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Abstract—Multimedia streaming applications have stringent
QoS requirements. Typically each packet is associated with a
packet delivery deadline. This work models and considers real-
time streaming broadcast over the downlink of a single cell. The
broadcast capacity of the system subject to deadline constraints
are studied for both uncoded and coded wireless broadcast
schemes. For the uncoded scenario, an optimal transmission
policy is devised based on finite-horizon dynamic programming,
and a closed-form expression of the optimal throughput is
developed in the asymptotic regime, as the size of the file
approaches infinity. For the coded scenario, the optimal capacity
in the asymptotic regime of large file size is also derived, which
is strictly larger than that of the non-coding policies. A simple
transmission policy is proposed that can achieve the asymptotic
capacity while maintaining finite transmission delay (queueing
+ decoding dleay). A queue-length-based Lyapunov function is
used to show the optimality of this policy. Simulation shows that
the simple coding policy outperforms the best non-coding policies
even for broadcasting files of small sizes.

I. INTRODUCTION

The advance of the broadband wireless technologies has
triggered exponential growth of the number of new services
provided over cellular networks. Among them, wireless video
streaming for multiple receivers has drawn substantial interests
among the networking community. In wireless streaming, a
large file is transmitted to multiple users through the wireless
downlink. The stringent requirements on the quality of services
(QoS) in video streaming pose a delivery deadline constraint
for each packet, i.e., each video packet expires after a prede-
fined deadline and is then considered useless for any receivers.
In addition, the random and unreliable wireless channel poses
another challenge for achieving high throughput. This paper
focuses on the capacity and throughput optimization of 1-hop
wireless broadcast with hard deadline constraints. The results
could lead to novel protocols with guaranteed QoS for delay-
sensitive services for downlink users.

One way of wireless downlink broadcast is to transmit each
packet without any coding while bookkeeping the reception
status for each individual receiver, respectively. Those packets
that are not received successfully for some receivers are
retransmitted at a later time. Among these uncoded schemes,
[1] provides a data broadcast scheduling policy that reduces
the average response time for the users, where the response
time is the interval between the time when users request an
information packet and the time it is broadcast. [2] proposes

a scheduling algorithm to broadcast to “impatient” users,
where the objective is to both maximize the percentage of
requests served and to minimize the mean waiting time. A
parameterized algorithm is proposed in [3], which allows the
network designer to focus on either the average or the worst
waiting time among different users.

Recently, a new class of network-coding-based broadcast
schemes emerges, which performs information mixing among
different packets before transmission. When there are no
deadline constraints, it is well known that broadcasting coded
packets can achieve a higher throughput than uncoded poli-
cies [4]. Moreover, one can achieve the optimal broadcast
capacity (when there are no deadline constraints) using only
linear network codes [5]. [6] provides an efficient algebraic
framework to characterize the performance of linear network
codes, upon which a capacity-achieving random linear network
coding scheme is built [7]. Besides the information-theoretic
research, practical generation-based network coding schemes
have been devised in [8], which further takes into account the
lossy channels in a wireless network. [9] considers a 1-hop
broadcast channel with erasures and maintains a source queue
at the base station such that all packets within the source queue
are coded together and broadcast to the receivers. With a new
coding scheme that carefuly decides which packet to remain
in the queue, the necessary buffer size (for the source queue)
can be substantially reduced in an effective way. Both the
generation-based [8] and the queue-based schemes [9] do not
optimize the delay characteristics of the problem. Nonetheless,
a commonly referred rule of thumb is that the larger the
throughput of the system, the more packets need to be coded
together (thus larger generations or longer queues), which in
turn causes longer delay as the users need to accumulate a
larger number of coded packets before being able to decode a
single information packets. Similar to the setting of the 1-hop
broadcast session, COPE [10] encodes packets from different
unicast sessions that enables 1-hop intersession decoding. The
corresponding scheduling and coding policy that decides how
to mix packets from different sessions is studied in [11].

In this paper, we are interested in using network coding
to improve the throughput for delay-sensitive applications.
For such delay-sensitive applications, several network coding
works have been proposed based on different delay metrics.
For example, the authors of [12]–[14] focus on minimizing
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delay between the receipt of the coded packets and actual
decoding, which is generally referred to as the decoding delay.
In particular, [12] discusses how different methods of encoding
can affect the decoding delay in an error-free network from
the information-theoretic perspective. The quantification of
gains in delay performance resulting from network coding
are studied in [13], and they focus on the completion time
of the whole data as the delay metric. [15] focuses on the
total transmission delay, i.e., the time interval between the
packet arrival at the source and the packet being decoded at
the receiver. Their coding module achieves optimal throughput
and is conjectured to simultaneously achieve asymptotically
minimal delay. [16] proposes a coding scheme assisted by
uncoded transmission that reduces the transmission delay.

In constrast to these prior works that focus on minimizing
various notions of delay, in this work we focus on the case
when each packet has a hard deadline constraint. Within this
framework, we characterize the optimal capacity regions (the
amount of packets that are received before deadlines) for
both uncoded and coded solutions. Our study accounts for the
overall transmission delay (i.e., queueing plus coding delays).
The setting of this work is mostly related to the following
works. Based on the Whittle relaxation for restless bandit
problems, [17] considers a similar hard-deadline-constrained,
throughput optimization problem for multiple unicast flows
without network coding and focuses on scheduling/balancing
between multiple flows. In comparison, in this work we
consider a single broadcast session and we study the capacity
for both coding and non-coding policies. This hard deadline
constrained problem with network coding was briefly consid-
ered in [14] with an order analysis of the queue-length growth
rate. The proposed network coding protocol in our work can
be viewed as a generalization of the schemes in [14], [18] for
the deadline constrained setting.

