development of the analytical model.

Chapter 3 will give an extensive literature review on models that calcu-
late performance measures for manual order picking systems. At first,
a review of models without congestion consideration focusing on travel
distance for single-picker operations is given. Subsequently the focus will
be on existing models with congestion consideration. In particular, we
will identify the weaknesses of these approaches and argue why they of-
fer only limited application possibilities for typical questions of a rough
planning phase. The chapter will close with some requirements for the
analytical model.

The queueing model of manual order picking systems with congestion
consideration will be introduced in chapter 4. We will briefly review the
essential basics of queueing theory and explain our motivation to use
this methodology. Step by step, the resources and parameters of the
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1.2 Organization of the Thesis

manual order picking system are transferred into the parameters of the
queueing model. First, recurring elements of the order picking system,
e.g. a rack and the corresponding space in front of it, are transformed
into recurring modules of a closed queueing network. Subsequently, we
calculate routing probabilities for a traversal routing policy assuming
either a random storage as well as a class-based storage policy. The
chapter also describes how order picking times can be modeled as service
times of the queueing model. Finally, the parameter transformation is
validated.

Chapter 5 will present an approximation approach which calculates
throughput in closed queueing networks with congestion. Existing so-
lution schemes cannot be directly applied because of the assumptions
resulting from the modeling in the previous chapter. We first focus on
one specific existing algorithm - Rall’s integrated approach - and ana-
lyze its accuracy. These insights will help us to develop a new integrated
approach, which combines existing methods with empirical correction
factors specifically derived for manual order picking systems. Closed-
form expressions will relate these factors to important input parameters
of the order picking system. Ultimately, the factors include the effects of
blocking situations and thus congestion involving several pickers.

The new integrated approach will be validated in chapter 6. For this
purpose, a large set of input parameter configurations is analyzed with
the presented queueing model. The analytical results are compared with
results from simulation. A detailed analysis on how each input parame-
ter influences the accuracy is also conducted. Furthermore, the chapter
includes an application of our new approximation scheme. We will de-
termine to what extent congestion will reduce throughput and which
parameters have the biggest effects. This will give us some insights on
how narrow-aisle systems behave. We will also discuss if well-known op-
erating strategies, which were derived from single-picker models, are still
valid in narrow-aisle systems with multiple pickers.

The work closes by recapitulating the main results and findings. Further-
more, we will discuss the limitations of the presented approach and give
an outlook on possible future research.
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2 Manual Order Picking Systems

To enable a better understanding of the throughput models presented
in this thesis, we will first give an introduction on manual order picking
systems. We will describe the key characteristics of such systems (2.1)
and discuss the basic design (2.2) and main operational decisions (2.3).

2.1 Characteristics of Manual Order Picking
Systems

Order picking can be distinguished into three main classes: picker-to-part
systems, part-to-picker systems and automated item dispensing systems.
In picker-to-part systems the order picker moves (by walking or driving)
to the different locations and directly picks the items from shelves or
racks respectively. In part-to-picker systems the order picker remains at
a certain location while items are picked by an automated storage and
retrieval machine (AS/RS) and then transported to the order picker. Ex-
amples of such systems include horizontal or vertical carousel storage, as
well as automated storage and retrieval systems for large load carriers
(e.g. pallets) and miniload (end-of-aisle) systems for small load carriers
(e.g. containers or bins) (Roodbergen 2001, p. 9). In automated item
dispensing systems items of more or less uniform size can be automati-
cally dispensed on a conveyor. Note that the term automatic might be
misleading, as the replenishment of such systems is mostly performed by
humans (Frazelle 2002, p. 144).

A brief look at the literature published on order picking reveals that most
papers are actually focusing on part-to-picker systems (Le Duc 2005, p.
28, Wäscher 2004, p. 324). This is in stark contrast to observations of
real-life systems. Order picking is performed manually, i.e. in picker-to-
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part systems, in most cases (Le-Duc 2005, p. 4, Roodbergen 2001, p.
124, Hsieh and Tsai 2006, p. 626).

There are several advantages of manual systems which justify their pop-
ularity. First, the investment in hard- and software is relatively small.
Secondly, manual systems yield a high flexibility in terms of variable
throughput requirements as well as a fluctuating assortment of goods.
Additionally, the flexibility of such systems often enables shorter order
cycle times and increased on-time-deliveries (Gudehus 2005, p. 696). Dis-
advantages of manual systems include a relatively low space utilization
and big portions of walking time, which Bartholdi and Hackman (2007,
p. 151) consider as waste. Part-to-picker systems have the advantage of
virtually non-existent travel time (for workers) as well as high through-
put performance. On the other hand such systems usually have high
investment costs, relatively large order cycle times and a limited flexibil-
ity concerning highly variable throughput requirements (Gudehus 2005,
p. 699). The issue of investment costs becomes increasingly important
as many warehousing services are outscourced to third-party logistics
providers. Duration of contracts, typically less than three years, often
prevent large investments.

Certainly part-to-picker systems would be used in larger numbers if they
could be designed such that they offered higher flexibility at reasonable
costs. Current research activities on future order picking systems focus
on small-scale autonomous redundant elements (Furmans et al. 2009,
Mayer 2009). These new technologies could possibly overcome the barrier
between existing picker-to-part and part-to-picker systems.

In the following we will provide more insights on the structure and oper-
ations of picker-to-part, i.e. manual order picking systems. For a review
on part-to-picker systems see e.g. Cormier and Gunn (1992), van den
Berg (1999), Rouwenhorst et al. (2000) as well as Gu et al. (2007, 2010).
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2.2 Design of Manual Order Picking Systems

2.2.1 Structural Decisions

Structural decisions typically have long-term character, spanning over a
period of approximately five years (Rouwenhorst et al. 2000, p. 521).
In this stage a planner has to determine how the system should be inte-
grated with other warehouse processes and how the system itself should
be designed. Both decisions are strongly influenced by customer require-
ments, e.g. assortment of goods, orders, throughput and order cycle times
(Gudehus 2008, p. 669).

A typical decision in this phase focuses on dividing an order picking sys-
tem into subsystems, namely a forward and a reserve area. The reserve
area usually stores items on large load carriers like pallets, frequently
replenishing fractions of the stock to a forward area, which has limited
storage space. This will lead to additional handling effort for replen-
ishment cycles, but at the same time will reduce travel distances in the
compact forward area (van den Berg and Zijm 1999, p. 7, Gu et al.
2007, p. 6). For literature on the forward-reserve problem, the reader is
referred to van den Berg et al. (1998) as well as Frazelle and Hackman
(1994).

The sizing decision insures that systems offer sufficient space for actual
and future assortments of goods. The allocation of space to warehouse
processes undoubtedly is one of the first decisions in warehouse design. It
is therefore crucial to allocate the right amount of space as later changes
might be impossible or very expensive. Ghiani et al. (2004, p. 166)
present methods to derive the number of required storage locations con-
sidering peak inventory levels. Another approach by Arnold and Furmans
(2009, p. 176) estimates the number of storage locations such that the
system can accommodate incoming stock at a given security level. For
further reading on sizing we refer to Roodbergen (2001, p. 12).

The choice which storage or rack system to use is typically influenced
by the patterns of customer orders as well as product characteristics like
dimensions and weight. If orders can be served by full pallets, which
did not undergo separation, block stacking, where pallets are stacked
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on top and/or side by side of each other might be a feasible solution.
Berry (1968) presents some general thoughts about block stacking lay-
outs, Stadler (1996) discusses deep lane storage systems and Goetschalckx
and Ratliff (1991) focus on optimal lane depths. The latter as well as
Ashayeri and Gelders (1985) also present good literature reviews.

The models presented in this thesis are based on systems where items are
stored on shelves or racks which are arranged in aisles. We can distinguish
between low-level and high-level systems (Le-Duc 2005, p. 5).

In low-level systems, items are stored and picked from bin shelving, mod-
ular storage drawers or gravity flow racks. The order picker remains on
the floor as systems have a height of less than 1.8m (Roodbergen 2001,
p. 9). Bin shelving is comparatively cheap, easily reconfigurable and
requires almost no maintenance (Frazelle 2002, p. 128). It allows for
the storage of a wide spectrum of goods, e.g. non-palletized items, small
items, paperboard containers, bins and even bulk items (ten Hompel et
al. 2007, p. 64). Space utilization is the major disadvantage of bin shelv-
ing as space requirements rapidly grow with the assortment of goods and
the in-shelf space is rarely used to its full extent. Therefore high sur-
face costs as well as extended travel times and thus labor costs occur
(Frazelle 2002, p. 128). In modular storage drawers space utilization is
improved as no additional space is needed for reaching into the draw-
ers. However, Frazelle (2002, p. 130) notes they are not as flexible as
bin shelving as they are limited to small items. Gravity flow racks are
typically used for broken case picking of items with high demand, main-
taining a first-in-first-out principle by replenishing from the back of the
rack. They provide reasonable investment costs, maintenance and space
utilization (ten Hompel et al. 2007, p. 81). In low-level systems, the
typical material handling equipment would be a picking cart on which
an order picker accumulates the different items of his tour. Alternatively
a system can be equipped with automatic conveyor technology to enable
tote picking (Frazelle 2002, p. 134). The space utilization in low-level
systems can often be increased by implementing one or more mezzanines
(Frazelle 2002, p. 131). Time consuming movements between levels can
be reduced by placing fast movers on the floor level and slow movers on
the mezzanines.
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Most high-level systems, e.g. single-deep or double-deep pallet racks,
high-level bin shelving, pallet flow racks as well as mobile pallet racks
are similar to low-level systems except for their height, which according
to Thomas (2008, p. 649) might be as high as 40m. They also differ
in the size of the stored loading units, which in most cases is a pallet.
Picking from pallets is typically more time consuming and requires differ-
ent equipment, e.g. counterbalance lift trucks, stackers or order picking
trucks. Apart from that, advantages like flexibility or disadvantages like
low space utilization can be transferred from low- to high-level systems.
Other high-level systems which combine the advantages of rack storage
and block stacking, e.g. drive-in and drive-thru racks, will not be further
discussed in this thesis. Instead we suggest the following literature: van
den Berg (1996, p. 18), Roodbergen (2001, p.8), Frazelle (2002, p. 90ff.),
Gudehus (2005, p. 839), ten Hompel et al. (2007, p. 70), Thomas (2008,
p. 636) and Schulte (2009, p. 235).

In the future existing concepts of block stacking and aisle-based storage
might be merged to produce new storage and picking systems. Gue (2006)
describes very high density storage systems and presents an algorithm
to fill storage space subject to limited number of interfering items. In
(2007) Gue and Kim analyze interactions between density and retrieval
times in puzzle-based-storage systems. Current research is dedicated to
the concept of virtual aisles, where aisles form and collapse as needed
(Gue 2010).

2.2.2 Layout Decisions

The period of time affected by layout decisions can range from a week
or month up to a few years, depending on the flexibility of the system’s
hardware. Layouts in storage and picking shall be designed to simulta-
neously maximize space utilization and the level of service (Hwang et al.
2004, p. 3874).

According to de Koster et al. (2007, p. 487) the following issues are part
of the internal layout design or aisle configuration problem. In manual
order picking systems the floor space is typically utilized by the following
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elements: storage racks, aisles, cross-aisles, depots and material handling
technology (if needed).

Several storage locations on top of each other will be referred to as a rack
column. A storage rack then consists of several adjacent rack columns,
i.e. pick faces. Two opposing storage racks make up an aisle. In manual
order picking systems we can distinguish picking aisles, replenishment
aisles as well as cross aisles (Gudehus 2005, p. 745). Cross aisles connect
adjacent aisles. According to Roodbergen and Vis (2006, p. 801) the
total aisle length describes the total length along the pick face and can
be derived from the number of necessary storage locations.

Building upon the total aisle length, the aisle configuration problem de-
termines how many aisles should be used, how long and wide they should
be and how they should be orientated. For a total aisle length S, an aisle
configuration with ν aisles each of length l is feasible if S mod (ν · l) = 0.
This equation theoretically allows numerous solutions but in practice only
few aisle configurations are realizable as the size and shape of the order
picking system often is pre-determined by the size and shape of the total
warehouse as well as building restrictions.

The overwhelming majority of published work on order picking assumes
systems which comply with the following two design rules. First, aisles
are straight and parallel. Second, cross aisles are also straight and meet
picking aisles at right angles (Gue and Meller 2009, p. 172). Only few
papers have proposed new orientation possibilities, namely the Flying-
V, fishbone design and chevron aisles of Gue and Meller (2009) as well
as the ∧-Shape as discussed in Ivanovic (2007). Some thoughts on non-
conventional aisle design were first analyzed by Berry (1968) and espe-
cially White (1972).

Some literature exists on guidelines for conventional layout design. Kun-
der and Gudehus (1975) provide formulas to derive the optimal number of
aisles for different routing strategies. Hall (1993, p. 84) found that good
warehouse shapes become elongated with increasing number of picks.
Caron et al. (2000b, p. 116) (2000a, p. 103) present formulas that relate
the optimal number of aisles to parameters like total aisle length, pick
list size and demand skewness. Roodbergen (2001, p. 81) formulates a
non-linear programming model to determine optimal layouts for given
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situations. Hwang et al. (2004, p. 3883) show that a good aisle con-
figuration is one in which system width W is approximately one half of
system length L. Roodbergen and Vis (2006, p. 809) investigate the in-
terdependencies between different layouts and routing policies and found
that optimal layouts are quite sensitive to the routing policy which was
used for the optimization.

Typical one block systems with two cross aisles can be extended by ad-
ditional cross aisles to form multiple block layouts. There is a trade-off
between space and travel time needed for the additional cross aisles and
travel time savings due to shortcutting through cross aisles. Even though
quite frequently used in real-life, only few authors have discussed this
subject. Vaughan and Petersen (1999, p. 884) present a heuristic to esti-
mate travel distances in systems with multiple cross aisles, showing that
for a wide range of scenarios multiple cross aisles on average yield 20-30%
savings on travel distance. Roodbergen and de Koster (2001b) (2001a)
analyze systems with three cross aisles and conclude that in most cases
the additional aisle results in less traveled distance. The optimization
model of Roodbergen and Vis (2006) is extended by Roodbergen et al.
(2008) to allow the consideration of multiple blocks.

The final key element of manual order picking systems is the depot. A
depot is a work station where order pickers start and end their tours.
We will use depot as a synonym for other terms like dock, central loca-
tion, loading dock, pick-up/drop-off location, pickup and deposit point or
input-output-point. At the depot order pickers return finished orders and
receive new orders and picking containers. In system design the number
and location of depots has to be determined. Some literature exists on
the latter. Bassan et al. (1980, p. 319) and Roodbergen and Vis (2006,
p. 804) conclude that for random storage (see chapter 2.3) the depot
should be located at the very center of the front cross-aisle. However,
performance figures like travel distance appear not to be very sensitive
to the depot location as average distance savings for middle depots are
less than 1%. These savings can be bigger for very small pick lists or
other storage location assignment strategies but tend to be less than 4%
(Petersen (1997, p. 1108), Petersen and Schmenner (1999, p. 498) and
Petersen and Aase (2004, p. 18)).
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In manual order picking systems using pick-to-belt technologies there
may be no depot at all as empty containers can be picked up at many
points in the system and dropped off decentralized onto a conveyor belt
(de Koster and van der Poort 1998, p. 477).

2.3 Storage and Order Picking Operations

Operational policies determine how the system should be run. Some
policies are typically applied on a yearly or monthly basis while other
policies can be adopted on a day-to-day basis. We will give some insights
on the following policies: storage location assignment policies, picker
routing policies, order batching policies and zoning policies.

2.3.1 Storage Location Assignment Policies

Random Storage

With a random storage policy, the storage location for incoming loading
units is selected randomly from all available empty locations (de Koster
et al. 2007, p. 488). Thus all storage locations have an equal probability
of being visited in a picking tour. This also holds true if an incoming
loading unit is assigned to the closest open location and retrievals are
performed on a first-in-first-out (FIFO) basis (Tompkins 2003, p. 420).
Random storage, in comparison to other policies, efficiently utilize spaces
(Arnold and Furmans 2009, p. 189). Being fairly easy and inexpensive to
implement random storage is used in many order picking systems (Rood-
bergen and Vis 2006, p. 800).

Dedicated Storage

In this policy each item has one or more fixed storage locations, which are
exclusively reserved for this specific item. Arnold and Furmans (2009, p.
185) show how for each item the locations have to be chosen as to offer
sufficient space to store a certain level of inventory for a given confidence
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level, resulting in the lowest space utilization of all storage policies. How-
ever, due to fix locations order pickers can better familiarize with the
items, possibly resulting in shorter searching times and better quality
(de Koster et al. 2007, p. 489). In many warehouses dedicated storage is
based on item characteristics (e.g. weight, hazardousness, temperature
requirements) (Tompkins 2003, p. 431).

Full-Turnover-Based Storage

This policy is a special case of the dedicated storage and also known as
volume- or frequency-based storage policy. Items are ranked according
to a specific criterion and are then assigned to fixed locations, placing
best ranked items closest to the depot and so on. A ranking criterion
extensively discussed in the literature is the cube-per-order index, or
COI. It considers two basic thoughts: the items stored closest to the
depot should be those taking up the least space and those being the most
popular ones. The COI is defined as the ratio of an item’s required storage
space to its order frequency (Kallina and Lynn 1976, p. 42). Items with
the lowest COI are placed closest to the depot. Under some assumptions,
e.g. single- or dual-command cycles, the COI has been proven to be the
cost minimizing storage policy (see the papers of Malmborg et al. (1988,
p. 4), (1990, p. 95), (1995, p. 467)). In contrast to COI another ranking
criterion might solely consider the popularity (volume or frequency) of an
item (Le-Duc 2005, p. 13). In Duration-of-Stay (DOS) policy those items
with the smallest ratio of lot size and demand, are assigned to locations
close to the depot (Goetschalckx and Ratliff 1990, p. 1120, Petersen 1999,
p. 1061). As demands and the assortment of goods constantly change,
the ranking might have to be renewed quite often and management has to
decide whether travel time savings justify constant reshuffling of storage
locations (Roodbergen 2001, p. 15).

Class-Based Storage

In this policy items are grouped into classes, which are then ranked ac-
cording to the pick frequency of the whole class. A typical assortment
of goods often is in line with Pareto’s principle which, applied to or-
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der picking, states that approximately 20% of items stored account for
approximately 80% of turnover or picking activities. The class of fast-
movers is located closely to the depot. Within classes storage is random
(de Koster et al. 2007, p. 489). Class-based storage performs equally
good than full-turnover-based storage policies in terms of travel distance
- at the same time being less information intensive (Le-Duc 2005, p. 16,
Petersen and Aase 2004).

Depending on the routing policy, Petersen and Schmenner (1999, p. 488)
describe four strategies to distribute the classes on the aisles: within-aisle,
across-aisle, diagonal and perimeter storage. The within-aisle strategy
distributes the items of the most frequent class to aisles closest to the
depot. The across-aisle strategy will distribute the items of one class
evenly across all aisles, locating items of the most frequent class closest
to the cross aisle. For diagonal storage the items will be stored in a
diagonal pattern with items of the most frequent class located closest to
the depot. Perimeter storage is a special case of the across-aisle strategy
when using two cross aisles. The items of the less frequent classes will
be located in the middle of the aisles. Within-aisle storage tends to
have the lowest route length and works well for all pick list sizes (Jarvis
and McDowell (1991, p. 97), Petersen and Schmenner (1999, p. 494),
Petersen (1999, p. 1064)

Family Grouping and Contact-Based Storage

Potential relations between products, like a high probability of having
two items on the same order might lead to family grouping, in which
such items are stored close to each other. Clustering techniques might
be applied to identify item similarity (Rosenwein (1994), Kiu (1999)).
Contact-based storage considers the direct travels between item locations
as the clustering criterion. Some literature on this subject can be found
in (Wäscher 2004, p. 334).
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2.3.2 Picker Routing Policies

For a given set of items that have to be picked, routing policies describe
a sequence on how the picker has to visit the items’ locations in order
to reduce travel time (Roodbergen 2001, p. 19). Using efficient routes
might significantly reduce costs as travel time makes up approximately
50% of total order picking time tOP T . Two main types of routing can be
distinguished: optimal and heuristic.

Optimal Routing

The problem of finding a shortest route for a given set of locations can
actually be transformed into a special case of the classical Traveling Sales-
man Problem (TSP). Ratliff and Rosenthal (1983) transform single-block
warehouses into graphs and subgraphs and present an algorithm to find
shortest routes. Extensions of this basic algorithm include single-block
warehouses with decentralised depositing by de Koster and van der Poort
(1998), two-block warehouses with a central depot by Roodbergen (2001,
p. 66, 2001b) and multiple-block warehouses with a central depot by
Roodbergen and de Koster (2001a). Goetschalckx and Ratliff (1988)
present an algorithm for wide-aisle warehouses were order pickers need
to cross from one side of the aisle to another. The advantages of creating
optimal routes are often outweighed be the fact that these routes may
appear illogical to order pickers, making them deviate from their given
routes trying to find own best routes. Furthermore the algorithms are
only applicable to specific sets of warehouses, e.g. rectangular and re-
quire a possibly complex implementation in the warehouse management
system (Le-Duc 2005, p. 21).

Heuristic Routing

Unlike optimal routings, heuristics will (mostly) lead to non-optimal
routes but they offer feasible solutions and require virtually no time to be
generated (Roodbergen 2001, p. 31). By making use of a specific set of
rules, they result in routes which are easy to understand (Petersen 1997,
p. 1102).

17



2 Manual Order Picking Systems

In the well-known traversal (or transversal or s-shape) routing policy an
aisle containing at least one pick has to be traversed entirely, i.e. the
order picker enters the aisle at one end and exists at the other end. We
can differentiate between traversal policy with aisle skipping and without
aisle skipping. In the latter each aisle is traversed, regardless of the
picks. For high pick densities, traversal policy will likely be without aisle
skipping (Gudehus 2005, p. 758). Note that the picker might turn around
within the aisle after the last pick, thus not traversing this particular aisle
entirely.

Under a return routing policy the picker enters and exits the aisle from
the same end. This policy can be characterized by single aisle visits or
multiple aisle visits. In single aisle visits the picker travels to the pick
location farthest from the cross aisle and returns picking all necessary
items along the way. In multiple aisle visits, the picker exists the aisle
after each pick (Gudehus 2005, p. 736).

The midpoint routing policy is a special case of the return policy. The
warehouse is split into two halves. Locations in the upper half are visited
using a return policy from the upper cross aisle and locations in the lower
half are accessed using a return strategy from the lower cross aisle respec-
tively. In order to switch cross aisles the first and last aisles containing
picks are traversed entirely (Roodbergen 2001, p. 34).

The largest gap routing policy is an extension of the midpoint policy.
For all aisles containing picks, gaps are identified. A gap can be either
the distance between the lower cross aisle and the closest pick, between
the upper cross aisle and the closest pick and between any two adjacent
picks within an aisle. The picker enters an aisle only as far as the largest
gap and turns around. The largest gap thus is the part of the aisle not
traversed (Petersen (1997, p. 1102) and Roodbergen (2001, p. 34)).

Petersen, see e.g. (1997, p. 1102), introduced the composite routing
policy, which combines the traversal and return policies. This strategy
considers the distance between two pick locations in adjacent aisles that
have the biggest distance to the lower cross aisle. In order to minimize
this distance either a traversal or a return policy is used.

The combined routing policy produces similar routes than the composite
heuristic. The decision on which strategy (traversal or return) to use in
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the next aisle is made by using dynamic programming. This enables to
take the next aisle into consideration as well (Roodbergen 2001, p. 44).

Other routing heuristics exist in multiple-block warehouses. Vaughan
and Petersen (1999, p. 884) present the aisle-by-aisle heuristic which
uses dynamic programming to determine the best cross aisle to use for
switching aisles. In (2001, p. 38), Roodbergen describes extended traver-
sal and largest-gap strategies and presents an extension to the combined
heuristic. Roodbergen and de Koster (2001a, p. 1877) further improve
the combined heuristic, resulting in the combined+ routing policy. In
this heuristic the aisles in the block closest to the depot are visited from
right to left and the farthest block is not necessarily accessed using the
leftmost aisle containing picks.

Studies have proven that for some scenarios optimal routes offer large
savings compared to any heuristic, see e.g. (de Koster and van der Poort
1998, p. 477). However, it has been shown that for a broad basis of
scenarios, optimal routes offer relatively small savings compared to dif-
ferent routing heuristics, typically yielding a 5% reduction of travel time
(Petersen 1997, p. 1109, 1999, p. 493). Petersen and Aase (2004, p. 19)
state that methods of batching or storage policies mostly lead to more
significant improvements compared to savings based on optimal routings.

There are quite many studies comparing the performance of different
routing strategies. We will not present further details as the respective
results differ depending on the assumptions and the considered policies as
well as their interaction with other operational parameters. Instead the
reader is referred to the following papers: Kunder and Gudehus 1975, p.
B76, Caron, Marchet and Perego 1998, p. 729, Hall 1993, p. 86, Petersen
1997, p. 1107, de Koster and van der Poort 1998, p. 477, Petersen and
Schmenner 1999, p. 492, Petersen and Aase 2004, p. 14, Dukic and Oluic
2007, p. 458, Roodbergen 2001, p. 52, Roodbergen and de Koster 2001a,
p. 1879, Goetschalckx and Ratliff 1988, Wäscher 2004, p. 342.

2.3.3 Order Batching Policies

When all items on an order picker’s pick list originate from a single cus-
tomer order, the single order picking (or pick-by-order or strict order
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picking) strategy is in use. Order batching policies consider several cus-
tomer orders and try to group them into one pick list. On one tour
the picker then simultaneously retrieves items for several customer or-
ders (Le-Duc 2005, p. 17). The items may be sorted directly on the
picking vehicle (sort-while-pick) using support tools like trays or levels
(Tompkins 2003, p. 439). In contrast, pick-and-sort systems (or two-
stage-order picking systems) first pick items of several customer orders
batchwise. Afterwards the items are assigned to the customer orders in
stage two using some kind of sorting system (Gudehus 2005, p. 723).

An essential benefit of batching is reduced travel time as the distance of
a tour combining several orders is smaller than the total distance of all
single tours (Gibson and Sharp 1992, p. 58). Especially for orders with
few order lines batching can realize economies of scale (Le-Duc 2005, p. 17
and Gudehus 2005, p. 733). On the other hand batching always includes
some kind of sorting process and thus additional handling (Frazelle 2002,
p. 159). Won and Olafsson (2005, p. 1430) observe that large batches
might lead to increased order lead times as picking time increases.

Batch building rules determine how batches should be built up. Ex-
emplary algorithms include the proximity of pick locations of different
orders (Choe and Sharp (1991), Le-Duc (2005, p. 18)). As the order
batching problem is NP-hard, research has focused on efficient heuristics
(de Koster et al. 2007, p. 492). These include rules like random or largest
number of items, minimum number of additional aisles or distance be-
tween orders (de Koster et al. (1999, p. 1483), Gibson and Sharp (1992,
p. 60), Ruben and Jacobs (1999, p. 581)). The time window batch
building rule (timeout rule) groups orders that arrive during the same
time window (Choe and Sharp 1991). Schleyer (2007, p. 31) proposes
two other rules. According to the capacity rule a batch is processed if
and only if a specific number of orders has been collected. The minimum
batch size rule is a special case of the timeout rule. The batch will be
processed if and only if a minimum number of orders has arrived at the
end of the time window.

There is extensive literature on batching in order picking systems. Gibson
and Sharp (1992, p. 67) found that a distance-based seed algorithm
yielded the biggest reductions in tour lengths. Rosenwein (1996, p. 660)
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uses alternate distance metrics and proposes an improved order batching
heuristic. In de Koster et al. (1999, p. 1500) the authors compare several
batch building rules and state that the choice of batching heuristic should
be made after deciding on the routing policy. Ruben and Jacobs (1999, p.
587) show that batches built on orders with similar cross aisle distances
yield low picking times and good picking cart utilization. Petersen and
Aase (2004, p. 19) conducted experiments on the interdependencies of
batching, storage and routing policies in a sort-while-pick system. They
conclude that batching has the biggest potential to reduce total picking
time, especially when customer orders tend to be small. Tang and Chew
(1997, p. 818) and Le-Duc and de Koster (2007, p. 377) use queueing
models to estimate picking times and derive an optimum batch size. Good
literature reviews on batching policies are given in Rouwenhorst et al.
2000, p. 526, Roodbergen 2001, p. 25, Le-Duc 2005, p. 17, Gu et al.
2007, p. 12 and de Koster et al. 2007, p. 492.

2.3.4 Zoning Policies

A zoning policy divides an order picking system into a certain number
of separated areas and pickers are subsequently assigned to these zones
(Frazelle 2002, p. 159). In progressive zoning a customer order sequen-
tially runs through the different zones. In parallel zoning (or synchronized
zoning) a customer order may be processed simultaneously in multiple
zones (de Koster et al. (2007, p. 491), Tompkins (2003, p. 440)). The
consolidation process takes place either while the order is running through
the system (progressive zoning) or afterwards in a subsequent area (par-
allel zoning). In wave picking, parallel zoning is combined with batching,
resulting in two-stage-order picking systems as described in chapter 2.3.3
(Tompkins 2003, p. 439). Note that the operational character of zoning
changes radically if automatic conveying and sorting technology has to
be used, implying high investment costs and the need for integration into
warehouse management systems.

As the number of order pickers within a zone is limited, few if any conges-
tion problems will arise (Le-Duc 2005, p. 19). Further advantages include
the reduced travel times and bigger familiarization with items in a zone if
the storage strategy is not random over several zones. In parallel zoning,
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order lead times can be reduced assuming an efficient consolidation pro-
cess. Disadvantages may include longer order lead times in synchronized
zoning if imbalanced workloads across zones evolve (Gu et al. 2007, p.
6). The additional handling effort for consolidation should be consid-
ered carefully in a trade-off between increased picker productivity and
increased investment costs (Frazelle 2002, p. 164).

The literature on zoning is rather limited. De Koster (1994) uses queue-
ing models to estimate throughput in pick-to-belt order picking systems.
Jane (2000) proposes heuristic methods to assign items to storage loca-
tions to achieve balanced workload across zones. Jane and Laih (2005)
extend this approach using clustering techniques to assign items. In a
simulation study, Petersen (2002) examined different zone shapes. Le-
Duc and de Koster (2005a) present a model to determine the optimal
number of zones in parallel zoning. Parikh and Meller (2008) develop
a cost model to compare batch to zone order picking and found that in
terms of overall costs batch picking is cheaper for low system throughput
while zone picking seems to be the better choice if throughput is large.

Using Bucket Brigades, an order picking system with varying zone sizes
and intersections will emerge. Inspired by production flow lines, bucket
brigade picking makes pickers walk and pick the current order until they
meet the first picker in the downstream flow. The order is handed over
and the picker walks the opposite direction and takes over the order from
the first picker in the upstream flow. The system is self-balancing if
pickers are arranged such that the slowest picker starts new orders and
the fastest picker finishes them. The concept and its advantages like
flexibility and simplicity are described e.g. in Bartholdi and Eisenstein
(1996), Bartholdi et al. (2001) or Bartholdi and Hackman (2007, p.
137ff). However, newer studies claim that more discussion is needed to
ascertain the gain of bucket brigades in order picking systems (Koo 2009,
p. 773).

2.3.5 Workforce Policy

The workforce policy considers the choice on the number of pickers that
will work in the system. It also defines the necessary level of qualification.
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2.4 Chapter Conclusion

This important decision is a key driver for achieving throughput goals on
the one hand but will ultimately drive operating costs on the other hand.
The number of pickers is of special interest in this thesis as it is also the
main driver of congestion.

2.4 Chapter Conclusion

We have reviewed the basics of manual order picking systems, namely
structural decisions, layout decisions and operational decisions. The de-
cisions within one level partly have a strong interdependency, e.g. on
the operational level one storage policy might work very well with a cer-
tain routing policy but might not work well with another routing policy.
Furthermore, there are interdependencies between decisions on different
levels, e.g. the choice of layout has a big influence on the performance of
different storage and routing strategies.

When planning manual order picking systems, it is strongly advisable to
consider these interdependencies by analyzing the effects simultaneously.
Unfortunately very few literature has dealt with this issue, as authors
often seek to analyze individual problems in one level, mostly concerning
only one particular aspect of that level.
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3 Throughput Analysis of
Manual Order Picking
Systems: a Literature Review

In this chapter we will give a review of models estimating throughput
of manual order picking systems. We will first focus on models that
do not incorporate congestion in chapter 3.1. A summary of throughput
models with congestion consideration will follow in chapter 3.2. A critical
evaluation of the existing approaches will result in some open research
questions which will help us define the scope of our model.

3.1 Models without Congestion Consideration

We refer to throughput estimation models in this subchapter as single-
picker-models because the approaches treat the system as if only one
picker was working, thus not considering any interdependencies between
multiple pickers. The models basically estimate the total distance of a
picking tour. The total order picking time tOP T is derived by considering
the picker’s velocity and times for setup, search and the actual picking of
items. Total throughput for multiple-picker operations is then obtained
by applying Little’s Law (1961), which states that

λ =
K

tOP T

where λ represents the order (or order lines or item) throughput and K
is the number of pickers.

For the sake of simplicity, the layouts used in this chapter are summarized
in figure 3.1 and will be solely identified by the respective letters.
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Figure 3.1: Layouts used in travel-time models
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3.1 Models without Congestion Consideration

3.1.1 Throughput Analysis with Optimal Routing

Some papers have extended the fundamental TSP-approach of Ratliff and
Rosenthal (1983), namely de Koster and van der Poort (1998) for decen-
tral depositing, Roodbergen (2001, 2001b) for two-block warehouses as
well as Roodbergen and de Koster (2001a) for multiple-block warehouses.
Goetschalckx and Ratliff (1988) concentrate on minimal distance paths
in wide aisles. These methods all transform order picking systems of lay-
out type A into graphs. The edges are weighted with the actual distance
or time between two adjacent locations in the warehouse. Hall (1993)
gives a lower bound for the within-aisle travel distance of optimal routes.
De Koster et al. (1998) observe that the number of times an aisle has
to be entered is minimal for the traversal routing policy. Consequently
the time needed to leave and enter aisles for an optimal route is at least
as large as for a traversal policy. The authors extend the lower bound
of Hall (1993) and give a conservative estimate on total travel time for
optimal routes. Vaughan and Petersen (1999) develop an algorithm to
find shortest paths in a warehouse with multiple cross aisles (layout type
B) by considering distances between cross aisles from which a picking
aisle is entered and exited.

3.1.2 Throughput Analysis with Heuristic Routing

Early Work on Unit-Load Warehouses

For the case of unit-load order picking the early works of Francis (1967)
and Berry (1968) assume a single command cycle and estimate travel
distance in rectangular warehouses of layout type C. Bassan et al. (1980)
extends these works to layout types A and D. They also consider different
depot locations and multiple zones with one depot each.

Basic Travel-Time Model of Kunder and Gudehus

In the following we concentrate on manual order picking systems with
multiple picks per picking tour. The first paper on this subject was pub-
lished by Kunder and Gudehus (1975). They consider traversal routing
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policy with and without aisle skipping as well as a return policy with
single or multiple aisle visits. Storage location assignment is strictly
random and layout type A is used. For a given number of order lines
the authors use combinatorial analysis to derive the expected number of
aisles to be visited on one tour. This number is then multiplied with the
respective within-aisle and partial across-aisle distances to calculate the
expected travel distance. Many ideas and procedures of the 1975 paper
were adopted, improved and extended by subsequent research.

Travel-Time Models Extending the Work of Kunder and Gudehus

Hall (1993) provided the first extension, also using layout type A and ran-
dom storage. After inserting a warehouse shape factor into the formulas
for traversal strategy, Hall transfers the logic of combinatorial analysis to
midpoint and largest gap routing policies. Additionally he shortly dis-
cusses travel distances in aisles with non-negligible width where traveling
the aisle twice might yield advantages compared to constantly alternating
between two opposing storage racks.

