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Abstract—The focus of this paper is to analyze the relative sen-
sitivity of the bulk throughput performance of different versions of
TCP, viz., OldTahoe, Tahoe, Reno, and New Reno, to channel er-
rors that are correlated. We investigate the performance of a single
wireless TCP connection in a local environment by modeling the
correlated packet loss/error process (e.g., as induced by a multi-
path fading channel) as a first-order Markov chain. A major con-
tribution of the paper is a unified analytical approachwhich allows
the evaluation of the throughput performance of various versions
of TCP. The main findings of this study are that 1) error corre-
lations significantly affect the performance of TCP, and in partic-
ular may result in considerably better performance for Tahoe and
NewReno; and 2) over slowly fading channels which are charac-
terized by significant channel memory, Tahoe performs as well as
NewReno. This leads us to conclude that a clever design of the lower
layers that preserve error correlations, naturally present on wire-
less links because of the fading behavior, could be an attractive al-
ternative to the development or the use of more complex versions
of TCP.

Index Terms—Bursty errors, Markov channel, slow fading, TCP.

I. INTRODUCTION

DUE TO rapid advances in the area of wireless commu-
nications and the popularity of the Internet, provision of

packet data services for applications like e-mail, web browsing,
and mobile computing over wireless channels is gaining
importance. Transport Control Protocol (TCP) is a reliable,
end-to-end, transport protocol that is widely used to support
applications like telnet, ftp, and http [1].

TCP was designed primarily for wireline networks where the
channel error rates are very low and congestion is the primary
cause of packet loss [2]. Since its original deployment, several
modifications to TCP, including Reno, NewReno, and Vegas,
have been proposed and their performance analyzed in wire-
line networks [2]–[4]. Reno’s loss recovery algorithm is opti-
mized for the case when a single packet is lost in a window of
data. Hence, Reno can suffer performance problems when mul-
tiple packets are lost in a window [3]. NewReno addresses this
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problem by improving the loss recovery phase to handle this
situation [3], [5]. However, the performance of these enhanced
TCP versions on wireless fading links has not been adequately
studied so far.

There have been several recent investigations on different
facets of wireless TCP [5]–[13]. Most of these studies do not
consider the effect ofcorrelation in multipath fading[14], [15].
Errors are often assumed to occur independently and with the
same probability on each packet. Yet, because the multipath
fading process in a mobile radio environment can be slowly
varying for typical values of carrier frequency and user speed,
the dependence between errors in the transmissions of consec-
utive packets of data cannot be neglected. Although motivated
by the behavior of the wireless channel, the loss model consid-
ered here also applies to any environment where the packet loss
process exhibits memory, e.g., due to congestion.

Related work has been presented in [12], where the perfor-
mance of the OldTahoe and Tahoe versions of TCP is analyzed
assuming a two state Markov channel model. A simplified an-
alytical model for the throughput of the Tahoe version in the
presence of Markovian packet losses has been presented in [15],
where it was shown that correlation has a beneficial effect. An
open question in this regard is the relative difference between the
performance of various versions of TCP over the fading channel.

In this paper, we compare the performance of OldTahoe,
Tahoe, Reno, and NewReno. In each instance, a single TCP
connection is assumed to extend over a multipath fading
channel modeled as a first-order Markov packet error model,
as in [12] and [16]. We assume that a large data file is to be
transferred from the base station to a mobile terminal, over
a 1.5 Mbps wireless link that is characterized by very low
delay-bandwidth product. As in [5], we assume instantaneous
ACK’s. The assumption of a single TCP connection, with the
TCP end points being at the base station and at the mobile
terminal, is consistent with IS-99 [17], [18].

Two main findings of this paper are that 1) error correla-
tions significantly affect the performance of TCP, and in par-
ticular result in considerably better performance for Tahoe and
NewReno; and 2) over slow fading channels, Tahoe performs
as well as NewReno. This leads to the conclusion that a clever
design of the lower layers that preserves error correlations, nat-
urally present on wireless links because of the fading behavior,
could be an attractive alternative to the development or the use
of more complex versions of TCP. Another interesting observa-
tion that can be drawn from the results presented in this paper
is that using different versions of TCP, or even the same version
but with different parameters, may lead to significant changes
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in the energy consumption performance of the protocol, directly
affecting the battery life of a portable device. This issue is dis-
cussed in detail in [19].

This work provides aunified analytical approachto the study
of all four versions of TCP considered. This greatly simpli-
fies the assessment of the sensitivity of the various versions
to the system parameters in a variety of situations. So far, no
analytical approaches have been developed for thecorrelated
channelcase, except for Tahoe [12]. Also, this study differs
from the results reported in [18] in that we examine OldTahoe,
Tahoe, Reno, and NewReno without any underlying link pro-
tocol, whereas the focus in [18] was on the specific IS-99 system
which uses a radio link protocol (RLP) below the TCP layer.
TCP with an underlying FEC/ARQ link layer protocol is a topic
of ongoing investigation [23].

The paper is organized as follows. In Section II, we describe
the OldTahoe, Tahoe, Reno, and NewReno versions of TCP.
The system model and the correlated fading channel model
considered in this paper are presented in Section III. The ana-
lytical approach is introduced in Section IV. Section V provides
the results comparing the performance of TCP OldTahoe,
Tahoe, Reno, and NewReno on correlated fading channels.
Finally, conclusions and topics of future research are provided
in Section VI.

II. TCP OLDTAHOE, TAHOE, RENO, AND NEWRENO

In this section, we provide a description of the receive
and transmit processes in TCP OldTahoe, Tahoe, Reno, and
NewReno. While the receive processes are the same for all of
them, their transmit processes are different in the way theloss
recovery phaseis implemented. The following description of
the receive and transmit processes follows that of [5].