The detailed contributions of this work are listed as follows.
• Uncoded transmission: A new Markov-decision frame-

work is formulated to analyze the performance of un-
coded transmission schemes with hard packet deliv-
ery deadlines. A throughput optimal non-coding-based
scheduling policy is devised based on finite-horizon dy-
namic programming (DP), for which the optimal expected
throughput can be computed numerically. Since a closed-
form expression of the achievable rate of the optimal DP
policy is difficult to compute for any finite N , where N
is the size of the file of interest, we derive the asymptotic
rate of the optimal DP policy as N → ∞. Our results
show that although the achievable rate of the optimal
DP scheme matches the broadcast channel capacity for
the single-user case, it is strictly lower than the optimal
capacity in the two-user case. That is, the best non-
coding scheme is throughput suboptimal in the deadline-
constrained network.

• Network-coded transmission: We propose a universal
network coding scheme under the hard packet deadline
constraints, which does not require the knowledge about
the delivery rate p of the wireless broadcast channel.

(In contrast, the optimal DP-based uncoded scheme re-
quires the knowledge about p before making the deci-
sion.) We then prove that the proposed network cod-
ing scheme achieves the maximum broadcast channel
capacity asymptotically for large N in the 2-user case.
Unlike the existing generation-based and queue-based
network coding scheme, our results show that a properly
designed network coding scheme can achieve the capacity
even subject to deadline constraints. We also prove that
when N tends to infinity, the total transmission delay
(from packet arrival at the base station to decoding
at the individual user) remains finite with probability
one. Compared to generation-based schemes that require
large generation size (and thus large delay) to approach
the maximum throughput (in order to average out the
randomness of the channel), our scheme attains the max-
imum channel capacity with finite delay.

• Extensive simulations are conducted, which shows that
our predicted asymptotic throughput is closely related
to the throughput performance even for small finite
N . The simulation results also show that the proposed
network-coding scheme not only outperforms the un-
coded schemes asymptotically but also for finite N (pack-
ets/file) that can be as small as 100.

The rest of the paper is organized as follows: Section II
describes the system model and defines the corresponding
throughput optimization problem with hard deadline con-
straints. In Section III, the optimal non-coding scheduling pol-
icy is devised based on finite horizon dynamic programming.
In addition to the numerical formula of the optimal expected
throughput, the closed form expression of the throughput is
developed in the asymptotic regime as N → ∞. A novel
network coding scheme is proposed in Section IV, and its
optimality is proven with a queue-length-based Lyapunov
function. In Section V we use simulation to verify the pre-
diction of our theoretic analysis for the cases in which N
is small. Some operational insights of the proposed schemes
are also discussed in Section V. This work is concluded in
Section VI.

II. SYSTEM MODEL

We consider the downlink of a single cell in which the base
station (BS) broadcasts a file of N packets to multiple users.
We assume that time is slotted. Each packet n = 1, 2, . . . , N
has a deadline dn, after which the packet is no longer useful.
To model video streaming applications, we assume that the
deadlines of the n-th packet are the same for all users, and
are of the form

dn = λn where λ is a positive integer.

In other words, packet n expires at time slot λn.
We consider random and unreliable wireless channels. That

is, a packet broadcast from the BS may be received by all
users, a subset of users, or no users at all, depending on the
random channel conditions. Suppose a packet is transmitted at
the t-th time slot. We use Cj(t) = 1 to denote that user j can
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receive the packet successfully, and Cj(t) = 0, otherwise. We
assume that P(Cj(t) = 1) = p, and Cj(t) is independently
and identically distributed (i.i.d.) across users and time slots.
We assume that at the end of each time slot, the BS has perfect
feedback whether the packet has been successfully received by
each user. Note that based on the feedback, the BS can adapt
different transmission strategies and decide whether to send
uncoded or coded packet at the next time slot.

If coding is prohibited, the source can only transmit uncoded
packets. After receiving the feedback from users in the end
of time slot t, the BS may decide to send a new packet or
retransmit the old packet at time t + 1. For multiple users the
BS may decide to retransmit even though part of the users
may have already received it.

If coding across different packets is allowed, then in one
slot, any unexpired packets can be coded together and the BS
can choose to broadcast the coded packet to all users. For
example, suppose that packet n1, n2 and n3 (n1 < n2 < n3)
are coded together by random linear network coding and
broadcast by the BS. If user 1 has already received two other
coded packets generated from packet n1, n2 and n3, then
after receiving this new coded packet successfully, it could
decode all 3 packets. We assume that the coding coefficients
are chosen uniformly and randomly from a sufficiently large
Galois field such that if a user receives any 3 coded packets
out of the original packets n1, n2 and n3, it could decode the
original packets. As will be shown in Section IV, this random
coding policy can be further relaxed. We will show that a
deterministic linear-coding-based policy that uses only binary
XOR operations is sufficient to achieve the capacity of this
deadline-constrained system.

Our goal is to design a coding/scheduling policy that maxi-
mizes the number of successful (not-expired) packet transmis-
sions. For ease of exposition, in the rest of the paper, we will
mainly focus on the case with 2 users. Let Dj(n) = 1 if user j
(j=1,2) can successfully decode/recover the n-th information
packet from all the coded/uncoded packets received before
its deadline λn; and Dj(n) = 0, otherwise. We define the
total number of successes Nsuccess as

∑N
n=1 D1(n) + D2(n).

Specifically, we would like to maximize the normalized ex-
pected throughput given by E{Nsuccess}

2N . We are interested in
the optimal policies that maximize the normalized expected
throughput for both uncoded and coded cases, and study the
throughput improvement of network coding subject to hard
deadline constraints.

III. THE OPTIMAL POLICY FOR UNCODED TRANSMISSION

A. A Dynamic-Programming-Based Policy

For the uncoded case, the optimal transmission policy can
be solved by formulating the problem as a Markov decision
problem. Without loss of generality, we assume that the BS
transmits packets sequentially in the order of their deadlines.
At each time slot, the BS may choose to retransmit the same
packet or choose to drop the packet even before the packet

expires. If the current packet expires, the BS always moves to
the next packet.