The work of Schulte (1996) also builds on the approach of Kunder and
Gudehus and extends it by several points. First, it allows two order lines
to be on the same rack column, i.e. there might be no travel between two
particular picks. Several layout types (A, C, D, F) as well as different
depot locations are considered. Schulte assumes random storage and
calculates expected within-aisle and across-aisle travel time for traversal
and return routing policies. In addition to these extensions, Schulte also
corrects some simplifying assumptions of existing research to get more
general results. In particular he shows that the formula to calculate the
number of aisles to be visited, which was introduced by Kunder and
Gudehus (1975, p. B59), is correct for cases where the number of picks
is bigger than the number of aisles. It is not valid for cases where the
number of picks is smaller than the number of aisles (see Schulte (1996, p.
71ff) for an example in which the error is as high as 25%). Subsequently
Schulte derives a new general formula to calculate the expected number
of aisles to be visited. Presumably due to the language barrier, Schulte’s
work is not well-known in the worldwide research community. For some
scenarios this might be regrettable as many papers build on the approach
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by Kunder and Gudehus. On the other hand though, the extent of the
error seems to be limited as some models using the approximation while
improving other elements of the calculation still report accurate results
(see e.g. Roodbergen and Vis (2006, p. 806)).

For traversal routing policy the works of Kunder and Gudehus (1975) and
Hall (1993) were further improved by de Koster et al. (1998, p. 393),
Roodbergen (2001, p. 82) and Roodbergen and Vis (2006). First, the
authors improve the accuracy of within-aisle travel. Kunder, Gudehus
and Hall assumed that the last aisle is always traversed completely and
both papers absorbed the additional travel by applying a correction fac-
tor. In contrast, de Koster et al. (1998) and Roodbergen (2001) both
assume that the picker turns immediately after the last pick and adjust
the correction factor accordingly. In addition Roodbergen (2001, p. 85)
presents an entirely new procedure to estimate travel in cross aisles for
any depot location. In contrast to Kunder, Gudehus and Hall, who as-
sumed that the depot is located between the leftmost and rightmost aisles
with picks, the author allows for cases where all picks are on only one
side of the depot. For the case of decentralized depositing de Koster et
al. (1998, p. 390) modify the original formulas such that the expected
travel time from the exit of the last aisle of the current order to the en-
trance of the first aisle of the next order is calculated. An extension of
Hall’s (1993) travel time estimation for largest gap routing policies was
presented by Roodbergen and Vis (2006). They incorporate the fact that
the first and last aisles always have to be traversed entirely.

Travel-Time Models for Non-Random Storage Policies

Jarvis and McDowell (1991) developed a method to calculate travel times
for traversal routing policy, layout type A and class-based storage. Like
Kunder and Gudehus they also use the probability to visit an aisle and
distinguish between expected within-aisle and across-aisle travel. The
resulting expressions are then used to find product allocations that min-
imize average order picking time.

The consideration of full-turnover-based storage policies using ABC
curves of any skewness was introduced by Caron et al. (1998). They
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use an analytical function to describe the turnover activity in depen-
dance of the ABC curve shape factor. In their example, the ABC curve
is COI-based but ten Hompel and Hömburg (2008, p. 395) note that
the function can represent any distribution function which describes the
item turnover frequencies, i.e. even random storage policies. Caron et
al. embed the function into the formulas to calculate the expected travel
distance for a layout of type D. In line with previous work they also dis-
tinguish between within-aisle and across-aisle travel. For a return routing
policy and across-aisle storage the function is used to determine the far-
thest pick location within the aisle. For traversal routing and within-aisle
storage the function influences the calculation of the probability that a
pick is in an aisle close to the depot. It is also used to estimate across-
aisle travel as aisles farthest from the depot have a smaller probability of
being visited.

The model of Caron et al. (1998) was transferred to layouts of type
A by Hwang et al. (2004). The authors first derive formulas for the
estimation of travel time for a return routing policy and across-aisle COI-
based storage policy. Travel time estimations are also given for traversal
routing policy applying within-aisle COI-based storage. For the first time
the midpoint routing policy, rather rarely considered in previous papers,
is analyzed under non-random storage policies. Assuming COI-based
perimeter storage the authors build upon the results for the return routing
policy and estimate total travel time. For a return strategy Gudehus
(2005, p. 756) extends the formulas of the original work by Kunder and
Gudehus (1975) to across-aisle full-turnover-based storage policies.

Travel time models for traversal and return policies for layouts of type D
are presented in Le-Duc (2005, p. 31) as well as Le-Duc and de Koster
(2005b, 2005c). In contrast to previous papers (e.g. Caron et al. (1998) or
Jarvis and McDowell (1991)) this new approach considers storage policies
in which different product classes can be stored within one single aisle.
Additionally the approach is easily transferable from layouts of type D to
layouts of type F. First, the expected travel distance within a single aisle
is derived by estimating the farthest pick inside the aisle. This depends
on the picking probabilities of the different classes and the partial aisle
length reserved for the classes. Note that the number of classes, their
related probabilities and their position within the aisle is arbitrary, i.e.
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any (discrete) distribution of picking frequencies on rack columns can
be approximated. Due to the limited number of rack columns per aisle,
the discrete approach of Le-Duc seems well suitable. The single-aisle
result is then used and expanded to layouts with multiple aisles. For the
traversal routing policy the correction factor for excess travel in the last
aisle (see de Koster et al. (1998) and Roodbergen (2001)) is adapted to
the assumption of having aisles with multiple classes.

A recent work on travel time models has been published by Sadowsky
(2007). He examines return policy with single or multiple aisle visits,
midpoint policy and traversal policy with or without aisle skipping in
layouts of type A and C. He assumes that picks are equally distributed
across the aisles. For the return policies the expected within-aisle travel is
dependant on two factors: the probability of having a certain number of
picks in the aisle and the location of the pick farthest from the cross-aisle.
Urn models are applied to derive the first factor, resulting in a hypergeo-
metrical distribution (note that this distribution requires the number of
picks to be smaller than the number of items stored per aisle). For the
second factor Sadowsky gives explicit results for exponential and uniform
distributions but the formulas are able to model any continuous distri-
bution function. The results for return policies are extended to midpoint
policies. For the traversal policies, Sadowsky also uses the hypergeo-
metrical distribution. He further compares his models with simulation
and previous works, showing mostly accurate results. Unfortunately the
publications of Le-Duc and de-Koster (2005) (2005b) (2005c) were not
considered even though they had very similar assumptions. It would be
interesting to know if there is an advantage in considering within-aisle
pick frequencies by using continuous distribution functions.

Integrated Approaches

An approach focusing on traversal and return policies, random storage
and layout type A was published by Rana (1990). He describes an al-
gorithm to divide a given picking order into several trips. For each trip
either traversal or return policy is used. Formulas which relate different
warehouse parameters to expected travel times are given.
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Galka et al. (2008, p. 253) apply the model of Sadowsky (2007) on several
successive order picking zones to estimate total order picking throughput
times.

Wisser (2009, p. 80) presents integrated models to calculate total costs of
order picking systems. The approach analyzes and combines several ex-
isting publications on travel time (namely Kunder and Gudehus (1975),
Hall (1993), Hwang et al. (2004), Jarvis and McDowell (1991), Roodber-
gen and Vis (2006) as well as Schulte (1996)) to derive layout parameters.
Both results are then used to estimate total costs of the order picking sys-
tem.

3.1.3 Approaches Using Elementary Queueing Systems

We also briefly discuss some models that apply queueing theory to order
picking systems. In contrast to the previous approaches these papers
consider stochastic elements like the second moment of travel time. These
models are still classified as single-picker-models because they do not
consider any interdependencies between multiple pickers. The influence
of travel time variations thus concerns only the waiting time of an order
before the picking process is started.

Bhaskaran and Malmborg (1989) present an approach to analyze the ser-
vice process in a warehouse with order batching under different vehicle
dispatching rules. The service time includes all necessary steps to com-
plete a batch of orders and is estimated by a lower and upper bound, both
depending on the space of the order picking area. Pandit and Palekar
(1991) model warehouses of layouts B, D and E with automated guided
vehicles and single command order picking. The orders arrive according
to a Poisson process and the system is modeled as a system with par-
allel servers. The authors estimate the first and second moments of the
travel time depending on the layouts. A sufficient service level which
might depend on the number of vehicles can be calculated. The influence
of batch size and class-based storage assignment policy was studied by
Chew and Tang (1997, 1999). They calculate the average waiting time
for an order or batches of orders. An estimation is given for the first
and second moments of travel time for a single-block layout of type A
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with multiple picks per tour. The batch size to minimize turnover time
is calculated for different skewnesses of item frequency. For a 2-block
warehouse of layout D, random storage and order batching, Le-Duc and
de Koster (2007) propose a queueing model to derive optimal batch sizes.
They build on the works of Chew and Tang to determine first and second
moments of travel time. The formulas are extended by two adjustment
terms, considering some additional travel that stems from the different
layouts. The authors conclude that the average waiting time of an order
is a convex function of the batch size, i.e. a unique optimum batch size
always exists.

3.2 Models with Congestion Consideration

In this chapter we will present models that have explicitly considered
congestion in the analysis. In particular this means throughput does
not increase linearly with increasing number of pickers. The models will
be described in detail in order to give the reader some valuable insights
on congestion phenomena in order picking systems. To the best of our
knowledge, this section provides a comprehensive review of all models
discussed in the literature.

3.2.1 Characteristics of Congestion

For a clear understanding, we will first define the different blocking situ-
ations that directly lead to congestion in an order picking system. This
chapter is partly based on the descriptions given in Lüning (2005), Gue
et al. (2006), Parikh (2006), Parikh and Meller (2009) as well as Furmans
et al. (2009).

Waiting times in manual order picking systems are not necessarily the
result of congestion and for that reason we should distinguish different
situations. On the one hand, waiting times might stem from order pick-
ers not having new orders to pick because orders are coming in slowly or
staff planning was not adequately carried out. Waiting might also occur
due to technical failures such as break-down of the warehouse manage-
ment system or any situation resulting from act of nature. On the other
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hand, waiting times stem from congestion if order pickers interfere with
each other when the picking process could run normally. We define the
following:

In manual order picking systems we speak of congestion whenever the
activities of an order picker are interrupted by another order picker

while all requirements for a regular picking process are met.

A picking process is regular if orders are ready for picking, necessary
supporting systems, like IT or equipment, are working and interfaces
with preceding and succeeding areas are in operation (e.g. incoming
goods from the receiving area, outgoing orders to a sorting system etc.).

In manual order picking systems congestion arises from different types
of blocking situations. We observe those whenever two or more pickers
simultaneously want to use one of the following resources:

• A rack column within the aisle and/or the space in front of the rack
column

• A space of any cross aisle

• The depot and the related space in front of the depot.

We can distinguish Pick-Face Blocking, In-the-Aisle Blocking, Aisle
Blocking, Cross Aisle Blocking and Depot Blocking.

Pick-Face Blocking

A situation is called Pick-Face Blocking, if two or more pickers want to
access the same pick face, i.e. rack column at the same time. This type
of blocking situation might occur in systems with arbitrary aisle width.
Figure 3.2 shows how picker 2 has to wait until picker 1 has finished all
picking and administrative activities at rack column i.e. pick face i.

In-the-Aisle Blocking

This type of blocking situation basically occurs in narrow-aisle systems
where the aisle does not offer sufficient width for unrestricted movement
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1

2

i

Figure 3.2: Pick-Face Blocking situation

of two or more pickers. In particular, they can not pass each other, be-
cause whenever a picker uses a certain amount of space no one else can
use that space simultaneously. The direction of the picker movement de-
fines the complexity of such situations. Figure 3.3 shows three examples.
We assume the direction of movement to be fix in examples a) and b)
and to be arbitrary in example c).

We identify level-1 blocking in example a) as picker 2 can not access his
next rack column because the space in front of rack column 1 is occupied
by picker 1 and aisle width restricts passing. Picker 2 has to wait until
picker 1 has finished his pick and entirely left the space in front of rack
column 1.

We find a similar situation in example b). In this case picker 3 is blocked
by picker 2. In contrast to example a) someone who is already blocked (2
blocked by 1) causes a blocking situation by himself (3 blocked by 2). We
call this situation level-2 blocking. Let K be the total number of pickers
in the system. A level-(K − 1) blocking situation can develop. Because
the direction of movement is strictly one-way in this configuration, the
resulting queue can be dissolved by applying a simple first-in-first-out
processing rule.
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Figure 3.3: In-The-Aisle Blocking and Interference situations

Example c) shows a situation with two-way traffic. We assume that picker
1 entered the aisle from the lower cross aisle and is picking at his pick
face, occupying the corresponding space. Picker 2 came from the upper
cross aisle and is blocked by picker 1. We can observe a level-1 opposite
blocking situation as soon as picker 1 has finished picking and wants to
travel upwards within the aisle. In contrast to examples a) and b), such
situations require priority rules defining which picker actually has to turn
and walk against his original direction to clear the way.

Note that in-the-aisle blocking also covers pick-face blocking as the space
corresponding to the pick face cannot be accessed in the first place thus
preventing two pickers of picking from the same pick face.

In-the-Aisle Interferences

Even when aisles are wide enough to allow for passing, interferences are
still possible as we might experience slower walking speeds or extra side-
wards movements. Situations where pickers can pass each other at the
cost of extended travel time will be called interferences. An example is
given in d) of figure 3.3.
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Total Aisle Blocking

This type of blocking situation can occur if an aisle is exclusively reserved
for one picker. If a certain picker has reserved and entered the aisle all
subsequent pickers have to wait until this picker has completed all picking
and walking in that aisle.

Cross Aisle Blocking

Just like picking aisles the cross aisles only have limited space available
and a certain part of the cross aisle can only hold one picker at a time.
We speak of cross aisle blocking whenever a picker needs to use a part of
the cross aisle which is already occupied by another picker. Cross aisle
blocking might happen if an in-the-aisle blocking situation propagates
beyond the aisle entrance.

Depot Blocking

A situation is called depot blocking if two or more pickers want to use
the depot at the same time. In the worst case (K − 1) of K total pickers
have to wait. The complexity of such situations is manageable though as
we can apply a first-in-first-out processing rule.

3.2.2 Simulation Studies

Many papers have presented simulation studies to find the best order
picking system design and operating strategy for a given set of input
parameters. However only few of those papers have incorporated conges-
tion. An early study was conducted by Mellema and Smith (1988). They
consider order picking truck operations in layout type A. They assume
total aisle blocking and calculate throughput per man-hour and picker
utilization. Ottjes and Hoogenes (1988) presented a study explicitly fo-
cusing on vehicle traffic in distribution centers. They conclude that total
waiting times of order picking trucks due to congestion is increasing ex-
ponentially in the number of trucks. Pandit and Palekar (1991) studied
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single command operations in layout type D. They account for pick-face
and in-the-aisle blocking.

A paper by Ruben and Jacobs (1999) evaluates the influence of both batch
construction heuristics and storage assignment policies in an order picking
system of layout type A with traversal routing policy. They specifically
designed their simulation model to account for congestion. The authors
give valuable insights on behavior of congested systems subject to differ-
ent batching and storage policies. They showed that productivity decline
is much bigger under a turnover-based storage policy compared to losses
using family-based or random storage policies. One has to specifically
focus on this observation if demand levels are highly variable. In cases of
high demand a rather easy strategy is to increase the workforce in order
to deal with the increased workload. Ruben and Jacobs have shown that
family-based or random storage policies come along with more workforce
flexibility compared to turnover-based storage.

A simulation study dealing with pick-face blocking was presented by Lün-
ing (2005, p. 123). For a single aisle, assuming either random or class-
based storage, central or decentral depositing as well as varying order
sizes he calculates the productivity of the pickers (measured in order lines
per working hour) and the corresponding relative throughput decrease.
He subsumes that the productivity decrease for a rising number of order
pickers is larger for class-based storage systems. He even observes that
in class-based storage overall throughput is decreasing if the number of
order pickers is beyond a critical value. Finally, in the scenarios studied,
batching of orders is always found to be worthwhile in random storage.
In class-based storage this effect is diminishing for a larger number of
order pickers and negative beyond a critical size of the workforce.

Thayalan (2008, p. 41) presented a study comparing random and class-
based storage policies with three routing policies (traversal, return and
optimal) considering total aisle blocking. The author concludes that un-
der class-based storage a mixture of traversal and return policy seems to
do better than an optimal routing policy.

The papers of Gue et al. (2006), Parikh (2006), Parikh and Meller (2009,
2010) partly use simulation models to study the effects of congestion.
Their work is mostly of analytical nature and simulation is only used
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for some cases. Therefore we refer to the discussion of these papers in
chapter 3.2.4.

3.2.3 Combined Probability and Combinatorial
Calculation

In addition to the simulation study mentioned above, Lüning (2005, p.
142) also proposed analytical methods to estimate decrease in throughput
caused by pick-face blocking in one aisle. Furthermore he analyzed in-
the-aisle interferences.

The pick-face blocking approach builds on probability theory and com-
binatorial calculations. Lüning uses the binomial coefficient to calculate
the number of possible combinations of having j of K total pickers situ-
ated in front of one rack column at the same time. Weighting that with
the probability that a picker is situated in front of one rack column i at
a certain point in time and considering all rack columns, Lüning derives
the following formula to estimate throughput decrease:

λDecline = λOP ·

⎛

⎝K −
c

∑

i=1

K
∑

j=2

(

K

j

)

(pi · r)j

⎞

⎠

where λDecline is the reduced throughput (order lines per hour), λOP

is the throughput (order lines per hour) of a single picker without any
congestion, c is the number of rack columns in the aisle, pi is the pick
frequency of rack column i and r is the probability that a picker is picking,
i.e. the portion of picking time with regard to the total order picking time.

Lüning used a similar approach to estimate additional travel time caused
by in-the-aisle interferences. First he derives the additional time tadd,K

a picker needs to walk in order to pass (K − 1) other pickers, assuming
that K pickers meet in a certain segment i. Note that one segment does
not necessarily represent one rack column. After deriving the probability
that K pickers interfere in segment i the number of interferences IK is
calculated. In accordance with the calculations on pick-face blocking, the
binomial coefficient is used and the percentage increase in travel time XK
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is given by:

XK =
K
∑

j=2

(

K

j

)

· tadd,K · IK

Experiments show that for random storage travel time typically increases
as much as 2% for less crowded aisles (5:1 ratio of segments to order
pickers) and the increases can be as high as 7% for very crowded aisles
(3:2 ratio). For class-based storage increases are much higher, namely
5% for less crowded aisles and up to 30% for very crowded aisles. Based
on these results, Lüning derived some operational guidelines. In random
storage there should be at most one picker per 3 meters of pick face. For
class-based storage, there should not be more than two pickers per aisle,
independent of the total length of the pick face as picks often tend to
concentrate on a few rack columns.

3.2.4 Markov Chains and Random Walks

To quantify throughput decreases caused by congestion several authors
use the concept of Markov Chains. A Markov Chain is a particular
stochastic process. The system is characterized by a discrete state space
and transition probabilities to get from one state to another. The under-
lying Markov property states that the probability distribution of future
states only depends upon the current state (Waldmann and Stocker 2004,
p. 5).

All subsequent models presented in this chapter aim to derive the fraction
of time a picker is blocked. An order picking system with N picking
locations is transformed into a closed circle as shown in figure 3.4. A
picking location might be a rack column or a certain amount of space
of an aisle from which two opposite rack columns can be accessed. Note
that each picking location has exactly one successor, thus representing
traversal routing without aisle skipping. K order pickers move along the
circle in discrete time steps. At each location and time step they make a
pick with probability p and no pick with probability q = 1 − p. p is also
called the pick density. The picking time is constant and given by tpick.
If no pick is done the pickers walk and consume time twalk. The states
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Figure 3.4: Circle representation of order picking systems (Gue et al.
2006)

of the Markov Chain are characterized by the distance between workers
and the information on whether the workers picked or walked in the last
time step.

Skufca (2005) considers systems with in-the-aisle blocking. He assumed
infinite walking speed, hence twalk = 0. Within a time step, a picker
might thus walk until he has to make a pick or until he is blocked by
another picker. Skufca derives the time fraction in which an order picker
is blocked in systems with N locations and K pickers.

Building on the work of Skufca (2005), Gue, Meller and Skufca (2006)
analyze an order picking system with two workers and a pick to walk
ratio of 1 : 1, i.e. tpick = twalk. They give the state space and transition
matrix and derive the average percentage of time a picker is blocked in a
two-picker-system as a closed-form expression depending only on p and
N :

b1:1(2) =
pq

(N − 1)(p + 1)2 − 2p2
.

Figure 3.5 shows the blocking time fraction over the pick density for
different system sizes. The authors state that congestion is worst when
approximately 0.33 ≤ p ≤ 0.37. For two workers walking with infinite
speed (pick to walk ratio of ∞ : 1), the following formula is derived:

b∞:1(2) =
1 − p

2(1 − p) + (N − 1)p
.
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Figure 3.5: Percentage of blocked time for 1:1 pick to walk ratio and in-
the-aisle blocking (Gue et al. 2006)

Blocking in the infinite speed case is proved to be higher than blocking in
the 1:1 case for any scenario with n > 2 and 0 > p > 1. Having obtained
b(K), system throughput can be estimated according to:

λ(K) = K ·
[

p

ptpick + twalk

]

· (1 − b(K))

Because the model of Gue et al. (2006) cannot be easily extended to
arbitrary ratios of pick time to walk time, the authors present some more
findings based on a simulation model. Figure 3.6 shows the percentage of
time blocked for different ratios. It appears that the critical pick density
p, for which blocking is maximum, shifts to the left for increasing tpick.
An evaluation of random pick times revealed that congestion was slightly
higher for non-deterministic tpick. The major contribution of this work is
the observation that congestion is highest for a critical pick density and
then decreases as systems become busier.

Parikh (2006) as well as Parikh and Meller (2009) extended the use of
Markov Chains. They estimate pick-face blocking in wide-aisle systems,
thus allowing pickers to pass each other. They present models for the
case that workers pick one item at the pick face (as was assumed in
previous Markov Chain models) and the case that pickers take several
items from the pick-face, leading to a higher variance in the time spent
at one location.
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Figure 3.6: Percentage of blocked time for different pick to walk ratios
and in-the-aisle blocking (Gue et al. 2006)

In line with Gue et al. (2006) the authors derive the state space and
transition matrix for pick to walk ratios of 1:1. The result, again, is a
closed-form expression for percentage of time blocked in a two-picker-
system b1:1(2), depending only on the number of locations N and the
pick density p:

b1:1(2) =
p2(1 − p)

N(2 − p)(1 + p)2 − p3 − p
.

Analyzing the derivative, the authors state that congestion is maximum
for 0.628 ≤ p ≤ 0.653. Figure 3.7 shows curves of b1:1(2) for different
systems sizes. We can observe that the curves for pick-face blocking are
left-skewed, in contrast to the right-skewed curves for in-the-aisle blocking
(see figures 3.5 and 3.6). The critical value of p is higher for pick-face
blocking as the event of both pickers trying to access one single location
at the same time is relatively rare for smaller p. As p gets close to 1, the
blocking time approaches 0 as the pickers stop at almost every location.
We should also note that the formulas support the intuitive assumption
that systems with pick-face blocking are less congested than systems with
in-the-aisle blocking (Parikh and Meller 2009, p. 238).

The analysis for pick to walk time ratios of ∞ : 1 does not lead to a
closed-form expression. For pick to walk time ratios in between the two
extremes of 1 : 1 and ∞ : 1, blocking times were obtained by simulation.
Figure 3.8 features b(2) for different ratios and shows that for increasing
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Figure 3.7: Percentage of blocked time for 1:1 pick to walk ratio and pick-
face blocking (Parikh and Meller 2009)

pick times tpick the maximum loss is reached for decreasing pick density
p and the curves tend to be right-skewed.

Simulation is also used to determine blocking times for K > 2. The
authors conclude that pick-face blocking should not be underestimated,
especially if more than every tenth location is occupied.

Parikh (2006) and Parikh and Meller (2009) also developed models for
systems were pickers pick more than one item at a pick face. The prob-
ability of picking i items at a location is described by a probability mass
function depending on u and v = 1 − u where v is the probability of not
picking. Following the same procedure as presented above, the authors
derive a closed-form expression to estimate blocking for K = 2 and a pick
to walk ratio of 1 : 1:

bi
1:1(2) =

u2

N(2 − u) − u + 2u2
.

From the analytical analysis and simulation it appears that for arbitrary
ratios of pick time to walk time both b1,...,∞:1(2) and b1,...,∞:1(K) increase
monotonically for increasing pick densities.

We should add that the variance of tpick, stemming from the random
number of picks at one pick face, can have a significant influence. In one
particular scenario where i items had to be picked from N > i locations,

44



3.2 Models with Congestion Consideration

Figure 3.8: Percentage of blocked time for different pick to walk ratios
and pick-face blocking (Parikh and Meller 2009)

the portion of blocking increased from 2.5% (all items picked from differ-
ent locations) to 9% (some items picked from the same locations) (Parikh
and Meller 2009, p. 245). Parikh and Meller (2010, p. 400) conclude that
in comparison to deterministic pick times congestion is more pronounced
for non-deterministic pick times. Furthermore, congestion might have a
big influence in systems with high pick densities.

3.2.5 Queueing Networks

As we explained earlier (see chapter 3.1.3), some authors have used queue-
ing models for the analysis of manual order picking systems, but these
approaches had no consideration of congestion as we defined it (see chap-
ter 3.2.1). The research on this field is very limited to say the least.

Open queueing networks with finite buffers have been used by Pan et
al. (2005) as well as Pan and Shih (2008). They considered a layout
of type A with ν aisles and a traversal strategy without aisle skipping.
The model assumes total aisle blocking and a buffer is located in front
of each aisle. The aisles are represented by one single queueing system,
thus the system of ν aisles is transformed into an open queueing network
of ν tandem queueing systems with finite buffers each. Service times,
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Figure 3.9: Open queueing network of an order picking system with ν
aisles (Pan and Shih 2008)

which include both travel and picking, are assumed to be exponentially
distributed. Let Pi,j be the probability that an item stored in rack j of
aisle i (which has h racks) is picked in an order, w be the total width of
an aisle (including depths of the opposing racks) and l be the total aisle
length. Then the expected distance traveled within aisle i is given by:

E(Di) = w + l ·

⎛

⎝1 −
h
∏

j=1

(1 − Pi,j)

⎞

⎠ .

The expected time to pick items in aisle i is defined as:

E(Ki) = t ·
h

∑

j=1

Pi,j .

The service rate μi is then easily determined as:

μi =
1

E(Di) + E(Ki)
.

As this service rate does not incorporate any blocking situations caused
by finite buffers, the authors use the approximation method of Takahashi
et al. (1980) to estimate effective service rates, which are given by:

1

μ∗
i

=
1

μi

+

ρs
i (1−ρi)

(1−ρs+1
i−1

)

μ∗
i+1

.

Throughput values are then calculated by treating each queueing system
as an M |M |1 system and applying μ∗

i . Pan and Shih (2008, p. 386)
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conduct an experiment comparing random storage policy to class-based
storage policy and summarize that random storage yields higher through-
put as the picking area is more uniformly utilized.

Closed queueing networks were first used by Furmans et al. (2009) and
are the basis for the modeling approach presented in this thesis. We refer
to chapter 4 for a detailed description.

3.2.6 Related Non-Order Picking Approaches

Material handling systems are closely related to order picking systems
and might also suffer from congestion. Gudehus (1976) has discussed
estimations of queue lengths and waiting times in front of conveying ele-
ments. He also addressed the tailback probability in a sequence of work
stations in (2005, p. 517). Schmidt and Jackman (2000) have modeled
cyclic continuous conveyors as an open queueing network. Bartholdi and
Gue (2000) used queueing theory to design efficient layouts for crossdock-
ing terminals. Tempelmeier and Kuhn (1993, p. 141) consider flexible
manufacturing systems and estimate the impact of material handling con-
gestion by means of closed queueing theory. A general method to measure
congestion in material flow systems was presented by Faißt and Lippolt
(2002).

Quadratic Assignment Problems are often used in layout and facility de-
sign. Chiang et al. (2002, 2006) have incorporated congestion and work-
flow interference in this subject. Zhang et al. (2009) combine probabilis-
tic models and flow problems to model and minimize workflow congestion
and give an extended literature review.

Apart from intralogistic flows, we can observe congestion almost daily
in everyday life. Weber and Weiss (1994) have examined the cafete-
ria problem, where people move along a line of M stations and receive
service. The movement is modeled as a Markov Chain and resulting
queues and throughput are derived. A big amount of research exists on
traffic systems. As macroscopic traffic models do not consider the indi-
vidual elements of traffic systems, microscopic traffic models seem to be
more interesting with regards to order picking systems. A limited num-
ber of approaches seem partly transferable, e.g. the cellular automaton
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proposed by Nagel and Schreckenberg (1992). An extensive literature
review on vehicular traffic flow modeling is given by Hoogendoorn and
Bovy (2001).

3.3 Chapter Conclusion

The models presented in chapter 3.1 do not incorporate congestion. How-
ever, numerous of these papers have given an indication that congestion
might influence the travel time and identified a future research activity
in the development of new models.

The simulation studies have provided some very useful indications on how
congestion can affect throughput. Depending on the phase of application,
e.g. rough or detailed planning, the approach of simulation has some
disadvantages (Bolch et al. 1998, p. 609). A simulation model is very
time consuming and needs to be run with a certain number of replications
in order to attain stable results. A simulation experiment requires a more
or less complex programming of processes that usually leads to a large
amount of source code. Transparency decreases with larger models. The
level of detail provided by simulation might not be needed in a rough
planning phase where the focus is on the quick analysis of numerous
alternatives. It would therefore be helpful to have analytical methods for
the analysis of manual order picking systems with congestion.

Lüning (2005) provided some valuable models and findings on the possible
productivity decrease caused by congestion, although the applicability to
more diverse order picking systems seems to be rather limited. The fact
that only a single aisle is considered restricts the approach to zone pick-
ing configurations. The interdependencies stemming from having several
aisles in the system and thus applying different routing strategies can
not be incorporated into the analysis. The picking times are considered
deterministic, thus stochastic influences are left out. The approach is
limited in terms of blocking situations with the first model considering
pick-face blocking and the second model considering in-the-aisle interfer-
ences. Furthermore, the modeling of in-the-aisle interferences allows for
K pickers to simultaneously pass each other. Depending on the width of
the aisle such situations probably are not possible in real systems.
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Markov Chain models have greatly improved understanding the implica-
tions of blocking situations in order picking systems. However, models
appear to be able to analyze rather specific systems only. First, the 1 : 1
and ∞ : 1 walk to pick time ratios used in the analysis will most likely not
be found in real-life systems. Secondly, the analytical expressions mostly
can consider only two order pickers and simulation is used to consider
systems with more order pickers. A formula is only given for the ∞ : 1
case. Using a closed circle to represent the arrangement of locations only
allows to evaluate the traversal routing policy without aisle skipping.
Other routing strategies involving any kind of branching can not be an-
alyzed. Furthermore all locations have the same probability of having a
pick, thus storage policies like turnover-based or class-based storage can
not be incorporated. Finally, times to pick one item are mostly assumed
to be deterministic and equal for all locations. Thus it is not possible
to differentiate between different system elements, e.g. depot or rack
columns with light or heavy items, which might require different times
for processing.

The application of open queueing networks with finite buffers is an inter-
esting approach. Nevertheless, some open questions on the assumptions
remain. Because of total aisle blocking we cannot analyze situations
with multiple pickers being located within an aisle simultaneously even
though such situations surely occur in real-life systems. In open queueing
networks, the number of pickers is arbitrarily high or low and variable
over time. In particular this leads to the assumption that an unlimited
number of pickers is available at the depot. The sequence of queueing
systems, i.e. aisles, is strictly specified, enabling only the analysis of
traversal policy without aisle skipping. The assumption of exponential
service times is debatable, as very low times have the largest probability.
In real systems however, we should consider a minimum walking time
in the aisle and each pick will require a minimum time for administra-
tive activities. Detailed discussions on the distribution of service times
in manual order picking systems are presented in chapter 4.7. Finally,
concerning the work of Pan and Shih (2008), we claim that the expected
distance within an aisle E(Di) is fix for traversal strategy without aisle
skipping and should not be dependent on Pi,j .
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The approaches proposed for material handling systems are based on
queueing theory and seem promising. At the same time they are subject
to some restricting assumptions such as the type of network used or the
exponential service times. Models of layout and facility design as well as
traffic do not provide the necessary level of detail to model the process
flow of an order picking system, e.g. the defined cyclic movement starting
and ending at the depot, the application of routing strategies or picking
times.

Having critically evaluated the existing throughput models we are able
to identify situations in which these models are not applicable. Based on
this, we can formulate the requirements for a new method to estimate
throughput in manual order picking systems with congestion considera-
tion:

• The method should be of analytical nature in order to allow for the
quick analysis of many different alternatives.

• The method should enable the analysis of multiple-picker systems
without pre-defined restrictions concerning the number of pickers.

• The method should consider different types of blocking situations,
especially pick-face, in-the-aisle, cross aisle and depot blocking sit-
uations.

• The method should be adaptable to different layouts, i.e. different
lengths and widths of order picking systems. In particular, the
approach should be able to analyze multiple-aisle systems.

• The method should allow some flexibility concerning the route of
a picker. In particular, the sequence of visited rack columns is not
necessarily the same for two successive orders.

• The method should consider random and non-random storage poli-
cies. Thus the items of different rack columns might have different
probabilities to be on an arbitrary order.

• The method should consider stochastic picking times. In particular,
different rack columns might have different picking time means and
variances. The type of distribution for these picking times should
be general to enable a realistic modeling.
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In the following chapters, we will present models of closed queueing net-
works that fulfil these requirements and hence provide a method to esti-
mate throughput in manual order picking systems with congestion con-
sideration.
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4 Queueing Models of Manual
Order Picking Systems

We will review the necessary basics of queueing theory and briefly present
our motivation to use this methodology in chapter 4.1. Subsequently, we
will conduct a step-by-step transformation of the parameters defining a
manual order picking system into the parameters of a queueing model.
We start with the basic assumptions of the order picking system and the
choice of queueing network type in chapter 4.2. Necessary elements (e.g.
aisles, racks, depot) are considered in chapter 4.3. The one-way traversal
routing policy will be introduced in chapter 4.4. Transition probabilities
implementing this routing policy are given in chapter 4.5 for random
storage and chapter 4.6 for class-based-storage. Finally, we will consider
the order picking times (e.g. walking, searching, picking) in chapter 4.7.

4.1 Essential Basics of Queueing Theory

4.1.1 Classification, Benefits and Limits

Queueing theory can be used for the performance evaluation of telecom-
munication networks, production lines and material flow systems. In
principle, it expands an analysis of systems with a single element to sys-
tems with multiple interacting elements. When analyzing the average
time spent at a supermarket cash desk the stochastic elements in a sys-
tem with a single customers would be the number of items in the shopping
cart and the speed of the cashier. Then an average time needed for scan-
ning and payment of items can be calculated. However we might also
experience waiting times as other people are already at the cash desk
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in the instant of our arrival. Queueing theory enables to consider both
service and waiting times in a system with multiple customers.

By means of simulation a system analysis can be conducted on any level
of detail, apparently including various stochastic elements (Bolch et al.
1998, p. 1). In early planning phases, which are characterized by a
large number of design alternatives, the use of simulation might lead to
excessive effort both in model building and experimenting. As a result
simulation is often used in detailed planning phases after a set of alter-
natives has been pre-selected for further analysis (Rall 1998, p. 17).

Queueing theory is an eligible tool for pre-selection of alternatives as it
incorporates statistical input variables. Thus queueing models consider
interdependencies stemming from the stochastic behavior of different sys-
tem components. At the same time, the calculations are of analytical
nature so many different alternatives can be evaluated in relative short
amount of time. The calculated performance measures usually give a
good estimation of the underlying system’s performance even if some as-
sumptions are violated (Suri 1983). Furthermore the input variables can
easily be manipulated in order to analyze system performance in different
scenarios to evaluate the robustness of an alternative (Furmans 2000, p.
2).

Despite the capability to consider stochastic input parameters, continu-
ous time queueing theory can not explain the full range of potential in-
fluences stemming from a random variable. For example, different skew-
nesses or multiple modes of a distribution will not affect the results1. The
simplification of a real-life system as modeled by queueing theory mostly
goes beyond that of a simulation model, asking for the planner’s ability
of abstraction to be higher. Historically, queueing theory has been used
in telecommunications and processor networks. In the last two decades
tough, many problems of material flow systems have been studied by
means of queueing theory (see Furmans (1992, p. 5, 2000, 2004) as well
as the references presented in chapter 3).