The TCP receiver can accept packets out of sequence, but
will only deliver them in sequence to the TCP user. During
connection setup, the receiver advertizes a maximum window
size, , so that the transmitter does not allow more than

unacknowledged data packets outstanding at any given
time. The receiver sends back an acknowledgment (ACK) for
every data packet it receives correctly. The ACK’s are cumu-
lative. That is, an ACK carrying the sequence numberac-
knowledges all data packets up to, and including, the data packet
with sequence number . The ACK’s will identify the
next expected packet sequence number, which is the first among
the packets required to complete the in-sequence delivery of
packets. Thus, if a packet is lost (after a stream of correctly
received packets), then the transmitter keeps receiving ACK’s
with the sequence number of the first packet lost (called dupli-
cate ACK’s), even if packets transmitted after the lost packet are
correctly received at the receiver.

The TCP transmitter operates on a window based transmis-
sion strategy as follows. At any given time, there is a lower
window edge , which means that all data packets num-
bered up to, and including, have been transmitted and
acknowledged, and that the transmitter can send data packets
from onwards. The transmitter’s congestion window,

, defines the maximum amount of unacknowledged data

packets the transmitter is permitted to send, starting from.
Under normal data transfer, has nondecreasing sample
paths. However, the adaptive window mechanism causes
to increase or decrease, but never to exceed . Transitions
in the processes and are triggered by the receipt of
ACK’s. The receipt of an ACK that acknowledges some data
will cause an increase in by an amount equal to the amount
of data acknowledged. The change in , however, depends
on the particular version of TCP and the congestion control
process. Each time a new packet is transmitted, the transmitter
starts a timer. If such timer reaches theround-trip timeout
value (derived from a round-trip time estimation procedure [1])
before the packet is acknowledged, timeout timer expiration
occurs, and retransmission is initiated from the next packet
after the last acknowledged packet. The timeout values are set
only in multiples of a timer granularity [1].

The basic window adaptation procedure, common to all TCP
versions [20], works as follows. Let be the transmitter’s
congestion window widthat time , and be theslow-
start thresholdat time . The evolution of and are
triggered by ACK’s (new ACK’s, and not duplicate ACK’s) and
timeouts as follows.

1) If , each ACK causes to be incre-
mented by 1. This is theslow startphase.

2) If , each ACK causes to be incre-
mented by . This is thecongestion avoidance
phase.

3) If timeout occurs at the transmitter at time is
set to 1, is set to , and the transmitter
begins retransmission from the next packet after the last
acknowledged packet.

Note that the transmissions after a timeout always start with
the first lost packet. The window of packets transmitted from the
lost packet onwards, but before retransmission starts, is called
the loss window.

Besides running the basic window adaptation algorithm, the
transmitter performs the following tasks which are related to
packet losses:

• loss detection:a mechanism by which the transmitter con-
cludes (correctly or incorrectly) that a packet was lost

• loss recovery phase:a mechanism which allows the pro-
tocol to recover lost packets through retransmission

• window adaptation during loss recovery:the way window
adaptation is handled while lost packets are being recov-
ered (different than the basic window adaptation in gen-
eral).

The above procedures are implemented in TCP OldTahoe,
Tahoe, Reno, and NewReno as follows.

• In the case of OldTahoe, loss detection and recovery is per-
formed only through timeout and retransmission. Window
adaptation during loss recovery follows the basic algo-
rithm.

• In the case of Tahoe, in addition to the regular timeout
mechanism, afast retransmitprocedure is implemented
for loss detection. If subsequent to a packet loss, the trans-
mitter receives the th duplicate ACK at time, before the
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timer expires, then the transmitter behaves as if a timeout
has occured and begins retransmission, with and

as given in the basic window adaptation algo-
rithm.

• In the case of Reno also, the fast retransmit procedure fol-
lowing a packet loss is implemented. However, the sub-
sequent recovery procedure is different. If theth du-
plicate ACK is received at time, then is set to

, and is set to instead of
1 (the addition of accounts for the packets that have
successfully left the network). The Reno transmitter then
retransmits only the first lost packet. As the transmitter
waits for the ACK for the first lost packet retransmission,
it may get duplicate ACK’s for the outstanding packets.
The receipt of each of such duplicate ACK causes
to be incremented by 1. If there was only a single packet
loss in the loss window, then the ACK for its retransmis-
sion will complete the loss recovery; at this time would
be set to , and the transmission resumes according to
the basic window control algorithm. If there are multiple
packet losses in the loss window, then the ACK for the
first lost packet retransmission will advance the left edge
of the window, , by an amount equal to 1 plus the number
of good packets between the first lost packet and the next
one. In this case, if the loss recovery is not successful due
to lack of the duplicate ACK’s necessary to trigger mul-
tiple fast retransmits, then a timeout has to be waited for.
The above data loss recovery strategy in Reno is shown to
perform better than Tahoe when single packet losses occur
in the loss window, but can suffer performance problems
when multiple packets are lost in the loss window [3].

• In the case of NewReno, fast retransmit and congestion
window adaptation are as in Reno, but the loss recovery
mechanism is as in Tahoe [5]. That is, NewReno will not
send the first lost packet alone and wait for its ACK like
Reno. Instead it will continue with the transmission of sub-
sequent packets like Tahoe. The NewReno version of the
protocol can recover from multiple packet losses in some
cases.