At the end of each time slot, denote the state of the Markov
Decision problem as ~x(t) = (T, n, x1, x2), where T

∆= λN−t
is the number of remaining time slots before λN (the time
when the last packet expires). The variable n (1 ≤ n ≤ N )
denotes the index of the first packet that the BS may transmit
in future time slots. In other words, the BS will not transmit
any packets with index < n in future time slots from t + 1 to
λN . x1 and x2 are two Bernoulli variables. x1 = 1 denotes
that packet n has already been received by user 1, x1 = 0,
otherwise. x2 = 1 denotes that packet n has already been
received by user 2. x2 = 0, otherwise. Since it is useless to
transmit a packet that has expired already, we also require that
λn > t. Therefore, the set of all valid states become

~X =
{(T, n, x1, x2)|nλ > Nλ− T, 1 ≤ n ≤ N, x1, x2 ∈ {0, 1}}.

The terminal state of the Markov decision problem are of the
forms (·, N + 1, 0, 0) (when there are no packets remained to
be sent at the BS), or (0, N + 1, ·, ·) (when all packets have
expired). The starting state is (λN, 1, 0, 0).

Let u(~x) denote the action taken by the BS at the state ~x.
u(~x) = 1 means that the BS sends the packet n in the next
time slot (i.e., the (λN−T +1)-th time slot). u(~x) = 0 means
that the BS decides that packet n is not interesting anymore
and skip to the next packet. Once the BS decides to skip to
the next packet, packet n will no longer be transmitted in
any future time slot. For future reference, we say that when
u(~x) = 0 the BS drops the packet n.

Define Cj(~x) = Cj(λN −T +1) as the channel realization
in the coming time slot. Recall that Cj(~x) = 1 indicates that
the packet sent over the (λN − T + 1)-th time slot will be
successfully received, and Cj(~x) = 0 indicates that the packet
is erased during transmission. By our erasure channel setting,
P(Cj(~x) = 1) = p and C1(~x) is independent of C2(~x). We
also define the joint vector ~C(~x) = (C1(~x), C2(~x)). When it
is clear from the context, we often drop the input argument ~x
and use u and ~C as shorthand notations to denote the action
and the channel realization, respectively, for a given state ~x.

Let ~x′ be the next state of the Markov decision problem.
Then ~x′ can be written as a function of ~x, u and ~C

~x′ = (T ′, n′, x′1, x
′
2) = f(~x, u, ~C). (1)

More specifically, when u = 0 (the BS decides to drop the
packet n), we have ~x′ = (T, n + 1, 0, 0) since no physical
transmission is made and we still have T more time slots to
transmit packets n + 1 to N . When u = 1 (the BS decides to
transmit the packet n) the next stage depends on the channel
realization ~C. If both (x1∨C1) = 1 and (x2∨C2) = 1, where
∨ is the binary OR operation, then the packet n is received
successfully by both users. Therefore, the BS will move on
to the next packet and ~x′ = (T − 1, n + 1, 0, 0). If one of
them is not satisfied, then we have two different sub-cases: If
Nλ− (T − 1) < nλ, then packet n has not expired after the
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transmission. Therefore, we can retransmit packet n. The next
state becomes ~x′ = (T −1, n, x1∨C1, x2∨C2). If Nλ−(T −
1) = nλ, then the packet n has expired after this transmission.
Even though one of the users has not received this packet
successfully, we still have to move on to the next packet. We
thus have ~x′ = (T − 1, n + 1, 0, 0). The above relationship
of ~x′ and the current state/decision can be summarized by a
single f(·, ·, ·) function as in (1).

For action u, let L(~x, u, ~C) denote the reward (the number
of successfully received packets) with current state ~x and the
channel realization ~C. When u = 1, the reward depends on
the number of users that receives an additional packet (i.e.,
xj = 0 and Cj = 1). We thus have

L(~x, 1, ~C)

=





2 if both users receive additional packets
1 if only one user receives an additional packet
0 otherwise

.

Use J(~x) to denote the maximum expected cumulated reward
when starting from state ~x. For terminal states ~x we have
J(~x) = 0. For non-terminal states ~x, J(~x) can be computed
iteratively from the terminal states back to the starting state
by the following Bellman’s equation:

J(~x) = max
u=0,1

E~C{L(~x, u, ~C) + J(f(~x, u, ~C))}. (2)

where

E~C{L(~x, u, ~C)} =





2p if u = 1, x1 = x2 = 0
p if u = 1, x1 6= x2

0 otherwise
. (3)

In addition to computing the cumulative expected reward, (2)
can also be used by the BS to compute the optimal decision
u(~x). Namely, at any time t, depending on the corresponding
state ~x, the BS makes its decision by choosing the maximizing
u of (2). The optimal decision u(~x) can also be expressed in
a threshold form. For any state ~x, define a function g(~x) as
follows. If x1 = x2 = 0, then

g(~x) ∆= J(T, n + 1, 0, 0)− (1− p)2J(T − 1, n, 0, 0)

− 2p(1− p)J(T − 1, n, 1, 0)− p2J(T − 1, n + 1, 0, 0).

If x1 6= x2, then

g(~x) ∆= J(T, n + 1, 0, 0)− (1− p)J(T − 1, n, 1, 0)
− pJ(T − 1, n + 1, 0, 0).

Note that this g(~x) function can be pre-computed before
transmission. In the beginning of each time slot (t + 1), the
BS makes the decision based on

u(~x) =

{
1 if E~C{L(~x, 1, ~C)} ≥ g(~x)
0 otherwise

,

where E~C{L(~x, 1, ~C)} is computed from (3). The proof of
this threshold-based decision rule is straightforward from (2)

Fig. 1. Illustration of wi. “E” means erasure, and “rec.” means successfully
received by a user

and by noting that J(T, n, 1, 0) = J(T, n, 0, 1) for any T and
n due to the symmetry of the channels for both users.

We refer to the optimal decisions u(~x) obtained from the
above iterative equations as the DP policy, which is throughput
optimal for uncoded transmission. Although the DP policy can
be efficiently computed numerically, a closed form expression
of the expected reward is hard to obtain for finite N . In the
following subsections, we focus on the normalized throughput
of the DP policy for asymptotically large N .