1Queueing theory in the discrete time domain can overcome this disadvantage. As
such models are not considered in this thesis, we refer to Furmans (2004) or
Schleyer (2007)
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4.1.2 Single-Node Queueing Systems

An elementary queueing system consists of one or multiple identical
servers and a buffer (or waiting room) located in front of the server(s).
Customers (also called elements or jobs) arrive at the system and receive
immediate service if at least one server of the system is available (or
idle). If all servers are busy, the arriving customer is buffered. When a
server becomes available one customer is selected for service according
to the queueing discipline (Bolch et al. 1998, p. 209). In order to fully
define an elementary queueing system, we need to know the following
characteristics (Gross and Harris 1998, p. 3):

• The arrival stream to the system can be described by the distri-
bution of interarrival times. It is commonly assumed that the
sequence of interarrival times is a set of independent and identi-
cally distributed random variables. The average interarrival time
between successive customers E(ta) can be used to calculate the
average arrival rate λ:

λ =
1

E(ta)
.

• The service process can be characterized by the sequence of ser-
vice times, which again is a set of independent and identically dis-
tributed random variables. The average service time of one cus-
tomer is denoted by E(ts) and is used to calculate the average
service rate μ:

μ =
1

E(ts)
.

• The number of servers m describes the number of parallel identical
servers. As a consequence, at most m customers can be serviced at
a single point of time.

• The capacity of queueing system i is denoted by Bi. It is defined
as the sum of the buffer spaces and the number of servers. Models
commonly assume an infinite capacity of the buffer, hence Bi =
∞. However, many real-life systems have buffers of finite size only
(Balsamo et al. 2001, p. 15). We speak of zero-buffer-systems, if
Bi = 1.
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• The queueing disciplines most frequently used are First-In-First-
Out (FIFO), Last-In-First-Out(LIFO) or Processor Sharing (PS).
Other disciplines are described by Bolch et al. (1998, p. 211).

Following the notation of Kendall (1953), we can describe elementary
queueing systems by a set of five variables:

A/S/X/Y/Z

where A characterizes the arrival process, S the service process, X the
number of servers, Y the system capacity and Z the service discipline.
For A and S, the following symbols are typically used: M for exponential
distributions, D for Dirac, i.e. strictly deterministic processes, Ek for
Erlang distributions with k phases, Ck for Cox distributions with k phases
and G for general distributions for which first and second moments are
known.

Depending on the characteristics of the system, the literature offers meth-
ods to calculate several performance measures. These include the utiliza-
tion ρ which denotes the fraction of time in which the server is occupied.
λ refers to the system throughput, which is defined as the number of
customers served in a single time unit. In the case of infinite buffers
λ equals the arrival rate while for finite buffers the throughput can be
smaller than the arrival rate. Other key figures include the waiting time
tw, the throughput time (or sojourn time or lead time) tv, the mean num-
ber of customers in the queue NW and the mean number of customers in
the system NS . For a discussion on calculating performance measures we
refer to Kleinrock (1976), Bolch et al. (1998), Gross and Harris (1998) or
Furmans (2000) with a focus on queueing theory in material flow systems.

4.1.3 Queueing Networks

We speak of queueing networks whenever at least two elementary queue-
ing systems are connected and customers can be transferred between
some of these nodes (Bolch et al. 1998, p. 263). A network consists
of N elementary systems, each with parameters μi, mi and Bi. We can
distinguish two main classes of queueing networks.
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In open queueing networks, customers can enter and leave the system
from/to external sources/drains which lie beyond the system limits. Let
λ0i be the arrival rate of customers from an external source to system i
and qj,i be the probability that a customer after finishing service at sys-
tem j is transferred to system i. Then we can define the traffic equations
as follows:

λi = λ0i +
N
∑

j=1

λj · qj,i, for i = 1,...,N.

It is important to know that in open networks, the external arrival rates
λ0i act as an input parameter and the total number of customers in the
network K is a resulting value, which can vary over time.

In closed queueing networks, no customer can enter or leave the system.
As a consequence, the number of customers K in the network is constant
and the throughput λ is a resulting value. Another important parameter
in closed networks is the visit ratio ei. It indicates the relative portion of
network throughput that goes through system i. We use the transition
probabilities qj,i to derive ei:

ei =
N
∑

j=1

ej · qj,i, for i = 1,...,N.

As there are only (N −1) independent equations, we usually define e1 = 1.

Many publications exist on how to calculate performance measures for
queueing networks. Important contributions include the works of Jackson
(1957), Gordon and Newell (1967) and Whitt (1983). Useful overviews
are given by Bolch et al. (1998) and Furmans (2000).

4.1.4 Queueing Networks with Blocking

In queueing networks, the phenomenon of blocking, i.e. congestion, can
occur if a queueing system i has a finite capacity Bi. Then the queue
length of system i can directly influence the processes at any preceding
node j with qj,i > 0. If system i is full, i.e. all spaces of the buffer are
occupied, system j might become blocked (Balsamo et al. 2001, p. 28).
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The use of finite buffers allows for the analysis of a wide range of real-life
problems. However, blocking networks are also more complicated to solve
as the service process of an elementary system depends on the current
states of its succeeding systems (Onvural 1993).

The different mechanisms of a blocking situation are represented by three
main types of blocking protocols: Blocking After Service (BAS), Blocking
Before Service (BBS) and Repetitive Service Blocking (RS)2 (Onvural
1990).

Under BAS, system j is said to be blocked if a customer bound for system
i cannot continue because no buffer space is available at i. The customer
will remain in the server of system j and block subsequent customers.
Under BBS, a customer will only be processed in system j if the des-
tination i is not full. If system i has available buffer spaces upon the
beginning of service in system j but then becomes full, the service at
j interrupts and we usually assume that the amount of service received
thus far is lost. For further discussion of BBS, see Balsamo et al. (2001).
Finally, under a RS protocol a customer that has finished service at j and
finds destination system i full will return to the rear end of the queue at
system j and thus has to wait for all customers of j to finish their service.

Research of closed queueing networks with blocking has been focusing on
approximation methods as due to the complexity, the exact calculation
of performance figures is often infeasible. Most algorithms are configured
to specific network configurations, assumptions concerning the service
time and the type of blocking protocol. A majority of papers has dealt
with cyclic (i.e. each node has one fix successor) networks assuming
exponentially distributed service times and BAS protocol. Our model of
manual order picking systems with congestion consideration will lead to
certain assumptions for which only very few applicable algorithms remain.
We will present those in chapter 5.1. For descriptions of those algorithms
not applicable we refer to Perros (1989, 1994), Onvural (1990), Dallery
and Kouvatsos (1998) as well as Balsamo et al. (2001).

2According to Balsamo (1993), the following terms are also used: BAS: type-1, trans-
fer, manufacturing, non-immediate and classical blocking. BBS: type-2, immediate
and service blocking. RS: type-3, communication, repeat and rejection blocking.
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4.1.5 Motivation for the Use of Queueing Theory

The use of queueing theory for the modeling of order picking systems
with congestion consideration is motivated by the following facts:

• Many parameters of order picking systems are of stochastic nature,
e.g. picking times or the sequence of visited aisles and racks.

• The walk or ride of a picker through the system can basically be
considered as a sequence of visiting stations where a certain kind
of service, e.g. picking or walking, is conducted.

• Pickers are usually not working in the system alone but share the
infrastructure of the system, e.g. aisles, cross aisles, depot, with
other pickers.

• The combination of stochastic elements and multiple-picker opera-
tions can lead to waiting times if two or more pickers want to use
the same infrastructure at the same time, e.g. two pickers simul-
taneously wanting to pick from a certain rack aisle or two pickers
simultaneously wanting to use the same segment of a narrow aisle.

• As multiple pickers cannot be served at the same time, at least one
picker has to wait for another picker to finish the service, i.e. the
picker has to enter some kind of waiting room.

We conclude that the movement of pickers through an order picking sys-
tem is relatively similar to the movements of customers through a network
of queueing systems.

4.2 Assumptions on the Order Picking System

and Choice of Network Type

Assumptions on the Order Picking System

The manual order picking system consists of an even number of aisles
ν. We assume that the two racks belonging to one aisle have the same
length and the same number of rack columns such that there is symmetry
along the center line of the aisle. A single rack column is assumed to be
1m long and 0.5m deep. The order picking system is L meters long
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and W meters wide. We can characterize the system’s layout by the
warehouse shape factor WSF , which is the ratio between L and W . The
pickers are either equipped with picking carts or trucks and walk or drive
through the system. At the depot they receive an order with n picks
(or order lines). We assume that there always is a sufficient number of
orders waiting at the depot, i.e. pickers never have to wait for orders.
There is an administrative time for each picker to deposit a finished
order and receive a new one. The picker stops in front of any location
with picks. At these locations there will be an idle time to prepare for
the picking activity. Additionally there will be the picking time which
includes grabbing an item and putting it onto the picking cart or truck. In
terms of storage location assignment policy, we will distinguish between
random storage and within-aisle class-based storage. The sequence of
visiting the picking locations is determined by the routing policy. We
consider a one-way traversal policy with or without aisle skipping. There
will be K pickers working in the system simultaneously. The aisles are
narrow, thus pickers cannot pass each other within an aisle. Aisles are
1m wide and we assume that pickers potentially experience in-the-aisle3,
cross aisle as well as depot blocking. The number of picks n may or may
not be the result of an order batching procedure. In the following we will
not include zoning policies and consider the system as one single zone.
Figure 4.1 shows an example of the underlying order picking system with
ν = 10 aisles and K = 5 pickers.

Choice of Network Type and Relevant Parameters

To develop a queueing model of the system, we need to specify the type
of network first. It is quite obvious that pickers will be represented by
the moving customers of the queueing model. As a matter of fact, a
picker represents an order that is carried through the system. All other
resources (depot, aisles, cross aisles) have a fix location and will therefore
be modeled by queueing systems.

The choice of network type is based on two important observations. First,
each picking tour will ultimately begin and end at the depot. We can

3Note that this includes pick-face blocking.
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Figure 4.1: Layout of a manual order picking system

think of this as pickers moving through a circle with some possibilities
for shortcuts. Secondly, the pickers do not enter or exit the system but
stay within the system for a certain period of time.

With regards to the remarks in chapter 4.1.3, we model the order pick-
ing system as a closed queueing network. We can thus reproduce the
circular movements and have a fixed number of pickers. Had we used an
open queueing network, we would have been able to model circles but
there would have been external sources and drains, leading to a variable
amount of pickers in the system. This would have represented a situa-
tion where an incoming order is immediately served by a picker. There
are attempts to have a flexible workforce serving different areas of the
warehouse depending on the areas’ workloads. However, an order-explicit
availability of pickers seems to be out of reach.

In order to calculate characteristic values of a closed queueing network,
several input parameters have to be derived:

• N elementary queueing systems representing the resources of the
system with their respective number of servers mi and the system
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capacity Bi. Resources were identified above (see chapter 3.2.1)
and include:

– Rack columns and aisles

– Cross aisles

– Depot

• K customers representing the pickers.

• Visit ratios ei which are calculated by using the transition proba-
bilities qj,i and setting eDepot = 1 as each picker will pass by the
depot on each trip. By altering the visit ratios, we can model the
traversal routing policy with or without aisle skipping.

• Average service time and service time variability characterizing the
times needed at each queueing system.

4.3 Modeling of Resources

In the following we will derive the number of elementary queueing systems
N , their respective number of servers mi and the system capacity Bi.

4.3.1 Resources within an Aisle

An aisle is made up of two opposing racks or shelves and pickers travel
along the center line of the aisle. We divide each aisle into a certain
number of segments and assume that a segment covers the space in front
of two opposite rack columns. An aisle offering a total of 20 rack columns
consequently will be divided into 10 segments, each directly correspond-
ing to two opposite rack columns. A picker uses a segment to either walk
or drive and might also stop to do a pick at the respective rack columns.
In terms of queueing theory both walking and picking can be considered
as services which a picker receives at a certain segment. We will denote
the number of segments per aisle with h. Each segment will be modeled
by an elementary queueing system.

As we assume narrow aisles, one segment can be used by only one picker at
the same time. It follows that mi = 1 for all queueing systems, because no
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more than one picker can receive service simultaneously at one segment.
It also follows that Bi = 1 because if a segment offers space for only
one picker there is no buffer between neighboring segments. Let i be an
elementary queueing system representing a certain segment. Then i itself
is the buffer of the succeeding queueing system i + 1 and respectively
queueing system i − 1 is the buffer of queueing system i. This logic
implements the Blocking-After-Service protocol as a picker in system i is
blocking the server of system i as long as system i + 1 is occupied. The
following statement summarizes the transformation:

In an aisle with 2h rack columns we can identify h segments,
each corresponding to the space in front of two opposite rack
columns. Each individual segment of an aisle is represented
by a queueing system with one server (mi = 1) and a buffer
size of 0 (Bi = 1). An aisle is then made up by a straight
sequence of h zero-buffer queueing systems.

Figure 4.2 visualizes the transformation of a single aisle into a queueing
model.
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Figure 4.2: Queueing Model of a single aisle

4.3.2 Resources of a Cross Aisle

A picker uses a cross aisle to switch between adjacent aisles or to skip
aisles. We assume that no racks are located at cross aisles, thus the
pickers solely uses them for walking. We first consider the lower cross
aisle and the adjacent return path, which are both located on the depot-
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side of the order picking system. The return path begins right after aisle
ν and is used as soon as a picker exits an even aisle with no picks left. Like
before, we divide the cross aisle into segments, which can be used by only
one picker at a time. Each segment will be modeled by an elementary
queueing system with one server and no buffer.
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Figure 4.3: Queueing model of the lower cross aisle

The segments marked with an x denote junctions where two travel paths
cross. We do not model these junctions with queueing systems for two
reasons. First, we want to allow a picker coming from an even aisle to
access the return path even when there is a queue on the lower cross
aisle. Secondly, this approach hugely facilitates the calculation of tran-
sition probabilities (see chapters 4.5 and 4.6) while coming along with
only minor modeling inaccuracies. Figure 4.3 shows the structure of the
queueing model representing the lower cross aisle and return path.

The transformation of the upper cross aisle is straightforward as picker
paths do only branch and merge but never cross. Thus the total space
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of the upper cross aisle can be divided into segments which are then
modeled by elementary queueing systems with one server and no buffer.
Figure 4.4 visualizes the transformation.
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Figure 4.4: Queueing Model of the upper cross aisle

Note that these rules result in feasible transformations no matter whether
pickers walk or drive. We assume that the space covered by a picker and
his device is typically larger than the depth of a rack column. This
assumption seems reasonable when pickers push their picking carts as
well as when they drive a fork lift truck. Hence, we model the segment
corresponding to the front face of two racks by one elementary queueing
system with mi = 1 and Bi = 1.

4.3.3 Depot

The depot is a work place which occupies a certain amount of space. It
will be considered as one segment, which can hold one picker at a time.
Therefore we will model it as an elementary queueing system with one
server and capacity BDepot = 1. As there is no buffer, the queue can
reach back onto the return path.
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We assume the depot to be located at the lower left corner of the system
(see figure 4.1). Several studies (e.g. Roodbergen and Vis (2006)) show
that the center position is best in terms of travel time. However, the
authors also conclude that the location does not have a significant influ-
ence. Moreover, we place the depot on the left side as this simplifies the
realization of one-way traffic, which is an important feature in narrow-
aisle systems. We describe in chapter 4.4 how such rules ensure picker
flow without the need for priority rules to resolve any blocking situation.

4.3.4 Overall Number of Resources

Based on the presented transformation rules for different types of re-
sources, we can calculate the total number of queueing systems in the
network:

N = ν · (h +
11

2
) − 3 (4.1)

4.4 Introduction of One-Way Traffic Rules for

Traversal Routing

In narrow-aisle systems, the fact that pickers cannot pass each other is
basically not complicated if order pickers travel in the same direction
(see figure 3.3 a/b). However, if we apply the original traversal policy,
pickers can travel the same aisle in different directions depending on
the number of aisles skipped beforehand. To clear opposite blocking
situations we would need priority rules defining which picker has to make
way for the other. One picker has to turn around and walk against his
original direction. Once the prioritized picker exits the aisle, the non-
prioritized picker can retry traversing the aisle.

We identify the following problems for such priority rules. First they
would likely be based on typical criteria like earliest due date or small-
est slack time. This data is order-specific and thus situation-specific. In
many systems, due to the lack of equipment or necessary IT, this informa-
tion will not be available at all in the moment of blocking. Furthermore,

66



4.4 Introduction of One-Way Traffic Rules for Traversal Routing

in rough planning phases this level of detail is not available. Secondly,
depending on the number of pickers the turn-around process itself may
cause new and even more complicated blocking situations. Pickers might
often move in zig-zag-patterns between aisle entrance and blocking loca-
tion, causing additional travel. We will not be able to identify any kind of
flow and the complexity to control and operate such a system will quickly
increase.

To avoid these situations we define one-way rules, such that aisles and
cross aisles may only be traveled in one direction. Therefore we need to
re-define the original traversal strategy as described in chapter 2.3.2. We
will refer to the new strategy as the one-way traversal strategy with aisle
skipping:

• Travel from the lower cross aisle to the upper cross aisle is allowed
in odd aisles only.

• Travel from the upper cross aisle to the lower cross aisle is allowed
in even aisles only.

• The first two rules imply that a picker, when located on the lower
cross aisle, has to travel an odd aisle before picking in an even aisle.
Consequently, when located on the upper cross aisle, the picker has
to travel an even aisle before picking in an odd aisle.

• When deciding to enter an aisle the picker only considers potential
picks in the next two aisles, i.e. there is no predictive aisle traveling.

• Pickers are allowed to skip aisles but only if there are no picks in
at least the next two aisles.

• As the depot is arranged in front of aisle 1, travel between adjacent
aisles has to be from left to right.

• Only if pickers have finished all their picks they are allowed to use
the return path to travel from right to left. The return path is
located below the lower cross aisle.

With these rules we eliminate any kind of opposite blocking. Figure 4.5
shows an example for one-way traversal routing.

It also illustrates a disadvantage of this strategy: the order picker has
to traverse aisle 3 even tough there is no pick in that aisle. He has to
enter aisle 3 because the pick in aisle 2 forced him to move to the lower
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Depot

Figure 4.5: One-way traversal routing policy

cross aisle. By definition, even aisles have to be entered from the upper
cross aisle tough and aisle 3 offers the only possibility to switch cross
aisles before making the pick in aisle 4. Had there been no pick in aisle
2, the picker could have taken the upper cross aisle to skip aisles 2 and
3. The additional travel associated with this rule has to be accepted in
order to avert complicated oppositional blocking situations. The extent
of additional travel for one-way traffic will strongly depend on the ratio
between the number of picks n and the number of aisles ν. For big ratios,
i.e. many picks per aisle, the additional travel tends to disappear, as it
will become likely that all aisles have to be entered anyway.

4.5 Modeling of One-Way Traversal Routing
for Random Storage Policy

The routing method in our queueing model is represented by the visit
ratios ei and the transition probabilities qj,i respectively. The latter
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incorporate both the structure of the order picking system and the specific
rules of the routing policy as they explicitly define which system i possibly
follows system j. Some movements are predefined and some depend on
the number of aisles ν, the number of segments per aisle h, the number
of order lines n and the storage policy. In the following, we will refer to
the aisle number as α with α = 1, 2, 3, ..., ν.

4.5.1 Predefined Movements

The aisle-based structure of the underlying order picking system and
the rules specified by the one-way traversal routing policy facilitates the
derivation of qj,i as a large amount of transitions is well defined a priori.
Within an aisle, all queueing systems are arranged in strict sequence and
one-way traversal routing implies that qj,i = 1. At the last segment of
each odd aisle αodd, we require the picker to turn right onto the cross
aisle. When skipping aisles by using the upper cross aisle a picker is not
allowed to enter an odd aisle αodd due to one-way restrictions. Likewise,
a picker skipping aisles by using the lower cross aisle can not enter an
even aisle αeven. Finally, we know that once the picker enters the return
path, he has to travel to the depot straightaway.

4.5.2 Decision Points for Non-Predefined Movements

A few locations remain where the picker has to choose his path and thus
possibly qj,i �= 1. We will call such a location a decision point. The
calculation of those qj,i is rather not straightforward. This is because
the decision on whether to enter an aisle does not only depend on the
pick frequencies within the next two aisles but also on the picks done in
proceeding aisles and also on the distance to the very first aisle α = 1.

For an order picking system with one-way traversal strategy as shown
in figure 4.6, we can distinguish and characterize three types of decision
points:

• Decision Point Ax: at these segments of the upper cross aisle a
picker has to decide whether to enter the next even aisle αeven or
continue along the cross aisle in order to skip the next two aisles.
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• Decision Point Bx: at the last segment of an even aisle αeven the
picker has to decide whether to continue towards the cross aisle or
continue towards the return path and the depot respectively.

• Decision Point Cx: at these segments of the lower cross aisle a picker
has to decide whether to enter the next odd aisle αodd or continue
along the cross aisle in order to skip the next two aisles.

The decision points are numbered ascending from left to right. We will
derive formulas to calculate qj,i at these decision points based on the
following approach. First, for a given number of picks per order, n, and a
given number of picking segments in the order picking system, νh, we can
basically calculate the number of different possibilities to distribute the
picks to the segments. From this number we can then select those cases
which would force a picker to visit a certain decision point. Finally we can
select those cases which force the picker to be at a certain decision point
and require a certain movement beyond that decision point. From the
last two numbers we can calculate the probability of a specific movement.

Calculating the number of different possibilities to distribute n picks to
νh segments can be done by using a very simple urn model (Johnson
and Kotz 1977, p. 2). Suppose we have an urn containing a total of νh
balls of which n balls are black and w = νh − n balls are white. A black
ball indicates a pick, a white ball indicates no pick. We chose without
replacement and the color of the first ball drawn defines if there is a pick
at segment 1, the color of the second ball drawn defines if there is a pick
at segment 2 etcetera. We find the number of distinguishable draws as:

(

νh

n

)

=
νh!

n!(νh − n)!
(4.2)

This is exactly the number of different possibilities to distribute n picks
among the νh segments.

4.5.3 Transition Probabilities at Upper Cross Aisle
Decision Points Ax

In an order picking system with ν aisles we have ( ν
2 −1) decision points of

type A. The decision points are represented by an elementary queueing

71



4 Queueing Models of Manual Order Picking Systems

system which in turn represents the segment of the upper cross aisle
which is located directly above an even aisle. Due to the routing policy,
the pickers will only pass through decision point Ax for a subset of all
possible allocations of picks.

In order to simplify the resulting formula to calculate qj,i, we number
the decision points with indices x = 0, 1, 2, 3, ..., ( ν

2 − 2). Decision point
A0 immediately precedes aisle 2, decision point A1 immediately precedes
aisle 4 and generally decision point Ax immediately precedes the even
aisle αeven = 2x + 2 and thus x = αeven−2

2 .
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d
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Figure 4.7: Notations at decision point Ax

We can record that Ax is visited whenever:

• at least one pick is in aisle αeven or in aisle αodd = αeven − 1

• no pick is made in aisles αeven and αodd and at least one pick is
made in any odd aisle βodd with βodd < αodd. At the same time no
pick is made in any aisle β with βodd < β < αodd and at least one
pick is made in any aisle α > αeven. Furthermore, the number of
picks in the aisles α < βodd must not exceed (n−2) and the number
of picks in aisles α ≤ βodd must be smaller than n.

Bullet point 1 states that Ax will be used if there are picks in the aisles
directly neighboring the decision point. Bullet point 2 is more complex.
It represents cases where Ax will only be passed in order to skip αodd,
αeven and α

odd
. This in turn will only happen if the last pick in aisles

smaller than αodd is done in an odd aisle and at least one pick is in any
aisle bigger than αeven. The odd aisle βodd will carry the picker to the
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upper cross aisle. The picker stays on that upper cross aisle until reaching
Ax as long as no even aisle will carry him back to the lower cross aisle.
The number of picks in aisles α ≤ βodd must be smaller than n because
for n the picker would return to the depot and never reach Ax. Because
at least one pick is done in aisle βodd and at least one pick is done in
α > αeven, there should be at most (n − 2) picks in aisles α < βodd.
Otherwise the picks in these aisles would combine to n and the picker
would return to the depot.

For further clarification, we discuss a small example, reconsidering figure
4.6. Let the number of picks be n = 4. We will focus on decision point
A2 which is located directly above aisle 6. Obviously there will a visit to
A2 if picks are located in aisles 5 or 6 (bullet point 1). If no picks are in
aisles 5 or 6, A2 will still be visited to skip the aisles (bullet point 2) in
the following cases:

• No picks in aisles 1 and 2: one pick in aisle 3 and three picks in
aisles 7 to 10 or two picks in aisle 3 and two picks in aisles 7 to 10
or three picks in aisle 3 and one pick in aisles 7 to 10.

• One pick in aisles 1 and 2: one pick in aisle 3 and two picks in aisles
7 to 10 or two picks in aisle 3 and one pick in aisles 7 to 10

• Two picks in aisles 1 and 2: one pick in aisle 3 and one pick in aisles
7 to 10.

We will now present a general approach to calculate the transition prob-
ability at decision point Ax. We define ΓAx

as the total number of cases
for which Ax is visited. Additionally, we define ΓAx|αnext �=αeven

as the
number of cases for which decision point Ax is visited and aisle αeven

is not visited. We can then calculate the transition probability, i.e. the
probability that aisle αeven is the next aisle entered by:

qAx,αeven
= 1 − ΓAx|αnext �=αeven

ΓAx

First, we calculate the number of cases with at least one pick in aisles
αodd or αeven as follows. We have to allocate y picks to αodd and αeven,
where y = (1, 2, ...n). With equation (4.2) this is

(

2h

y

)
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The binomial coefficient
(

n
k

)

equals 0 for n < k (Bronstein and Semend-
jajew 1991, p. 104). This reflects the assumption that at most h picks
can be located in one aisle. The remaining (n − y) picks are allocated to
the remaining(νh − 2h) segments:

(

νh − 2h

n − y

)

Combining all possibilities to split the picks on the aisles, we get:

n
∑

y=1

(

2h

y

)(

νh − 2h

n − y

)

(4.3)

Secondly, we also consider the cases, for which decision point Ax is visited
even though picks are neither located in αodd nor in αeven. Let z be the
number of picks in βodd and y be the picks in all aisles α < βodd. The
auxiliary variable o includes the information which odd aisle βodd was
used to travel to the upper cross aisle. For o = 1 the first odd aisle was
used, for o = 2 the second odd aisle was used and so forth. We can use
o to count for the number of aisles preceding βodd and distribute y picks
to these aisles α < βodd by:

(

2(o − 1)h

y

)

In aisle βodd we can distribute z picks according to:

(

h

z

)

The remaining (n − y − z) picks have to be distributed on all aisles
α > αeven:

(

h(ν − (2x + 2))

n − y − z

)

As discussed earlier the number of picks y must not exceed (n − 2) and
the combined number of picks (y + z) must be smaller than n.
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By combining all possibilities we get:

n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(

2(o − 1)h

y

)(

h

z

)(

h(ν − (2x + 2))

n − y − z

)

(4.4)

Overall, the number of cases ΓAx
for which decision point Ax is visited

can be calculated by adding up formulas (4.3) and (4.4):

ΓAx
=

n
∑

y=1

(

2h

y

)(

νh − 2h

n − y

)

+
n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(

2(o − 1)h

y

)(

h

z

)(

h(ν − (2x + 2))

n − y − z

)

(4.5)

for all x = 1, 2, 3, ..., ( ν
2 − 2). For x = 0 we only consider formula (4.3) as

A0 is never used for skipping aisles:

ΓA0
=

n
∑

y=1

(

2h

y

)(

νh − 2h

n − y

)

(4.6)

Next, we need to consider the cases for which aisle αeven is not entered.
This equals a situation in which a picker is standing at decision point Ax

with picks remaining but with no picks in aisles αeven or the succeeding
aisle (αeven + 1) = α

odd
= (2x + 3). αeven will not be entered if there

is a pick in an odd aisle βodd ≤ αodd, while at the same time no pick
is made in any aisle β with βodd < β < αodd and at least one pick is
made in any aisle α > α

odd
. The number of picks in aisles α ≤ βodd must

be smaller than n because for n the picker would return to the depot.
Because at least one pick is done in aisle βodd and at least one pick is
done in α > α

odd
, there should be at most (n−2) picks in aisles α < βodd.

Like before, let y be the picks in all aisles α < βodd and z be the picks
in βodd and o be an auxiliary variable to count for aisles preceding βodd.
We distribute y picks to aisles α < βodd in

(

2oh

y

)
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different ways. Simultaneously, we distribute z picks to βodd in
(

h

z

)

different ways. The remaining (n − y − z) picks are distributed to the
aisles α > α

odd
according to:

(

h(ν − (2x + 3))

n − y − z

)

Combining these three terms yields the number of cases for which αeven

is not entered at decision point Ax:

ΓAx|αnext �=αeven
=

n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=0

(

2oh

y

)(

h

z

)(

h(ν − (2x + 3))

n − y − z

)

(4.7)

ΓA0|αnext �=2 =
n−2
∑

y=0

n−1−y
∑

z=1

(

h

z

)(

h(ν − 3)

n − y − z

)

(4.8)

With this we can finally calculate the transition probability at decision
point Ax:

qAx,αeven
= 1 − ΓAx|αnext �=αeven

ΓAx

(4.9)

qA0,α=2 = 1 − ΓA0|αnext �=2

ΓA0

(4.10)

4.5.4 Transition Probabilities at within-aisle Decision
Points Bx

Decision points of type B can be found at the very last location of an
even aisle αeven, which is the location closest to the lower cross aisle.
For ν aisles, we thus have ( ν

2 − 1) decision points of type B. The picker
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has to decide whether to continue his picking tour or to return to the
depot. The latter is obviously the case if all n picks have been picked
in aisles α ≤ αeven. Again we number the decision points with indices
x = 0, 1, 2, 3, ...., ( ν

2 − 2). With this B0 is the last location of aisle 2, B1

is the last location of aisle 4 and generally Bx is the last location of aisle
αeven = (2x + 2) thus x = αeven−2

2 .

Bx

α
o

d
d

α
ev

e
n

α
o

d
d

Figure 4.8: Notations at decision point Bx

We visit decision point Bx whenever:

• at least one pick is done in aisle αeven

• no pick is made in aisle αeven and at least one pick is done in aisle
αodd and all other picks are done in aisles α < αodd

• no pick is made in αeven and at least one pick is made in any odd
aisle βodd < αeven, while at the same time no pick is made in any
aisle β with βodd < β < αeven and at least one pick is made in the
odd aisle α

odd
= αeven + 1

In order to calculate the number of cases ΓBx
for which decision point

Bx is visited we can use some of the formulas we derived for decision
points of type A. ΓAx

returns the number of different possibilities to be
at decision point Ax and ΓAx|αnext �=αeven

yields the number of cases to
be at decision point Ax and not enter the even aisle, but continue along
the cross aisle instead. Consequently the number of possibilities to enter
the even aisle and hence ΓBx

can be calculated by:

ΓBx
= ΓAx

− ΓAx|αnext �=αeven
(4.11)

77



4 Queueing Models of Manual Order Picking Systems

In order to obtain a transition probability, we have to know ΓBx|αnext=∅,
i.e. the number of cases for which decision Bx is visited and the picker
continues towards the return path. For this case, we have to distribute
n picks to all aisles α ≤ αeven = (2x + 2) with at least one pick in aisles
αodd or αeven. We can have y picks in these two aisles in

(

2h

y

)

different ways. We can distribute the remaining (n − y) picks to all aisles
preceding αodd in

(

2xh

n − y

)

different ways. ΓBx|αnext=∅ is obtained by considering all options to split
the n picks on the aisles:

ΓBx|αnext=∅ =
n

∑

y=1

(

2h

y

)(

2xh

n − y

)

(4.12)

ΓB0|αnext=∅ =
n

∑

y=1

(

2h

y

)

(4.13)

The transition probability at decision point Bx is then given by:

qBx,ReturnP ath =
ΓBx|αnext=∅

ΓBx

(4.14)

qB0,ReturnP ath =
ΓB0|αnext=∅

ΓA0
− ΓA0|αnext �=2

(4.15)

4.5.5 Transition Probabilities at Lower Cross Aisle
Decision Points Cx

For ν aisles an order picking system has ( ν
2 −1) decision points of type C.

The decision points are located on the lower cross aisle segments immedi-
ately in front of an odd aisle αodd. The decision points are numbered with
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indices x = 1, 2, 3, ..., ( ν
2 − 2) thus decision point C1 is located directly

in front of aisle 3, decision point C2 is located directly in front of aisle
5 and generally decision point Cx is located immediately in front of the
odd aisle αodd = 2x + 1 thus x = αodd−1

2 . Decision point C0 is located
right after the depot and is visited for every order.

Cx
α

o
d

d

α
ev

e
n

α
ev

e
n

Figure 4.9: Notations at decision point Cx

Like for the other decision points, we need to determine the number
of possible pick allocations leading to a visit of Cx. This will happen
whenever:

• all picks are located in aisles α > αeven

• no pick is made in aisle αodd and at least one pick is made in any
even aisle βeven < αodd, while at the same time no pick is made in
any aisle β with βeven < β < αodd and at least one pick is made in
any aisle α > αodd. Furthermore the number of picks in the aisles
α < βeven must not exceed (n−2) and the number of picks in aisles
α ≤ βeven must be smaller than n.

• at least one pick is done in aisle αodd and at least one pick is done
in aisles α < αodd and there might be picks in aisles α > αodd.

The first case can be formulated straightaway. We have to distribute all
n picks to the aisles α > αeven and this can be done in

(

h(ν − 2x)

n

)

(4.16)

different ways.

79



4 Queueing Models of Manual Order Picking Systems

For the second case, let z be the number of picks in aisle βeven and y
be the number of picks in aisles α < βeven. Again we use the auxiliary
variable o to count for the number of aisles preceding βeven. We can then
distribute y picks to these aisles α < βeven in

(

(2o − 1)h

y

)

different ways. At the same time we find z picks in aisle βeven in
(

h

z

)

different ways. As we have no picks for aisle αodd we have to allocate the
remaining (n − y − z) picks to the remaining aisles α > αodd and can do
this in in

(

h(ν − (2x + 1))

n − y − z

)

different ways. We can combine the three terms of case 2 and get:

n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(

(2o − 1)h

y

)(

h

z

)(

h(ν − (2x + 1))

n − y − z

)

(4.17)

In the last case we have at least one pick in aisles α < αodd and we can
distribute the z picks in

(

2xh

z

)

different ways. At the same time we have y picks in the aisles α > αodd

and depending on x and there are
(

h(ν − (2x + 1))

y

)

different possibilities to do so. Finally the remaining (n − y − z) picks
are located in aisle αodd and for this we find

(

h

n − y − z

)
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different possibilities. The three terms of case 3 then combine to:

n−2
∑

y=0

n−1−y
∑

z=1

(

2xh

z

)(

h(ν − (2x + 1))

y

)(

h

n − y − z

)

(4.18)

We combine formulas (4.16), (4.17) and (4.18) to obtain the number of
cases ΓCx

for which decision point Cx is visited:

ΓCx
=

(

h(ν − 2x)

n

)

+
n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(

(2o − 1)h

y

)(

h

z

)(

h(ν − (2x + 1))

n − y − z

)

+
n−2
∑

y=0

n−1−y
∑

z=1

(

2xh

z

)(

h(ν − (2x + 1))

y

)(

h

n − y − z

)

(4.19)

for all x = 1, 2, 3, ..., ( ν
2 − 2). Decision point C0 is always visited, i.e. for

all possible allocations of picks:

ΓC0
=

(

hν

n

)

(4.20)

The reader might wonder why formula (4.19) is slightly more complicated
than formula (4.5) for decision points A even though decision points A
and C seem to be logically related to each other. For decision point A we
were able to assume that it is visited either when there is at least one pick
in the corresponding aisles or in the aisles α < αeven. This assumption
does not hold for decision point C as there might be cases when the
picker has finished his order after aisle αeven. Such cases are considered
by decision point B though and in order to avoid double counts, the
procedure for decision point C is differed, resulting in a formula slightly
more complicated.