III. SYSTEM MODEL

Data exchange in TCP involves a connection setup phase, a
data transfer phase, and a connection tear-down phase. In this
paper, we are primarily interested in the bulk throughput perfor-
mance of TCP. Consequently, we model only the data transfer
phase of the protocol which dominates the overall performance.
We consider a single transmitter–receiver pair running TCP on
a dedicated link characterized by a two-state Markov packet
error process, zero propagation delay, and perfect feedback. The
transmitter is assumed to have an infinite supply of packets to
send.

In particular, in the numerical evaluations, a 1.5 Mbps wire-
less data link with a negligibly small bandwidth-delay product
is assumed. Therefore, the acknowledgments (ACK’s) from the
mobile receiver arrive instantaneously at the base station. The
ACK packets are assumed to arrive error-free. These assump-
tions may be expected to be reasonable in wireless local envi-

ronments where the propagation delays are small, and the ACK
packets are relatively smaller in size than data packets (40 bytes
versus 500–1500 bytes). We checked the validity of these as-
sumptions by running some simulations1 including ACK delay
and ACK errors. As expected, for typical values of the parame-
ters as encountered in a local wireless environment (e.g., ACK
delays less than a couple of TCP slot intervals and ACK error
probability not exceeding 0.01), the effect of ACK delays and
errors on the TCP throughput performance is negligible.

As is usually done in most studies taking an analytical ap-
proach, we assume the presence of a single TCP connection
over the wireless channel. Unlike in [5], where the base station
side TCP/IP stack is placed on a fixed LAN host from which
packets are routed through an intermediate system to the mobile
terminal, we assume that the TCP/IP stack is directly placed at
the base station similar to TCP placement in IS-99 [17]. Conse-
quently, there is no queueing and no delay due to the interme-
diate system.

A. Channel Model

We model the correlation in the multipath fading process
using a first-order Markov model for the process of packet
errors, as proposed in [16]. The statistics of the packet errors
is then fully characterized by the transition matrix of such
process:

(1)

where is the transition from bad to good, i.e., the condi-
tional probability that successful transmission occurs in a slot
given that a failure occurred in the previous slot, and the other
entries in the matrix are defined similarly. The average proba-
bility of a packet loss, , can be found from the probabilities in
(1), which in turn depend on the physical characterization of the
channel, usually expressed in terms of thefading margin, , and
thenormalized Doppler bandwidth, , where is the packet
duration [16]. Detailed relationships between the Markov tran-
sition probabilities and the fading channel parameters are given
in [16].

To apply this Markov model at the TCP packet level, we as-
sume a TCP packet size of 1400 bytes. At 1.5 Mbps rate, this
corresponds to a packet transmission timeof about 7.5 ms.
By choosing different and values, we can establish
fading channel models with different degrees of correlation in
the fading process. When is small, the fading process is
very correlated (long bursts of packet errors); on the other hand,
for larger values of , successive samples of the channel are
almost independent (short bursts of packet errors). Table I shows
the Markov parameters and , and the average length of
a burst of erroneous packets, , for different values
of and .

It should be stressed here that the parameters given in Table I
are computed according to the simplified analytical model of
[16]. One may expect to find some discrepancies between these
values and the values obtained through actual simulations over

1Simulation results presented in the paper have been obtained using
Berkeley’s network simulatorns .
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TABLE I
MARKOV PARAMETERS p AND p AT DIFFERENT VALUES OF

P AND f T

the fading channel. The characterization of the packet error be-
havior induced by fading processes would merit a study by it-
self, and is beyond the scope of this paper. The fully analytical
approach adopted here (Markov modeling of the error process
with analytically computed parameters, coupled with the ana-
lytical throughput evaluation via Markov analysis) has the ad-
vantage of providing results quickly and to allow extensive in-
vestigation of the effect of system parameters. Moreover, the re-
sults and behaviors observed for more complicated simulation
models (where we run the protocol over the actual error process
produced by a Rayleigh fading trace) are very similar to the ones
observed here, and therefore the potential of the analysis to pro-
vide useful insight is preserved. Some more discussion about
the modeling of the fading channel is given in [19].

The case of independent and identically distributed (i.i.d.) er-
rors will be also considered for comparison. In this case, the
error process is memoryless and .

Although motivated by the behavior of the wireless channel,
the loss model considered here applies to any environment
where the packet loss process exhibits memory, e.g., due to
congestion. I.i.d. loss models do not capture this and Markov
models are a natural choice in this case.

IV. A NALYTICAL APPROACH

A. Joint Window/Channel Evolution

The analysis is based on a Markov/renewal reward approach.
The following discussion, for the purpose of description and to
introduce precisely the methodology, will refer to TCP Reno.
With minor changes, the following can be adapted to the other
versions of TCP, as will be detailed in later subsections.

The joint evolution of the window parameters and the channel
state can be tracked by a random process

, where and are the window size
and the slow start threshold in slot, respectively, and is
the channel state (bad,, or good, , corresponding to an erro-
neous or correct transmission, respectively) in slot . Time
is discrete, and the slot (packet transmission time) is the time
unit. Unfortunately, this process is not Markov, since its evolu-
tion starting from a certain state also depends on other quantities
not accounted for in , such as the number of outstanding
packets (i.e., packets whose ACK is being waited for) and the

“age” of each, implemented through a timeout timer. Incorpo-
rating these quantities into the process description would make
it Markov but would produce such a large state space as to make
its solution impractical.