B. An Upper Bound for the Optimal Throughput

We first obtain an upper bound for the optimal throughput
in the uncoded case for any give N by relaxing the deadline
constraints. Namely, we quantify the maximum achievable
performance when all packets have the same deadline λN
(instead of individual deadlines λn). The maximum throughput
under this relaxed setting thus serves as an upper bound for the
original problem. To that end, we first categorize the packet
broadcast at a given time t into three types: types-0, 1, and 2,
which indicates how many users have received this packet in
the previous time slots ([1, t− 1]). Consider any transmission
policy. Let w0, w1 and w2 denote the numbers of time slots
that are used to transmit packets that have been received by
0, 1 and 2 users, respectively.

Fig. 1 illustrates the construction of w0 to w2 for a given
policy and channel realization. Before all the transmissions, all
wi are set to be 0. In Fig. 1, at the beginning of time slot 1,
packet 1 has not been received by any user before. So packet
1 at time 1 is classified as a packet of type-0. Since the BS
schedules a type-0 packet for this time slot, w0 is increased
by 1. Similarly, packets 2 and 3 scheduled at times 2 and 3
are also of type-0, which contributes to the increment of w0 at
times 2 and 3. At the beginning of time slot 4 the BS decides to
retransmit packet 2 according to the underlying policy. (Here
we allow any arbitrary policies including both optimal and
suboptimal ones.) Since packet 2 has been received by both
users at the end of t = 2, at time slot 4 packet 2 is classified
as type-2. Therefore w2 increments. For t = 5, packet 1 has
been received by 1 user already and is thus classified as type-
1. Therefore, w1 is increased by 1. After all 9 transmissions,
we have that w0 = 5, w1 = 2 and w2 = 2. Note that w0,
w1 and w2 are random variables depending on the channel
realization and the underlying policy.
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Let w0, w1 and w2 denote the expectation of w0, w1 and
w2, respectively. When the BS transmits a new packet to both
users, the expected reward in the time slot is exactly 2p. And
when the BS transmits a packet that has been received by one
user, the expected reward in the time slot is p. Transmitting
a packet that has already been received by 2 users would not
improve the throughput. Using the optional sampling theorem
for Martingales, we can show that the expected total number
of successes is 2pw0 + pw1.

Further, each packet of type-0 (that is transmitted when it
has not been received by any users), with probability 2p(1−p)
will be received by exactly one user, which creates a packet
of type-1. When a packet of type-1 is sent, with probability
p it will be received by the other user, which destroys a
packet of type-1 (while creating a packet of type-2). Again
by the optional sampling theorem for Martingales and by the
conservation law of type-1 packets, we have

w1p ≤ w02p(1− p). (4)

By noting that w0 + w1 + w2 = λN and by the conservation
law of types-0 and 2 packets in a similar way as in (4), we
have

E{Nsuccess} =2pw0 + pw1 + 0 · w2 (5)
s.t. w0 + w1 + w2 ≤ λN

w0(2p− p2) ≤ N

w1p ≤ w0(2p(1− p))
w0, w1, w2 ≥ 0 (6)

Let µi be the Lagrangian multiplier of the above problem. The
corresponding KKT conditions become

− 2p + µ1 + µ2(2p− p2)− µ32p(1− p)− µ4 = 0
− p + µ1 + µ3p− µ5 = 0
µ1 − µ6 = 0

µ1(w0 + w1 − λN) + µ2(w0(2p− p2)−N) (7)
+ µ3(−w0(2p(1− p)) + w1p)
− µ4w0 − µ5w1 − µ6w2 = 0
− µ4w0 ≤ 0, −µ5w1 ≤ 0, −µ6w2 ≤ 0
µ1, µ2, µ3, µ4, µ5, µ6 ≥ 0

We are now ready to derive the closed form solution of the
optimization problem in (5), depending on differenet values
of p.

Case 1: λ+1−√λ2+1−λ
λ < p ≤ 1. We choose µ1 = 0, µ2 =

2, µ3 = 1, µ4 = 0, µ5 = 0, µ6 = 0, w0 = N
2p−p2 , w1 =

2(1−p)N
2p−p2 , and w2 = 0. It is easy to check that these choices

of µi and wi satisfy the KKT conditions in (7). Therefore, the
maximum value of (5) is

2p

(
N

2p− p2

)
+ p

(
2(1− p)N
2p− p2

)
= 2N.

Case 2: λ−√λ2−λ
λ < p ≤ λ+1−√λ2+1−λ

λ , we choose µ1 =
p, µ2 = 1

2−p , µ3 = 0, µ4 = 0, µ5 = 0, µ6 = p, w0 = N
2p−p2 ,

w1 = λN − N
2p−p2 , and w2 = 0. It can be checked that these

µi and wi values satisfy the KKT conditions in (7). Therefore,
the maximum value of (5) is

2p

(
N

2p− p2

)
+ p

(
λN − N

2p− p2

)
=

2N

2

(
λp +

1
2− p

)
.

Case 3: 0 < p < λ−√λ2−λ
λ , we choose µ1 = 2p, µ2 =

0, µ3 = 0, µ4 = 0, µ5 = p, µ6 = 2p, w0 = λN , w1 = 0, and
w2 = 0. these µi and wi values satisfy the KKT conditions in
(7). Therefore, the maximum value of (5) is

2p (λN) + p (0) = 2λpN.

Since the above constraints hold for any policy, we can thus
upper bound the best achievable rate for uncoded transmis-
sion by maximizing (5) subject to the constraints in (6). A
closed-form solution to this linear program then produces the
following upper bound

E{Nsuccess}
2N

≤





1 if λ+1−√λ2+1−λ
λ < p ≤ 1

1
2 (λp + 1

2−p ) if λ−√λ2−λ
λ < p ≤ λ+1−√λ2+1−λ

λ

λp if 0 < p ≤ λ−√λ2−λ
λ

.

(8)

C. An Inner Bound for the Optimal Throughput When N →
∞

Next we will show that the upper bound in (8) can be
achieved when N → ∞. To this end, we will construct an
even simpler policy that attains a matching lower bound on
the optimal throughput.