Building on formula (4.19), we can derive a transition probability by con-
sidering those cases for which the aisle αodd is not entered, thus skipping
aisles αodd and αeven. This occurs for the following two cases:
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• all picks are done in aisles α > αeven

• no picks are made in aisles αodd or αeven and at least one pick is
made in any even aisle βeven < αodd, while at the same time no pick
is made in any aisle β with βeven < β < αodd and at least one pick
is made in any aisle α > αeven. Furthermore the number of picks
in the aisles α < βeven must not exceed (n − 2) and the number of
picks in aisles α ≤ βeven must be smaller than n.

The first case can be quantified by calculating

(

h(ν − (2x + 2)

n

)

(4.21)

The second case is derived according to previous considerations. Let z be
the number of picks in aisle βeven, let y be the picks in all aisles α < βeven

and let (n − y − z) be the number of picks in aisles α > αeven. Then we
can identify

n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(

(2o − 1)h

y

)(

h

z

)(

h(ν − (2x + 2))

n − y − z

)

(4.22)

different possibilities to allocate the picks.

Combining formulas (4.21) and (4.22) results in the overall number of
cases ΓCx|αnext �=αodd

, for which decision point Cx is visited and the picking
route is continuing along the lower cross aisle:

ΓCx|αnext �=αodd
=

(

h(ν − (2x + 2)

n

)

+
n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(

(2o − 1)h

y

)(

h

z

)(

h(ν − (2x + 2))

n − y − z

)

(4.23)

For x = 0, we only consider formula (4.21) as there can not be picks in
aisles α < αodd:

ΓC0|αnext �=1 =

(

h(ν − 2)

n

)

(4.24)
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We calculate the transition probability at decision point Cx according to:

qCx,αodd
= 1 − ΓCx|αnext �=αodd

ΓCx

(4.25)

qC0,α=1 = 1 − ΓC0|αnext �=1

ΓC0

(4.26)

4.6 Modeling of One-Way Traversal Routing
for within-aisle Class-Based Storage Policy

Besides the random storage policy, we will also analyze systems in which
items are stored according to their picking frequency. The transition
probabilities qj,i and thus visit ratios ei should change accordingly be-
cause some parts of the system will be visited more often than others. We
will consider a class-based storage policy with LCB classes as described
in chapter 2.3.1. The storage policy will be within-aisle, i.e. the most
popular class will be in the leftmost aisles, i.e. the aisles closest to the
depot and the least popular class will be in the rightmost aisles, i.e. the
aisles farthest from the depot.

4.6.1 Extensions of the Random Storage Policy Models

As the structure of the order picking system remains unchanged, so do
predefined movements for class-based storage. For non-predefined move-
ments at the decision points, we will again use the approach of counting
cases which result in a certain movement of the picker. Again we apply
the urn model of Johnson and Kotz (1977, p. 2) as described on page
71. In contrast to random storage policy we now have to incorporate the
fact that some segments have a higher probability of being selected. We
achieve this by introducing the concept of virtual aisle segments.

83



4 Queueing Models of Manual Order Picking Systems

Introduction of Virtual Aisle Segments

Again we consider an urn model containing n black balls and w white
balls with n + w = νh. We choose without replacement and the draw
determines if a segment is selected for picking (black balls) or non-picking
(white balls). In order to increase the probability to allocate a black ball
to segment i we create j virtual segments and j extra white balls. We
treat the event of allocating a black ball to any of the j virtual segments
as if the black ball was allocated to segment i.

Figure 4.10 illustrates an example of this logic. For two aisles with two
segments each and one pick, the probability that the pick will be in aisle
1 equals 1

2 . After we add two virtual segments and two white balls (non-
picks) to the urn and treat the virtual segments as if they belonged to aisle
1, the probability will increase to 2

3 . Thus we have virtually increased
the size of aisle 1 by introducing new virtual aisle segments.

Aisle 1 Aisle 2

Urn

Aisle 1 Aisle 2

Urn

Figure 4.10: Concept of virtual aisle segments - example

If we apply this concept to aisle α, the number of segments is virtually
increased from h to hα, i.e. hα is the number of segments in the virtual
aisle. We now present a general approach to derive this number as a
function of the size and picking frequencies of the respective classes and
the original number of segments per aisle h.

Let γp,seg be the percentage of segments belonging to class γ. Assuming
that each segment is assigned to only one class, we can calculate the
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absolute number of segments γseg belonging to class γ by:

γseg = ⌈γp,seg · ν · h⌉ (4.27)

For the last class LCB we have:

LCB
seg = ν · h −

∑

∀γ �=LCB

γseg (4.28)

Let γp,picks be the percentage of picks done in class γ. We introduce an
auxiliary variable γvirtual, which represents a multiplying factor used to
increase the aisle to its virtual size. As we do not convert the number of
segments in the last class we define

LCB
virtual = 1

Using formulas (4.27) and (4.28), we can calculate γvirtual for all remain-
ing classes:

γvirtual =
LCB

seg · γp,picks

LCB
p,picks

γseg

(4.29)

The term γp,picks

LCB
p,picks

indicates how much more likely a pick from class γ is in

comparison to a pick from class LCB . We obtain the number of segments
that will cover class γ by multiplying this with LCB

seg . Division by γseg

will result in the multiplying factor γvirtual.

We can use γvirtual to calculate the number of segments in the virtual
aisle hi. Starting with the leftmost aisle, we determine how many of the
segments of that aisle belong to a certain class. There are three different
cases:

• Case 1: the number of segments in the A-class equals the number
of segments in that aisle, i.e. Aseg = h. We can then calculate hi

by:
hi = Avirtual · h

• Case 2: the number of segments in the A-class is smaller than
the number of segments in that aisle, i.e. Aseg < h. We will

85



4 Queueing Models of Manual Order Picking Systems

immediately share the aisle with the next class and calculate hi

according to:

hi = Avirtual · Aseg + Bvirtual · (h − Aseg)

• Case 3: the number of segments in the A-class is bigger than the
number of segments in that aisle, i.e. Aseg > h. We then have to

distribute the class segments to several aisles. ⌊ Aseg

h
⌋ aisles will be

exclusively of class A. The remaining locations Aseg,rem = (Aseg −
⌊ Aseg

h
⌋ ·h) will share an aisle with segments of the B-class. For that

shared aisle hi will be calculated by:

hi = Avirtual · Aseg,rem + Bvirtual · (h − Aseg,rem)

• Note that in cases 2 and 3 we implicitly assumed that the shared
aisle holds at most two different classes. It can occur though that
Bseg will not be enough to fill the shared aisle so we have to start
adding segments of another class. We simply have to repeat the
procedures of cases 2 and 3 until the aisle is completely filled. For
example, three clases in an aisle will result in:

hi = Avirtual · Aseg + Bvirtual · Bseg + Cvirtual · (h − Aseg − Bseg)

Generally, for j classes in an aisle, we get:

hi =
∑

∀k≤(j−1)

kvirtual · kseg + jvirtual · (h −
∑

∀k≤(j−1)

kseg)

We repeat this procedure until all aisles have been extended from their
original size h to their virtual size hi.

Example for Virtual Aisle Segments

We present an example to illustrate the procedure by considering an order
picking system with ν = 6 and h = 4. Three classes with the following
characteristics are introduced:

Ap,picks = 60% Ap,seg = 16.6̄%
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Bp,picks = 30% Bp,seg = 33.3̄%

Cp,picks = LCB
p,picks = 10% Cp,seg = LCB

p,seg = 50%

With (4.27) and (4.28) we get:

Aseg = ⌈1

6
· 6 · 4⌉ = 4 Bseg = ⌈1

3
· 6 · 4⌉ = 8 Cseg = 24 − 4 − 8 = 12

We calculate Avirtual according to:

Avirtual =
LCB

seg · Ap,picks

LCB
p,picks

Aseg

=
12 · 0.6

0.1

4
= 18

In the same way we obtain Bvirtual:

Bvirtual =
LCB

seg · Bp,picks

LCB
p,picks

Bseg

=
12 · 0.3

0.1

8
= 4.5

As the C-class is the last class we define:

Cvirtual = 1

We can now calculate the length of the virtual aisles. Starting with aisle
1, we find that Aseg = 4 = h (Case 1) leading to:

h1 = Avirtual · h = 18 · 4 = 72

For aisle 2 we find that Bseg = 8 > 4 = h (Case 3) and consequently

distribute the class on ⌊ Bseg

h
⌋ = 8

4 = 2 aisles with Bseg,rem = 0. Hence
we have:

h2 = Bvirtual · h = 4.5 · 4 = 18

h3 = Bvirtual · h = 4.5 · 4 = 18

For the final class we use Cvirtual = 1 and get:

h4 = h5 = h6 = Cvirtual · h = 1 · 4 = 4
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Overall we have

ν
∑

i=1

hi = 72 + 18 + 18 + 4 + 4 + 4 = 120

For n = 1 the probability to have that pick in aisle 1 is

(

72
1

)

(

120
1

) =
72

120
= 0.6

which equals the original Ap,picks = 60%. For n = 2 the probability to
have two picks in aisle 1 is

(

72
2

)

(

120
2

) =
2556

7140
= 0, 3579 < 0, 36 = 0, 6 · 0, 6

This result confirms a basic assumption stemming from of our original
urn model. If the first ball selected has a 60% chance to be black then
the probability of the second ball being black will be slightly lower than
60% as we choose without replacement.

We should note that the above formulas for γvirtual and hi might not al-
ways result in integer values. However, the binomial coefficient is defined
for integer values only. Therefore we need to either round up or round
down. This step can result in minor modeling inaccuracies. Experiments
have shown that the accuracy improvement is negligible, thus we hold on
to the presented procedure.

In order to calculate the transition probabilities at decision points Ax,
Bx and Cx we will again use the approach of counting the number of
pick allocations which will lead to a visit of a certain decision point (see
chapter 4.5). From this number we will then select those cases which
result in a certain movement of the picker. The urn model of Johnson
and Kotz (1977, p. 2) is combined with the virtual aisle segments hi to
consider the fact that some segments have a higher probability of being
selected. Basically we reuse the formulas of chapter 4.5 as the logic of
allocating picks remains unchanged. We just incorporate hi in all terms
where h was used.
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4.6.2 Transition Probabilities at Upper Cross Aisle
Decision Points Ax

We use the cross aisle at decision point Ax whenever we have at least one
pick in the adjacent aisles αodd or αeven or if we skip those aisles after
having used an odd aisle βodd < αodd. αodd will carry index (2x + 1) and
αeven will be denoted by index (2x + 2). For the first case we allocate y
picks to αodd and αeven:

n
∑

y=1

(

h2x+1 + h2x+2

y

)

s.t. y ≤ 2h

The remaining (n − y) picks will be allocated to all other aisles:
(∑ν

i=1 hi − h2x+1 − h2x+2

n − y

)

s.t. n − y ≤ h(ν − 2)

We consider all possible combinations according to:
n

∑

y=1

(

h2x+1 + h2x+2

y

)(∑ν
i=1 hi − h2x+1 − h2x+2

n − y

)

(4.30)

For the second case (skipping αodd and αeven) we reuse formula (4.4) and
get:

n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(∑2(o−1)
i=1 hi

y

)(

h2o−1

z

)(∑ν
i=2x+3 hi

n − y − z

)

(4.31)

There are three necessary conditions for formula (4.31):

y ≤ h(2o − 2) z ≤ h (n − y − z) ≤ h(ν − (2x + 2))

We add up formulas (4.30) and (4.31) to calculate the number of cases
ΓCB

Ax
for which decision point Ax is visited:

ΓCB
Ax

=
n

∑

y=1

(

h2x+1 + h2x+2

y

)(∑ν
i=1 hi − h2x+1 − h2x+2

n − y

)

+
n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(∑2(o−1)
i=1 hi

y

)(

h2o−1

z

)(∑ν
i=2x+3 hi

n − y − z

)

(4.32)
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For x = 0 we only consider formula (4.30) as A0 is never used for skipping
aisles and get:

ΓCB
A0

=
n

∑

y=1

(

h2x+1 + h2x+2

y

)(∑ν
i=1 hi − h2x+1 − h2x+2

n − y

)

(4.33)

Next we consider the cases ΓCB
Ax

for which Ax is visited but aisle αeven

is not entered. We reuse formula (4.7) and calculate the number of cases
ΓCB

Ax|αnext �=αeven
as follows:

ΓCB
Ax|αnext �=αeven

=
n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=0

(∑2o
i=1 hi

y

)(

h2o+1

z

)(∑ν
i=2x+4 hi

n − y − z

)

(4.34)

ΓCB
A0|αnext �= 2 =

n−2
∑

y=0

n−1−y
∑

z=1

(

h1

z

)( ∑ν
i=4 hi

n − y − z

)

(4.35)

Formula (4.34) is valid if the following conditions hold:

y ≤ h(2o) z ≤ h (n − y − z) ≤ h(ν − (2x + 3))

With this we calculate the transition probabilities at decision point Ax

by:

qCB
Ax,αeven

= 1 −
ΓCB

Ax|αnext �=αeven

ΓCB
Ax

(4.36)

qCB
A0,α=2 = 1 −

ΓCB
A0|αnext �=2

ΓCB
A0

(4.37)

4.6.3 Transition Probabilities at within-aisle Decision
Points Bx

Again we can use the approach presented for random storage. We sub-
tract formula (4.34) from formula (4.32) to calculate the total number of
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cases ΓCB
Bx

for which decision point Bx will be visited:

ΓCB
Bx

= ΓCB
Ax

− ΓCB
Ax|αnext �=αeven

(4.38)

ΓCB
B0

= ΓCB
A0

− ΓCB
A0|αnext �=αeven

(4.39)

We can easily derive the number of cases ΓCB
Bx|αnext=∅ for which Bx is

visited and all n picks have been done, i.e. the picker returning to the
depot. This is the case if we have at least one pick in aisle αeven or aisle
αodd = (αeven − 1) while the remaining (n − y) picks are located in aisles
α < αodd. Again, αodd will carry index (2x + 1), αeven will be denoted
by index (2x + 2). The number of cases is given by:

ΓCB
Bx|αnext=∅ =

n
∑

y=1

(

h2x+1 + h2x+2

y

)(∑2x
i=1 hi

n − y

)

(4.40)

ΓCB
B0|αnext=∅ =

n
∑

y=1

(

h1 + h2

y

)

(4.41)

For (4.40) we have the following conditions:

y ≤ 2h (n − y) ≤ 2xh

The transition probability at decision point Bx is then given by:

qCB
Bx,ReturnP ath =

ΓCB
Bx|αnext=∅

ΓCB
Ax

− ΓCB
Ax|αnext �=αeven

(4.42)

qCB
B0,ReturnP ath =

ΓCB
B0|αnext=∅

ΓCB
A0

− ΓCB
A0|αnext �= 2

(4.43)
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4.6.4 Transition Probabilities at Lower Cross Aisle
Decision Points Cx

The number of cases for which decision point Cx is visited can be derived
from formulas (4.16), (4.17) and (4.18). In case 1 all n picks are located
in aisles α > αeven and we consider this by the term:

(∑ν
i=2x+1 hi

n

)

(4.44)

The decision point is also visited if no pick is done in aisle αodd and the
last pick to the left of αodd was done in an even aisle and at least one
pick is done in an aisle α > αodd. We record those cases with:

n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(∑2o−1
i=1 hi

y

)(

h2o

z

)(∑ν
i=2x+2 hi

n − y − z

)

(4.45)

and require the following conditions for (4.45):

y ≤ h(2o − 1) z ≤ h (n − y − z) ≤ h(ν − (2x + 1))

Finally we visit the decision point if at least one pick is done in αodd and
at least one pick is done in aisles α < αodd and some picks might be in
aisles α > αodd. Those cases are included in:

n−2
∑

y=0

n−1−y
∑

z=1

(∑2x
i=1 hi

z

)(∑ν
i=2x+2 hi

y

)(

h2x+1

n − y − z

)

(4.46)

The conditions for (4.46) are:

z ≤ 2xh (n − y − z) ≤ h y ≤ h(ν − (2x + 1))
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We combine all these cases to get the total number of possibilities to visit
decision point Cx:

ΓCB
Cx =

(∑ν
i=2x+1 hi

n

)

+
n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(∑2o−1
i=1 hi

y

)(

h2o

z

)(∑ν
i=2x+2 hi

n − y − z

)

+
n−2
∑

y=0

n−1−y
∑

z=1

(∑2x
i=1 hi

z

)(∑ν
i=2x+2 hi

y

)(

h2x+1

n − y − z

)

(4.47)

For the special case x = 0, there is no aisle left of αodd for x = 0:

ΓCB
C0 =

(∑ν
i=1 hi

n

)

+
n−2
∑

y=0

n−1−y
∑

z=1

(∑ν
i=2 hi

y

)(

h1

n − y − z

)

(4.48)

In the last step, we consider the number of cases for which Cx is visited
but the aisle αodd is not entered. First we count the cases for which all
items are located in aisles α > αeven:

(∑ν
i=2x+3 hi

n

)

(4.49)

In addition we also consider cases where the decision point is used to skip
the adjacent aisles, i.e. the last pick to the left of aisle αodd is done in
an even aisle and at least one pick is done in aisles α > αeven. Adapting
formula (4.22), we get:

n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(∑2o−1
i=1 hi

y

)(

h2o

z

)(∑ν
i=2x+3 hi

n − y − z

)

(4.50)

with conditions:

y ≤ h(2o − 1) z ≤ h (n − y − z) ≤ h(ν − (2x + 2))
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The overall number of cases ΓCx|αnext �=αodd
to be at decision point Cx

and continuing along the lower cross aisle can be derived according to:

ΓCB
Cx|αnext �=αodd

=

(∑ν
i=2x+3 hi

n

)

+
n−2
∑

y=0

n−1−y
∑

z=1

x
∑

o=1

(∑2o−1
i=1 hi

y

)(

h2o

z

)(∑ν
i=2x+3 hi

n − y − z

)

(4.51)

ΓCB
C0|αnext �=1 =

(∑ν
i=3 hi

n

)

(4.52)

Finally the transition probability at decision point Cx is obtained by:

qCB
Cx,αodd

= 1 −
ΓCB

Cx|αnext �=αodd

ΓCB
Cx

(4.53)

qCB
C0,α=1 = 1 −

ΓCB
C0|αnext �=1

ΓCB
C0

(4.54)

4.7 Modeling of Order Picking Times

We will finalize the derivation of the queueing model input parameters
by transferring the total order picking time into the input parameters at
the respective queueing systems. According to Caron et al. (1998, p.
714), Roodbergen (2001, p. 16), Gudehus (2005, p. 761) or Arnold and
Furmans (2009, p. 218) the total order picking time tOP T consists of the
following components:

• Travel Time tT ravel, which includes the necessary time to walk or
drive between picking segments including all cross aisle travel as
well as all travel to and from the depot.

• Picking Time tpick, which includes all necessary activities at a pick-
ing segment:
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– picking an arbitrary quantity of items from two opposite rack
columns which can be accessed from the same segment.

– picking items of different handling complexity, e.g. different
size and weight.

– all necessary administrative activities at the picking segment,
e.g. searching for correct bin, depositing of items onto a han-
dling equipment device, etc.

• Administrative Time tDepot, which includes all necessary activities
to deposit a finished order and receive a new one at the depot. This
also includes all necessary setup activities.

The total order picking time tOP T can be described by the following
formula:

tOP T = tDepot +
n

∑

i=1

tP ick,i + tT ravel,i

Obviously the administrative time tDepot only occurs at the depot, while
tP ick only occurs at picking segments within the aisles and tT ravel occurs
at every segment of the order picking system, i.e. in every queueing
system of the queueing network. Before explicitly allocating these time
components to the resources of an order picking system (see chapter 4.3)
we will consider some general statistical characteristics of times in manual
order picking systems.

4.7.1 Statistical Distributions for Times in Manual Order
Picking Systems

Most algorithms for the exact solution or approximation of closed queue-
ing networks with blocking assume exponentially distributed service
times. With this assumption the system analysis tends to be less com-
plicated. However, in real-life systems generally distributed service times
are often regarded as a more realistic assumption (Balsamo, de Nitte Per-
soné and Onvural 2001, p. 5).

Murrell (1962), Dudley (1963), Knott and Sury (1987) and Rall (1998,
p.33) state that the distributions of manual work times are typically
right-skewed. In particular, Turek and Krengel (2008, p. 5) analyzed op-
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erations in manual order picking systems and successfully approximated
empirical data by log-normal distributions. They observed coefficients of
variation4 between 0.2 and 0.5 which is in line with the findings of Mur-
rell (1962). Schmidt et al. (2010) focus on manual operations in logistics
systems and report similar results.

We assume that the picking time tP ick has a logarithmic normal distribu-
tion (log-normal distribution). The distribution is closely related to the
well known normal distribution, as a random variable X has a log-normal
distribution if its logarithm ln(X) has a normal distribution. Random
variable X ∼ LN (μ, σ2) has the following probability density function:

f(x) =

{

1√
2π·σ · 1

x
· e− (ln x−μ)2

2σ2 if x > 0

0 if x ≤ 0

The expected value and variance are defined as:

E(X) = eμ+ 1
2 σ2

(4.55)

V ar(X) = (eσ2 − 1) · e2μ+σ2

(4.56)

Vice versa, μ and σ2 are defined as:

μ = ln(E(X)) − 1

2
ln

(

1 +
V ar(X)

E(X)2

)

(4.57)

σ2 = ln

(

1 +
V ar(X)

E(X)2

)

(4.58)

Figure 4.11 shows the probability density function of X with E(X) = 10
and V ar(X) = 50, i.e. variability c2 = 0.5.

The shape of the density function reflects some important observations
we can make in manual order picking systems:

4The coefficient of variation is a measure of spread that normalizes the standard de-
viation over the mean service time. It is widely used in existing queueing theoretic
solution and approximation algorithms.
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Figure 4.11: Density of a log-normal distribution

• No negative working times will occur and the density assumes pos-
itive values for positive realizations only.

• For each activity in the picking system we will have a minimum
working time. Thus the mode of the distribution will not come for
values close to zero but for values closer to the mean value.

• Considering the mode of the distribution of working times, there is
a higher potential for time values to deviate upwards than to de-
viate downwards. In real-life systems, times larger than the mode
are feasible and might include extra work, e.g. opening of pack-
ages or administrating a missing parts situation. Times lower than
the mode happen rarely. This observation is mirrored in the right
skewness of the log-normal distribution.

• Depending on the scope of different activities, the variability of the
working time can have different values and does not necessarily have
to be equal to 1.

In the following we will assume that both the administrative time tDepot

and the picking time tP ick follow a log-normal distribution. Consequently
in our queueing model each system representing the depot or a segment
within the aisle will have generally distributed service times ts. We need
to characterize each queueing system i with a service rate μi and a vari-
ability c2

i . According to Arnold and Furmans (2009, p. 21) we can use the
mean value E(ts) and variance V ar(ts) to calculate the input parameters
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for queueing system i as:

μi =
1

E(ts,i)
c2

i =
V ar(ts,i)

E(ts,i)2
(4.59)

4.7.2 Service Time at the Depot

In chapter 4.3 we defined that the depot was represented by one segment
which in turn was modeled as one elementary queueing system. The
activities to pass through this system thus includes both travel and the
administrative activities. While the latter will be generally distributed,
we will assume constant travel times within the whole system. Therefore
the travel time at the depot tT ravel will be a deterministic variable T
with:

E(T ) =
Length of one segment

Picker Velocity
V ar(T ) = 0

The administrative time tDepot will be modeled by a random variable D
with D ∼ LN (μD, σ2

D). Note that the expected value E(D) and variance
V ar(D) can be derived using formulas (4.55) and (4.56). The overall
service time at the depot ts,Depot will be the sum of travel time and
administrative time:

ts,Depot = tT ravel + tDepot

The expected value is given by:

E(ts,Depot) = E(T ) + E(D)

Because the variables are independent we get:

V ar(ts,Depot) = V ar(T ) + V ar(D) = V ar(D)

Ultimately we obtain the service time input parameters for the depot by
using formulas (4.59):

μDepot =
1

E(ts,Depot)
=

1

E(T ) + E(D)
(4.60)

c2
Depot =

V ar(ts,Depot)

E(ts,Depot)2
=

V ar(D)

[E(T ) + E(D)]2
(4.61)
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4.7.3 Service Time at a Cross Aisle

Each segment of the cross aisle will be modeled by an elementary queueing
system. At a cross aisle pickers will never pick but just travel. We define
the travel time tT ravel as a deterministic variable T with:

E(T ) =
Length of one segment

Picker Velocity
V ar(T ) = 0

Thus the service time at a cross aisle ts,CA equals the travel time tT ravel

and the expected value will be:

E(ts,CA) = E(T )

The input parameters for the queueing model are then easily derived:

μCA =
1

E(ts,CA)
=

1

E(T )
(4.62)

c2
CA =

V ar(ts,CA)

E(ts,CA)2
=

V ar(T )

E(T )2
=

0

E(T )2
= 0 (4.63)

4.7.4 Service Time within an Aisle

The service time at each within-aisle queueing system has to include both
travel time and picking time. As before, the travel time tT ravel will be
defined by a deterministic variable T . The duration of the picking process
is influenced by two factors: the stopping probability pstop,i, indicating
the probability that a picker has to stop and pick items at segment i
and the stochastic picking time tpick,i. The service time within an aisle
generally is:

ts,W A = tT ravel + pstop,i · tpick,i (4.64)

We will derive the service time ts,W A based on a sample set of orders.
Let xi,j be a binary variable that indicates whether a pick has to be done
at segment i for order number j. An arbitrary set of M orders is given
by:
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Segments
1 2 3 4 ... νh − 2 νh − 1 νh

Orders

1 0 1 0 1 ... 0 0 1
2 0 0 0 1 ... 1 0 1
3 1 1 0 0 ... 0 0 0
4 0 1 0 1 ... 1 1 0
... ... ... ... ... ... ... ... ...

M − 2 1 0 1 0 ... 0 1 0
M − 1 0 0 1 0 ... 0 1 1

M 0 0 0 0 ... 1 0 0

As each order has exactly n picks, we can define the following constraint:

νh
∑

i=1

xi,j = n ∀j = 1, 2, ..., M

If we assume a random storage policy, we can calculate the probability
that a pick occurs at segment i, according to:

ppick,i =

∑M
j=1 xi,j

M
=

n

νh
∀i = 1, 2, ..., νh (4.65)

If a class-based storage policy with classes (A,B,C,...,LCB) is in use, the
probability that a pick occurs at segment i in an arbitrary order is given
by:

ppick,i =

∑M
j=1 xi,j

M
=

γp,picks · n

γp,seg · νh
∀i = 1, 2, ..., νh (4.66)

For both storage location assignment policies, we have n picks per order,
thus:

νh
∑

i=1

ppick,i = n

Formulas (4.65) and (4.66) equal the probability to actually stop at seg-
ment i only if all segments of the system are visited in one order picking
tour. Thus, to determine the stopping probability pstop,i, we also have to
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include the visit ratios ei into our considerations, because they include
the information on how often a segment is visited in relation to the num-
ber of visits at the depot. The stopping probability will be calculated
according to:

pstop,i = ppick,i · 1

ei

For better understanding, imagine an order picking system with 10 aisles
and traversal routing policy with aisle skipping. Let us assume that aisle
10 holds items of the C-class and let the above formulas result in very
low probabilities ppick,i for the segments in aisle 10. If an order picker
actually visits aisle 10, he has pick(s) in aisle 9 and/or 10. Otherwise he
would never had entered aisle 10 in the first place. Consequently in this
case the probability to stop and pick at a segment in aisle 10 is much
higher than simply the probability that a segment of aisle 10 is on an
arbitrary order.

For random storage policy, we can therefore define the expected value of
the stopping probability as:

E(pstop,i) =
n

νh
· 1

ei

∀i = 1, 2, ..., νh (4.67)

For class-based storage policy, we get:

E(pstop,i) =
γp,picks · n

γp,seg · νh
· 1

ei

∀i = 1, 2, ..., νh (4.68)

As xi,j is a binary variable we can obtain the variance V ar(pstop,i) by
using the second moment:

E(p2
stop,i) = 12 · pstop,i + 02 · (1 − pstop,i) = pstop,i

The variance is given by:

V ar(pstop,i) = E(p2
stop,i) − E(pstop,i)

2

Thus for random storage we have:

V ar(pstop,i) =
n

νh
· 1

ei

−
(

n

νh
· 1

ei

)2

(4.69)
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For class-based storage we have:

V ar(pstop,i) =
γp,picks · n

γp,seg · νh
· 1

ei

−
(

γp,picks · n

γp,seg · νh
· 1

ei

)2

(4.70)

The stochastic picking time tpick,i is given by a random variable P with
P ∼ LN (μP , σ2

P ). We assume that E(P ) and V ar(P ) are known from
an empirical analysis using a suitable methodology, e.g. REFA or MTM
(Schlick et al. 2010, p. 664).

In order to obtain the service time ts,W A as defined in formula (4.64)
we need to handle a product of two random variables, namely pstop,i ·
tpick,i. We can assume that these two variables are independent, because
the length of an arbitrary picking activity itself does not depend on the
decision to pick or not. For a specific visit to segment i the picking time
will be 0 if xi,j = 0 because then xi,j · tpick,i = 0.

The expected value of the product of two independent random variables
is easily calculated by (Fahrmeir et al. 2003, p. 245):

E(X · Y ) = E(X) · E(Y )

and thus:

E(pstop,i · P ) = E(pstop,i) · E(P ) (4.71)

The variance of a product of two independent random variables is given
by (Goodman 1960):

V ar(X · Y ) = V ar(X) · V ar(Y ) + E(X)2 · V ar(Y ) + E(Y )2 · V ar(X)

and thus:

V ar(pstop,i · P ) = V ar(pstop,i) · V ar(P ) (4.72)

+E(pstop,i)
2 · V ar(P ) + E(P )2 · V ar(pstop,i)

To fully characterize the overall service time, the travel time tT ravel is
added and we get:

E(ts,W A) = E(T ) + E(pstop,i) · E(P )
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The travel time is independent from any picking activity and therefore:

V ar(ts,W A) = V ar(T ) + V ar(pstop,i · P )

The input parameters for the queueing model are now fully defined as:

μW A =
1

E(ts,W A)
=

1

E(T ) + E(pstop,i) · E(P )
(4.73)

c2
W A =

V ar(ts,W A)

E(ts,W A)2
=

V ar(T ) + V ar(pstop,i · P )

[E(T ) + E(pstop,i) · E(P )]2
(4.74)

For different segments i within an aisle we can assume different charac-
teristics values μP and σ2

P . Thus different segments can potentially have
different service times and the model enables to consider different item
quantities as well as various sizes and weights.

4.8 Validation of Traversal Routing Policy and

Service Time Calculation

For the purpose of validating our formulas, we applied them to a range
of different order picking systems. The values calculated by the formulas
were compared to the results of simulation. We combined several spec-
ifications of aisles (6,8,10,12,14,16), warehouse shape factors5 ( 1

3 , 2
3 ,1),

pick densities6 (5%,10%,20%) and storage location assignment policies
(random storage, medium-skewed class-based-storage and high-skewed
class-based storage) for a total of 162 experiments.

All experiments were simulated with 50 replications, each over a period
of 50 days. Both factors play a key role in obtaining valid results from
a simulation model. According to Hillier (1997, p. 773), it is impossible

5Following existing literature (e.g. (Petersen 1997, p. 1103) or (Hwang, Oh and Lee
2004, p. 3883)), the warehouse shape factor is defined as the ratio between length
L and width W of the order picking system.

6A pick density of 5% states that on each tour an order picker has to stop at 5
locations in a system with 100 locations.
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to assess a generally valid number of replications. The simulation time
is of paramount importance as each system requires a certain time until
it has reached a steady state. We should further note that in contrast to
aggregated values such as throughput, the routing and service time pa-
rameters appear not to be as robust with respect to the simulation time7

(Rall 1998, p. 142). We chose 50 for both repetitions and simulation days
and found that a further increase will only marginally improve accuracy.
Hence 50 is a good compromise between accuracy and computational
effort.

We briefly review our analysis steps for the parameter service times. For
each of the 162 experiments, we first calculate the mean error for each
individual node i = 1, 2, ..., N according to:

εE(ts,W A,i) =
E(ts,W A,i) − ts,W A,Simulation,i

ts,W A,Simulation,i

We then calculate the mean error over all N nodes in the respective
experiment by:

ε̄E(ts,W A) =

∑N
i=1 εE(ts,W A,i)

N

Solely using this formula might result in negative and positive errors of
the individual nodes leveling each other, falsely suggesting an accurate
result. Therefore, we also calculate a 99%-confidence interval for the
mean error using8:

Lower Bound: ε̄E(ts,W A)−2.5758·

√

1
N−1 · ∑N

i=1(εE(ts,W A,i) − ε̄E(ts,W A))2

N

Upper Bound: ε̄E(ts,W A)+2.5758·

√

1
N−1 · ∑N

i=1(εE(ts,W A,i) − ε̄E(ts,W A))2

N

7In our models this is especially true whenever we have segments that are very rarely
visited (e.g. class C). Consequently it takes relatively long until a sufficient number
of events have taken place at this segment, ensuring a steady state value of the
parameter.

8As all experiments have at least N > 30 nodes, an approximative confidence interval
is used (Fahrmeir et al. 2007, p. 389)
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For each experiment, the confidence interval characterizes the range of
deviations over all nodes. We repeated these steps for the other two
parameters c2

W A,i and ei respectively. Table 4.1 summarizes the minimum
and maximum values that resulted from all 162 experiments:

Mean Confidence Interval

E(ts,W A) ε̄E(ts,W A) Lower Bound 99% Upper Bound 99%
Minimum -0.39% -0.98% -0.22%
Maximum 0.35% 0.11% 0.85%

c2
W A ε̄c2

W A
Lower Bound 99% Upper Bound 99%

Minimum -0.52% -0.95% -0.32%
Maximum 0.63% 0.45% 1.34%

ei ε̄e Lower Bound 99% Upper Bound 99%
Minimum -0.60% -0.90% -0.35%
Maximum 0.57% 0.34% 0.98%

Table 4.1: Validation of visit ratios and characteristic service time values

The table reads as follows: over all 162 experiments the maximum mean
error for the parameter c2

W A was 0.63%. Note that the values of one line
do not correspond to each other as they most likely stem from different
experiments. For example, 0.45% was the largest lower bound that we
could identify for all of the 162 intervals that were calculated. Likewise,
1.34% was the largest upper bound we observed for the parameter c2

W A

when considering all 162 experiments. We can see that the mean errors
are always smaller than 1% and the maximum upper bound of all confi-
dence intervals is 1.34%, thus the simulation values differ only marginally
from our calculated values.

4.9 Chapter Conclusion

The input parameters of the queueing model are now fully defined. We
should note that this modeling approach is applicable to a wide range of
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manual order picking systems. It does not matter whether pickers walk
with a picking cart or drive on a forklift truck. Only the size of the
segments und thus the travel time tT ravel would change. Secondly, both
low-level and high-level systems can be modeled by altering the picking
time tpick.

Table 4.2 summarizes the transformation by showing how the parameters
of the order picking system and the queueing model are related to each
other.

Order Picking System Queueing Model

Layout ν, h
N Number of nodes

m
Single-server
queueing systems

Narrow
Aisles

WAisles Bi
No buffers, BAS
protocol

Routing
Policy

One-way traversal

ei Visit ratios
Number
of picks

n

Storage
Policy

Random, Class-Based

Times tP ick, tDepot μ, c2 Service rate, vari-
ability

Pickers K K Customers

Table 4.2: Parameter transformation - summary

By applying the presented model, continuous time queueing theory can
basically be used to analyze the effects of congestion in order picking
systems. In contrast to existing analytical approaches (see chapter 3.2),
the model provides an extended scope because assumptions are less re-
strictive.

Nevertheless, we still need a solution technique to actually calculate per-
formance indicators such as throughput. The assumptions on the queue-
ing model obviously have a great influence on the applicability of existing
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solution techniques as some seemingly minor details often have significant
impact on the procedure of these techniques. The presented transforma-
tion results in the following characteristics:

• Closed queueing network with a fixed number of customers

• Single-Server elementary queueing systems without any buffers

• Blocking-After-Service protocol

• General service times

In the next chapter, we will present existing methods of queueing theory,
discuss the problems when applying them to the above modeling approach
and develop a new approximation method.
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5 Calculation of Performance
Indicators for Closed
Zero-Buffer Queueing
Networks

The consideration of blocking phenomena complicates calculation proce-
dures for closed queueing networks and many standard approaches are not
applicable anymore. In order to calculate throughput for the presented
queueing model of manual order picking systems, we will first analyze
in chapter 5.1 to what extent existing approaches can be used. Subse-
quently, we will focus on the accuracy of a promising approach - Rall’s
method - in chapter 5.2. This will give us some ideas on how to design
our own approximation approach, which will be presented in chapter 5.3.