An alternative is to sample the process appropriately.
Specifically, we look for appropriate instants such that

is a Markov process.
Consider a time slot immediately after a slot in which a

timeout timer expired. According to the rules of TCP Reno,
at that time the window size shrinks to 1 and all timers are
reset, so that, from the point of view of the window adaptation
algorithm, no outstanding packets are present. Therefore, at
these instants, knowledge of is all
there is to know to characterize the window/channel evolution
in the future.

Likewise, consider a time slot immediately following a slot
in which the loss recovery phase was successfully completed.
At this time, by definition, all outstanding packets have been ac-
knowledged, and therefore no timeouts are active. Again,

is all there is to know to characterize the
window/channel evolution in the future.

Therefore, if we sample the process
by choosing as sampling instants’s the

slots immediately following those in which either a timeout
timer expires or a loss recovery phase is successfully com-
pleted, we obtain a process which is Markov.
As an additional benefit, we note that, again from the protocol
rules, the value of can only be equal to 1 (timeout case)
or to (successful loss recovery). Finally, note that the
channel state at time can be either erroneous or correct
in the timeout case, but can only be correct for a successful loss
recovery, which must be ended by a successful transmission.
Therefore, the state space of the process is given by

(2)

where the first set corresponds to timeout and the second set
corresponds to successful recovery phase. Note that the total
number of states is in this case .

B. Counting of Transmissions and Successes

For the purpose of evaluating metrics of interest, such as
throughput, the above information is not sufficient, since it does
not track when transmission attempts and successful transmis-
sions occur. Also, it does not track time, since no information is
given about the span between successive sampling instants.

In order to be able to characterize these quantities, we con-
sider a semi-Markov process (as defined in [21, Ch. 10]) which
admits as its embedded Markov chain. That is, we label
transitions of the chain with transition metrics, which
track the (possibly random) events which determine time delay,
transmissions, and successes. For a given transition, letbe
the associated number of slots, the number of transmissions,
and the number of successful transmissions (the transition
in question will be explicitly identified only when needed).
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For this model to be semi-Markov, one must guarantee that
the probability distribution of the transition metrics is uniquely
determined by the originand the destinationof the transition
itself and, once conditioned on the pair, they are independent
of past and future evolution. One should observe that while this
is rigorously verified for time delays and transmission attempts,
it is not for successes, since whether or not a successful trans-
mission is to be accounted for toward throughput depends on
whether or not it had been already transmitted and counted in the
past.2 One way around this problem, which we will adopt in this
paper, is to consider two ways of counting successes. Whenever
there is uncertainty about whether or not a successful transmis-
sion should be counted as a true success, counting it will lead to
an optimistic throughput evaluation (upper bound), whereas not
counting it would lead to a pessimistic throughput evaluation
(lower bound). Note that in both cases, the number of successes
counted for a transition only depends on when transmissions
occur and on the channel state during those slots. Since both
quantities evolve according to a semi-Markov processes, the two
proposed counting strategies result in semi-Markov processes
as well, and provide rigorous stochastic bounds. Tightness of
these bounds has been verified to be always very good, so that
this technique is very accurate.

As a final comment, we remark that bounding techniques will
also be used in some cases to simplify the computation of some
metrics. In fact, even though precise computation of all quanti-
ties would be possible in some cases, it is much better to replace
it with an optimistic and a pessimistic approximations, which
give tight bounds with the advantage of being simpler to com-
pute.

C. Semi-Markov Analysis

Let be the th sampling instant determined according to
the above rules (without loss of generality, assume .) We
definecycle as the time evolution of the system between the
two consecutive sampling instants and . The statistical
behavior of a cycle only depends on the channel state at time

and on the slow start threshold and window size at time.
Also, we assume that the process is stationary, so that everything
is independent of .

When we look at the evolution of the process during a generic
cycle , it is implicit in what follows that system variables are
conditioned on ,
where is the set of all possible values of (state space of
the sampled process). For simplicity of notation, let

.
Let be the first slot of the cycle to contain an erroneous

transmission. The probability distribution of, conditioned on
the state at the beginning of the cycle, is given by

first error at

(3)

2In fact, it is possible that a packet transmission performed with good channel
conditions is not acknowledged because older packets were incorrectly received
and await retransmission. Further evolution may lead to this packet being trans-
mitted again. Ignoring these cases would lead to incorrect double-counting of
some packets.

Let be the system state at timein cycle . Since trans-
missions in slots were successful, there are no
outstanding packets except for the one transmitted at time.
Also, by definition we know that the channel state at timeis .
Finally, according to the protocol rules during the loss recovery
phase, the value of the slow start threshold at time ,
does not play any role in determining the state at the beginning
of cycle .3 Therefore, the state space only consists of
the possible values of the window size at time, which is the
only quantity to be tracked. The size of is
(for even), which results from appropriate quantization
of the actual window size (which is a real number in general),
as discussed in the Appendix.

The system evolution during a cycle can then be separated
into two parts. In the first part, the system makes a transition
from a state to a state ; whereas in the
second part, the system makes a transition from a state

to a state . Due to the feedforward structure
of the transitions, we can consider the two parts separately, and
then combine the results to obtain the complete description of a
full cycle.

More specifically, let be a matrix whose th entry
is the transition function associated to the transition from state

to state , and analogously let be a ma-
trix whose th entry is the transition function associated to the
transition from state to state [21]. The statistics
of the system evolution during a cycle is fully characterized by
the matrix

(4)

whose entries are the transition functions associated to transi-
tions from to itself.