Suppose we temporarily mark the time at which the BS
decides to transmit packet n for the first time as the new origin,
which will be used to define X1

n and X2
n. Let X1

n denote
the number of additional time slots it takes before the BS-to-
user-1 channel successfully carry one more packet from the
BS to user 1. For example, suppose in the beginning of time
7, the BS for the very first time, decides to transmit the 5-
th packet. If user 1 does not receive the packet transmitted
at time 7 but receives the packet transmitted at time 8, then
X1

5 = 2 = 8 − (7 − 1). Note that the packet that is actually
passed from the BS to user 1 may not be the n-th packet.
The n-th packet is only used to mark the beginning of the
X1

n consecutive time slots. Since the channel is i.i.d. with
delivery probability p, we have P

(
X1

n = k
)

= (1 − p)k−1p
for all n. We define X2

n by symmetry. Let Yn = min(X1
n, X2

n)
denote the number of time slots it takes before at least one
user has received at least one packet. Let Zn = max(X1

n, X2
n)

denote the number of time slots before both users receive at
least one packet. By simple probability computation, we have
E{Yn} = 1

2p−p2 and E{Zn} = 1
p2−2p + 2

p .
Consider the following transmission policies. In the first

policy, for any ongoing packet (say packet n), repeatedly
transmit it until both users receive it or the packet expires.
Then move to packet n + 1, repeatedly transmit packet n + 1,
until both users receive it or the packet expires, and so on.
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We denote this policy by πmax. The second policy πmin is
similar to policy πmax, and the difference is that the BS keeps
transmitting the ongoing packet until the packet is received by
at least one user. Then the BS moves on to the next packet.

We now consider several schemes that perform random
mixtures of πmin, πmax, and dropping packets. In our mixed
policy, for the very first time that the BS would like to transmit
the n-th packet, it has three options: transmit a packet based
on policy πmax, or based on policy πmin, or the BS can simply
drop the current packet and move to the next. The BS chooses
randomly and independently among these three options. Once
the sub-policy is decided, the BS uses the chosen policy to
transmit packet n. For the next packet n + 1, the BS will
again choose randomly among these three sub-policies. Let
Γmin,n and Γmax,n denote the events that the BS chooses to
transmit packet n by policies πmin and πmax, respectively.
Similar to Section III-B, we need to discuss three different
cases depending on the value of p.

Case 1: λ+1−√λ2+1−λ
λ < p ≤ 1. In this case, we set

P(Γmax,n) = 1 and P(Γmin,n) = 0. In other words, πmax

is used for all packets in this case.
Case 2: λ−√λ2−λ

λ < p ≤ λ+1−√λ2+1−λ
λ . In this case, the

random mixture of policies is given by

P (Γmin,n) =
−p2λ + 2p(λ + 1)− 3

2p− 2
− ε1

2

P (Γmax,n) =
p2λ− 2pλ + 1

2p− 2
− ε1

2
and P (BS decides to drop packet n) = ε1,

where ε1 > 0 is a small constant. (9)

Case 3: 0 < p ≤ λ−√λ2−λ
λ . In this case, we set

P(Γmax,n) = 0 and P(Γmin,n) = λ(2p − p2) − ε2, and the
packet dropping probability being 1 − λ(2p − p2) + ε2 for
some ε2 > 0.

In the following, we provide a detailed proof for the most
complicated case: Case 2 in Section III-B. Case 1 and 3 can
be viewed as simple extension of Case 2. We will show that
the above random mixture policy achieves the upper bound
(8) when N is sufficiently large.

Let Wn be the number of transmissions of the n-th packet.
Wn can be defined iteratively as follows:

W1 = min
(
Y11Γmin,1 + Z11Γmax,1 , λ

)
,

∀n = 2, . . . N,

Wn = min

(
Yn1Γmin,n + Zn1Γmax,n , λn−

n−1∑

k=1

Wk

)
.

where 1{·} is the indicator function. Since the n-th packet
may expire even before one or both users receive the desired
packet (depending on whether it is πmin or πmax policy being
chosen), the number of times that the n-th packet is sent is
the minimum of the two. We thus have the above iterative
equations for Wn.

Define Sn
∆=

∑n−1
i=1 Wi + Yn1Γmin,n + Zn1Γmax,n and

Wn−1
1

∆= {W1,W2, . . . , Wn−1}. Since Yn1Γmin,n
+Zn1Γmax,n

is independent of Wn−1
1 , we have

E
{
eτSn

}
= E

{
E

{
eτSn |Wn−1

1

}}

= E
{

e(
Pn−1

i=1 Wi)τE
{

eτ(Yn1Γmin,n
+Zn1Γmax,n )|Wn−1

1

}}

= E
{

e
Pn−1

i=1 Wiτ
}
E

{
eτ(Yn1Γmin,n

+Zn1Γmax,n )
}

. (10)

Since by definition Wn−1 ≤ Yn−11Γmin,n−1 +Zn−11Γmax,n−1 ,
we have

n−1∑

i=1

Wi

≤ Sn−1
∆=

n−2∑

i=1

Wi + Yn−11Γmin,n−1 + Zn−11Γmax,n−1 .

(11)

By iteratively applying (10), we have

E{eτSn} ≤
n∏

i=1

E
{

eτ(Yi1Γmin,i
+Zi1Γmax,i

)
}

=
(
E

{
eτ(Yn1Γmin,n

+Zn1Γmax,n )
})n

,

where the last equality follows from that Yi1Γmin,i +
Zi1Γmax,i has the same marginal distribtuion for all i. Since
E

{
Yn1Γmin,n + Zn1Γmax,n

}
= λ − ε1

p , we can choose γ =
λ−ε1 > E

{
Yn1Γmin,n + Zn1Γmax,n

}
. It can be easily checked

that with our construction of Yn and Zn, there exists a δ > 0
such that E

{
eτ(Yn1Γmin,n

+Zn1Γmax,n)
}

exists for all τ in the
open interval (−δ, δ) containing 0. Combining with our choice
of γ > E

{
Yn1Γmin,n + Zn1Γmax,n

}
, there must exist a small

τ̃1 > 0, such that

E
{

e eτ1(Yn1Γmin,n
+Zn1Γmax,n)

}
< e eτ1γ .