5.1 Existing Algorithms

We will give a brief overview of remaining approaches and will discuss
those methods influencing the development of our own approach in more
detail.

5.1.1 Overview

If we concentrate on existing approaches for closed queueing networks,
we only find a limited number of procedures. By additionally consider-
ing Blocking-After-Service protocol and general service times, only four
potential approaches remain. To the best of our knowledge, no other algo-
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rithms exist which are applicable to networks underlying the assumptions
mentioned before.

An approach developed by Bouhchouch et al. (1996) uses decomposition
techniques to study closed tandem queueing networks. It therefore tends
to be computationally expensive with regards to large networks. More
importantly though the approach is only suitable for cyclic configurations,
i.e. each system has only one predecessor and one successor. Hence visit
ratios ei �= 1 cannot be considered.

Vroblefski et al. (2000, 2005) also use a decomposition approach. They
model networks based on the flow of kanbans through a production line.
In (2000) cyclic network configurations can be analyzed. An extension to
telecommunication networks with switches is presented in (2005). How-
ever, the network structures analyzed are specifically chosen as to rep-
resent telecommunication networks (e.g. ring, star or lattice topologies)
and they include buffers behind a server for pooling finished data packets
and synchronization stations to realise the forwarding. The approach is
therefore not suitable for models of order picking systems.

A major contribution to the analysis of queueing networks with blocking
was presented by Akyildiz. Some basics to calculate throughput for closed
queueing networks with blocking and exponential service times were pre-
sented in the matching state space algorithm in (1987) and (1988b). For
a given network with blocking these approaches attempt to find an equiv-
alent non-blocking network with the same state space cardinality. Ulti-
mately this will lead to a reduction in the number of customers from K
to K∗. The throughput for a blocking network with K customers can
then be approximated by calculating the throughput of a non-blocking
network with K∗ customers. Note that these algorithms are exact for
networks with two nodes and approximative for more than two nodes.

Akyildiz (1988a) extended the matching state space algorithm to net-
works with general service times (Akyildiz’s integrated approach). The
author presents a procedure to find an equivalent non-blocking network
that best approximates the number of active servers in the blocking net-
work. Again this is done by reducing the number of customers to K∗.
Along with the original structure of the blocking network this number is
then used as an input in Marie’s method for closed queueing networks
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with general service times and unlimited buffer sizes (Marie 1980). Some
relative large errors were reported in the original literature (Akyildiz
1988a, p. 301) which might be a reason that the algorithm has gained rel-
atively small attention from the scientific community. Furthermore rather
small networks with up to five nodes were analyzed. Onvural (1990, p.
107) states that the original matching state space algorithm works well
for networks with exponentially distributed service times. However, ac-
curacy is worse when the procedure is combined with Marie’s method for
networks with general service times.

Rall’s integrated approach (1998) is based on the idea formulated in (Aky-
ildiz 1988a). Rall extended this idea by introducing a correction factor
fRall, which modifies K∗, the result of Akyildiz’s matching state space
algorithm thus adapting it to non-exponential networks. The modified
number of customers is then used as an input to Marie’s method. The
original algorithms of Akyildiz (1987) (1988b) (1989) are applicable to
closed queueing networks with finite buffers and exponentially distributed
service times. The proposed convolution operation will in most cases lead
to a wrong reduction of the number of customers if service times are gen-
eral. For c2 < 1 there will be less blocking situations in the network
compared to c2 = 1 (Rall 1998, p. 127). This is because the flow of cus-
tomers through the network is less obstructed. For the extreme case of
c2 = 0 blocking situations might only occur at merging points - otherwise
customers will flow through the network in a certain tact. Furthermore
we can assume that for c2 > 1 there will be more blocking situations than
for c2 = 1 because the network will behave more dynamically. Rall (1998,
p. 132) reported that the procedure suggested by Akyildiz (1988b) in fact
produces a correct throughput trend but still underestimates (c2 < 1) or
overestimates (c2 > 1) the real throughput. From this Rall assumed that
the value of K∗ has to be modified adequately before using it as an in-
put value for Marie’s method. Multiplying K∗ with the correction factor
fRall will result in K∗∗, the input for Marie’s method:

K∗∗ = fRall · K∗ (5.1)

Due to the underlying assumptions, both Akyildiz’s matching state space
algorithm (1988b) as well as Marie’s method (1980) are not directly appli-
cable to our models of manual order picking systems. Still, we will provide
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a short description of these algorithms in chapters 5.1.2 and 5.1.4 as they
are used in both Akyildiz’s integrated approach and Rall’s integrated
approach respectively. We will also discuss the derivation of Rall’s cor-
rection factor in chapter 5.1.3. The understanding of these three methods
is important for chapter 5.2, where we will discuss the accuracy of Rall’s
integrated approach when applied to order picking systems. We will show
how the particular methods of this framework influence the throughput
approximation error, giving us some valuable ideas for our own approach.

5.1.2 Akyildiz’s Matching State Space Algorithm

This algorithm presented by Akyildiz in (1987 (for two nodes), 1988b (for
more than two nodes) and 1989 (for multiple servers)) can be applied to
closed queueing networks with exponential service times. Consider two
closed queueing networks which are similar except for the size of the
buffers. One network has finite buffers (blocking network), the other
network has infinite buffers (non-blocking network). The basic idea of
Akyildiz is that the throughput of these two networks is approximately
equal if the state spaces of both networks have the same cardinality. For
the non-blocking network we can calculate the number of states Z for N
nodes and K customers by applying the binomial coefficient:

Z =

(

N + K − 1

N − 1

)

The state space of the blocking network has to consider both possible
apportionments of customers as well as blocking states. Akyildiz sug-
gests a procedure to estimate the size of the state space by an efficient
convolution operation.

Deriving the State Space of Blocking Networks

The state space vector Z∗ is calculated by the convolution of N capacity
vectors:

Z∗ = Z1 ⊗ Z2 ⊗ . . . ⊗ ZN
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If vector C is the result of the convolution of vectors A and D, the kth

element is given by:

C(k) =
k

∑

j=0

A(j) · D(k − j)

For each node in the network the (K + 1)-dimensional capacity vector Zi

is given by:

Zi =

⎡

⎢

⎢

⎢

⎣

ai(0)
ai(1)
...
ai(K)

⎤

⎥

⎥

⎥

⎦

where ai(k) are the values of a binary function:

ai(k) =

{

1 for k = 0, 1, ..., (Bi +
∑N

j=1∧qji>0 mj)

0 otherwise
(5.2)

The value of 1 represents either a regular or a blocking state and Bi is
the capacity of system i and mj is the number of servers at stations with
a positive transition probability qji. Once the state space vector Z∗ is
derived, we can obtain the size of the state space for K customers by
reading the (K + 1)st element of Z∗. By definition the first element of
Z∗ equals 0.

Transformation into a Non-Blocking Network

Following Akyildiz’s basic idea we have to find a non-blocking network
such that

Z ≈ Z∗(K + 1)

The binomial coefficient specifies that Z only depends on N and K. Since
N must not change, we have to alter K to K∗ to obtain a Z approximately
equal to Z∗(K + 1):

Z∗(K + 1) ≈
(

N + K∗ − 1

N − 1

)

(5.3)
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K∗ is always smaller than or equal to K because the state space of a
blocking network is always smaller than or equal to the state space of a
non-blocking network.

According to Akyildiz, we can observe the following:

λBlocking(K) ≈ λNon−Blocking(K∗)

To calculate the throughput λNon−Blocking(K∗) any algorithm for
product-form networks can be used (e.g. Mean Value Analysis (Reiser
and Lavenberg 1980) or the convolution algorithm (Buzen 1973)).

Summary and Critique

We briefly summarize the steps of Akyildiz’s matching state space algo-
rithm:

1. Calculate the resulting vector Z∗ by convolving N capacity vectors
Zi. The size of the state space of the blocking network is given by
Z∗(K + 1)

2. The size of the state space for a non-blocking network, Z, is given by
the binomial coefficient. Use N and K∗ in the binomial coefficient
and alter K∗ such that Z ≈ Z∗(K + 1).

3. Use K∗ in any algorithm for product-form networks to approximate
the throughput λ(K) of the blocking network.

As mentioned, the method is exact for two nodes. For more than two
nodes, the original literature reports stable numerical results. Akyildiz
(1988b) analyzed 150 queueing networks. Most of these were small net-
works with four or less stations. The largest network evaluated had 8
stations. Balsamo et al. (2001, p. 154f.) report that the relative error
of this method may easily reach 25% even for small networks. Similar
observations were made by Dallery and Frein (1989).
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5.1.3 Rall’s Correction Factor and Integrated Approach

Influencing Parameters

Rall (1998) suggested a correction factor depending on both the customer
density of the network ω, and a representative network variability c2

R.
He assumed that blocking will be worse with increasing variability of the
service processes and increasing customer density ω of the network. The
latter is defined as:

ω =
K

∑N
i=1 Bi

The representative network variability is calculated using the nodes’ in-
dividual variabilities which are weighted with the following characteristic
values:

• Visit ratio ei: the influence of variability c2
i will increase with in-

creasing ei

• Node utilization ρi: a node with high utilization ρi will likely cause
more blocking situations than a node with small utilization

• Number of servers mi: parallel servers can reduce the mean queue
length k and thus calm the network

• Ratio of mean queue length and system capacity ki

Bi
: a high ratio

will increase the probability of blocking situations thus influencing
the network variability

The weighting factors ρi and ki have to be calculated by applying any kind
of product form network to the underlying network. For homogeneous
networks, c2

R equals c2 of any node. For heterogeneous networks, c2
R is

calculated according to:

c2
R =

∑N
i=1 ei · ρ2

i · 1/
√

mi · ki/Bi · c2
i

∑N
i=1 ei · ρ2

i · 1/
√

mi · ki/Bi

(5.4)

Rall analyzed a five-node network with
∑N

i=1 Bi = 16 and 12 different
variabilities in the range of 0.25 to 5. Based on the empirical observa-
tions of the resulting 240 configurations, Rall (1998, p. 129) derived the
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following formula for the correction factor:

fRall = 1 − ω + ω · 1
3
√

c2
R

(5.5)

It is assumed that fRall grows linearly with the customer density ω and
over-proportionally with the representative network variability. Note that
fRall can be either larger or smaller than 1. For c2

R < 1 the correction
factor is larger than 1 and the customer reduction made by Akyildiz will
be partly reversed. For c2

R > 1 the correction factor is smaller than 1 and
the customer reduction made by Akyildiz will be intensified further.

Summary

The steps of Rall’s framework can be summarized as follows:

1. Calculate the utilization ρi and the mean number of customers in
the queue ki for each node in the network using any product-form
algorithm, e.g. mean value analysis

2. Calculate the representative network variability c2
R with formula

(5.4)

3. Determine a reduced number of customers K∗ using the matching
state space algorithm by Akyildiz

4. Calculate the correction factor fRall with formula (5.5)

5. Calculate the updated number of customers K∗∗ using formula (5.1)

6. Use K∗∗ as an input in Marie’s method to calculate the throughput
of the blocking network with general service times. As step 5 might
result in a non-integer value for K∗∗, Marie’s algorithm will be run
twice using ⌊K∗∗⌋ and ⌈K∗∗⌉ respectively. The final result λ(K) is
obtained by weighting the two throughputs:

λRall(K
∗∗) = a · λMarie(⌊K∗∗⌋) + b · λMarie(⌈K∗∗⌉)

where the parameters a and b are defined as follows:

a = ⌈K∗∗⌉ − K∗∗ b = K∗∗ − ⌊K∗∗⌋
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5.1.4 Marie’s Method

The method of Marie calculates throughput for a closed queueing net-
work with infinite buffers and general service times. The approach was
introduced by Marie in (1979) and (1980). Useful descriptions are also
given in Bolch et al. (1998, p. 452f.) and (Rall 1998, p. 102f.). Marie
and Pellaumail (1983) give some more detail on the underlying assump-
tions and Marie et al. (1982) discuss the computational aspects of the
method.

The author suggests an iterative scheme successively switching between
a macro view and a micro view. In the macro view, the whole network
is analyzed using load-dependent service rates μi(k). The result of this
macro view, the load-dependent arrival rates λi(k), are then used in the
micro view to calculate the conditional throughput rates νi(k) and the
state probabilities πi(k). The conditional throughput rates νi(k) are
used as load-dependent service rates μi(k) in the next iteration loop.
The algorithm terminates once two stopping conditions are fulfilled. The
variables are connected by the following condition:

νi(k) · πi(k) = λi(k − 1) · πi(k − 1) (5.6)

It states that the probability of a customer leaving a node in state k is
equal to the probability that a customers arrives at the same node in
state (k − 1). Based on this, a continuous time Markov Chain with birth
rate λi(k) and death rate νi(k) can be assigned to node i. The state
probabilities can be calculated as follows:

πi(k) = πi(0)
k−1
∏

j=0

λi(j)

νi(j + 1)
∀ k = 1, ..., K (5.7)

πi(0) =
1

1 +
∑K

j=1

∏j−1
k=0

λi(k)
νi(k+1)

(5.8)

For the derivation of νi(k), elementary λ(k)|G|1|K − FCFS nodes are
analyzed. Therefore the method of Marie seems well suited to calculate
characteristic values for closed queueing networks with general service
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times. Other algorithms for this type of network, namely the response
time preservation approach (RTP) of Agrawal et al. (1984) or the gener-
alized summation method as described in Bolch et al. (1998, p. 463), do
not consider load-dependent arrival rates. This assumption can lead to
inaccurate results in material flow systems, especially for smaller number
of customers (Furmans 2000, p. 104). The method of Marie therefore rep-
resents the closest approximation to networks consisting of G|G|1 nodes,
which we will need in the later analysis.

Macro View - Calculating Load-Dependent Arrival Rates

In order to obtain load-dependent arrival rates, the given non-product
form network with generally distributed service times is transformed into
a product-form network with exponentially distributed service times. For
each node a substitute network (SN) is created by short-circuiting node
i. This is done by adopting the visit ratios: for node i we set ei = 1; for
all other nodes j = 1, ..., N ; j �= i we divide ej by the original ei. The
load-dependent arrival rates λi(k) can be derived from the throughput
at the short-circuit of the substitute network.

If k customers reside in node i then exactly (K −k) customers are located
at the other nodes of the substitute network. The throughput of the
substitute network with (K − k) customers therefore is the arrival rate
at node i with k customers (Bolch et al. 1998, p. 452):

λi(k) = λSN (K − k), for k = 0,1,...,(K-1)

By definition λi(K) = 0 as there will not be any arrivals at node i if
all customers reside at node i. To obtain λSN (K − k) any algorithm for
a product-form network can be used. Note that these algorithms need
load-dependent service rates as an input. These stem from the conditional
throughput rates νi(k) which are calculated in the micro view.

Micro View - Calculating Conditional Throughput Rates

The computation of νi(k) depends on the variability of the service time
at node i, namely c2

i . The following cases have to be considered:
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• c2
i = 1: The conditional throughput rates νi(k) are equal to the

initial service rate μi

• c2
i ≥ 0.5: A Cox-2 model is chosen to approximate the general

service times

• c2
i = 1

m
± ε with m = {m | m ∈ IN ∧ m ≥ 3}: An Erlang model

with m exponential phases is used

• All other cases: A Cox-m model is chosen

A description of these procedures is given in (Bolch et al. 1998, p. 454).
The derivation of service times for order picking systems as described in
chapter 4.7 will most likely result in variabilities c2

i ≥ 0.5. Therefore the
Cox-2 model will be of special interest.

Once the νi(k) are derived, the state probabilities πi(k) are calculated
by using formulas (5.7) and (5.8). The throughput at any node i is then
given by:

λi =
K
∑

k=1

πi(k) · νi(k) (5.9)

Stopping Conditions and Node Throughput

After each micro view, the following two stopping conditions are checked.
First, we assess whether the sum of the mean number of customers over
all nodes equals the total number of customers K:

∣

∣

∣

∣

∣

K − ∑N
i=1

∑K
k=1 k · πi(k)

K

∣

∣

∣

∣

∣

≤ ε (5.10)

Secondly it is checked whether the throughput rates computed with for-
mula (5.9) are consistent with the topology of the network. Therefore
we compare the throughput rates to the normalized average throughput
rate with:

∣

∣

∣

∣

∣

∣

λj

ej
− 1

N

∑N
i=1

λi

ei

1
N

∑N
i=1

λi

ei

∣

∣

∣

∣

∣

∣

< ε ∀j = 1, ..., N (5.11)
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Once both conditions are fulfilled, the algorithm terminates and the node
throughput rates are obtained from equation 5.9.

Summary and Critique

Let us briefly summarize the steps of Marie’s method:

1. Create substitute networks by short-circuiting node i for i =
1, ..., N . Initialize the load-dependent service rates μi(k) by the
service rates of the original network.

2. Macro view: calculate load-dependent arrival rates λi(k) by analyz-
ing the substitute networks by means of an algorithm for product-
form networks.

3. Micro view: calculate the conditional throughput rates νi(k) and
the state probabilities πi(k) by making use of the λi(k) obtained
in the macro view. The approximation scheme depends on the
variability of node i.

4. Assess the stopping conditions (5.10) and (5.11). If not fulfilled set
the conditional throughput rates as the new load-dependent service
rates of the substitute network, i.e. μi(k) = νi(k) and return to the
macro view (step 2).

Bolch et al. (1998, p. 462) report that the method delivers quite accurate
results. The convergence of the method has not been proven. However,
we experienced no cases of diverging behavior when using reasonable
values of ε for the stopping conditions. Both Bolch et al. (1998, p. 458)
and Rall (1998, p. 111) suggest values for ε to be in a range of 10−3 to
10−4. We should note that we could not identify any literature in which
the method was applied to large queueing networks. Sadre et al. (2007,
p. 167) note that the method appears to be suitable for rather small
models with multiple-servers. Souza et al. (1986, p. 421) argue that no
error bound has been shown. A discussion of potential error sources can
be found in Dallery and Cao (1992, p. 58). The authors identify the step
of approximating the conditional throughput rates νi(k) as a potential
error source, because it is based on a state-dependent Poisson process,
i.e. assuming that arrivals occur independently.
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5.2 Accuracy of Rall’s Integrated Approach

Concerning the accuracy of his approach, Rall (1998, p. 134) reports
stable results for cyclic networks. However, for networks with arbitrary
configurations, accuracy decreases and throughput tends to be overes-
timated (Rall 1998, p. 135). The derivation of the correction factor
fRall as well as the validation of the framework were conducted based
on rather small queueing networks. With regard to the analysis of larger
order picking systems we therefore must run a separate validation cycle
in order to assess the framework’s accuracy.

We will use the original framework for a set of order picking systems
and compare the analytical results to simulation. The discussion of the
approximation quality will be followed by some considerations on how it
is influenced by the frameworks’ three main steps (Akyildiz’s matching
state space algorithm, calculation of the correction factor, method of
Marie).

5.2.1 Experiment Design

To get a general idea on the approximation quality, we applied Rall’s
framework to a large set of order picking systems, which will be called
experiment set 1 in the following. We first analyzed the parameters which
were used in the well-known publications presented in chapter 3 to get
a first idea for our selection. With regard to practical applications and
computational efficiency (as we have to use simulation) we selected the
following range of parameters:

• Number of aisles ν: 6, 8, 10, 12, 14, 16

• Warehouse shape factor WSF : 1
3 , 2

3 , 1 (the shape factor is defined
as the ratio L

W
)

• Pick Density: 1
20 , 1

10 , 1
5 (the pick density is defined as the ratio n

ν·h )

• Storage Location Assignment Policy: Random, medium-skewed
class-based, high-skewed class-based. We assume both class-based
policies have three classes with the A-class occupying 20% of the
segments, the B-class occupying 30% and the C-class occupying
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50% of the segments. For medium-skewed, the picks will be dis-
tributed on these classes by 50/30/20%, i.e. 50% of the picks will
be located in 20% of the segments. For high-skewed, this distribu-
tion will be 80/15/5%.

• Picker Density (based on segments) ωseg: 1
30 , 2

30 , 3
30 , ... , 10

30

• Service time ts,Depot: 1, 5, 15 (seconds)

• Variability c2
Depot: 0.5

• Picking time tP ick: 15 (seconds)

• Variability Picking time c2
P ick: 0.5

Experiment set 1 covers a wide spectrum of scenarios which can be found
in real-life manual order picking systems. Based on these parameters the
size of experiment set 1 is 4860 experiments.

For the accuracy analysis we use a simulation model built with Plant
Simulation software. For validation purposes, we also used two other
programs to independently implement the order picking systems: our
own JAVA code as well as the JAVA Modelling Tools1 (for selected ex-
periments).

5.2.2 Overall Approximation Quality

Accuracy for All Experiments

We assume that simulation results are sufficiently close to the exact val-
ues. Thus, the relative error ε of the analytical approach corresponds to
the relative deviation between analytical results and simulation:

ε = 100 · λanalytic − λsimulative

λsimulative

Figure 5.1 shows the histogram of deviations between Rall’s framework
and simulation. The probability mass function of the deviation is right
skewed, i.e. the framework of Rall has a tendency to overestimate
throughput. More than half of the experiments in experiment set 1 had

1Open source software developed by Politecnico di Milano
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Figure 5.1: Deviation between Rall’s framework and simulation

a relative error larger than |5%| and overall we can record the following
observations:

• P (ε ≤ |5%|) = 42%

• P (ε ≤ |10%|) = 68%

• P (ε ≥ 20%) = 12%

Accuracy Based on Certain Parameters

We want to identify the key parameters that mainly cause the inaccu-
racy of the existing approach. Unsurprisingly due to the heterogeneous
structure of the queueing networks, trends are not of linear nature. We
calculated Pearson’s coefficient of correlation between all of our param-
eters and the overall deviation and the largest value was 0.08 for picker
density ωseg.

As we further analyze the influence of different parameters, we separated
the experiments by parameter classes. A parameter class is made up by
all experiments having a certain parameter value, e.g. all experiments
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with picker density ωseg = 0.1 make up one class. We use the ANOVA
procedure of Kruskal and Wallis (1952) to test whether the experiments
from different parameter classes have different medians2. We combine
these results with a simple comparison of mean deviations for the different
classes. We demonstrate our procedure for the picker density classes, i.e.
10 classes because of 10 different picker density values.

We first perform a Kruskal-Wallis-ANOVA to find out that deviations
from different classes do not come from the same population at a sig-
nificance level of 95%, i.e. the errors for picker density ωseg = 0.1 are
different to those of ωseg = 0.2. Comparing the mean error values within
the classes we get:

ε̄ωseg=0.033 = 0.9% ... ε̄ωseg=0.1 = 4.1%...

ε̄ωseg=0.2 = 9.4% ... ε̄ωseg=0.333 = 19.6%

We repeated this procedure for all parameters to come up with the fol-
lowing patterns:

• deviation between the Rall’s integrated approach and simulation
will be higher for higher levels of picker density ωseg, higher skew-
ness of the class-based distribution as well as for larger networks
(larger number of aisles and/or larger warehouse shape factor)

• deviation between Rall’s integrated approach and simulation does
not seem to be determined by the representative network variability
c2

R, the pick density as well as the service time ts,Depot

5.2.3 Influence of Akyildiz’s Matching State Space
Algorithm

We will analyze two aspects to evaluate the influence of this algorithm.
For selected order picking systems we will first compare the results of the
approach to simulation. We will also discuss the impact of zero-buffer
queueing systems on the convolution operation.

2We could not use standard ANOVA procedures as deviations were not normally
distributed within most of the parameter classes.
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5.2 Accuracy of Rall’s Integrated Approach

We altered the original experiment set 1 such that all c2 = 1, thus having
exponentially distributed service times at all nodes. Figure 5.2 shows the
deviation between Akyildiz’s approach as described in section 5.1.2 and
simulation structured by different storage location assignment policies.
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Figure 5.2: Deviation between Akyildiz’s algorithm and simulation

For random storage, the algorithm works very well as all experiments have
an error ε ≤ |5%|. For medium-skewed class-based storage though, we can
identify some experiments producing errors larger than |5%|. The results
for high-skewed class-based storage are unsatisfactory as almost 40% of
experiments have an error ε ≥ 5% and we also have a non-negligible
number of experiments with errors ε ≥ 25%. It seems as if the method is
not capable of correctly modeling level-2, level-3, etc. blocking situations
which occur more frequently in class-based storage.

One reason for this might be the inaccuracy of the method for arbitrary,
i.e. non-cyclic network configurations, which we undoubtedly have in
order picking systems. By applying formula (5.2) we increase the number
of entries in the capacity vectors Zi for each preceding node. Compared
to cyclic networks, this will lead to an increased size of the state space
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5 Calculation of Performance Indicators for Closed Zero-Buffer Queueing Networks

with every node merging different streams. Consequently the number of
customers K∗ will also increase when using formula (5.3) (Rall 1998, p.
153).

Another reason might be the procedure of the convolution operation itself.
Imagine an order picking system with N nodes and a traversal routing
policy without aisle skipping. We thus have a cyclic configuration and
all nodes have one successor and the following capacity vectors:

Zi =
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We identify the following pattern: after k convolutions, the maximum
entry of the resulting vector is always given for element (k + 2). In
a network with N nodes, we apply the convolution operation (N − 1)
times. Thus the maximum entry of the resulting vector will be given for
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5.2 Accuracy of Rall’s Integrated Approach

element (N −1+2) = (N +1) which represents the state space cardinality
for N customers. Note that in a network with N zero-buffer nodes, the
maximum number of customers Kmax will be N . This translates into the
following observation: for increasing number of customers K, the trends
of state space cardinality, number of customers K∗ and throughput will
all reach a degree of saturation for N customers. In particular, as N is
the maximum number of customers, this means that these curves will
never decrease in the range of K = 1, 2, ..., Kmax.

The number of merging elements is limited in order picking systems and
therefore, even though we will have capacity vectors Zi with four ”1”
elements, the above observations remain more or less unchanged. If we
assume high-skewed class-based storage and focus on throughput, we
will easily reach a degree of saturation for number of customers K ≪ N
and the reduction of customers K → K∗ will be too small. Figure 5.3
highlights this observation. Almost 80% of experiments had no reduction
at all and the maximum reduction was 3.57%.
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Figure 5.3: Reduction of customers calculated by Akyildiz’s algorithm

127



5 Calculation of Performance Indicators for Closed Zero-Buffer Queueing Networks

This analysis has revealed that the algorithm of Akyildiz is not applicable
to the queueing models of order picking systems that we have presented.
Especially the convolution operation in zero-buffer networks can lead to
false results as these systems are behaving differently than those with
limited buffers3.

5.2.4 Influence of the Correction Factor

In Rall’s original framework the correction factor fRall is embedded be-
tween the algorithm of Akyildiz and the method of Marie. Both methods
are approximative, i.e. possibly causing considerable errors. Therefore
we have to isolate these two error sources in order to assess the accuracy
of the correction factor fRall.

Any approximation error stemming from Marie’s method could be erased
by applying simulation in the last step of Rall’s framework. However, the
error of Akyildiz would still be incorporated. Let us briefly review the
original intention of fRall. It updates the result of Akyildiz’s algorithm
depending on the network’s variability c2

R, i.e. in case of c2
R < 1 the

reduction in the number of customers is partly reversed, for c2
R > 1, the

reduction in the number of customers is intensified.

For a particular closed queueing network, we first assume that c2
i = 1 ∀ i.

We can then calculate the true throughput by simulation and find a K∗
true

for which

λ
c2

i =1
Blocking,Sim(K) ≈ λNon−Blocking,MV A(K∗

true)

K∗
true then is the reduced number of customers that should have been

the correct result of Akyildiz’s algorithm. We can also find a K∗∗
true for

which
λ

c2
i �=1

Blocking,Sim(K) ≈ λNon−Blocking,Sim(K∗∗
true)

K∗∗
true then is the reduced number of customers that should have been

the correct result after applying fRall. Let K∗∗
Rall be the actual number

calculated by
K∗∗

Rall = K∗
true · fRall

3This statement is also supported by the results of a personal discussion with the
author (Akyildiz 2009).
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5.2 Accuracy of Rall’s Integrated Approach

Comparing K∗∗
Rall to K∗∗

true will give us an idea, whether the correction
factor fRall would have worked had we eliminated all other sources for
errors. The error εK∗∗ is calculated by

εK∗∗ =
K∗∗

Rall − K∗∗
true

K∗∗
true

and the errors for different parameter scenarios are shown in table 5.1.

SLAP P (εK∗∗ ≤ |5%|) P (εK∗∗ ≤ |10%|)
Overall 83% 94%
Random 96% 98%

Medium-Skewed Class-Based 86% 96%
High-Skewed Class-Based 65% 88%

Table 5.1: Error in calculating K∗∗ using Rall’s correction factor

Overall we can record a fairly good accuracy. If we categorize the re-
sults by storage location assignment policy, we can easily see that fRall

performs good for random storage and performs worse with increasing
skewness of the class-based storage.

Overall for random storage a linear trend of the correction factor seems
plausible. For class-based storage however, we have to consider the fol-
lowing thoughts. In class-based storage blocking situations might quickly
emerge even for very small picker densities ωseg. This is because pickers
tend to be located in a cycle within the whole network, e.g. the first
two aisles. Let J be a cycle with j nodes (j = 2, 3, ..., jmax|jmax < N).
A cycle can hold at most

∑

∀j∈J Bj customers and we can define cycle
picker densities ωJ as:

ωJ =
K

∑

∀j∈J Bj

(5.12)

By solely considering the original picker density ωseg instead of ωJ some
blocking situations cannot be considered and the throughput might be
overestimated. These cycles are not specifically defined by fRall.
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Figure 5.4: Deviation between Marie’s method and simulation

5.2.5 Influence of Marie’s Method

As the approach of Marie is an approximation method, we have to quan-
tify the accuracy to make a statement on how far it influences the overall
accuracy of Rall’s integrated approach. For that reason we altered ex-
periment set 1 such that all nodes have unlimited buffers. We then first
compared the results of Marie to those of simulation. In a second step we
analyzed how big the deviations correspond to certain input parameters.

Figure 5.4 shows the deviation between the method of Marie and simu-
lation for experiment set 1. Throughput is mostly overestimated, apart
from 16% of experiments resulting in an underestimation. The error is
existent, however it is fairly moderate with almost 75% of experiments
having an error ε ≤ |10%| and the maximum error being ε = 20.61%.

In line with the procedure for the overall accuracy, we classified the ex-
periments by input parameters to identify those parameters with a strong
interrelation to the output values. We found the representative network
variability c2

R to have a strong influence on deviation. Again we ran the
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Figure 5.5: Deviation between Marie’s method and simulation classed by
c2

R

Kruskal-Wallis-ANOVA procedure to confirm that deviations are differ-
ent for different classes of c2

R. In particular we see that mean deviation
is increasing for increasing c2

R:

ε̄c2
R

∈(0;0.75] = −0.1% ε̄c2
R

∈(1.25;1.75] = 4.9% ε̄c2
R

∈(4.75;5.5] = 12.9%

Furthermore figure 5.5 illustrates the context as the distribution of devi-
ation is given for different levels of c2

R.

Other input parameters influencing the overestimation are picker density
ωseg as well as the number of nodes N in the network. Again the mean
deviation is increasing for increasing input parameters, namely:

ε̄ωseg=0.033 = 1.7% ... ε̄ωseg=0.1 = 4.7%

ε̄ωseg=0.2 = 6.6% ... ε̄ωseg=0.333 = 7.4%

ε̄N=57 = 0.1% ... ε̄N=145 = 7.2%

ε̄N=222 = 8.2% ... ε̄N=424 = 9.3%
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5 Calculation of Performance Indicators for Closed Zero-Buffer Queueing Networks

The root cause for these deviations can be traced back to the calculation
of conditional throughput rates νi(k). They describe the rate at which
a certain state is left after a service has been finished. As the states
are characterized by the number of customers in the system, νi(k) effec-
tively describes the throughput of a queueing system depending on the
number of customers in that system. It is needed to derive steady-state
probabilities as in formula (5.7). For Cox-2 distributions, the conditional
throughput rates νi(k) depend solely on the parameters of the Cox-2
distribution and the state-dependent arrival rates. We show in the ap-
pendix A that the parameters proposed by Marie (1980) produce correct
approximations of desired values μ and c2. Thus the state-dependent
arrival rates λi(k) remain as a source for error. They are based on a
Poisson process, i.e. interarrival times are assumed to be exponentially
distributed. However, in closed queueing networks this assumption is
violated if service times are non-exponential.

We used simulation to measure the true steady-state values of νi(k), λi(k)
and πi(k) and were able to confirm Marie’s steady-state condition (see
formula 5.6). Inserting the values in formula (5.9) resulted in the same
throughput which we calculated with simulation. When using the method
of Marie, the steady-state condition will also hold and the method will
converge after some iteration steps. However, in each step the false λi(k)
will lead to false values of νi(k) and the combination of both will lead
to false πi(k) (see formula 5.7) and thus false throughput. The iteration
scheme "is aware" of this and tries to consider this error by using the
νi(k) as new load-dependent service rates μi(k) in the next iteration
step. Nevertheless the throughput will not necessarily adjust to the true
throughput.

The false estimate of λi(k) is mainly based on variability in the network.
λi(k) will differ more from the true values, with more nodes having non-
exponentially distributed service times. To illustrate this we selected one
experiment4 to show a characteristic trend in figure 5.6. For clarification
we assume all nodes have the same variability c2, thus making the network
slightly more homogeneous than an actual order picking system. Marie’s
method will underestimate throughput for c2 < 1 because the λi(k) will

4ν = 10, h = 10, n = 10, ωseg = 20%, ts,Depot = 5s, SLAP=Random
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Figure 5.6: Influence of variability on accuracy of Marie’s method

be too small as the throughput of a product-form algorithm (assuming
c2 = 1) will be too small. Marie’s method will overestimate throughput
for c2 > 1 because the λi(k) will be too big as the throughput of a
product-form algorithm (assuming c2 = 1) will be too big. In order
picking systems, variabilities will be different for each node and we have
to use the aggregated c2

R to describe them. Nevertheless the effect is
also visible, especially if c2

R is strongly influenced by those nodes mainly
affecting throughput, e.g. nodes with high visit ratios.

Overall, we have found that results of the approximation are mostly
within an error range of |10%|. The error will increase with increasing
c2

R, ωseg and skewness of the class-based storage.

Finally, we should note that the accuracy of Rall’s framework cannot be
improved by replacing Marie’s method with the response time preserva-
tion approach (RTP) of Agrawal et al. (1984) or the generalized summa-
tion method presented by Bolch et al. (1998, p. 463). For small picker
densities ωseg ≤ 10%, Marie’s method performed better. This is because
the use of λ(k)|G|1|K − FCFS-nodes by Marie allows to consider state-
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dependent arrival rates, thus providing a more realistic approximation of
arrival processes within the closed network. Note that this result is in
line with Furmans (2000, p. 104). For other picker densities, all three
algorithms calculate more or less the same results. Both RTP and the
generalized summation method are computationally less expensive than
Marie’s method. Still, because of its advantages for small ωseg, Marie’s
method appears to be the best choice when analyzing order picking sys-
tems.

5.2.6 Implications for a New Approach

Both the approach of Akyildiz (1988a) as well as Rall (1998) attempt to
estimate throughput losses based on blocking situations by calculating the
throughput in a network with unlimited buffers after having adjusted the
number of customers in the network. Especially the integrated approach
of Rall already produces partly accurate results when applied to models of
order picking systems. To further improve the accuracy, we will develop
a refined procedure which is based on the following learnings:

• In zero-buffer networks, as we use them, the matching state space
algorithm of Akyildiz will not reduce the number of customers in
the majority of cases. This is due to the definition of the convolution
operation. We will therefore not consider this method as a part of
our new approximation approach.