The variable is in general a vector of transform variables,
each of which tracks a quantity of interest. In our case, we set

, to track the delay, number of transmissions
and number of successes. More precisely, let
be the probability that the system makes a transition to state

in exactly slots, and that in transmis-
sion attempts are performed and transmission successes are
counted, given that the system was in stateat time 0. Then, we
have

(5)

In particular, the transition matrix of the embedded Markov
chain is just given by . The matrix of average
delays can be found as

(6)

3According to the rules of the algorithm,W (t ) is determined based
on W (n) and on what happens during the loss recovery phase (if any), and
W (t ) is either 1 orW (t ). Finally, the channel state is not influenced
by the window evolution.
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where

(7)

The averages of the other quantities, , can be found simi-
larly.

According to the theory presented in [21] and [22], from the
above quantities we can compute a number of steady-state per-
formance parameters. In particular, we can evaluate the average
throughput as

throughput (8)

where , are the steady-state probabilities of the
Markov chain with transition matrix . The average number
of transmissions per slot can be similarly computed, by using

instead of , and is related to the energy consumption of
the protocol [19].

Note that, in order to compute steady-state performance from
this analysis, knowledge of and of and
is sufficient. On the other hand, wherever possible, we will give
the full form of the transition functions, which may be useful in
further elaborations (e.g., computation of higher moments [21]).

In the following, we evaluate the transition functions
and . The major task here is to correctly identify all pos-
sible transitions and the associated transition functions. We pro-
ceed in the following way. For each possible system state (tran-
sition origin):

1) a set of mutually exclusive events is identified, exhausting
all possibilities;

2) for each of those events, based on the origin state and on
the protocol rules:

a) the destination of the corresponding transition is
identified

b) the transition function is computed;

3) transitions corresponding to distinct events but leading
to the same destination state are combined (i.e., the
corresponding transition functions are added), to obtain

and .

D. Computation of

Since the first part of a cycle consists of error-free transmis-
sions, and since all versions of TCP considered here have the
same window adaptation mechanism as long as there are no er-
rors, the computation of described here applies to all
versions of TCP.

Let . The first part of the cycle
has a duration of slots with probability .
Conditioned on the value of, the value of the window size at
time is a deterministic function of and

that can be easily tabulated, and is assumed here to be known.
Therefore, the window size at timeis denoted by

(9)

Also, conditioned on the value of slots,
packet transmissions and packet successes. There-
fore,

(10)

where .

E. Computation of for TCP Reno

The second part of the cycle can also be fully characterized by
appropriately labeling transitions and counting events. Unlike in
the previous case, does depend on the way the different
TCP versions handle packet loss recovery, and therefore it must
be computed separately in the various cases. We address the case
of TCP Reno in this subsection.

For simplicity of notation, in what follows we let , so
that the first slot in the second phase corresponds to time 1. De-
fine as the probability that there aresuccesses in
slots 1 through and that the channel is in stateat time ,
given that the channel was in stateat time 0. Both a recur-
sive technique and explicit expressions for these probabilities
are given in [24]. Note that the functionsin that paper are de-
fined in a slightly different way. However, it is straightforward
to relate them by noting that and

, whereas in the other two cases they
are the same.

1) The Case of : If , fast retransmit
cannot be triggered, since after the packet lost at time 0, only

more packets can be transmitted, andduplicate
ACK’s will never be received. In this case, timeout timer will
expire and the lost packet will be retransmitted in slot

. Note that the value of the window size at timeout will still
be equal to (recall that duplicate ACK’s do not advance the
window), so that after timeout the algorithm will set

. This event will therefore lead to state
with transition function

(11)

Note that in (11), the quantity is a random variable. In order
to find the specific expression for the transition function, we
would have to further condition on the random events involved.
This would be possible, but very tedious. Instead, we use here
a simpler approach, recalling that for our purposes we only
need the average of the reward functions on each transition,
i.e., in this case, . This is also tedious to compute, but
can be easily bounded4 by noting that cannot exceed
the number of successful slots in , so that

, where is the -step tran-
sition probability of the Markov channel, computed as

(12)

4Bounds obtained in this way proved to be very tight.
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2) The Case of : Let us now assume that
. The following two cases can occur.

Case 1—Fast Retransmit is Not Triggered:If fewer
than slots in are successful, fast re-
transmit will not be triggered. The destination values of
and will be as in the previous case. Let be the
event that there are successful slots in
and that the channel state in slot is . From the
Markov channel characterization, the following probabili-
ties can be derived: and

. The transition function
leading from to state is then
given by

(13)

where and the two terms account
for the two possibilities for the channel state at time .
The sums are limited to rather than since the
number of successes must be less thanfor the considered case
of fast retransmit not triggered.

Case 2—Fast Retransmit is Triggered:If the th dupli-
cate ACK is received, fast retransmit is triggered right after the

th successful slot in . Let be the
event that the packet failure at time 0 is followed byconsec-
utive successes, and let be
the event that the th success occurs at timeand the first loss
after the loss in 0 occurs at time (note that since , there
must be a packet loss before theth success). The probabilities
of these events are given as follows:

(14)

(15)

Case 2a: Consider first the occurrence of the event
. Since at time the th duplicate ACK is received,

retransmission of that packet is performed in slot .

• If this retransmission is successful, the loss recovery phase
is successfully completed, and a new cycle starts at time

. In this case, the destination state is
5and the transition function is given by

(16)

• If, on the other hand, the retransmission is a failure, the
protocol will stop and wait for an ACK which will never be

5Note in fact that according to Reno’s rules, after theK th duplicate ACK is
received,W is set to half the window sizeY , and never changed until at last
at successful completion of the loss recovery phase the window size is set equal
toW = dY=2e.

transmitted, and timeout will eventually resolve the dead-
lock. In this case, according to the TCP Reno rules, upon
receiving the th duplicate ACK the window size will be
updated to , so that the
new state after timeout is ,
with transition function

(17)

Note that the total number of successful transmissions to
be counted in this case is, since according to the TCP
Reno rules, the successful transmissions will be eventu-
ally acknowledged (when the failed packet is finally trans-
mitted successfully) without being retransmitted (in fact,
as long as the failed packet keeps failing, the window size
remains equal to 1 and no other packets are transmitted).