Conditioning on that the BS chooses policy πmin, the proba-
bility that packet n can be received by at least one user is

P (at least one user receives pkt n|Γmin,n)
= P (Wn = Yn|Γmin,n)

= 1− P (Sn > λn|Γmin,n) ≥ 1− 1
P (Γmin,n)

P (Sn ≥ λn)

≥ 1− 1
P (Γmin,n)

min
τ>0

E{eτSn}
eλnτ

≥ 1− 1
P (Γmin,n)

min
τ>0

E
{

eτ(Yn1Γmin,n
+Zn1Γmax,n )

}n

eλnτ

≥ 1− eγn eτ1

P (Γmin,n) eλn eτ1
≥ 1− e− eτ1ε1n

P (Γmin,n)
.

Similarly, conditioning on that the BS chooses policy πmax,
the probability that packet n can be received by both users is
lower bounded by

P (both users receive packet n|Γmax,n)
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= P (Wn = Zn|Γmax,n) ≥ 1− e− eτ1ε1n

P (Γmax,n)
.

Let Tn be the number of users that have received at least
one additional packet during the [

∑n−1
i=1 Wi +1, Sn] interval.1

We thus have

P (Tn = 2|Γmin,n) =
∞∑

k=1

P
(
X1

n = X2
n = k

)
=

p2

2p− p2
,

P (Tn = 1|Γmin,n) = 1− p2

2p− p2
,

P (Tn = 2|Γmax,n) = 1.

Let An denote the event that when packet n is transmitted,
only one user has received it (unexpired); and let Bn denote
the event that when packet n is transmitted, both users have
received it (unexpired). Then by the union bound, we have

P (An|Γmin,n) =P (Tn = 1, Wn = Yn|Γmin,n)

≥1− p2

2p− p2
− e− eτ1ε1n

P (Γmin,n)
,

P (Bn|Γmin,n) =P (Tn = 2, Wn = Yn|Γmin,n)

≥ p2

2p− p2
− e− eτ1ε1n

P (Γmin,n)
,

P (Bn|Γmax,n) =P (Tn = 2, Wn = Zn|Γmax,n)

≥1− e− eτ1ε1n

P (Γmax,n)
.

The expected throughput for packet n thus satisfies,

E{D1(n) + D2(n)}
= P (An) + 2P (Bn) ≥ P (An|Γmin,n)P (Γmin,n)
+ 2P (Bn|Γmin,n)P (Γmin,n) + 2P (Bn|Γmax,n) P (Γmax,n)

≥ λp3 − 3λp2 + (2λ− 1)p + 1
(p− 2)(p− 1)

− 3p− p2

2p− p2
ε1 − 5e− eτ1ε1n.

Since
∑∞

n=1 e− eτ1ε1n <∞, we have

lim
N→∞

E{Nsuccess}
2N

= lim
N→∞

∑N
n=1 E{D1(n) + D2(n)}

2N

=
−λp3 + 3λp2 − (2λ− 1)p− 1

(2p− 2)(2− p)
− ε1

2
3p− p2

2p− p2

=
1
2
(λp +

1
2− p

)− ε1
2

3p− p2

2p− p2
. (12)

By choosing a sufficiently small ε1, the sub-optimal random
mixture scheme achieves the capacity upper bound in (8) when
p satisfis the Case 2 condition.

Now we will show that the random mixture policy can also
achieve the upper bound when N →∞ in Case 1, that is when
λ+1−√λ2+1−λ

λ < p ≤ 1. Recall that we have set P(Γmax,n) =
1 and P(Γmin,n) = 0. Since E{Zi} < λ, suppose E{Zi} =

1If Sn ≤ λn, then throughout the [
Pn−1

i=1 Wi + 1, Sn] interval the BS
always transmits packet n. However, if Sn > λn, then other packets such as
n + 1 are also transmitted during the [

Pn−1
i=1 Wi + 1, Sn] interval. The Tn

defined herein does not distinguish these two scenarios only counts the users
receiving at least one additional packet within the given interval.

λ − ε2 < λ, ε2 is a positive number. Reassign γ = λ − ε2
2 .

Repeat the steps as above proof, we will have P(Bn|Γmax,n) ≥
1− e−

ε2
2 n eτ2 . (Note that in Case 1 we do not need to consider

P(An|Γmin,n) and P(Bn|Γmin,n), since P(Γmin,n) = 0.) Then

lim
N→∞

E{Nsuccess}
2N

≥ 1

For Case 3, that is 0 < p ≤ λ−√λ2−λ
λ , we have set

P(Γmax,n) = 0 and P(Γmin,n) = λ(2p − p2) − ε3, and the
packet dropping probability being 1 − λ(2p − p2) + ε3 for
some ε3 > 0. We reassign γ = λ − ε3

2p . Then applying the
similar techniques we can have

P (An|Γmin,n) ≥ 1− p2

2p− p2
− e−

ε3nfτ3
2p

P (Γmin,n)

P (Bn|Γmin,n) ≥ p2

2p− p2
− e−

ε3nfτ3
2p

P (Γmin,n)

(Note that in Case 3 we do not need to consider P(An|Γmax,n)
and P(Bn|Γmax,n), since P(Γmax,n) = 0.) Therefore,

lim
N→∞

E{Nsuccess}
2N

= lim
N→∞

∑N
n=1 E{D1(n) + D2(n)}

2N

= pλ− ε3p

2p− p2

By choosing a sufficiently small ε3, the sub-optimal random
mixture scheme achieves the capacity upper bound in (8) when
p satisfies the Case 3 condition.

We have analyzed the asymptotic throughput of the above
mixture policies with the individual deadline constraints (λn
for the n-th packet). Although the random mixture policy
chooses one of the three sub-policies independently for each
packet, the deadline constraints impose dependency between
the duration of transmitting the n-th packet and the duration
of transmitting the n+1-th packet, which is the key difficulty
of the analysis. Nonetheless, we show that the expected
throughput of the above schemes approaches the upper bound
in (8) when N → ∞. (8) is thus the closed form expression
of the asymptotic capacity for the optimal uncoded DP policy.