• Rall’s correction factor seems to work well for some parameter sce-
narios, e.g. random storage. However, its structure does not seem
appropriate if pickers are distributed in a way that certain aisles of
the system have very high picker densities while other aisles have
very low picker densities. We introduce a new correction factor fZB

which is built on some other functional relation. It incorporates the
effects of zero-buffers compared to networks with unlimited buffers.

• The method of Marie will remain a part of our new approxima-
tion method even though it produces some approximation errors
by estimating conditional throughput rates on the basis of a Pois-
son arrival process. We will introduce a distinct correction factor
fMarie to handle these errors.
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5.3 A New Integrated Approach

5.3 A New Integrated Approach

5.3.1 Basic Idea

With the aid of one specific example order picking system5 we will illus-
trate the basic idea of our new integrated approach, which is based on
the observations in the previous chapter.

Zero-Buffer vs. Unlimited Buffer Networks

For the chosen queueing network, we will first analyze the throughput
trends when comparing the simulation of a zero-buffer network to the
simulation of a network with unlimited buffers for random storage policy
(see figure 5.7).
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Figure 5.7: Throughput trends for random storage policy: zero-buffer vs.
unlimited buffer

5The following parameters were used: ν = 10, h = 10, n = 10, K = (1, 2, ..., 33),
ts,Depot = 1s, c2

Depot
= 0.5, ts,W A = 15s and c2

W A
= 0.5
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We can easily see that there is little or no difference at all between the
two trends so we can assess that for random storage the introduction of
limited buffers has little or no impact on throughput.

It is important to realize that this does not mean that there is no through-
put loss due to congestion. It simply means that congestion losses are
almost fully incorporated in the model with unlimited buffers.

For an explanation, we will emphasize that for level-1-blocking situations,
the size of the buffer does not matter. As long as no third picker is
involved, it is irrelevant if the blocked picker waits in the buffer or in
the server. The waiting time caused by the blocking situation thus is a
normal waiting time as already considered in networks with unlimited
buffer size.

If a third picker is involved and a level-2-blocking situation evolves, there
can be more than just normal waiting time. We can imagine a situation
in which the third picker wants to use the server which is blocked by the
second picker. This server would have been available, had the second
picker already moved to the buffer of the succeeding system. In the zero-
buffer case, this delay is reducing throughput. However, it is only of
importance if the third picker would have actually used the second server
for picking. If he just needs to walk then the delay is considerably small
and will have only marginal influence on overall throughput.

The number of blocking situations of higher order in general hugely de-
pends on picker density, i.e. we will have more level-2-3-...-blocking situa-
tions if more pickers work in the system. Thus for higher ω we should see
more throughput losses that actually stem from the non-existing buffers
and the resulting level-2-3-...-blocking situations. Still though these losses
seem rather small as for random storage the pickers distribute more or
less evenly over the whole system. If pickers meet, the probability is high
that no more than two are involved.

We also analyzed the same network for class-based storage and expectedly
obtained a different result. Figure 5.8 shows the respective throughput
trends when comparing the simulation of a zero-buffer network to the
simulation of a network with unlimited buffers.

For a limited number of pickers in the system (K ≤ 10), the throughput
of both zero-buffer and unlimited buffer networks is approximately equal
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Figure 5.8: Throughput trends for class-based storage policy: zero-buffer
vs. unlimited buffer

(ǫ ≤ 1%). Like for random storage, congestion almost entirely stems from
level-1-blocking. Beyond that point, the two trends begin to drift apart
and for K = 33 throughput of the zero-buffer network is 32% smaller than
throughput in the unlimited buffer network. Comparing the zero-buffer
networks for random storage (figure 5.7) and class-based storage (figure
5.8), we also notice that for K < 18 throughput is higher for class-based
storage and for K ≥ 18 throughput is higher for random storage. Hence,
there is some critical level for the number of pickers K where a change
of storage policy is advisable. This is because for class-based storage,
level-2-3-...-blocking situations occur for smaller ω as in random storage.
The explanation for this is quite straightforward. In class-based storage,
pickers will not evenly distribute over the whole system but are likely
to be located in an aisle with many picks, i.e. an aisle located closer
to the depot. The picker density in these aisles ωα will be higher than
in aisles located far from the depot. Consequently there will be more
level-2-3-...-blocking situations.

We will now present the basic idea of the correction factor fZB . As an
example, let us calculate the throughput of the given system for K = 20
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pickers, i.e. λOP S(K = 20). The throughput of the order picking system
is measured in picked order lines per period of time and thus:

λOP S(K) ≈ λZB(K) · n

We search for a number of pickers K+ such that the throughput in a
network with unlimited buffers and K+ pickers approximately equals the
throughput in a zero-buffer network with K pickers:

λUB(K+) ≈ λZB(K)

Thus the number of customers is reduced from K to K+ as shown in
figure 5.9.
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Figure 5.9: Effect of correction factor fZB for class-based storage

The graph shows the trends for class-based storage. In such a config-
uration, we have to reduce the number of pickers from K = 20 to ap-
proximately K+ = 16. We put the emphasis on the term approximately
because K+ does not necessarily have to be an integer value (see chap-
ter 5.3.2). Using K+ = 16 in a network with unlimited buffers results
in a good throughput approximation of throughput of the zero-buffer
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network:

λClass−Based
UB (16) = 2.717 ≈ 2.716 = λClass−Based

ZB (20)

The correction factor fZB is generally defined as follows:

fZB =
K+

K
(5.13)

In the example, fZB would therefore be 16
20 = 0.8. Note that for random

storage (see figure 5.7) the correction factor fZB would be approximately
1, because no reduction of pickers is necessary to get a useful approxima-
tion of throughput:

λRandom
UB (20) = 2.89 ≈ 2.85 = λRandom

ZB (20)

Unlimited Buffer Networks vs. Method of Marie

By multiplying the original number of customers K with the correction
factor fZB , we get K+ which can be used in a network with unlimited
buffers. Chapter 5.2.5 has shown that the well-known analytical methods,
e.g. the method of Marie, might over- or underestimate throughput of
such networks.

Following the idea of fZB , we will define a correction factor fMarie that
will adjust the number of pickers from K+ to K++ in a way that:

λMarie(K++) ≈ λUB(K+)

Consider figure 5.10 for an example. For class-based storage the num-
ber of customers is further reduced from K+ = 16 to K++ = 14 to have
approximately equal throughputs in a simulation of the network with un-
limited buffers and the analytical calculation using the method of Marie:

λClass−Based
Marie (14) = 2.66 ≈ 2.716 = λClass−Based

UB (16)

The correction factor fMarie is generally defined as follows:

fMarie =
K++

K+
(5.14)
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Figure 5.10: Effect of correction factor fMarie for class-based storage

In the example, fMarie would therefore be 14
16 = 0.875. Note that for

random storage, we would need to reduce the number of pickers from
K+ = 20 to K++ = 17, i.e. fMarie = 0.85, to get a useful approximation:

λRandom
Marie (17) = 2.84 ≈ 2.89 = λRandom

UB (20)

Combination of fZB and fMarie

We will briefly rerun the example including all steps for the case of class-
based storage. The throughput of the order picking system (with n = 10)
is obtained by simulating a zero-buffer network:

λOP S(20) ≈ λZB(20) · 10 = 27.2

We obtain K+ by:

K+ = K · fZB = 20 · 0.8 = 16

Applying fMarie results in K++:

K++ = K+ · fMarie = 16 · 0.875 = 14
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We finally use K++ = 14 in the method of Marie to get:

λMarie(14) = 2.66

With this we obtain a useful approximation of throughput in the order
picking system:

λOP S(20) ≈ λZB(20) · 10 = 27.2 ≈ 26.6 = λMarie(14) · 10

Note that this approximation is a 2.2% underestimation of real through-
put. This is based on the fact that only integer values were used in this
example. We will show in the following chapter that both K+ and K++

can attain non-integer values, ultimately resulting in better approxima-
tions. Note that for K < 3, fZB is not considered as there will be at
most level-1-blocking situations which are covered by Marie’s method.

5.3.2 Procedure for the Derivation of True Correction
Factors

The derivation of both fMarie and fZB follows the same procedure. We
will present in detail the approach for fMarie. The factor fZB can be
derived accordingly. Again, the example of the previous chapter is used
as we illustrate the derivation of the true value f true

Marie for a single exper-
iment.

We assume that fZB has already reduced K = 20 to K+ = 16. For all
K = (1, 2, 3, ..., 33) we obtain λUB(K) from simulation and λMarie(K).
From these 33 pairs of values we now need to find the throughput values
that are closest to λUB(16) = 2.717 and find the corresponding values
of K that will result in a throughput close to λUB(16). Table 5.2 shows
some of the closest values.

From the table we see that the throughput value λUB(16) = 2.717 is best
approximated by either K = 14 or K = 15 because:

(λMarie(14) = 2.663) ≤ (λUB(16) = 2.717) ≤ (λMarie(15) = 2.792)

Instead of choosing one integer value of K to be our K++, we use a linear
combination of the two closest K to get a non-integer value K++

true which
would result in the closest approximation of λUB(K+).
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K λUB(K) λMarie(K)
1 0.271 0.270
... ... ...
12 2.245 2.390
13 2.373 2.530
14 2.489 2.663
15 2.605 2.792
16 2.717 2.914
17 2.820 3.032
18 2.916 3.145
... ... ...
33 4.059 4.424

Table 5.2: Derivation of correction factors - search for closest throughput
values

Let Kx be the value of K leading to the closest approximation
min[λUB(K+)−λMarie(Kx)] and let Kx+1 denote the value of K leading
to the closest approximation min[λMarie(Kx+1) − λUB(K+)]. Then the
linear combination can be calculated according to:

K++
true =

λUB(K+) − Kx+1 · λMarie(Kx) + Kx · λMarie(Kx+1)

λMarie(Kx+1) − λMarie(Kx)
(5.15)

Based on this we can calculate the true value of the correction factor
f true

Marie:

f true
Marie =

K++
true

K+
(5.16)
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Using the numbers of the example we get:

K++
true =

λUB(16) − 15 · λMarie(14) + 14 · λMarie(15)

λMarie(15) − λMarie(14)

=
2.717 − 15 · 2.663 + 14 · 2.792

2.792 − 2.663

= 14.41

and the true value of the correction factor according to:

f true
Marie =

14.41

16
= 0.901

We can now use the non-integer value of K++
true to get a good approxima-

tion of throughput in a zero-buffer queueing network. As proposed by
Rall (1998, p. 126), the method of Marie is run twice using ⌈K++

true⌉ and
⌊K++

true⌋ as inputs and weighting the two results:

λZB(K) ≈ (⌈K++
true⌉ − K++

true) · λMarie(⌊K++
true⌋)

+(K++
true − ⌊K++

true⌋) · λMarie(⌈K++
true⌉)

λZB(20) = 2.72 ≈ (15 − 14.41) · λMarie(14) + (14.41 − 14) · λMarie(15)

λZB(20) = 2.72 ≈ 0.59 · 2.663 + 0.41 · 2.792

λZB(20) = 2.72 ≈ 2.716

Note that this weighting procedure results in a better approximation than
simply using an integer value and obtaining λMarie(14) = 2.66.

For fZB the procedure works accordingly with formula 5.15 changing to:

K+
true =

λZB(K) − Kx+1 · λUB(Kx) + Kx · λUB(Kx+1)

λUB(Kx+1) − λUB(Kx)
(5.17)

and the fZB is calculated according to:

f true
ZB =

K+
true

K
(5.18)
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We ran this procedure for every single experiment of experiment set 1
(see chapter 5.2.1) and obtained the values for f true

ZB and f true
Marie. In the

following chapters, we will derive functional relations that estimate the
values of f true

ZB and f true
Marie based on different network parameters.

5.3.3 Characteristic Network Parameters

Before focusing on the correction factors, we define some characteristic
network parameters that will facilitate the derivation of functional rela-
tions between the correction factors and the input parameters.

Representative Network Variability for Zero-Buffer Networks

The integrated approach of Rall uses the representative network vari-
ability c2

R, which weights the variabilities of each node to get one single
representative value:

c2
R =

∑N
i=1 ei · ρ2

i · 1/
√

mi · ki/Bi · c2
i

∑N
i=1 ei · ρ2

i · 1/
√

mi · ki/Bi

We pursue this idea but adjust the factor to the networks used in this
work. First, as we only deal with single-server nodes, we can omit the
term 1/

√
mi. Secondly, due to zero-buffers, the term ki/Bi seems redun-

dant as in zero-buffer networks the effect of this ratio is already incorpo-
rated in the utilization ρi. We also omit this term and will calculate the
adjusted representative network variability for zero-buffer networks by:

c2
R,ZB =

∑N
i=1 ei · ρ2

i · c2
i

∑N
i=1 ei · ρ2

i

(5.19)

Gini Coefficient for Picker Distributions in Class-Based Storage

As class-based storage can have a large influence on the throughput in
zero-buffer networks, we define a measure which contains an information
on how pickers are distributed in the network. In detail, we want to know
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whether pickers are evenly distributed over the locations or if pickers tend
to concentrate on selected areas of the network.

The Gini coefficient G measures the inequality of a population. A value of
0 expresses that each element of the population has an equal portion of an
overall value and thus total equality. A value of 1 represents maximum
inequality, thus one element of the population having the total overall
value. In common applications, wealth or income are used as the overall
value. The calculation of the Gini coefficient is based on the Lorenz
curve, which represents the cumulative distribution function and thus
the information how many bottom percent of population elements hold
how many percent of the overall value (Fahrmeir et al. 2007, p. 78).

We adapt this concept to order picking systems and use the visit ratios
es of all picking segments, i.e. s = 1, 2, ..., νh. Thus we figure out how
many percent of picking segments hold how many percent of the sum of
all visit ratios. In the following, let es,rel denote the relative portion of a
single visit ratio es compared to total visit ratios for all picking segments.
They can be calculated according to:

es,rel =
es

∑νh
i=1 ei

∀s = 1, 2, ..., νh

Next, we have to sort the values of es,rel in ascending order and renumber
them such that

e1,rel ≤ e2,rel ≤ e3,rel ≤ · · · ≤ eνh−1,rel ≤ eνh,rel

The Gini coefficient can then be calculated by:

G =
2 · ∑νh

s=1 s · es,rel

νh · ∑νh
s=1 es,rel

− νh + 1

νh
(5.20)

Finally, the Gini coefficient is normalized on the interval [0, 1] by:

G∗ =
νh

νh − 1
· G (5.21)

Taking the example in chapter 5.3.1 as a basis, we calculate G∗ = 0.01
for random storage, G∗ = 0.16 for medium-skewed class-based storage
and G∗ = 0.37 for high-skewed class-based storage.
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5.3.4 Correction Factor fZB

From experiment set 1 we calculate the values of f true
ZB using formulas

(5.17) and (5.18). With this, we basically answer the question "which
number of customers K+ would have led to the best approximation
λUB(K+) ≈ λZB(K)?". To eliminate any error from analytical approxi-
mations, e.g. the method of Marie, simulation was used to obtain λUB .
Trends of f true

ZB and an analysis on how different parameters influence
the result shall be discussed first. We will then propose and validate a
functional relation linking f true

ZB to the picker density ω and the Gini co-
efficient G∗, indicating how these pickers are distributed over the system.

The accuracy analysis of Rall’s method (see chapter 5.2) has shown that
congestion will be increased for storage location assignment policies lead-
ing to an uneven distribution of pickers to the segments. We therefore
split the analysis in two parts and discuss random storage and class-based
storage separately.

Random Storage: Trend Pattern for f true
ZB

Figure 5.11 shows the scatter plot of the true correction factor f true
ZB

depending on the picker density ω for those experiment with random
storage.

It appears as if the values for f true
ZB follow a linear trend with a small neg-

ative slope. The plot also features a few stray values6. We use Pearson’s
r

r =

∑E
i=1(xi − x)(fi − f)

√

∑E
i=1(xi − x)2

√

∑E
i=1(fi − f)2

(5.22)

to calculate the correlation coefficient as r = −0.708. A simple linear
regression would most likely result in a good approximation of f true

ZB .
However, we want to include both of the following thoughts:

6These can quickly be explained as follows: In networks with a high service time
at the depot, it will act as a bottleneck for large ω. Even if the throughput loss
caused by zero-buffer configurations is relatively small, the reduction in the number
of customers from K to K+ has to be quite big in order to leave the saturation
level.
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Figure 5.11: Trend for correction factor f true
ZB - random storage

• Congestion stemming from level-2,3,...-blocking situations will be
almost non-existent for very small ω, i.e. fZB ≈ 1 for ω ≈ 0

• As ω increases, so will congestion and the influence of an additional
picker for any ω2 will be larger than the influence of an additional
picker for any ω1, if ω2 > ω1. In other words, relative congestion
increase will be larger if the network is already fuller.

Random Storage: Functional Relation of fZB and Validation

Based on the trend pattern, we formulate the following simple equation:

f true
ZB ≈ fZB = 1 − ω2 (5.23)

As ω < 1 the quadratic influence will lead to a behavior of the trend of
fZB as described above.

We apply formula 5.23 to those experiments with random storage and
get a very good approximation of f true

ZB . In figure 5.12 the approxima-
tion error ε between true values f true

ZB and approximate values fZB is
aggregated in deviation classes. For random storage, we can record the
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Figure 5.12: Deviation between f true
ZB and fZB - random storage

following characteristics for ε:

• P (ε ≤ |5%|) = 98.9%

• P (ε ≤ |10%|) = 99.9%

Class-Based Storage: Trend Patterns for f true
ZB

Figure 5.13 shows the scatter plot for only those experiments with a
class-based storage policy. Results from experiments with a high-skewed
class-based storage are shown in black dots. The correction factor tends
to be smaller for high-skewed class-based storage. This seems logic, as
we expect more congestion if more pickers meet in the aisles close to
the depot and spend more time there. Nevertheless the trend of fZB

is not unique. For the same value of ω, the range of values can differ
noticeably. We can record values of fZB between 0.5 and 0.95 for ω ≈
0.2. Thus, in order to find a functional relation, we need to consider
further dependencies between the input parameters. Considering figure
5.13 yields some general observations:
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Figure 5.13: Trend for correction factor f true
ZB - class-based storage

• For picker densities ω ≤ 0.05, the correction factor is very close
to the value of 1, i.e. there is merely any influence of zero-buffers
independent of the network parameters.

• Beginning at ω ≈ 0.05 there is an increasing influence. For the same
value of ω, the influence is large for some network configurations
and small for other network configurations. Thus the value of f true

ZB

depends on more parameters than just ω.

• The correction factor attains values as low as 0.4, showing that for
some distinct scenarios, the influence of non-existing buffers will be
quite negative in terms of throughput.

For a better understanding, we first test whether the relation between
f true

ZB and any input parameter x is of linear nature. After transforming
all input parameters to cardinal scale7, Person’s r is calculated for all
experiments. The three following values are of special interest:

rω,f = −0.8 rc2
R,ZB

,f = −0.14 rG∗,f = −0.04

7e.g. storage location assignment policy: medium-skewed class-based storage = 1;
high-skewed class-based storage = 2
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None of the relations is of significant linear nature. Still, the relation
between the correction factor and the picker density ω is indisputable as
we tend to have a smaller correction factor for increasing ω. Surprisingly,
it seems virtually impossible to find any useful functional relation between
c2

R,ZB and f true
ZB . The same holds true when relating G∗ and f true

ZB .

Because a one-dimensional relation is not sufficient, we try to find a two-
dimensional relation, linking ω with another parameter:

• f true
ZB as a function of ω and c2

R,ZB

• f true
ZB as a function of ω and G∗

The combination of picker density and Gini coefficient results in a com-
paratively smooth running scatter plot as illustrated in figure 5.14.

Figure 5.14: Scatter plot for f true
ZB as a function of ω and G∗

There are only very few runaway values and a particular relation be-
tween the two predictors (ω and G∗) and the correction factor fZB seems
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existent. We will therefore use a nonlinear regression model with two
predictor variables to determine the relation.

Class-Based Storage: Functional Relation for fZB and Validation

We refer to the regression analysis as surface fitting because we have two
predictor variables and thus try to fit a surface to our calculated values
f true

ZB .

We preselect several possible fit-functions and perform a surface fitting
iteration8. This includes adjusting the parameters of the respective fit-
functions in order to minimize the sum of squared residuals between
calculated values (f true

ZB ) and approximated values (fZB). The fitness of
each fit-function will be evaluated by the following three criteria:

• Evaluation of the coefficient of determination R2

• Evaluation of χ2
reduced

• Graphical evaluation of the percentage deviation between f true
ZB and

fZB .

For E experiments, the coefficient of determination R2, also called
Goodness-of-Fit-Index, is calculated by:

R2 = 1 −
∑E

i=1(f true
ZB,i − fZB,i)2

∑E
i=1(f true

ZB,i − fZB)2
(5.24)

Note that the numerator corresponds to the portion of variation that
is not explained by the regression model. Subtracting the numerator
from the denominator will correspond to the portion of variation that is
explained by the regression model. A value of R2 = 1 represents a perfect
fit.

Let df be the degrees of freedom, then χ2
reduced is calculated by:

χ2
reduced =

χ2

df
=

∑E
i=1(f true

ZB,i − fZB,i)2

df
(5.25)

According to Backhaus et al. (2003, p. 373) a model represents a good
fit, as long as χ2

reduced ≤ 2.5. However, we need to be careful as the value

8We used the software tool Origin-Pro version 8
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of χ2
reduced might lead to false interpretations if underlying variables are

not normally distributed.

Table 5.3 shows the fit-functions we tested and the respective results of
the surface fitting iteration (see appendix B for a detailed structure of
the fit-function formulas).

Fit-Function x y R2 χ2
reduced Formula (appendix B)

Cosine2D ω G∗ 0.932 0.00124 B.1
Plane ω G∗ 0.757 0.00439 B.3

Power2D ω G∗ 0.950 0.00091 B.5
Gauss2D ω G∗ 0.949 0.00092 B.7
Poly2D ω G∗ 0.953 0.00085 B.9

Cosine2D ω c2
R,ZB 0.683 0.00573 B.2

Plane ω c2
R,ZB 0.651 0.00632 B.4

Power2D ω c2
R,ZB 0.683 0.00575 B.6

Gauss2D ω c2
R,ZB 0.683 0.00573 B.8

Poly2D ω c2
R,ZB 0.681 0.00577 B.10

Table 5.3: Goodness-Of-Fit for different fit-functions of fZB

The results indicate that the combination of ω and G∗ enables a bet-
ter approximation compared to the combination of ω and c2

R,ZB . Most
functions using the Gini coefficient result in a large coefficient of deter-
mination R2 and small values of χ2

reduced.

We select the Poly2D fit-function to approximate the values f true
ZB . A

Poly2D function basically has the following structure:

z = g(x, y) = z0 + A · x + B · y + C · x2 + D · y2 + F · x · y

To run the surface fitting iteration procedure for those experiments with
class-based storage, we use f true

ZB as the dependent variable, while ω and
G∗ act as the independent variables, i.e. predictors. The iteration results
in the following parameter values:

z0 = 0.94 A = 1.82 B = 0.25 C = 9 D = 0.001 F = 6
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For simplification, we omit the term 0.001 · (G∗)2 and get the following
equation to calculate the correction factor fZB for class-based storage:

f true
ZB ≈ fZB = 0.94 + 1.82ω + 0.25G∗ + 9ω2 + 6ωG∗ (5.26)

Finally, formula (5.26) is applied to those experiments with class-based
storage and we obtain a distribution of deviation classes as shown in
figure 5.15.
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Figure 5.15: Deviation between f true
ZB and fZB - class-based storage

Overall 86% of true correction factors were approximated within a |5%|-
error range and 97% of true correction factors were approximated within
a |10%|-error range. These values are not as good as those for random
storage. However they are of sufficient accuracy because the error in the
approximation of the correction factor will most likely not result in an
error of the same size when approximating throughput.
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Summary of fZB

We briefly summarize the formulas to calculate the correction factor fZB :

fZB =

{

1 − ω2, for random

0.94 + 1.82ω + 0.25G∗ + 9ω2 + 6ωG∗, for class-based
(5.27)

The overall accuracy of these formulas for both storage policies can be
characterized by the approximation error ε between f true

ZB and fZB :

• P (ε ≤ |5%|) = 90%

• P (ε ≤ |10%|) = 97%

5.3.5 Correction Factor fMarie

Again we use experiment set 1 to calculate the values of f true
Marie using

formulas (5.15) and (5.16). This enables us to answer the question "which
number of customers K++ would have led to the best approximation
λMarie(K++) ≈ λUB(K+)?". Simulation was used to obtain λUB and
λMarie was calculated analytically. We learned earlier (see chapter 5.2.5)
that Marie’s method will over- or underestimate throughput and that the
error strongly depends on the variabilities in the network.

Trend Patterns for f true
Marie

Figure 5.16 shows the scatter plot for the values of f true
Marie as a function of

picker density ω. Network variabilities c2
R,ZB ≤ 1 are indicated by grey

dots. The following interpretations can be drawn from the graph:

• The correction factor quickly drifts away from the level f true
Marie ≈

1. Thus we have a considerable deviation even for small values of
picker density ω

• For the same values of ω, there will be different values of f true
Marie.

Thus the value of f true
Marie depends on more than just ω. Analogous,

for the same value of c2
R,ZB , there will be different values of f true

Marie.
We therefore need to consider more than just c2

R,ZB in a functional
relation
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Figure 5.16: Scatter plot for f true
Marie as a function of ω

As for fZB we try to find out whether the relation is of linear struc-
ture and calculate Person’s r. The three following results are of special
interest:

rω,f = −0.64 rc2
R,ZB

,f = −0.73 rG∗,f = 0.25

Again, the relations are not of significant linear nature. We further an-
alyzed the experimental data trying to find a relation between the pa-
rameters with the biggest effect, namely ω and c2

R,ZB . In most cases, the
trend of f true

Marie over ω is increasing for c2
R,ZB ≤ 1 and increasing stronger

for decreasing c2
R,ZB . Likewise, the trend of f true

Marie over ω is decreasing
for c2

R,ZB > 1 and decreasing stronger for increasing c2
R,ZB . Figure 5.17

includes the trends from some arbitrary network configurations, support-
ing this statement9. We can identify a family of curves, basically relating
ω to f true

Marie while the position and gradient of the curve is determined
by the network variability c2

R,ZB .

9Note that not all trends have values for ω ≥ 0.2. This is because based on the
network configuration, ωseg,max will lead to different ωmax.
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Functional Relation for fMarie and Validation

As the trends in figure 5.17 appear to be linear, we seek to approximate
the trend for each specification of the network variability c2

R,spec by a sim-
ple straight line depending on ω. Experiments are grouped by ascending
network variabilities c2

R,ZB and we calculate the respective parameters
of the line by linear regression. As almost 75% of groups resulted in
Pearson’s r ≥ 0.95, we tried to approximate the line parameters by some
functional relation with other network parameters. This basically works,
however accuracy is reduced by the fact that the straight lines react quite
sensitive on the choice of parameters, thus propagating errors would be
incorporated in the procedure.

We therefore use a power function to approximate the values of f true
Marie

and thus the family of curves. We choose it to be of form:

f true
Marie ≈ fMarie = c2

R,ZB

(−A·ω+B)

This choice is based on the following thoughts:
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• For c2
R,ZB ≈ 1, the function will be very close to a straight line. This

is plausible as the method of Marie produces good approximations
if the network is based on exponential distributions.

• For c2
R,ZB < 1, the negative term −A · ω will likely lead to a value

fMarie > 1. The adjustment factor B can be used to fine-tune this
behavior.

• For c2
R,ZB > 1, the negative term −A · ω will likely lead to a value

fMarie < 1. Again, the adjustment factor B can be used to fine-
tune this behavior.

We performed a function-fit iteration procedure to get an estimation for
the parameters A and B, such that the sum of squared residuals be-
tween calculated values (f true

Marie) and approximated values (fMarie) is
minimized. The procedure successfully resulted in the following parame-
ters:

A =
2

3
B =

15

1000

and thus we can formulate a function relating the correction factor to the
input parameters of the network:

f true
Marie ≈ fMarie = c2

R,ZB
(− 2

3 ·ω− 15
1000 )

(5.28)

To confirm validity of this estimator function, we first calculate the coef-
ficient of determination R2 (formula 5.24) as 0.895 and the χ2

reduced-value
(formula 5.25) is calculated as 0.0005604 . The approximation does not
reach the accuracy of fZB , nevertheless an R2 ≈ 0.9 is a good indicator
that the approximation is working well.

Secondly, we use formula (5.28) for experiment set 1 and obtain good
approximation of f true

Marie. Figure 5.18 includes the deviation between
true values f true

Marie and approximate values fMarie. We can also consider
the overall deviation classification according to:

• P (ε ≤ |5%|) = 89%

• P (ε ≤ |10%|) = 99.9%

157



5 Calculation of Performance Indicators for Closed Zero-Buffer Queueing Networks

0%

5%

10%

15%

20%

25%

<
 -

1
0

%

(-
1

0
%

 ; 
-9

%
]

(-
9

%
 ; 

-8
%

]

(-
8

%
 ; 

-7
%

]

(-
7

%
 ; 

-6
%

]

(-
6

%
 ; 

-5
%

]

(-
5

%
 ; 

-4
%

]

(-
4

%
 ; 

-3
%

]

(-
3

%
 ; 

-2
%

]

(-
2

%
 ; 

-1
%

]

(-
1

%
 ; 

0
%

]

(0
%

 ; 
1

%
]

(1
%

 ; 
2

%
]

(2
%

 ; 
3

%
]

(3
%

 ; 
4

%
]

(4
%

 ; 
5

%
]

(5
%

 ; 
6

%
]

(6
%

 ; 
7

%
]

(7
%

 ; 
8

%
]

(8
%

 ; 
9

%
]

(9
%

 ; 
1

0
%

]

>
 1

0
%

P
ro

b
a

b
il

it
y

 o
f 

d
e

v
ia

�
o

n
 c

la
ss

e
s

Devia�on Classes

Figure 5.18: Deviation between f true
Marie and fMarie

5.4 Chapter Conclusion

Let us summarize the steps of our new integrated approach to calculate
the throughput in a closed zero-buffer queueing network with K cus-
tomers, λZB(K) and with it the throughput of a narrow-aisle manual
order picking system with K pickers, λOP S(K):

• Transform the parameters of an order picking system into the pa-
rameters of a closed zero-buffer queueing network. In particular,
we need to define:

– the resources of a system (aisle, cross aisle, depot), i.e. the
number of nodes N , according to chapter 4.3

– the visit ratios, i.e. the parameters defining the routing policy
according to chapters 4.5 (Random storage) and 4.6 (Class-
Based storage)

– the service times and variabilities according to chapter 4.7

• Calculate a product-form algorithm to obtain the utilization ρi for
each node
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• Calculate the representative network variability c2
R,ZB with formula

(5.19) as well as the Gini coefficient with formula (5.21)

• Calculate the correction factor fZB with formula (5.27)

• Calculate the correction factor fMarie with formula (5.28)

• If K ≥ 3, calculate the adjusted number of customers K++ accord-
ing to:

K++ = K · fZB · fMarie

If K < 3, calculate K++ according to:

K++ = K · fMarie

• Use K++ as an input in Marie’s method. As K++ might be a non-
integer value, Marie’s algorithm will be run twice using ⌊K++⌋ and
(⌊K++⌋ + 1) respectively. The final result is obtained by weighting
the results of the two runs according to:

λZB(K) ≈ λMarie(K++) = a·λMarie(⌊K++⌋)+b·λMarie(⌊K++⌋+1)

where the parameters a and b are defined as follows:

a = ⌊K++⌋ + 1 − K++ b = K++ − ⌊K++⌋

• Calculate the throughput of the order picking system (order lines
per period of time) by multiplying the result of the new integrated
approach with the number of picks per order:

λOP S(K) ≈ λZB(K) · n
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6 Validation and Application

We will focus on the validation of the new integrated approach in chapter
6.1. The presented procedure will be tested by using a wide range of order
picking system configurations. The same parameters are then used in
chapter 6.2 to quantify the effects of congestion in narrow-aisle systems.

6.1 Validation

We will validate our new integrated approach by analyzing its accuracy
for a large number of experiments. We calculate the approximation error
by comparing the throughput of our analytical approach to the through-
put of simulation:

ε = 100 · λanalytic − λsimulative

λsimulative

The mean approximation error ε̄ over all E experiments is calculated as
the average value of all approximation errors where we do not differentiate
between positive and negative errors:

ε̄ = 100 ·
∑E

i=1

∣

∣

∣

λanalytic−λsimulative

λsimulative

∣

∣

∣

E

In addition to the single values we also present some information on the
distribution of the errors ε by indicating its minimum and maximum
values as well as calculating the quartiles1.

We will first reconsider experiment set 1 and afterwards extend this set
in terms of picking time variability to determine to which degree this

1For instance, if Q3 = 1% then 75% of respective experiments have an error ε ≤ 1%.



6 Validation and Application

single parameter will influence the accuracy. Thereafter we will apply
the approach to experiment set 2, a new set of experiments with input
parameters strongly differing from those of set 1. We do this in order
to confirm that the approach is working for parameters not used in the
derivation process of the correction factors fZB and fMarie. Finally,
we show to what extend our new approach improves the approximation
accuracy of Rall’s integrated approach (1998).

6.1.1 Experiment Set 1

We used experiment set 1 to determine how accurate the approach of Rall
was working for queueing models of order picking systems (chapter 5.2)
and for the derivation of the correction factors fZB and fMarie (chapters
5.3.4 and 5.3.5). The set includes 4860 experiments and the parameters
are given on page 121.

Overall Accuracy

The histogram of deviations between the new integrated approach and
simulation is given in figure 6.1. The probability mass function shows
that the errors are rather normally distributed around the value of 0%,
i.e. there is no distinct tendency to under- or overestimate throughput in
an order picking system. Overall, the mean error ε̄ is 2% and we observe
the following:

• P (ε ≤ |5%|) = 93%

• P (ε ≤ |10%|) = 99%

• Min = −29.4%; Q1 = −1.1%; Q2 = 0.3%; Q3 = 1.7%; Max =
12.1%

Thus for experiment set 1 the overall performance of the new approach
is very good. Still, in order to analyze the few runaway values in more
detail, we will consider the accuracy based on different input parameters.
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Figure 6.1: Deviation between new approach and simulation - experiment
set 1

Accuracy Based on Storage Location Assignment Policy

For a better overview, we first classify the results by their storage policy.
Table 6.1 indicates some information on the accuracy.

SLAP P (ε ≤ |5%|) P (ε ≤ |10%|) Min Q1 Q2 Q3 Max

Random 100 100 -3.8 -0.6 0.3 1 3.4
Medium-Skewed 95 99 -12.7 -1.2 0.2 1.8 6.1

High-Skewed 82 98 -29.4 -2.6 0.5 2.9 12.1
all values in %

Table 6.1: Accuracy characteristics of the new approach for different stor-
age policies - experiment set 1

The new approach works very well for random storage policy as all exper-
iments had an error of less than 5%. For a medium-skewed class-based
storage, we also get very good results with very moderate and few run-
away values. For high-skewed class-based storage we still get a good

163



6 Validation and Application

accuracy, however with some runaway values. These are mostly underes-
timations of throughput stemming from experiments with large ωseg and
small pick densities.

For this parameter combination, the correction factor fZB can sometimes
be too small. The Gini coefficient tends to be high for small pick density,
because visit ratios in those aisles farthest from the depot will be very
small. Both high ωseg and high G∗ will results in a lower fZB .

Accuracy Based on Picker Density

Our integrated approach works best for smaller ωseg and accuracy slightly
decreases with increasing ωseg. Table 6.2 includes quartiles and minimum
as well as maximum values of the error. For certain experiments, large
ωseg in combination with other parameters will imply certain blocking
situations. They will be covered correctly if the empirical correction
factor fZB works accurately. For some parameter configurations, the
adjustment of the number of pickers will be too big or too small. Note
that a few errors can also be traced back to the correction factor fMarie

with fZB working very well. However in the majority of cases, fZB is the
root cause for the error (we also refer to the validation of the correction
factors in chapters 5.3.4 and 5.3.5).

Accuracy Based on Warehouse Shape Factor (WSF )

We also analyze the accuracy of the new approach when classified by
the warehouse shape factor. Our approach has the highest accuracy for
smaller WSF , i.e. when the order picking system tends to have many
short aisles instead of few long aisles. Table 6.3 gives the characteristic
accuracy values.