Case 2b: Consider the occurrence of the event .
Successful loss recovery is not possible here, since in TCP Reno,
multiple losses in a congestion window lead to deadlock and
consequent timeout.

• If the retransmission at time is a failure, a behavior
similar to the previous case can be observed, i.e., the next
cycle will start in state , with
transition function given by

(18)

where . Note, in fact, that the
successful packets consecutively transmitted after the

loss at time 0 will be acknowledged (without ever being
retransmitted) when that lost packet is eventually received
successfully, so that . Also, since packets
were successfully transmitted, in the best case they will all
be acknowledged without being retransmitted, i.e.,

.
• On the other hand, if the retransmission at time is

successful, all packets preceding the one transmitted at
time are acknowledged, and the system will timeout at
the end of slot . In this case, the window size at
that time will be (the
ACK for the successful retransmission causes the window
to be further increased by one with respect to the previous
case), so that the next cycle will start in state

with transition function

(19)

where . Note in fact that, in this case,
the number of successes to be counted is at least one more
than before, accounting for the successful retransmission
at time , but cannot be larger than .

3) Transition Functions and : Let be an ex-
haustive set of mutually exclusive events associated with tran-
sitions from state . Also, let
be a well-defined function, giving the destination state corre-
sponding to each event in . Note that this requires that
events be defined so that the destination is uniquely specified.
However, distinct events may lead to the same destination. Also,
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let the function map each event to the corresponding transi-
tion function. We can then formally find the -th entry of the
transition function matrix as

(20)

where is the set of all
events leading from to during phase two.

F. TCP OldTahoe and Tahoe

In the case of TCP OldTahoe and Tahoe, there is no fast
recovery. In Tahoe, once fast retransmit is triggered, regular
transmission is resumed, starting from the first unacknowledged
packet. In OldTahoe there is no fast retransmit. The sampling
rule for the window evolution therefore needs to be changed
in these cases. We still consider the instants immediately fol-
lowing timeout. In addition (for Tahoe only), we also consider
the instants in which a retransmission due to fast retransmit is
performed.

Consider OldTahoe first. is found as for TCP Reno.
For , note that the second part of the cycle, initiated by
the loss at time 0, has duration which is deterministically equal
to , since every loss can only be recovered by timeout. The
next cycle then starts in state with
transition function

(21)

where is upper-bounded by the number of successful
slots in , so that, in particular,

.
Let us now focus on Tahoe. In this case, again, is

the same as before. Regarding the computation of , we
first observe that all the events considered for TCP Reno and
corresponding to no fast retransmit still apply in the case (note,
in fact, that Tahoe and Reno differ onlyafter fast retransmit is
triggered). Therefore, we only need consider here the case in
which fast retransmit is triggered, i.e., the case in which theth
successful transmission occurs at time . The next cycle
then starts in slot and in state ,
with transition function

(22)

where .

G. TCP NewReno

Finally, let us consider TCP NewReno. The only case in
which it is different from TCP Reno is when there are multiple
losses within the same congestion window and the retrans-
mission performed due to fast retransmit is successful (second
bullet of Case 2b above). All other cases are the same as in
Reno.

Let us then consider the case in which the loss at time 0 is
not followed by consecutive successful transmission (Reno
and NewReno are different only whenmultiple lossesoccur).
Recall the definition of as
the event that the th success occurs at timeand the first loss
after the loss in 0 occurs at time. If the th duplicate ACK

is received at time , then besides the first lost packet (at
time 0) there are losses in the window.

1) Successful Loss Recovery:If after slot we have
consecutive successes, loss recovery is successfully completed,
since at time the last packet to be lost is successfully
retransmitted and the corresponding ACK will acknowledge all
outstanding packets. A new cycle will then start at time

in state , since the slow
start threshold , after being set to upon reception of
the th duplicate ACK, remains unchanged, and is set to

upon completion of the loss recovery phase. The transition
function corresponding to this event is

(23)

since all the packets transmitted until the th duplicate ACK
is received, plus the very first loss, are acknowledged when the
loss recovery phase is completed.

2) Unsuccessful Loss Recovery:Consider now the case in
which the loss recovery phase does not end successfully, i.e.,
after the th duplicate ACK there are less than consec-
utive successes. It would be possible to extend the analysis by
tracking the exact location of the losses by means of a vector

, but this leads potentially to a very compli-
cated analysis. Instead, we propose a bounding technique which
has about the same complexity of the analysis previously pro-
posed for Reno.

With probability , after the successful retransmis-
sion of the first loss, we have exactlyconsecutive good slots,
followed by a failure. After the th success, the value of the
window is given by .
The initial state of the next cycle corresponds to timeout of the

nd loss in the window, since the first have been suc-
cessfully retransmitted, and is .
In order to precisely determine the statistics of the exact time
at which the cycle starts, , and channel state in the slot

, we would need to know in which slot the nd
loss was originally transmitted. Instead, we take two bounding
approaches.