IV. A SIMPLE AND ASYMPTOTICALLY OPTIMAL POLICY
FOR CODED TRANSMISSION

In this section, we study the use of network coding for the
streaming broadcast problem under hard deadline constraints.
We will propose a novel network coding scheme and use
a new Lyapunov function to prove that it is asymptotically
throughput-optimal when N →∞. Moreover, the asymptotic
capacity of the network coded transmission is shown to be
strictly greater than that of the uncoded schemes. Jointly the
results in Sections III and IV quantify the throughput improve-
ment of network coding for deadline-constrained systems.

A. A Simple Network Coding Policy

We first propose a novel transmission scheme that uses
network coding. (A similar scheme was proposed in [14] and
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[18]. However, they do not consider hard deadline constraints,
and do not carry out the corresponding capacity analysis.)

Define Lj , j = 1, 2, to be the list of unexpired packets that
user j has not received/decoded but the other user has. For
example, suppose we transmit packet 1 in the first time slot
and only user 1 receives it. Then L2 = {1} and L1 = ∅. If in
the second time slot, we transmmit packet 2 and user 2 receives
it, then L2 = {1} and L1 = {2}, assuming neither packets
1 and 2 have expired. The simple network-coded scheme is
described by the following pseudo-code in which the t variable
in the FOR-LOOP is the time slot that is currently under
consideration and n is an auxiliary variable stored/used by
the BS.

1: Set n← 1, L1 ← ∅ and L2 ← ∅.
2: for t = 1 to λN do
3: Remove all the expired entries in L1 and L2 (i.e., those

with indices strictly smaller than t
λ ).

4: if n ≤ N then
5: if L1 6= ∅ and L2 6= ∅ then
6: In this case, a coding opportunity arises. We send

a coded packet by binary XORing two packets n1

and n2, where n1 and n2 are the oldest2 packets
from L1 and from L2, respectively.

7: else
8: Send an uncoded packet n.
9: if the uncoded packet is received by at least one

user then
10: n← n + 1.
11: end if
12: end if
13: else
14: Choose the oldest packet i in L1∪L2, and send packet

i uncodedly.
15: end if
16: UPDATE L1 and L2 by the feedback received from the

two users at the end of time t.
17: end for
The above pseudo-code for the proposed policy is self-
explanatory. The only subroutine “UPDATE L1 and L2” is
described as follows, depending on whether the BS sends a
coded/uncoded packet. Suppose that the BS transmits a coded
packet combining packets n1 and n2. If user j receives that
packet, then user j can decode packet nj . Hence we set
Lj ← Lj\nj . Suppose that the BS transmits an uncoded
packet n as in Line IV-A. If only one of the users receives
it, say user 1, then L2 ← L2 ∪ {n} and L1 remains intact. If
only user 2 receives it, then L1 ← L1 ∪ {n} and L2 remains
unchanged. For any other cases, both L1 and L2 remain intact.
If the BS transmits an uncoded packet i, say i ∈ Lj , and user
j receives it successfully, then we set Lj ← Lj\i.

Remark: The proposed coding scheme does not require the
knowledge about the p value, and thus is a universal scheme
for any p. For comparison, with uncoded transmission, both
the DP policy or the random mixture policy in Sections III-A

2The oldest packet is the one with the smallest index.

and III-C require the knowledge about p.
In the following subsection, we quantify the asymptotic

throughput of the above scheme and show that it achieves
asymptotically the capacity of any coded/uncoded transmission
policy.

B. An Upper Bound on the Optimal Throughput with Coded
Transmission

We first derive an upper bound for the optimal throughput
of any coded/uncoded scheme subject to deadline constraints.
Recall that Cj(t) = 1 if user j successfully receives a packet
transmitted at time slot t. We then note that the total number
of packets that all users can recover/decode is upper bounded
by the total number of transmitted coded/uncoded packets that
they receive successfully. Therefore,

E{Nsuccess} ≤ E




λN∑
t=1

2∑

j=1

Cj(t)



 = 2λNp.

Further, since the best scenario is that each user can
recover/decode all N information packets, we have
E{Nsuccess} ≤ 2N . Jointly we have

E{Nsuccess}
2N

≤ min(λp, 1). (13)

Note that the upper bound is not only simpler, but also strictly
larger than the upper bound of the uncoded throughput in (8).
We next show that our proposed scheme can asymptotically
achieve the above upper bound.

C. Asymptotic Throughput Optimality of the Proposed Coding
Scheme

The capacity in (13) contains two cases: 0 < p < 1
λ and

1
λ ≤ p ≤ 1. We first focus on the case in which p < 1

λ
and provide the intuition why this scheme can achieve the
optimal throughput asymptotically. Recall that there are N
packets to transmit. Let tN be the last time slot before the
auxiliary variable n stored at the BS becomes N . We then
observe that during the [1, tN ] interval, the BS either transmits
an uncoded packet n that is new to both users, or transmits a
coded packet n1⊕n2 that is innovative to both users. Therefore
the expected reward for each time slot is exactly 2p. The total
expected reward during the [1, tN ] interval is thus tN2p. Recall
that when p < 1

λ , the capacity upper bound is λp. Hence, in
order to approach the upper bound, we would like to show that
tN ≈ λN . In other words, almost all time slots are used for
transmitting either uncoded packets or coded (& unexpired)
packets that are new/innovative to both users.

More rigorously, let n(t) denote the value of the auxiliary
variable n in the end of time slot t, which is the index
of the next uncoded packet to be sent. Define the “index
advancement” at time t as a function of t: q(t) ∆= n(t) − t

λ .
Note that if q(t) is bounded when N → ∞, then we will
have tN ≈ λN for large N . In the following, we assume
N = ∞ (continuously streaming with no file-size limit) and
use a Lyapunov function to prove that q(t) is finite/stable for
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t ∈ [1,∞) with probability one. Recall that

Cj(t) =

{
1 if user j receives the packet sent in slot t

0 otherwise
.