Accuracy Based on Remaining Parameters

For the remaining parameters we give the following brief summary:

• Number of aisles ν: although we cannot identify a clear trend, the
accuracy is highest for medium number of aisles and most runaway
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ωseg P (ε ≤ |5%|) P (ε ≤ |10%|) Min Q1 Q2 Q3 Max
0.0333 100 100 -2.6 -0.6 0.2 1.5 4.9
0.0667 99 100 -3.4 -0.2 1 2.3 5.5

0.1 97 100 -3.4 -0.2 1.2 2.6 5.9
0.1333 94 100 -5.8 -0.5 1.2 2.5 6.2
0.1667 92 100 -6.6 -1 0.9 2.3 7.8

0.2 89 100 -8 -1.2 0.5 1.9 10.4
0.2333 88 99 -8 -1.2 0.3 1.3 11
0.2667 91 100 -9.4 -1.4 -0.1 0.7 9.2

0.3 89 99 -11 -2.6 -1 0.5 7.5
0.3333 78 93 -29.4 -4.3 -2 0.4 12.1

all values in %

Table 6.2: Accuracy characteristics of the new approach for different ωseg

- experiment set 1

WSF P (ε ≤ |5%|) P (ε ≤ |10%|) Min Q1 Q2 Q3 Max
0.333 95 100 -9.4 -1.1 0.2 1.1 12.1
0.667 92 100 -22.3 -1.3 0.2 1.7 11

1 89 98 -29.4 -1.2 0.6 2.3 10.3
all values in %

Table 6.3: Accuracy characteristics of the new approach for different
WSF - experiment set 1
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values were recorded for large number of aisles. This strongly cor-
relates to the number of nodes in the network: accuracy tends to
be highest for smaller networks (note that in this context "small"
networks still include up to 300 nodes).

• Pick density: accuracy is higher for larger pick densities and few
runaway values were recorded for small pick densities (in combina-
tion with high-skewed class-based storage as described above).

• Representative network variability c2
R,ZB : If the approximation er-

ror is noteworthy at all, it will likely be an underestimation for
c2

R,ZB ≤ 1.5 and an overestimation for c2
R,ZB > 1.5. However,

there are not clearly identifiable trends.

• Service time ts,Depot: the accuracy is very good for all three param-
eter scenarios thus the service time at the depot does not seem to
have a big influence. However, if there are many pickers in the sys-
tem (bigger ωseg), large service times at the depot slightly improve
the accuracy. This is because the depot then will be the obvi-
ous bottleneck of the order picking system and there will always
be pickers queueing in front of the depot. In such cases, the con-
gestion within the aisles tends to be irrelevant. Furthermore, any
approximation error of fZB and/or fMarie will be with very few or
no influence as throughput has already reached the degree of satu-
ration and reacts very insensitive when the number of customers is
adjusted.

Table 6.4 includes the characteristic accuracy values for the remaining
parameters.

6.1.2 Extended Experiment Set 1

In the extension of experiment set 1, we will get an idea to what extent
the picking time variability c2

P ick will influence the accuracy of our new
integrated approach.
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ν 6 8 10 12 14 16
P (ε ≤ |5%|) 90.5 93.8 95 93.9 90.2 88.7
P (ε ≤ |10%|) 99 99.8 99.3 99.3 99.1 98.7

Pick Density 0.05 0.1 0.2
P (ε ≤ |5%|) 87.1 92 95.9
P (ε ≤ |10%|) 97.6 99.8 100

c2
R,ZB ≤ 1.5 > 1.5

P (ε ≤ |5%|) 93.3 91.6
P (ε ≤ |10%|) 100 98.9

ts,Depot 1 5 15
P (ε ≤ |5%|) 91 91.1 93.8
P (ε ≤ |10%|) 98.8 99.2 99.6

all values in %

Table 6.4: Accuracy characteristics of the new approach for several input
parameters - experiment set 1

Overall Accuracy

The extended set 1 includes 9720 experiments and the histogram of de-
viations between the new integrated approach and simulation is given in
figure 6.2. In summary, the mean error ε̄ is 2.1% for c2

P ick = 0.25 and
ε̄ is 2.5% for c2

P ick = 0.75.Table 6.5 completes the key accuracy char-
acteristics. We can summarize that the extended experiment set 1 also
does perform very good as more than 90% of all experiments have an
approximation error of less than |5%|. Except for a few runaway values,
the approximation is always within a |10%|-error range. Consideration
of all experiments from set 1 (i.e. c2

P ick = 0.25; 0.5; 0.75 with 14040 ex-
periments) reveals that the new integrated approach basically calculates
results of very good accuracy.
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Figure 6.2: Deviation between new approach and simulation - extended
experiment set 1

c2
P ick P (ε ≤ |5%|) P (ε ≤ |10%|) Min Q1 Q2 Q3 Max
0.5 93 99 -29.4 -1.1 0.3 1.7 12.1
0.25 90 98 -31.8 -1.9 -0.4 0.7 10.5
0.75 88 98 -27.7 -0.5 1 2.8 14.3
All 90 99 -31.8 -1.2 0.3 1.8 14.3

all values in %

Table 6.5: Accuracy characteristics of the new approach - extended ex-
periment set 1
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Accuracy Based on Storage Location Assignment Policy

As for the original set 1, the accuracy is strongly influenced by the storage
policy. For random storage, the approach again works very well as all
experiments have errors smaller than |5%|. The approach also works good
for medium-skewed class-based storage and we experience some larger
errors for high-skewed class-based storage. For c2

P ick = 0.25 those tend
to be underestimations stemming from the fact that the correction factor
fZB will "expect" more blocking situations as there will actually be. Vice
versa, for c2

P ick = 0.75 throughput tends to be overestimated - if there
is an error - as there is more instability in the network than actually
included in fZB . As before, this error occurs if the respective storage
location assignment policies are combined with high picker densities ωseg.
Table 6.6 includes the characteristic accuracy values.

SLAP P (ε ≤ |5%|) P (ε ≤ |10%|) Min Q1 Q2 Q3 Max

c2
P ick = 0.25

Random 100 100 -4.5 -0.9 0 0.6 3.2
Medium-Skewed 91 99 -13.9 -2 -0.5 0.9 4.8

High-Skewed 80 97 -31.8 -4 -1.2 1.2 10.5

c2
P ick = 0.75

Random 100 100 -3.4 -0.4 0.6 1.7 4.3
Medium-Skewed 91 100 -12.5 -0.5 1 2.8 7.3

High-Skewed 72 94 -27.7 -0.5 2.4 4.9 14.3
all values in %

Table 6.6: Accuracy characteristics of the new approach for different stor-
age policies - extended experiment set 1

Accuracy Based on Picker Density

Again it is rather obvious that accuracy tends to be best for small ωseg

and decreases for larger ωseg. Table 6.7 shows the characteristic data.
For small ωseg, the results for c2

P ick = 0.25 seem to be a little better.
Vice versa, for larger ωseg, the results for c2

P ick = 0.75 have a better
approximation quality.
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ωseg P (ε ≤ |5%|) P (ε ≤ |10%|) Min Q1 Q2 Q3 Max
c2

P ick = 0.25
0.0333 100 100 -2.3 -0.7 0.1 1.2 4.9
0.0667 100 100 -2.5 -0.2 0.6 1.5 3.9

0.1 100 100 -3.4 -0.4 0.6 1.6 4.8
0.1333 97.9 100 -5.6 -0.9 0.3 1.4 4.7
0.1667 91.8 100 -8 -1.4 -0.1 0.8 4.2

0.2 87.8 100 -8.3 -1.7 -0.3 0.6 6.2
0.2333 88 100 -9.7 -2.3 -0.7 0.1 5.3
0.2667 89.9 99.8 -10.8 -2.9 -1.5 -0.2 7.4

0.3 80.2 96.4 -12.9 -4.3 -2.2 -0.8 7.9
0.3333 63.9 87 -31.8 -6.6 -3.3 -1.1 10.5

c2
P ick = 0.75

0.0333 98.1 100 -2.7 -0.5 0.5 1.9 5.6
0.0667 95.5 100 -3.2 0.2 1.5 2.9 7.1

0.1 88.9 100 -3.2 0.2 1.9 3.6 7.8
0.1333 85 100 -2.9 -0.1 2 3.7 8.8
0.1667 83.7 99 -4.9 -0.5 1.7 3.4 10.8

0.2 87.4 96.1 -4.9 -0.2 1.4 3.1 13.7
0.2333 86.4 92.8 -5.5 -0.1 1.3 3.0 14.3
0.2667 85.7 96.6 -8 -0.4 0.9 2.5 13

0.3 84.6 99.5 -10.3 -1.3 0.2 1.6 11.1
0.3333 83.8 94.8 -27.7 -2.9 -0.9 1 14

all values in %

Table 6.7: Accuracy characteristics of the new approach for different ωseg

- extended experiment set 1
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Accuracy Based on Remaining Parameters

• Number of aisles ν: for c2
P ick = 0.25, we cannot identify a clear

trend to what extent the number of aisles influences the accuracy
of the new approach. There is a slight tendency for more underes-
timation if ν is decreasing. For c2

P ick = 0.75, there is a trend, as
accuracy decreases for increasing number of aisles.

• Warehouse Shape Factor WSF : for both picking time variabilities
the new integrated approach works best for a small warehouse shape
factor WSF = 0.33 and there are a some deviations larger than
|5%| for WSF = 1, namely underestimations for c2

P ick = 0.25 and
overestimations for c2

P ick = 0.75.

• Pick Density: for c2
P ick = 0.25, accuracy tends to be slightly better

for medium pick densities. For c2
P ick = 0.75, accuracy is better for

larger pick densities.

• Representative network variability c2
R,ZB : for c2

P ick = 0.25, the
approach tends to result in a slight underestimation for experiments
with c2

R,ZB ≤ 1.5. For larger c2
R,ZB , the approximation is very good.

This observation is contrary for c2
P ick = 0.75 as accuracy will be

very good for c2
R,ZB ≤ 1.5. For larger values of c2

R,ZB , there will be
a few overestimations of throughput. Still, overall accuracy is very
good.

• Service time ts,Depot: for both picking time variabilities, the service
time at the depot does not seem to have a big influence.

Table 6.8 includes the characteristic accuracy values.

6.1.3 Experiment Set 2

Another validation run was performed with experiment set 2, which dif-
fers from set 1 in a way that some parameters were chosen to have dif-
ferent values. Some parameters, e.g. ν and the storage policy, remain
unchanged. The purpose of this analysis is to show that the new inte-
grated approach also produces good approximations for input parameters
not used in the process of deriving the correction factors.
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c2
P ick = 0.25 c2

P ick = 0.75
Parameters P (ε ≤ |5%|) P (ε ≤ |10%|) P (ε ≤ |5%|) P (ε ≤ |10%|)
Number of aisles ν

6 88.1 98.4 96.2 99.3
8 87.8 99.3 96.5 99.9
10 92.1 99.4 90.7 98.2
12 91.8 98.6 86.7 98.4
14 91.5 97.9 81.1 96.6
16 90.7 97.1 76.4 95.2

Warehouse Shape Factor - WSF
0.333 95 99.9 95.7 99.4
0.667 88.4 98.9 87.8 98.2

1 87.7 96.6 81 96.3

Pick Density
0.05 90 96.5 82 96.3
0.1 93.5 98.9 86.7 97
0.2 87.9 99.6 94 100

Representative network variability c2
R,ZB

≤ 1.5 84.8 99.7 93.7 99.9
> 1.5 92.7 97.9 86.4 97.4

Service Time depot ts,Depot

1 90.9 98.5 86 97.3
5 90.4 98.3 86.7 97.4
15 89.7 98.6 91.4 99

all values in %

Table 6.8: Accuracy characteristics of the new approach for several input
parameters - extended experiment set 1
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Experiment Design

The following gives a brief overview on the parameters that were used:

• Parameters changed compared to experiment set 1

– Warehouse shape factor WSF : 1
2 , 3

4 (the shape factor is de-
fined as the ratio L

W
)

– Pick Density: 3
40 , 3

20 , 1
4 (the pick density is defined as the ratio

n
ν·h )

– Picker Density (based on segments) ωseg: 3
50 , 3

25 , 9
50 , 6

25 , 3
10

• Parameters unchanged compared to experiment set 1

– Number of aisles ν: 6, 8, 10, 12, 14, 16

– Storage Location Assignment Policy: Random, medium-
skewed class-based, high-skewed class-based. We assume both
class-based policies have three classes with the A-class occu-
pying 20% of the segments, the B-class occupying 30% and the
C-class occupying 50% of the segments. For medium-skewed,
the picks will be distributed on these classes by 50/30/20%,
i.e. 50% of the picks will be located in 20% of the segments.
For high-skewed, this distribution will be 80/15/5%.

– Service time ts,Depot: 1, 15 (seconds)

– Variability c2
Depot: 0.5

– Picking time tP ick: 15 (seconds)

– Variability Picking time c2
P ick: 0.25, 0.5, 0.75

Overall Accuracy

In total, experiment set 2 includes 3240 experiments and the histogram
of deviations between the results of our new integrated approach and
simulation is given in figure 6.3. The mean error ε̄ is 2.2% and it is obvious
that the new approach does not systematically under- or overestimate
the throughput. The few experiments with an underestimation of ε <
−10% stem from experiments with c2

P ick = 0.25. There is almost no
overestimation with ε > 10% and deviations seem to be rather normally
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Figure 6.3: Deviation between new approach and simulation - experiment
set 2

distributed around the value of 0%. The important error ranges and
quartiles are given by:

• P (ε ≤ |5%|) = 91%

• P (ε ≤ |10%|) = 99%

• Min = −12.7%; Q1 = −1.3%; Q2 = 0.3%; Q3 = 1.6%; Max =
13.5%

Overall, we get a very good approximation accuracy for experiment set 2.
Again, we classify the experiments by certain parameters to get a better
idea on how deviations develop for certain parameter combinations and
which parameter settings might produce a runaway value.

Accuracy Based on Storage Location Assignment Policy

For this parameter we can identify trends similar to those already ob-
served for the (extended) experiment set 1. The approximation works
very accurate for random storage. The results for medium-skewed class-
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based storage are also very good as the majority of experiments performs
within a |5%|-error range. For high-skewed class-bases storage, the ap-
proach has a slight tendency to result in an underestimation, even though
for most cases, the accuracy is within a |10%|-error range. Table 6.9 sum-
marizes the key accuracy data.

SLAP P (ε ≤ |5%|) P (ε ≤ |10%|) Min Q1 Q2 Q3 Max

Random 100 100 -3.4 -0.3 0.5 1.3 3.8
Medium-Skewed 97 100 -7.4 -1 0.7 2.2 6.6

High-Skewed 75 96 -12.7 -3.7 -1 1.7 13.5
all values in %

Table 6.9: Accuracy characteristics of the new approach for different stor-
age policies - experiment set 2

Accuracy Based on Picker Density

As for the other experiment sets, we can observe the best accuracy for
small and medium ωseg. Thus the best accuracy is calculated for ωseg =
0.06 and we get a slightly larger deviations for ωseg = 0.3. Table 6.10
shows the key accuracy data for different ωseg.

ωseg P (ε ≤ |5%|) P (ε ≤ |10%|) Min Q1 Q2 Q3 Max
0.06 99 100 -2.3 -0.3 0.7 1.6 5.3
0.12 95 100 -5.5 -0.7 0.9 2.4 6.8
0.18 88 100 -10 -1.5 0.7 2.1 8.8
0.24 87 99 -12.3 -1.7 0 1.4 10.2
0.3 86 95 -12.7 -3 -0.9 0.3 13.5

all values in %

Table 6.10: Accuracy characteristics of the new approach for different
picker densities - experiment set 2
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Accuracy Based on Remaining Parameters

• Number of aisles ν: there is no obvious trend to what extent the
accuracy is dependent on the number of aisles ν. Thus the new in-
tegrated approach produces accurate results for all different classes
of ν.

• Warehouse Shape Factor WSF : a distinct trend could not be iden-
tified and we thus subsume that accuracy is equally good for both
shape factor values.

• Pick Density: the accuracy of the new approach increases for de-
creasing pick density. Thus we get very good results for a small
pick density (0.075) with virtually no runaway values. At the same
time, we recorded some for larger pick densities (0.25). Still, for
this pick density, approximately 88% of experiments are within a
|5%|-error range.

• Representative network variability c2
R,ZB : for c2

R,ZB ≤ 1.5, we ob-
tain a good accuracy even though the runaway values are within this
class and approximately 81% of experiments are within a |5%|-error
range. Results are very accurate for c2

R,ZB > 1.5 as approximately
95% of experiments are within a |5%|-error range.

• Service time ts,Depot: as before, the service time at the depot does
not seem to have an influence on accuracy.

• Picking time variability c2
P ick: accuracy is best for c2

P ick = 0.5 and
we get a few errors larger than |10%| for c2

P ick = 0.25. As before,
the approach on average will result in a slight underestimation of
throughput for c2

P ick = 0.25 and will result in a slight overesti-
mation of throughput for c2

P ick = 0.75. The errors appear to be
normally distributed around the (0%; 1%]-interval for c2

P ick = 0.5.

The characteristic accuracy values for the remaining parameters are given
in table 6.11.
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Parameters P (ε ≤ |5%|) P (ε ≤ |10%|)
Number of aisles ν

6 87.9 99.3
8 93.5 98.9
10 93.1 98.6
12 91.8 98.5
14 90.6 98.7
16 88.5 98

Warehouse Shape Factor WSF
0.5 91.4 98.7
0.75 90.4 98.6

Pick Density
0.075 91.4 99
0.15 93.3 99.8
0.25 88 97.1

Representative network variability c2
R,ZB

≤ 1.5 80.7 96.4
> 1.5 94.8 99.5

Service Time ts,Depot

1 91 98.6
15 90.8 98.7

Picking Time variability c2
P ick

0.25 87.4 97
0.5 94 100
0.75 91.2 99.1

all values in %

Table 6.11: Accuracy characteristics of the new approach for several input
parameters - experiment set 2
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6.1.4 Accuracy Comparison: New Approach vs. Rall’s
Method

In order to find out to what extent the presented approach improves
the accuracy, we directly compare our new integrated approach to Rall’s
method. In this chapter, we will measure the error as the absolute value
of the percentage deviation:

|ε| = 100 ·
∣

∣

∣

∣

λanalytic − λsimulative

λsimulative

∣

∣

∣

∣

Experiment Set 1 and Extended Experiment Set 1

We first analyzed 14580 experiments of total experiment set 1 (original
and extension) and raised the following two questions for each experi-
ment:

• Does the new approach result in a better accuracy, i.e. |εNewApproach| <
|εRall|?

• If improving the accuracy, how big is the improvement, i.e. how big
is the difference between the two errors |εRall| − |εNewApproach|?

In total, the new approach performed better in 81.7% of experiments
while Rall’s approach was more accurate in 18.3% of experiments.

We add some additional information to these numbers. First, we clas-
sify all experiments in two groups, namely "New Approach better" and
"Rall better" and analyze the accuracy of the new integrated approach
separately for these two groups. We find out that the accuracy is very
good even for those experiments, where Rall’s method resulted in a better
accuracy:

• P (|εNewApproach| ≤ 5%|New Approach better) = 90.1%

• P (|εNewApproach| ≤ 10%|New Approach better) = 98.3%

• P (|εNewApproach| ≤ 5%|Rall better) = 91.6%

• P (|εNewApproach| ≤ 10%|Rall better) = 99.5%

The second question is concerned with the size of the improvement.
Again, we classify the experiments in two groups and analyzed for each
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experiment to what extent an accuracy improvement could be obtained.
Figure 6.4 shows the histogram of accuracy improvements.
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Figure 6.4: Improvement of approximation accuracy when using different
analytical approaches

For experiments where the new approach resulted in a better accuracy
(black bars), the improvement (by using the new integrated approach
instead of Rall) is of different sizes and larger than 10% for every fifth
experiment. In contrast, for experiments where Rall’s method resulted in
a better accuracy (grey bars), the improvement (by using Rall instead of
the new integrated approach) is typically rather small with the majority
of experiments resulting in an improvement of less than 1%. Even with
Rall’s method performing better for some experiments, the accuracy dif-
ference between both approaches is rather small and the new approach
also performs very well. Thus we do not have to use different approaches
for different input parameters because the new integrated approach per-
forms well for the whole range of experiments.

Finally, we give some more information on the characteristics of accuracy
improvement:
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• Average accuracy improvement when using new approach instead
of Rall’s method for experiments where new approach performs
better: 8.9%

• Average accuracy improvement when using Rall’s method instead
of new approach for experiments where Rall’s method performs
better: 1.5%

• Percentage of experiments with an accuracy improvement of more
than 5% when using new approach: 50.4%

• Percentage of experiments with an accuracy improvement of more
than 5% when using Rall’s method: 3.6%

Experiment Set 2

We also analyzed the 3240 experiments of set 2. The new integrated
approach resulted in a better accuracy for 84.8% of experiments while
Rall’s method was better in 15.2% of experiments.

On average, the accuracy improvement of the new approach is 7.4% and
almost 50% of experiments were improved by more than 5%. For those
experiments with Rall performing better, the average improvement was
2.3% and 13% of experiments had an improvement larger than 5%.

6.1.5 Validation Summary

We briefly outline the key findings of our validation procedure:

• The overall accuracy of the new integrated approach is very good,
as 90% of all experiments analyzed had an error ε ≤ |5%| and 99%
had an error ε ≤ |10%|.

• The approach has an excellent accuracy for random storage policy
as all respective experiments had an error ε ≤ |5%|.

• For class-based storage policy, two parameters have a crucial influ-
ence on accuracy: the Gini coefficient G∗, characterizing the skew-
ness of the distribution of pick frequencies across the segments and
aisles as well as the picker density ωseg, characterizing the ratio
of pickers to segments in the system. For larger G∗, accuracy in
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general does not significantly decrease. However, we experience a
few runaway values, with throughput being either underestimated
for small picking time variabilities (c2

P ick = 0.25) or overestimated
for larger picking time variabilities (c2

P ick = 0.75). The same holds
true for larger ωseg.

• The remaining system-characterizing parameters do not have a cru-
cial influence on the accuracy.

• The few runaway values can never be solely traced back to one par-
ticular parameter but result from a distinct combination of differ-
ent parameters, e.g. a setting with high-skewed class-based storage,
large ωseg and small pick densities.

• The approach works for a wide spectrum of system-characterizing
parameters. In particular, the approach also calculates very good
results for input parameters that were not specifically used in the
process of deriving the correction factors fZB and fMarie.

6.2 Application

The objective of this chapter is to assess the magnitude of effects that
congestion has on throughput in manual order picking systems. We will
mainly discuss the percentage of throughput that is lost due to conges-
tion, as calculated by:

δT P =
λLinear − λOP S

λLinear

where λLinear is the throughput of a single-picker system multiplied with
the number of pickers and the number of picks, thus resulting in a linear
increase of throughput. The lost throughput is of great interest to any
system planer as it concerns two key questions:

• For a certain number of pickers and despite congestion, will
throughput still be large enough to meet customer requirements
or do we (at least temporarily) need to add additional workers to
the system?
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• How much money is spent on pickers waiting for each other and how
does this number compare to the savings on surface costs which are
ascribed to narrow aisles?

In the following, we analyze the effects of congestion in various systems
by reusing the experiment sets already applied in the validation chapter.
In total, we evaluated 17820 experiments, covering a wide spectrum of
potential input parameter configurations. We first present some general
observations about throughput losses followed by an arbitrary example
which enables us to illustrate some of our typical findings with the use
of graphs. Afterwards, we analyze the effects subject to different param-
eters.

6.2.1 General Characteristics of Throughput Loss

Calculating the average throughput loss for all experiments results in a
value of 30.81%, thus on average almost a third of throughput is lost in
narrow-aisle systems. Figure 6.5 illustrates the distribution of deviation
classes in intervals of 5%. Additionally, the black line represents the cu-
mulative probability of throughput losses. These occur in several classes,
e.g. there are as many experiments with a loss of approximately 10% as
there are losses of approximately 45%. We also notice that more than
80% of experiments have a throughput loss of at least 15%.

6.2.2 Exemplary Throughput Trends for Random Storage

To illustrate typical effects for different storage policies, we first choose
an arbitrary system and show throughput trends in a graph. The chosen
system has ν = 10 aisles and a warehouse shape factor WSF = 2

3 ,
resulting in h = 10 segments per aisle2. Figure 6.6 shows the throughput
trends for random storage.

2Other parameters include: SLAP = Random and high-skewed class-based storage,
Pick Density = 1

20
, ts,Depot = 5s, c2

Depot
= 0.5, tP ick = 15s, c2

P ick
= 0.5 and

picker density ωseg= 1

100
, 2

100
, 3

100
, 4

100
, ... 33

100
, i.e. we will analyze 1, 2, 3, 4, ..., 33

pickers
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Figure 6.5: Deviation of throughput losses
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Figure 6.6: Throughput trends with/without congestion consideration -
random storage
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In systems without congestion consideration it is a straight line while it
is increasing on a diminishing scale if pickers block each other. Losses
are non-negligible even for a small number of pickers. For K = 2 pickers
there is a throughput loss δT P of approximately 4% and for K = 5 pickers
we already experience losses δT P of approximately 10%. This means
that each picker has to spend some 10% of his total order picking time
waiting for other pickers, i.e. the picker is performing tasks like picking
and walking in 90% of the time. Note that for the maximum number of
pickers in this example, K = 33, throughput losses δT P will be almost
45%. For random storage we also observe that each extra picker adds
some throughput, i.e. the additional throughput generated by one extra
picker compensates the additional losses which stem from an increase of
congestion due to the presence of that extra picker.

6.2.3 Exemplary Throughput Trends for within-aisle
Class-Based Storage

The throughput trend for the system using within-aisle class-based stor-
age is shown in figure 6.7.

For K = 2 pickers the throughput loss δT P will be almost 6%. For K = 5
pickers, the loss δT P will already be approximately 16% and for K = 33,
the loss δT P will be 75%. Furthermore, an additional picker will not
necessarily result in a throughput gain. In a range of K = 21, 22, ..., 25
throughput will remain on a certain level of saturation. It will start to
decrease when further increasing the number of pickers. The additional
throughput of any extra picker will then be overcompensated by increased
congestion due to the additional blocking situations.

6.2.4 Exemplary Comparison of Storage Policies

The comparison of different storage location assignment policies is an
issue worth some more discussion. For order picking processes, it is com-
monly assumed that class-based storage will result in better throughput
compared to random storage, because the picker presumably has to visit
fewer aisles and therefore travel less distance. Consequently, the process
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Figure 6.7: Throughput trends with/without congestion consideration -
class-based storage

of allocating high runners close to the depot is surely one of the first
improvement projects carried out in many order picking operations. For
systems with narrow aisles, we partly question this strategy. As we can
see in figure 6.8, there is a certain picker density level ωSLAP

seg , which
indicates a change of the preferable storage policy.

For K ≤ 12, a class-based storage policy results in a better performance.
In contrast, random storage will yield a higher throughput for K ≥ 13.
Thus for some picker density scenarios it is obviously better to have
pickers travel larger distances instead of having them block each other in
the aisles closest to the depot.

However, we need to interpret these results carefully as we are comparing
two storage policies with different underlying assumptions. Remember
that for random storage we assumed that each segment has the same
probability of being the location of one pick. For high-skewed class-
based storage we assumed that 80% of picks were located at 20% of the
segments in aisles closest to the depot. We have to realize that the pick

185



6 Validation and Application

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

T
h

ro
u

g
h

p
u

t 
(O

rd
e

rl
in

e
s 

/ 
m

in
)

Number of pickers

Class-based storage policy Random storage policy

Figure 6.8: Comparison of throughput trends for different storage policies

probabilities of individual items are determined by the customer, not the
operator of the order picking system. In case we have a given skewness
in items’ demand, the following two options are feasbile:

• Option 1: locate the items with high demand in the aisles closest
to the depot (as we have assumed in class-based storage policy).

• Option 2: randomly select some locations to distribute high-runners
evenly over the whole system. Despite the randomness of selecting
these locations, this strategy is not the same as the random storage
policy in the classical sense. This is because some segments would
feature higher pick probabilities than others which is contrary to
our assumption of equal pick probabilities for all segments.

A system that uses the second option will have different visit ratios than
those calculated in chapters 4.5 and 4.6 and we can therefore not directly
apply our models. However they can still be used as an approximation to
estimate the throughput. The value of ωSLAP

seg resulting from our models
gives us an idea to what extent option 2 might be preferable to option
1. If ωSLAP

seg is rather small, it is assumed that a more even distribution
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of high-runners would have a positive effect on throughput as this would
ease heavy traffic in the aisles closest to the depot.

6.2.5 General Effects of Storage Policy

Expectedly, the storage location assignment policy has quite an influ-
ence on throughput losses δ̄T P . There will be increased congestion with
more picks being located close to the depot. On average, there will be a
27%-loss for random storage, a 30%-loss for medium-skewed within-aisle
class-based storage and we experience an average loss of 36% for high-
skewed within-aisle class-based storage. Table 6.12 also illustrates the
characteristic quartiles of the losses’ distributions.

SLAP δ̄T P Min Q1 Q2 Q3 Max
Random 27.0 0 15.0 27.2 38.1 63.3

Medium-skewed 29.8 0 15.5 29.1 42.2 70.3
High-skewed 36.1 0 20.5 36.3 50.6 84.2

all values in %

Table 6.12: Throughput losses δ̄T P subject to different storage policies

We will also briefly focus on the critical level ωSLAP
seg , which indicates a

change of the preferable storage policy. When comparing random stor-
age to a medium-skewed class-based storage, the average level will be
ω̄SLAP

seg ≈ 24.5%. For high-skewed class-based storage the average criti-
cal level will come somewhat earlier at ω̄SLAP

seg ≈ 21.3%.

The pick density also has an influence on the critical level ωSLAP
seg . It tends

to be smaller for smaller number of picks and larger for larger number
of picks, i.e. the critical number of pickers is reached quicker for fewer
picks. This seems logical because for random storage a large number of
picks will likely result in large travel times. When involving large travel
times, it will be more difficult for a random storage policy to gain the
advantage over within-aisle class-based storage.
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6.2.6 General Effects of Order Batching

The literature states that order batching reduces travel time in single-
picker operations (see chapter 2.3.3). We assume that batching involves a
simple collection of orders on a first-come-first-serve basis. As an example
we compare a system with a certain pick density to the same system with
another pick density, thus assuming the collection of several orders that
are picked simultaneously. The exemplary system configuration is reused
to illustrate our findings. Figure 6.9 shows the throughput trends of the
exemplary system for different number of picks, which is essentially the
same as comparing non-batching (1 order with 5 picks) to batching (4
orders with 5 picks each).
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Figure 6.9: Comparison of throughput trends for order batching

In general, order batching has a positive effect on throughput in narrow-
aisle systems. For each parameter constellation, throughput could be
increased when picking more order lines per tour. For almost 90% of
experiments, order batching also led to a reduced percentage of time a
picker is blocked. Thus, the additional stops in front of racks mostly
have a calming effect on the overall flow of pickers. We illustrate this
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by considering λOP S ≈ 7.6 in figure 6.9 which is reached with K = 5
for non-batching and K = 3 for batching. Note that the percentage of
time lost is 10.6% for non-batching, while being only 5.3% for batching.
For most experiments, the increase in throughput stems not only from
travel-time savings (based on reduced distance per order line) but can
also be traced back to the reduced time a picker is blocked. For some
10% of experiments though, the percentage of time pickers are blocked is
higher if batching is in use. Still, the savings on travel time compensate
these increased losses to make batching favourable as overall throughput
can be increased.

The average throughput losses are given in table 6.133. Also included in
this table are the results of two further analysis. First, we seek to find
out the average percentage of throughput we could gain by applying a
batching rule. For this purpose, we directly compare two experiments,
which only differ in the value of pick density. For example, we assess
the throughput for a certain set of input parameters with a pick density
of 0.1 and compare it to the throughput of the benchmark pick density
of 0.2. Secondly, we analyze how much less percentage of time blocked
we would experience if we used a larger pick density. For a pick density
of 0.1 the table reads as follows. The average throughput loss will be
32.9%. Had we used a pick density of 0.2 instead - while leaving all
other parameters unchanged - we could improve throughput by 23.8% on
average. Simultaneously, we would be able to reduce the percentage of
time pickers are blocked by 4.9%.

Pick Density δ̄T P vs. Benchmark Throughput gain Reduced % of
time blocked

0.05 35.6% 0.2 42.1% 8.4%
0.1 32.9% 0.2 23.8% 4.9%
0.2 25.2% - - -

0.075 35.0% 0.25 37.6% 8.2%
0.15 30.6% 0.25 18.2% 3.5%
0.25 27.4% - - -

Table 6.13: Throughput characteristics subject to different pick densities

3The quartiles of the distribution of throughput losses subject to pick density are
given in table 6.18
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Finally, we should add that these findings are based on the most simple
batching rule, i.e. first-come-first serve collecting. If some other batch
building rule was applied, these results might change significantly. For
example, a batching based on the proximity of pick locations will most
likely lead to increased congestion at those locations.

6.2.7 General Effects of Picker Density

The number of pickers working in the system strongly influences the
degree of congestion. As these effects are specifically distinct for different
storage policies, we filter our experiments by picker density and storage
policy. Figure 6.10 illustrates the average throughput loss δ̄T P when
classified by these two parameters4.
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Figure 6.10: Throughput loss subject to different picker density level and
storage policies

4The quartiles of the distribution of throughput losses subject to picker density are
given in table 6.18.
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As we would expect, the average losses are lowest for random storage
and highest for high-skewed class-based storage with maximum values as
high as 60%. It it noteworthy that even for very small picker densities,
throughput losses quickly reach levels around 10% and should therefore
not be disregarded.

We have described above (see chapter 6.2.3) a case in which an additional
picker will not automatically result in an increased throughput. Analyz-
ing this effect for all of our experiments reveals that such throughput
trends are not likely to develop. For the overwhelming majority of ex-
periments (97%) each additional picker results in additional throughput.
We never experienced any decreasing throughput behavior for random
storage and only very rarely for medium-skewed class-based storage. For
picker density levels ωseg ≤ 0.2 we never experienced decreasing through-
puts. It does happen for some specific input parameter configurations,
e.g. ωseg > 0.2 in combination with high-skewed class-based storage. The
decrease is more likely to happen for small pick densities. We should em-
phasize that in our experiment sets the maximum value for picker density
was ωseg = 1

3 . One would expect the effect of decreasing throughput to
occur more frequently for picker density levels larger than that.

6.2.8 General Effects of ts,Depot

First, we calculate the average throughput loss δ̄T P for the respective
service times. Subsequently, we determine to what extent throughput
could be increased if ts,Depot was reduced. Table 6.145 shows the results.

If ts,Depot is bigger than or equal to the service times of its close-by neigh-
bors, the depot is a potential bottleneck because in contrast to other seg-
ments there will never be solely walking. For increasing picker densities
the depot will ultimately become the bottleneck and we can observe a
permanent queue in front of the depot with the throughput reaching a
certain level of saturation. This effect occurs for random storage but is
especially distinct for class-based storage. The results in table 6.14 stem
from experiments with a picking time of tP ick = 15s. It turns out that

5The quartiles of the distribution of throughput losses subject to the service time at
the depot are given in table 6.18
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ts,Depot δ̄T P vs. Benchmark Throughput gain
1s 30.6% - -
5s 30.0% 1s 2%
15s 31.6% 1s 8.4%

Table 6.14: Throughput characteristics subject to different service times
at the depot

the effect of ts,Depot on average throughput loss will be even bigger for
tP ick = 5s, which we have used as an input for some selected experi-
ments. For this picking time, the difference between the service times of
the depot and its close-by neighbors will be larger, thus facilitating the
depot to be a bottleneck.

The general benefit of reducing the times at the depot is indisputable,
e.g. resulting in a throughput increase of more than 8% if reduced from
15s to 1s.

6.2.9 General Effects of the Warehouse Shape Factor

The warehouse shape factor, i.e. the ratio of the order picking system’s
length and width, has quite an influence on the average throughput loss.
Table 6.156 includes the data for different shape factors.