• Assume that and that the cycle duration is max-
imum, i.e., (i.e., the loss which
times out occurred right before theth success). Also, let

(upper bound) and (lower bound).
This situation clearly corresponds to the worst case for all
quantities. Note that the window parameters of the desti-
nation state are precisely determined, whereas assuming

certainly leads to a pessimistic estimate. In this
case, the transition function is expressed as

(24)

• On the other hand, we can assume that , that the
cycle duration is minimum, i.e., , and that

and are maximum and minimum, respectively, i.e.,
and . This corresponds to the best case,

and therefore provides an upper bound to the performance.
The transition function in this case is

(25)
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Fig. 1. Throughput performance of TCP Reno and Tahoe for i.i.d. andf T =

0:01.W = 6.K = 3.MTO = 100. Analysis and simulation.

The methodology described in Section IV-C can be applied
here to find performance bounds.

V. RESULTS

We now compare the performance of TCP Tahoe, Reno, and
NewReno. The OldTahoe version is not considered here be-
cause its performance is found to be significantly inferior to that
of the other versions [5]. As a concrete example of a channel
with memory, we consider the flat Rayleigh fading channel [14],
whose error process is approximated by a two-state Markovian
chain as described in [12] and [16]. In particular, the degree
of memory of the channel directly depends on the normalized
value of the Doppler bandwidth, , where is the maximum
Doppler shift [14] and is the packet duration. For comparison,
we also consider a memoryless channel.

The values of the normalized Doppler bandwidth, ,
considered are 0.01, 0.08, and 0.64. At a carrier frequency of
900 MHz and the considered packet duration of about 7.5 ms,
an value of 0.01 corresponds to a user moving at a speed
of about 1.5 km/h (pedestrian user), and an value of 0.64
corresponds to a user speed of about 100 km/h (vehicular
user). When , the fading process is very much
correlated (e.g., average packet error burst length of 13 packets
for and in Table I) However, when

, the fading is fast and the performance is virtually
the same as in the memoryless case (i.i.d. errors).

Fig. 1 shows the throughput of both Reno and Tahoe as a
function of the marginal packet error probability , for the two
cases of and i.i.d. errors. A maximum advertized
window size of 6 packets, minimum timeout MTO of
100 packets, and a fast retransmit thresholdof 3 are used.
Simulation points are also given, showing the accuracy of the
analytical approach.

From Fig. 1 we note that for the chosen advertized window
size of 6 packets, Reno performs better when packet errors are
i.i.d. (i.e., mostly single packet errors) than correlated packet er-
rors (e.g., ) at small values of . This is because
at low values of , i.i.d. errors are dealt with effectively by

Fig. 2. Throughput performance of TCP Reno and Tahoe for i.i.d. andf T =

0:01.W = 24.K = 3.MTO = 100. Analysis and simulation.

Reno’s congestion window adaptation algorithm, which is opti-
mized for single packet errors.

In the presence of bursty packet errors, however, two con-
flicting effects influence the performance. For a given value of
the average packet error rate, , clustered errors correspond to
fewer errorevents(each comprising multiple packet errors), and
therefore the congestion window is shrunk less frequently than
for i.i.d. errors. A second effect takes place depending on the re-
lationship between channel error burstiness and size of the ad-
vertized window. In order to trigger a fast retransmit, du-
plicate ACK’s must be successfully received after a packet loss.
If packet is corrupted by the channel at time, only
more packets can be transmitted, with
( in this case). Therefore, if or more packets are
also corrupted, then the congestion window will be exhausted
before duplicate ACK’s can be generated. The transmitter
will then stop and wait for a timer expiration, i.e., the fast re-
transmit feature is not triggered. This undesirable event is fairly
likely if the channel error burstiness is comparable with the con-
gestion window size.

As can be seen in Fig. 1, for high values of , the bene-
ficial effect overweighs the negative effect, resulting in better
performance for correlated errors than for i.i.d. errors. Also the
performances of Reno and Tahoe are almost identical at high

values. On the other hand, for small values of, the ef-
fect of fast retransmit failures may dominate the performance,
resulting in degraded performance due to error correlation. This
effect can be significant if the channel error burstiness is com-
parable with the congestion window size (which cannot exceed

).
For example, in Fig. 1, with a value of 6 the correla-

tion benefit is not fully exploited for , where packet
error bursts span 13 packets on average for (as given
in Table I). In this case, providing a larger than 13 is
beneficial. For Tahoe, this is clearly confirmed by the perfor-
mance plots for in Fig. 2, where the
case is found to perform significantly better than the i.i.d. case
at all values of . However, Reno performance is seen to be
severely degraded at low clustered errors, and significantly
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Fig. 3. Throughput performance of TCP NewReno for i.i.d. andf T = 0:01.
W = 6 and24.K = 3.MTO = 100. Analysis and simulation.

Fig. 4. Throughput comparison of TCP Tahoe and NewReno at different
values off T .W = 24.K = 3.MTO = 100. Analysis only.

worse than Tahoe in general. This poor performance of Reno
when errors are bursty (multiple errors) is in agreement with
earlierqualitativepredictions in [3].

Fig. 3 gives the performance of NewReno for i.i.d. errors as
well as at for and , and

(again, simulation checks have been performed
and reported in the graph). As in the case of Tahoe, NewReno
also benefits from correlation in packet errors (
performance is better than i.i.d. performance), more so when

is large.
Since TCP Reno is not appropriate for use on correlated

fading channels, it is therefore not considered further. A
performance comparison of TCP NewReno with TCP Tahoe
under different degrees of correlation in the fading process for

, and , is given in Fig. 4
(for clarity, simulation marks are not included in this and the
following figures). Since both Tahoe and NewReno follow loss
recovery procedures different from that of Reno, they both
exhibit substantial increase in the mean congestion window
width at loss instants when compared to the i.i.d.

Fig. 5. Throughput performance of TCP Tahoe at different values of fast
retransmit threshold,K(1; 2; 3) at f T = 0:01 and i.i.d.W = 24.
MTO = 100. Analysis only.

Fig. 6. Throughput performance of TCP NewReno at different values of
fast retransmit threshold,K(1; 2; 3) at f T = 0:01 and i.i.d.W = 24.
MTO = 100. Analysis only.

case. This essentially translates into increased throughput in
slow fading compared to i.i.d. fading as can be seen from
Fig. 4. Also, conforming to the results reported in [5], with
i.i.d. packet errors, TCP NewReno is found to perform better
than TCP Tahoe at low and medium values of, because
of its recovery optimization to single packet errors. At high
values of , however, Tahoe and NewReno exhibit similar
performance. As in i.i.d. errors, NewReno is found to perform
better than Tahoe in correlated errors as well, but only at large
values of (e.g., ). However, as the value
of is decreased, the difference between NewReno and
Tahoe diminishes. For example, when NewReno
and Tahoe exhibit almost identical performance.

The effect of varying the fast retransmit threshold,, on the
Tahoe and NewReno versions of TCP for i.i.d. and
is shown in Figs. 5 and 6. Throughput curves are plotted for

. It is observed that, in i.i.d. errors, the perfor-
mance with is better than with . However, when
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, there is practically no benefit from going from
to , both for Tahoe and NewReno. Hence newer

versions of TCP like TCP Vegas, which propose to retransmit at
the instance of the receipt of the first duplicate ACK itself (i.e.,

), may not benefit from such modifications on highly
correlated wireless fading channels. The use of selective ACK’s
(SACK TCP [3]) has been proposed as a more promising varia-
tion. However, it is worth noting that in the environment under
consideration, where instantaneous feedback is assumed, SACK
TCP and TCP NewReno behave identically, and therefore the re-
sults presented for TCP NewReno apply to SACK TCP as well.

As previously mentioned, the proposed analysis could
be used to assess the energy consumption performance of
various TCP versions. For example, by looking at Fig. 2 in the
horizontal direction, one can note that Tahoe and Reno under
correlated fading conditions achieve throughput 0.9 at average
error rates which are about one order of magnitude apart. Since
from Table I we see that a decrease of an order of magnitude
of the average error rate corresponds to a 10 dB increase of the
fading margin, these results indicate that in these conditions
Tahoe may be ten times more energy efficient than Reno,
which is a very significant result. The energy efficiency issue is
addressed in detail in [19].

Finally, the impact of ACK delays and losses has also been
investigated byns simulation in order to assess the accuracy of
our assumption of instantaneous and error-free feedback. What
we found is that for ACK delays of up to 2 slots and for ACK
error rates better than 0.01, there is essentially no difference
in performance compared to the ideal case. In a local wire-
less environment, the roundtrip times are such that one or two
slots cover all practical cases. Also, ACK’s are usually pro-
tected against errors, so that assuming an error rate better than
0.01 does not seem too restrictive. For more general scenarios,
including the important case of connections with large band-
width-delay product, the analysis presented in this paper is to
be extended.

VI. SUMMARY

We proposed a new analytical approach to computing the per-
formance of TCP, which enabled us to study the bulk throughput
of TCP Tahoe, Reno, and NewReno over wireless fading links
with memory. We considered a scenario where large blocks of
data are to be transferred from a base station to a mobile terminal
over a 1.5 Mbps wireless link having negligible bandwidth-
delay product. We showed that, as long as sufficiently large ad-
vertized window sizes are used, the burstiness in the packet er-
rors on the wireless link caused by slow multipath fading sig-
nificantly affects the throughput performance of TCP compared
to i.i.d. packet errors. More specifically, in correlated errors,
TCP Tahoe and New Reno have larger throughput, whereas the
throughput of TCP Reno (which is not recommended in this
environment) may be significantly worse. We further showed
that in such slow fading scenarios, NewReno performs no better
than Tahoe in general, mainly due to the high degree of corre-
lation in the fading process. Based on the results for different
values of the fast retransmit parameter, it may also be argued
that other enhanced versions of TCP (such as Vegas) may not

offer any significant improvement on highly correlated wireless
fading channels. This fact, together with the observation that
TCP performance depends significantly on the channel error
correlation, leads us to our final conclusion. A clever design
of the lower layers that preserves error correlations (naturally
present on wireless links because of the fading behavior) could
be an attractive alternative to the development or the use of more
complex TCP algorithms. Results for the energy consumption
performance of the protocols show that, unlike throughput, this
metric may be very sensitive to the TCP version used and on the
protocol parameters [19].

Topics of ongoing investigation include the study of the
effect of using a link-layer FEC/ARQ scheme, and the effect
of other physical layer parameters (e.g., packet size) on the
overall TCP performance. Other performance metrics besides
throughput (e.g., delay) are also being considered [23].

APPENDIX

QUANTIZATION OF THE WINDOW SIZE

The window size at time, denoted with , is a real number
in general, due to the increment rule during the congestion
avoidance phase. In order to select an appropriate set to repre-
sent the value of , observe that what matters for the future evo-
lution of the protocol are the two quantities (which counts
how many more packets can be transmitted) and (which
determines the value of the window size and window threshold
after loss recovery).

Therefore, any two values of which result in the
same values of the above two quantities do not need to
be distinguished in . It can be seen that the following
partition on the real numbers between 1 and (the
possible values of the window size) satisfies this constraint:

, where has been assumed
even. In this case, the size of is equal to .
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