WSF 1
3

1
2

2
3

3
4 1

δ̄T P 22.4% 29.1% 33.3% 32.9% 36.3%

Table 6.15: Throughput characteristics subject to different warehouse
shape factors

There is an obvious trend which states that on average more throughput
is lost for larger shape factors. Remember that a smaller shape factor in-

6The quartiles of the distribution of throughput losses subject to the warehouse shape
factor are given in table 6.18
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dicates that a system tends to have many short aisles while a larger shape
factor states that it tends to have few long aisles. In an order picking
system with short aisles, pickers tend to have more shortcut opportuni-
ties and thus can in some cases skip heavy-traffic aisles, avoiding blocking
situations. In contrast, long aisles will more likely lead to a picker be-
ing "trapped" within that aisle, resulting in more level-2-3-...-blocking
situations.

To support this statement, we compare the throughput losses of scenarios
that have roughly the same number of segments (νh) but are arranged
with different warehouse shape factors. For all comparisons small shape
factors performed better. Table 6.16 illustrates some selected examples.
Note that the observed trends occur for different storage policies, being
especially distinct for high-skewed class-based storage.

Segments ν h WSF δ̄T P

16 8 2 1
3 19.0%

18 6 3 1
2 23.1%

100 10 10 2
3 31.3%

104 8 13 1 35.3%

336 16 21 3
4 35.1%

350 14 25 1 38.1%

Table 6.16: Comparison of different warehouse shape factors for approx-
imately equal number of segments

6.2.10 General Effects of c2
P ick

Concerning the variability of the picking time, we found that throughput
losses tend to increase slightly with increasing c2

P ick. Larger c2
P ick will

ultimately result in larger variabilities c2
W A within the aisles. Larger

variabilities obviously sometimes will force pickers to stay longer at one
segment, thus increasing the likelihood of a blocking situation. Note that
this only focuses on throughput losses. We also analyze to what extent
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throughput will be won/lost if we decrease/increase c2
P ick. Table 6.177

summarizes the results. By reducing c2
P ick from 0.5 to 0.25, an average

c2
P ick δ̄T P vs. Benchmark Average throughput win/loss
0.25 28.8% 0.5 5.6%
0.5 30.9% - -
0.75 32.8% 0.5 -4.2%

Table 6.17: Throughput characteristics subject to different picking time
variabilities

throughput win of almost 6% could be realized while on the other hand
average throughput would be reduced by 4% if variability increased to
0.75.

The storage policy has a certain influence on these numbers. If we con-
sider only experiments with random storage, then throughput could be
increased by 3.7% for c2

P ick = 0.25 and throughput would decrease by
3.2% for c2

P ick = 0.75. For high-skewed class-based storage the influ-
ence is biggest. Reducing variability would result in an 8.5% increase of
throughput. Contrary, we would loose 5.5% of throughput if variability
increased.

7The quartiles of the distribution of throughput losses subject to picking time vari-
ability are given in table 6.18
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6.2.11 Approximation Accuracy for Throughput Losses

Finally, we briefly analyze the accuracy of the new integrated approach
if we concentrate on throughput losses. We compare δT P calculated with
the new integrated approach to δT P calculated using simulation. The
maximum runaway values are significantly reduced, e.g. the largest un-
derestimation of almost 32% (throughput) is reduced to an underestima-
tion of 8.3% (throughput loss). The mean error for all experiments of sets
1 and 2 is reduced from 2.5% (throughput) to 1.6% (throughput loss).
Overall the approximation accuracy for the percentage of time pickers
are blocked is even better than the results in the validation chapter (6.1)
suggest.

Figure 6.11 shows the probabilities of an arbitrary experiment to be in a
certain deviation class. We see that for almost 50% of experiments the
throughput loss δT P is approximated with an error smaller than or equal
to 1%. In total, 97% of experiments have an error smaller than or equal
to 5%.
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Figure 6.11: Accuracy of the approximation of throughput losses
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Parameter δ̄T P Min Q1 Q2 Q3 Max

Pick Density (Order Batching)

0.05 35.6% 0% 20.4% 35.1% 49.9% 84.2%

0.075 35.0% 5.9% 21.9% 35.0% 46.7% 72.2%

0.1 32.9% 0% 19.0% 32.8% 45.5% 75.4%

0.15 30.6% 5.8% 19.5% 30.4% 41.0% 63.0%

0.2 25.2% 0% 12.3% 24.0% 37.5% 64.2%

0.25 27.4% 4.9% 17.1% 27.0% 36.6% 57.0%

Picker Density ωseg

0.0333 6.3% 0% 3.9% 7.3% 9.2% 14.8%

0.06 13.4% 6.2% 11.2% 13.1% 15.4% 22.8%

0.0667 13.8% 0% 11.2% 14.0% 17.2% 27.6%

0.1 19.1% 0% 15.0% 19.8% 24.0% 37.9%

0.12 22.5% 4.9% 18.7% 22.7% 26.6% 39.1%

0.1333 25.2% 0% 20.9% 25.9% 30.8% 46.3%

0.1667 31.5% 4.5% 25.8% 31.6% 37.2% 54.0%

0.18 31.9% 9.9% 26.9% 31.8% 36.8% 51.5%

0.2 35.5% 4.5% 29.5% 35.6% 41.9% 60.0%

0.2333 39.7% 4.4% 33.4% 40.6% 47.3% 65.7%

0.24 39.8% 15.0% 33.8% 39.8% 45.9% 62.1%

0.2667 43.8% 4.5% 37.6% 44.7% 52.1% 71.7%

0.3 46.7% 4.4% 39.7% 47.1% 55.5% 77.5%

0.3333 50.9% 4.4% 43.5% 51.8% 61.7% 84.2%

Service Time Depot ts,Depot

1 30.6% 0% 17.0% 30.0% 42.5% 84.2%

5 30.0% 0% 15.8% 29.5% 42.6% 84.1%

15 31.6% 0% 17.2% 31.1% 44.3% 83.9%

Warehouse Shape Factor

0.333 22.4% 0% 10.0% 20.7% 33.9% 70.8%

0.5 29.1% 4.9% 17.5% 28.4% 38.8% 70.7%

0.667 33.3% 0% 19.7% 33.3% 45.4% 82.4%

0.75 32.9% 6.9% 20.7% 32.7% 43.5% 72.2%

1 36.3% 2.8% 22.4% 36.5% 48.9% 84.2%

Picking Time Variability c2
P ick

0.25 28.8% 0% 15.0% 28.1% 40.7% 82.4%

0.5 30.9% 0% 17.0% 30.5% 43.2% 83.4%

0.75 32.8% 0% 18.9% 32.9% 45.5% 84.2%

Table 6.18: Average values and quartiles of throughput losses for different
input parameters
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6.2.12 Key Observations on Congestion Effects

We summarize the most important effects of congestion in manual order
picking systems with narrow aisles. Planers and operators should bear
these observations in mind in order to get a realistic estimation of the ex-
pected performance. Obviously, these findings are based on the results we
calculated using our model which itself uses some assumptions on routing
and storage policy. If those change, for example using return routing pol-
icy and across-aisle class-based storage, the following observations might
partly change.

• Congestion always prevents throughput from increasing linearly in
the number of pickers. Instead the throughput trend will be increas-
ing on a diminishing scale. Even for very small picker densities ωseg,
the effects are noticeable. For very large levels of ωseg, throughput
might even be decreasing if additional pickers are put into the sys-
tem. In any case, picker productivity (measured in picked order
lines per man hour) decreases with every additional picker.

• On average, congestion will account for a throughput loss of roughly
30%. Some parameter scenarios yield very high throughput losses
but still an 80%-majority of experiments have a loss of at least 15%.

• Throughput losses will be fewest for random storage policy because
blocking situations will be less likely and mostly involve no more
than two pickers. Losses are bigger for within-aisle class-based stor-
age policies because many pickers typically sojourn only certain
parts of the whole area, resulting in heavy-traffic aisles.

• Up to a critical picker density level ωSLAP
seg , a within-aisle class-

based storage policy will result in higher throughputs compared to
a random policy. Beyond the critical level however, throughput
of within-aisle class-based storage systems is actually lower than
that of a random storage. This is an important finding as exist-
ing literature not considering congestion mostly reports on the un-
conditional advantages of class-based storage compared to random
storage. From a large set of experiments, we derived the average
critical level for high-skewed class-based storage as ω̄SLAP

seg ≈ 0.21.
From this number we can indirectly derive the guideline that if the
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ratio of pickers to picking segments is larger than 1 : 5, an even
distribution of frequently demanded items across the whole system
is likely to perform better than clustering them in one or several
high-runner-aisles.

• Concerning order batching based on first-come-first-serve collection
of orders, we support the statements of existing literature, claiming
its positive effects. In narrow-aisle systems, the savings on travel-
time also justify this strategy. Furthermore in most cases the in-
creased picking activities also have a calming effect on overall picker
flow and pickers spend less of their time waiting for other pickers.
Of course batching is generally only recommended if a required
subsequent sorting process is efficient enough and if resulting order
sojourn times are acceptable. We note that other batch building
rules (e.g. proximity of orders) which were not part of the analysis
might have a negative influence on throughput.

• The administrative time at the depot can have an influence on the
systems’ performance. Whenever the time at the depot is compar-
atively much larger than the time needed at its close-by neighbors,
the depot has an immediate potential to be the bottleneck of the
whole system. This trivial statement is especially crucial for the
depot because all pickers use it to start and end their tours. Invest-
ments to cut short administrative times still have to be mindfully
considered because its effects might be overestimated. In our ex-
periments, the 93%-reduction from 15s to 1s resulted in an average
throughput gain of approximately 8%.

• The average picking times surely have a bigger impact than the
time at the depot. In some of our experiments, reducing it by 67%
from 15s to 5s resulted in a throughput increase of almost 80%.
Needless to say this effect will strongly depend on the number of
picks per order and the ratio of picking time to order sojourn time.

• The variability of picking time also has an influence on through-
put. However, throughput gains or losses are not as significant as
those based on picking time. By cutting the variability from 0.5
to 0.25, throughput losses can be slightly increased and the aver-
age throughput win is almost 6%. The positive impact of reducing
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variabilities is higher for class-based storage, resulting in 8% ad-
ditional throughput. Still, it seems to take quite an effort to cut
variability by 50% and "only" produce a throughput gain of 6 or 8%
respectively. One should be aware tough that variability of the pick-
ing time ultimately influences the variability of total order sojourn
time. If we look beyond the borders of the order picking system, we
might find that a reduced variability of its output will help other
succeeding processes perform better because material actually flows
more consistently through the whole warehouse.

• There is an obvious trend stating that congestion tends to be heav-
ier in systems with larger warehouse shape factors. This means
that systems with few long aisles tend to suffer more from con-
gestion than systems with many short aisles. In particular pickers
will be less likely to skip aisles and will therefore sometimes by
"trapped" in aisles. This effect is especially distinct for high-skewed
class-based storage. We therefore recommend to design narrow-aisle
systems in a way they have more width W than length L, ideally
with W ≥ 2L. Note that this is in contrast to the guideline given
by Hwang et al. (2004, p. 3883). It states that a system should
be designed such that W ≈ L

2 , i.e. a few long aisles should be used
(see aisle configuration problem in chapter 2.2.2). This represents
yet another example that classic guidelines need to be considered
carefully when designing and operating narrow-aisles systems.
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7.1 Summary

In manual order picking systems with narrow aisles, pickers cannot pass
each other. Consequently there are interdependencies between the pickers
that negatively influence throughput and thus the performance of such
systems. In particular, pickers are interrupted by other pickers and have
to wait for each other. This results in blocking situations and congestion.
For such systems, throughput will be falsely estimated if the result of
a single-picker travel-time model is simply multiplied with the number
of pickers. Instead, models explicitly have to consider interdependencies
and resulting congestion effects.

We have presented an analytical approach to calculate throughput in
manual order picking systems by means of continuous time queueing the-
ory. The model was specifically designed to consider congestion, thus
quantifying the effects of picker interferences. It is well-suited to support
the rough planning phase in which different design alternatives need to
be evaluated. At this point an analytical approach is preferred over sim-
ulation because it quickly calculates key performance indicators, whereas
simulation consumes more time. Typically, analytical models are used in
the first planning loop and some promising parameter configurations are
subsequently analyzed in more detail using simulation.

The presented model allows for the consideration of several order picking
input parameters, such as random or class-based storage policy, picking
and administrative times as well as traversal routing with and without
aisle-skipping. The choice of parameters is a major advantage compared
to existing approaches, which offer rather few possibilities to analyze
various configurations because they are based on tight assumptions.



7 Conclusion

We modeled an order picking system as a closed queueing network in
which the systems’ resources are represented by elementary queueing sys-
tems. For instance, resources include a rack column within an aisle or the
depot and the corresponding space in front of it. Thus the space pickers
use for walking or riding can be divided into segments, which each can
hold at maximum one picker at a time. Each segment is modeled by
an elementary zero-buffer queueing system with one server. The absence
of a waiting room enables the modeling of blocking situations and thus
congestion. We derived formulas to determine transition probabilities,
i.e. routing probabilities for segments at which pickers can decide on the
direction of travel. This step is pivotal for the modeling of routing and
storage location assignment policies. Because picking times are assumed
to be generally distributed, the model is completed by the derivation of
formulas for the expected service time as well as service time variability
for each segment.

We have pointed out that closed queueing networks with unlimited buffers
are basically suitable to model blocking situations involving two pickers.
If more than two pickers are involved, we have to use networks with
limited buffers to model congestion appropriately. We present a new in-
tegrated approximation approach for the latter as no existing method is
precisely fitting the requirements. The basic idea is to model the de-
crease of throughput which is caused by blocking situations involving
more than two pickers as a reduction of the number of pickers working in
the system. This reduction is achieved by applying the correction factor
fZB . The reduced number of pickers is then used in the network in which
the zero-buffers are replaced with unlimited buffers. Such networks can
be analyzed with the well-known method of Marie. However, for some
parameter configurations, the accuracy of Marie’s method needs to be
improved by applying the correction factor fMarie. Both fZB and fMarie

are obtained by closed-form expressions depending on characteristic sys-
tem parameters.

The procedure was validated by applying it to a large set of 17820 exper-
iments. Throughput was calculated and compared to the results of sim-
ulation. We found that 90% of experiments had an approximation error
ε ≤ |5%| and 99% of experiments had an approximation error ε ≤ |10%|.
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Thus the new approach calculates throughput values of very good accu-
racy. Within a rough planning phase, the observed errors are acceptable.

To gain some insights on system behavior when congestion is occurring,
we calculated the percentage of throughput lost by comparing results of
our new integrated approach to calculations not considering congestion.
First, the new method was used for the large experiment set to calculate
throughput for K pickers. Subsequently, to obtain throughput of a sys-
tem without any congestion, we calculated the throughput for 1 picker
and multiplied it with K. The comparison showed that throughput losses
can be of significant size. The average loss is approximately 31% and an
80%-majority of experiments have a loss of at least 15%. Unsurprisingly,
the loss increases with increasing number of pickers.

Concerning the storage location assignment policy, the average loss is 36%
for a high-skewed class-based storage policy and 27% for random stor-
age. In systems without congestion, it is commonly assumed that class-
based storage always outperforms random storage in terms of through-
put because travel distances will be smaller. Our results suggest that
this guideline can only be partly applied to order picking systems with
narrow aisles. Class-based storage will always perform better for a small
number of pickers. In contrast, we can identify scenarios where random
storage performed better once a critical number of pickers was exceeded.
In such cases the additional pickers in a system with class-based storage
will cause comparatively more congestion than in systems with random
storage. In fact the pickers will walk less distance, yet they will spend
more time waiting, which will overcompensate the combined walking and
waiting time in a system with random storage. In some scenarios with
class-based storage, we could also identify that an additional picker does
not necessarily create additional throughput. Thus at some stage the
throughput trends might also be decreasing when extra pickers are put
into the system.

Order batching will have a positive effect on throughput in narrow-aisle
systems as travel time per order line decreases. Moreover we also experi-
enced a calming effect of batching for most of our scenarios as percentage
throughput loss will be smaller compared to non-batching.
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Another influential parameter is the warehouse shape factor, defining
the ratio between length and width of the order picking system. We
found that more congestion will occur in systems with larger warehouse
shape factors. We compared different design alternatives and recommend
narrow-aisle systems to be built with many short aisles instead of a few
long aisles. This guideline is especially important for systems with class-
based storage. Again this recommendation is contrary to statements in
the existing literature which were derived from models not considering
congestion effects.

Although our model is applicable to far more scenarios than any of the
existing analytical approaches, we can still identify the following weak-
nesses of our approach. Queueing models are mostly used in the rough
planning phase as it is unlikely that they provide the necessary level of
detail for more precise analysis. For these we still have to rely on other
methodologies, e.g. simulation. Even though the overall accuracy is very
satisfying, we experienced a few runaway values as high as approximately
|30%|. These stem from the formulas of the correction factors, which were
derived from empirical data. Even though we have used a wide range of
parameters, we still cannot guarantee the factors’ fitness for every single
possible parameter configuration. The last weakness we should discuss
is the fact that the results of the developed approach are average values.
Consequently, we do not obtain any information about the distribution of
performance indicators. Some interpretations might therefore be incom-
plete. For example, the average order cycle time might be satisfactory
while the cycle time distribution would reveal that a certain percentage
of orders has unacceptably long cycle times. By using average values for
the input parameters, we might also loose some information on system
behavior, e.g. if picking times have a multimodal distribution. In con-
trast to continuous time queueing models which have been used in this
work, discrete time queueing models use distributions and therefore seem
to be a promising alternative. However, we should bear in mind that the
application of discrete time queueing models to large and complex net-
works is limited. Thus results for at least some of our experiments could
not have been calculated with an acceptable effort.
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7.2 Outlook

The presented approximation approach constitutes the first thorough ap-
plication of queueing models to narrow-aisle order picking systems, en-
abling the calculation of throughput with congestion consideration. Con-
sequently, many open research questions remain and thus there are several
possible extensions to this approach. The one-way traversal routing pol-
icy was implemented by calculating transition probabilities. Using other
ways to derive these values, we could possibly implement other routing
strategies, e.g. return strategy. However, one would have to incorporate
a solution for opposing traffic as we have pointed out that such opposed
movements might require priority rules defining which picker gets to go
first. The location of the depot could also be altered by modifying the
transition probabilities. Loosening the assumption of a fix number of
picks per order will have some influence on transition probabilities as
well as service time parameters. A major advancement could be achieved
by implementing the passing process of pickers within an aisle, thus not
solely considering narrow aisles. This could involve having a maximum
possible number of pickers that can simultaneously use a segment. For
example one picker could just pass the segment if only one other picker
was using it and one picker would have to wait if two others were al-
ready using it. Furthermore we could allow for each aisle to have its
individual width. This way heavy-traffic aisles close to the depot could
be wide enough to allow for passing while low-traffic aisles far from the
depot could be narrow. Presumably some of the congestion problems
in systems with class-based storage and a high number of pickers could
be solved by this strategy. Concerning the modeling of this extension,
multiple-server queueing systems seem to be a promising approach. Fi-
nally, an optimization model which uses the results of the new integrated
approach and provides an optimal set of system parameters subject to
certain throughput and layout requirements could further help planners
to efficiently decide on layout and operational strategies.
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Glossary of Notation

Ax decision point of type A, immediately preceding the
even aisle 2x + 2

α index for an aisle
αeven index for an even aisle
αnext index of the next aisle a picker has to enter
αodd index for an odd aisle
Bi capacity of queueing system i, i.e. the sum of the num-

ber of servers m and the number of spaces in the buffer
β index for an aisle
βodd index for an odd aisle
βeven index for an even aisle
c2 variability / squared coefficient of variation
c2

Depot variability at the depot
c2

CA variability at a cross aisle segment
c2

P ick variability of the picking time (note that this is different
from c2

W A because the latter also includes the walking
activity and the probability that a pick is done)

c2
R representative network variability, expressing to what

extent the network is subject to the influences of nodes’
variabilities

c2
R,ZB adjusted representative network variability for zero-

buffer networks
c2

W A variability at a segment within an aisle
D stochastic administrative time at the depot
DRack depth of a rack column; assumed to be 0.5m
δT P percentage of throughput loss caused by congestion;

equals the percentage of time a picker is blocked
E number of experiments
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Glossary of Notation

ei visit ratio at queueing system i, indicating the rela-
tive portion of network throughput that goes through
system i

es,rel relative portion of a single visit ratio es to total visit
ratios for all segments with picking

E(ta) average interarrival time between two arriving cus-
tomers

E(ts) average service time of a customer
E(ts,CA) average service time at a segment of the cross aisle
E(ts,Depot) average service time at the depot
E(ts,W A) average service time at a segment within an aisle
ε error between an analytically calculated value and a

value resulting from simulation
fMarie correction factor that adjusts the number of customers

in a way enabling us to use the method of Marie to es-
timate throughput in a network with unlimited buffers,
thus compensating the errors of Marie’s method

f true
Marie true correction factor as calculated from a simulation

fRall correction factor that incorporates the effects of vari-
ability in the result of Akyildiz’ algorithm

fZB correction factor that adjusts the number of customers
in a way enabling us to use a network with unlimited
buffers to estimate the throughput in zero-buffer net-
works

f true
ZB true correction factor as calculated from a simulation

G∗ Gini coefficient describing the distribution of pickers to
areas of the order picking system (0=even distribution
over whole system; 1=concentrated distribution)

ΓDP number of different cases how a certain number of picks
can be distributed to the different segments of the sys-
tem in a way each case will lead to a visit of decision
point DP

ΓCB
DP number of different cases how a certain number of picks

can be distributed to the different segments of the sys-
tem when a class-based storage policy is used
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γ index for a class in class-based storage policy
γp,picks percentage of picks done in class γ
γp,seg percentage of segments belonging to class γ
γseg absolute number of segments belonging to class γ
γvirtual multiplying factor which is used to increase an aisle to

its virtual size
h number of segments per aisle. A segment is the space

in front of two opposing rack columns
hα number of segments per aisle after virtually increasing

the size of aisle α
K number of customers in the queueing network or num-

ber of pickers
K∗ number of customers in the queueing network as cal-

culated by Akyildiz
K∗∗ number of customers in the queueing network as cal-

culated by Rall
K+ adjusted number of customers enabling us to use a net-

work with unlimited buffers to estimate the throughput
in zero-buffer networks

K+
true true adjusted number of customers as calculated from

a simulation
K++ adjusted number of customers enabling us to use the

method of Marie to estimate throughput in a network
with unlimited buffers, thus compensating the approx-
imation errors of Marie’s method

K++
true true adjusted number of customers as calculated from

a simulation
L length of the order picking system (measured along the

length of an aisle; L = h
ν

· LRack + 3[m])
LRack length of a rack column; assumed to be 1m
LCB number of different classes in class-based storage
λLinear throughput in an order picking system calculated by

multiplying the throughput of one customer with the
number of customers

λMarie(K) throughput in a network with unlimited buffers and K
customers as calculated by Marie’s method
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Glossary of Notation

λOP S(K) throughput in an order picking system with K pickers;
measured in completed order lines per period of time

λUB(K) throughput in a network with unlimited buffers and K
customers

λZB(K) throughput in a zero-buffer network with K customers
m number of parallel servers of a queueing system
μ service rate
μCA service rate at a cross aisle
μD mean value of the stochastic administrative time at the

depot
μDepot service rate at the depot
μP mean value of the stochastic picking time
μW A service rate at a segment within an aisle
N number of servers in the queueing network
NS average number of customers in the system
NW average number of customers in the buffer
n number of picks per order / number of order lines per

order
ν number of aisles in the order picking system
o auxiliary variable for indicating aisle usage
ω customer or picker density, defined as the ratio K

∑

N

i=1
Bi

ωα customer or picker density within an aisle α
ωseg customer or picker density based on segments, defined

as the ratio K
ν·h

ωSLAP
seg picker density level where a change of the storage policy

is preferable
ppick,i probability that an arbitrary order includes a pick at

segment i
pstop,i probability that a picker has to stop at segment i in

order to do a pick
P stochastic picking time at a segment
qj,i transition probability, indicating the probability that

a customer after finishing service at system j is trans-
ferred to system i

Qx quartile of a distribution. Q1 is the lower quartile,
i.e. the 25th percentile; Q2 is the median, i.e. the
50th percentile; Q3 is the upper quartile, i.e. the 75th
percentile
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r Pearson’s coefficient of correlation
R2 coefficient of determination, indicating the fitness of a

function
ρ utilization of a queueing system
σ2

D standard deviation of the stochastic administrative
time at the depot

σ2
P standard deviation of the stochastic picking time

tOP T total order picking time, i.e. the time to complete one
picking tour staring and ending at the depot

tP ick picking time at a rack column (note that this is dif-
ferent from E(ts,W A) because the latter also includes
the walking activity and the probability that a pick is
done)

tw waiting time in a queueing system
tv sojourn (or throughput) time
T deterministic travel time
W width of the order picking system (measured along the

length of the total cross aisle; W = ν · WAisle + 2 · ν ·
DRack[m])

WAisle width of an aisle; assumed to be 1m
WSF warehouse Shape Factor, indicating the ratio L

W

y auxiliary variable for allocating picks to aisles
z auxiliary variable for allocating picks to aisles
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A Estimation of Parameters for
a Cox-2 Model

To use a Cox-2 model for approximating distributions with mean service
rate μ and variability c2

ab ≥ 0.5 we have to determine the parameters μ1,
μ2 and q1 of the Cox-2-Model. μ1 denotes the mean service rate in the
first phase, μ2 represents the mean service rate in the second phase and
q1 indicates the probability that the customer visits phase 2 after having
finished service in phase 1.

Without explicitly giving a derivation, Marie (1980) suggested the fol-
lowing parameters:

μ1 = 2μ μ2 =
μ

c2
ab

q1 =
1

2c2
ab

In the following, we will present a detailed derivation of these parameters.
In line with Augustin and Büscher (1982) as well as Furmans (2000), we
formulate three conditions that have to be fulfilled:

• The mean service time of the overall system has to equal the sum
of the mean service times in the respective phases

1

μ

!
=

1

μ1
+

q1

μ2

• The service times of the two phases have to be equal

1

μ1

!
=

q1

μ2

• The second moment of the overall service time has to equal the
second moment of the Cox-2-Distribution.

1

μ2
(1 + c2

ab)
!
= E(C2)
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A Estimation of Parameters for a Cox-2 Model

A.1 Second Moment for a Cox-n-Distribution

We want to derive the second moment and estimate the parameters μ1,
μ2 and q1. Augustin and Büscher (1982) first transform the standard
Cox-n-Representation into an equivalent representation. In this model
we have n parallel paths and choose exactly one path i with probability
pi. Path 1 consists of one exponential server, path 2 consists of two serial
exponential servers, ... and path n consists of n serial exponential servers.
Let Zi be an exponentially distributed random variable representing the
service time in phase i. Let C be a random variable representing the
service time of the overall Cox-n-Model.

Let (1− qi) be the probability to exit the system after completing service
in phase i. Then pi indicates the probability to enter a specific path i
and is given by:

pi = (1 − qi)
i−1
∏

k=1

qk

With these definitions the second moment of a Cox-n-Distribution is gen-
erally given by:

E(C2) =
n

∑

r=1

pr · E

[

(
r

∑

i=1

Zi)
2

]

E(C2) =
n

∑

i=1

pr ·

⎡

⎣

r
∑

i=1

E(Z2
i ) + 2 ·

r
∑

i=2

i−1
∑

j=1

E(Zi · Zj)

⎤

⎦ (A.1)

A.2 Second Moment for a Cox-2-Distribution

For the special case of a Cox-2-Distribution, equation (A.1) simplifies to:

E(C2) = p1 · E(Z2
1 ) + p2 ·

[

E(Z2
1 ) + E(Z2

2 ) + 2 · E(Z1Z2)
]

(A.2)

For two phases we can define the parameters p1 and p2 as follows:

p1 = (1 − q1) p2 = q1

236



A.2 Second Moment for a Cox-2-Distribution

and formulate the second moment as:

E(C2) = (1 − q1) · E(Z2
1 ) + q1 ·

[

E(Z2
1 ) + E(Z2

2 ) + 2 · E(Z1Z2)
]

(A.3)

In order to better define equation (A.3) we now have to consider the
terms E(Z2

1 ), E(Z2
2 ) and E(Z1Z2) in more detail. As the phases are

independent, i.e. all Zi are independent, we can re-write the term E(Z2
1 )

as follows:
E(Z2

1 ) = V ar(Zi) + E(Zi)
2

Based on independence we can also set:

E(Z1Z2) = E(Z1) · E(Z2)

For an exponentially distributed random variable Zi the variance and
mean service time are defined by:

V ar(Zi) =
1

μ2
i

E(Zi) =
1

μi

The second moment of the random variable Zi can then be formulated
as:

E(Z2
1 ) = V ar(Zi) + E(Zi)

2 =
1

μ2
i

+

(

1

μi

)2

=
2

μ2
i

(A.4)

We can now re-formulate equation (A.3) as follows:

E(C2) = (1 − q1) ·
(

2

μ2
1

)

+ q1 ·
(

2

μ2
1

+
2

μ1μ2
+

2

μ2
2

)

=
2

μ2
1

+ q1 ·
(

2

μ1μ2
+

2

μ2
2

)

= 2 ·
(

1

μ2
1

+ q1 ·
(

1

μ1μ2
+

1

μ2
2

))

(A.5)

Equation (A.5) is identical to the formulation given in the original liter-
ature (Augustin and Büscher 1982, p. 26). Based on the second moment
E(C2), we can now use the three conditions formulated above to derive
the parameters for the Cox-2-Distribution.
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A.3 Derivation of the Parameters µ1, µ2 and q1

We start with condition 2 (service time of the phases have to be equal)
to derive an intermediate result for parameter q1:

1

μ1

!
=

q1

μ2

q1 =
μ2

μ1
(A.6)

We use this result in condition 1 (mean service time of the overall system
has to equal the sum of the mean service times in the respective phases)
to get an intermediate result for μ1:

1

μ

!
=

1

μ1
+

q1

μ2

⇒ μ1 =
μμ2

μ2 − μ2

μ1
μ

(A.7)

We again use condition 1 to further characterize parameter q1:

q1 =
μ2
μμ2

μ2− μ2
μ1

μ

q1 =
μ2 ·

(

μ2 − μ2μ
μ1

)

μμ2

q1 =
μ2 − μ2

μ1
μ

μ

q1 =
μ2 − q1μ

μ

q1 =
μ2

μ
− q1

2q1 =
μ2

μ

q1 =
μ2

2μ
(A.8)
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A.3 Derivation of the Parameters μ1, μ2 and q1

Again we use condition 1 and get the final result for parameter μ1:

1

μ

!
=

1

μ1
+

q1

μ2

1

μ

!
=

1

μ1
+

μ2

2μ

μ2

⇒ μ1 = 2μ (A.9)

Now we will use the final result from equation (A.9), the intermediate
result from equation (A.8) and the formula for the second moment from
equation (A.5) in condition 3 (the second moment of the overall service
time has to equal the second moment of the Cox-2-Distribution):
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1

μ2
(1 + c2

ab)
!
= E(C2)

1

μ2
(1 + c2

ab) = 2 ·
(

1

μ2
1

+ q1 ·
(

1

μ1μ2
+

1

μ2
2

))

1

μ2
(1 + c2

ab) = 2 ·
(

1

μ2
1

+ q1 ·
(

μ1 + μ2

μ1μ2
2

))

1

μ2
(1 + c2

ab) = 2 ·
(

1

4μ2
+

μ2

2μ
·
(

2μ + μ2

2μμ2
2

))

1

μ2
(1 + c2

ab) = 2 ·
(

1

4μ2
+

μ2

2μ
·
(

1

μ2
2

+
1

2μμ2

))

1

μ2
(1 + c2

ab) =
1

2μ2
+ 2

μ2

2μ

1

μ2
2

+ 2
μ2

2μ

1

2μμ2

1

μ2
(1 + c2

ab) =
1

2μ2
+

1

μμ2
+

1

2μ2

1

μ2
(1 + c2

ab) − 1

2μ2
− 1

2μ2
=

1

μμ2

1

μ2
(1 + c2

ab) − 1

μ2
=

1

μμ2

1

μ2
(1 + c2

ab − 1) =
1

μμ2

μ2

c2
ab

= μμ2

⇒ μ2 =
μ

c2
ab

(A.10)
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A.3 Derivation of the Parameters μ1, μ2 and q1

Finally we use the result of equation (A.10) in the intermediate result of
equation (A.8) to get the final result for q1:

q1 =
μ2

2μ

q1 =

μ

c2
ab

2μ

⇒ q1 =
1

2c2
ab

(A.11)

Observing equations (A.9), (A.10) and (A.11), we can see that these
parameters equal those originally proposed by Marie (1980, p. 128).
Experimental tests have shown that the parameters

μ1 = 2μ μ2 =
μ

c2
ab

q1 =
1

2c2
ab

produce good solutions concerning the approximation of both μ and c2
ab.
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B Fit-Functions for the
Correction Factor fZB

We will briefly present the fit-functions used in the surface-fitting opera-
tion to find a functional relation between fZB and the input parameters
ω as well as one of the parameters G∗ and c2

R,ZB .

Cosine2D(ω, G∗)

f true
ZB ≈ fZB = z0 + A1 · cos(ω) + B1 · cos(G∗) + A2 · cos(2ω)

+C1 · cos(ω) · cos(G∗) + B2 · cos(2G∗) (B.1)

Cosine2D(ω, c2
R,ZB)

f true
ZB ≈ fZB = z0 + A1 · cos(ω) + B1 · cos(c2

R,ZB) + A2 · cos(2ω)

+C1 · cos(ω) · cos(c2
R,ZB) + B2 · cos(2c2

R,ZB) (B.2)

Plane(ω, G∗)

f true
ZB ≈ fZB = z0 + a · ω + b · G∗ (B.3)
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B Fit-Functions for the Correction Factor fZB

Plane(ω, c2
R,ZB)

f true
ZB ≈ fZB = z0 + a · ω + b · c2

R,ZB (B.4)

Power2D(ω, G∗)

f true
ZB ≈ fZB = z0 + B · ωC + D · (G∗)E + F · ωC · (G∗)E (B.5)

Power2D(ω, c2
R,ZB)

f true
ZB ≈ fZB = z0 + B · ωC + D · (c2

R,ZB)E + F · ωC · (c2
R,ZB)E (B.6)

Gauss2D(ω, G∗)

f true
ZB ≈ fZB = z0 + A · e

[

−0.5·
(

ω−xc
w1

)2−0.5·
(

G∗
−yc

w2

)2
]

(B.7)

Gauss2D(ω, c2
R,ZB)

f true
ZB ≈ fZB = z0 + A · e

[

−0.5·
(

ω−xc
w1

)2−0.5·
(

c2
R,ZB

−yc

w2

)2
]

(B.8)

Poly2D(ω, G∗)

f true
ZB ≈ fZB = z0 + A · ω + B · G∗

+C · ω2 + D · (G∗)2 + F · ω · G∗ (B.9)
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Poly2D(ω, c2
R,ZB)

f true
ZB ≈ fZB = z0 + A · ω + B · c2

R,ZB

+C · ω2 + D · (c2
R,ZB)2 + F · ω · c2

R,ZB (B.10)
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Order picking is the most important warehouse process. Systems with narrow 

aisles will initially have smaller surface costs and travel distances. However, 

they might suffer from congestion as pickers cannot pass each other, resul-

ting in waiting times which negatively influence throughput performance. 

The majority of existing literature focuses solely on travel distance and thus 

does not consider interdependencies between pickers. The few existing models 

incorporating congestion have very strict assumptions, resulting in a limited 

scope of application.

In this work, queueing models are developed to calculate throughput of man-

ual order picking systems with congestion consideration. Systems with tra-

versal routing and random as well as class-based storage policy are analyzed. 

Being of analytical nature, the models are able to estimate throughput for 

many alternative designs in a relatively short amount of time.

First, the parameters of the order picking system are transformed into the 

parameters of the queueing model. This results in some distinct queueing 

model characteristics, namely a closed queueing network with limited buffers 

and generally distributed service times. Existing approximation approaches 

are extended and integrated to obtain a new method for this type of net-

work. The new approach is then used for numerous parameter configurations 

to quantify the effects of congestion. The results suggest that a considerable 

percentage of throughput is lost, even for a small number of pickers. Existing 

guidelines on how to design and operate manual order picking systems are at 

least partly not valid if congestion occurs. Therefore, some new guidelines for 

narrow-aisle order picking systems are introduced.