Let Cj(t1, t2) =
∑t2

t=t1+1 Cj(t) denote the number of time
slots in (t1, t2] in which the transmitted packets successfully
arrive user j.

Following the protocol description in Section IV-A, we say
that packet i is “a coding opportunity involving user j” if
i ∈ Lj . That is, i being a coding opportunity involving j
means that packet i has been received/decoded by the other
user but not by user j. We then have the following central
lemma.

Lemma 1: For any t1 < t2, if t2 < λn(t1), then

n(t2)− n(t1) ≤ max
j=1,2

Cj(t1, t2) + 1.

Proof: Define U j
t1,t2 as the number of time slots in (t1, t2]

when user j received an uncoded packet successfully; M j
t1,t2

as the number of slots in (t1, t2] when an uncoded packet is
sent, user j does not receive it, but the other user received it
successfully.

Since the n variable increment when and only when an
uncoded packet is sent, and is received by at least one user
(see Line IV-A of the pseudo-code), for any given user j we
must have

n(t2)− n(t1) = U j
t1,t2 + M j

t1,t2 (14)

Note that the uncoded packets received by the other user
but not by j creates new coding opportunities involving
user j. By construction, all these coding opportunities have
index ≥ n(t1). Further these new coding opportunities remain
unexpired until time t2 since t2 < λn(t1).

Define V j
t1,t2 as the number of time slots when user j re-

ceived a coded packet successfully during the interval (t1, t2];
Rj

t2 as the number of coding opportunities remaining in the
end of time slot t2 involving user j. We then notice that each
time slot when user j receives a coded packet successfully,
user j can decode that packet, which thus destroys a coding
opportunity involving user j. Hence,

V j
t1,t2 + Rj

t2 ≥M j
t1,t2 (15)

The left-hand side of (15) is the number of coding opportu-
nities destroyed due to successful decoding plus the number
of remaining unexpired coding opportunities. The right-hand
side of (15) is the number of coding opportunities created
during the (t1, t2] period. Since those coding opportunities do
not expire during this period, these M j

t1,t2 opportunities must
either be destroyed during the period or remain in the end
of time t2. We thus have (15). The inequality sign is due to
that before entering the (t1, t2] period, there might already be
some existing old coding opportunities at time t1.

By definition, U j
t1,t2 + V j

t1,t2 = Cj(t1, t2). Combining (14)

and (15), we thus have

n(t2)− n(t1) ≤ U j
t1,t2 + V j

t1,t2 + Rj
t2 ≤ Cj(t1, t2) + Rj

t2

Note that this inequality holds for both users. We also note
that whenever there exists a coding opportunity (|L1| > 0 and
|L2| > 0), the BS would send the coded packet, which destroys
a coding opportunity upon the successful delivery. Only when
at least one |Lj | = 0, the BS will send an uncoded packet,
which increases Lj by at most one. From the above reasoning,
at any time there exists at least one user whose number of
coding opportunities is less than or equal to 1. Denote that
user by j∗. We then have,

n(t2)− n(t1) ≤ Cj∗(t1, t2) + 1 ≤ max
j=1,2

Cj(t1, t2) + 1

The proof of Lemma 1 is complete.

We will use Lemma 1 to show that q(t) stays finite with
probability one. More explicitly, we will show that when
q(t) = B is sufficiently large, E{q(t + λB) − q(t)|q(t) =
B} < 0. Namely, q(t) has a negative drift when q(t) is large.
By using q(t) itself as the Lyapunov function, q(t) must be
finite with probability one.

Suppose that q(t1) = n(t1)− t1
λ > B. Choose t2 = t1+λB.

By the law of large numbers, Cj(t1, t2) concentrates around
its expectation E{Cj(t1, t2)} = p(t2 − t1) = pλB with high
probability for sufficiently large B. Therefore, for any ε > 0,
and δ > 0, we can find a B such that

P

(
Cj(t1, t2)

λB
− p > ε

)
< δ, for j = 1, 2.

So that

P

(
maxj=1,2 Cj(t1, t2)

λB
− p > ε

)

≤ P

(
C1(t1, t2)

λB
− p > ε

)
+ P

(
C2(t1, t2)

λB
− p > ε

)

≤ 2δ

By our construction of t2 = t1 + λB and its relationship to
q(t1) > B, we also have t2 < λn(t1). By Lemma 1, we have

n(t2)− n(t1) ≤ max
j=1,2

Cj(t1, t2) + 1

And thus

P (n(t2)− n(t1) ≥ (p + ε)λB + 1|q(t1) > B) < 2δ.

Since the n variable increments by at most 1 in each time slot,
we also have n(t2)− n(t1) ≤ t2 − t1 = λB. Jointly we have

E{n(t2)− n(t1)|q(t1) > B}
≤ ((p + ε)λB + 1) (1− 2δ) + 2λBδ.

By the above analysis, we have

E {q(t1 + λB)− q(t1)| q(t1) > B}
= E

{(
n(t2)− t2

λ

)
−

(
n(t1)− t1

λ

)∣∣∣∣ q(t1) > B

}
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≤
(

(p + ε)(1− 2δ)− 1
λ

+ 2δ

)
λB + 1− 2δ. (16)

For any p < 1
λ , one can choose sufficiently small ε and δ and

a sufficiently large B such that the drift value in (16) is strictly
negative. The negative drift can then be used to show that for
any ε, ε′ > 0, there exists an N0 > 0 such that

P

(
q((λ− ε′)N) ≥ ε′N

λ

)
< ε, (17)

for all N > N0. For those N > N0, we then have

E{Nsuccess}
2N

≥ 2pE{tN}
2N

≥ 2p(λ− ε′)NP(tN ≥ (λ− ε′)N)
2N

≥ 2p(λ− ε′)NP(q((λ− ε′)N) + (λ−ε′)N
λ < N)

2N

= p(λ− ε′)(1− P(q((λ− ε′)N) ≥ ε′N
λ

))

≥ p(λ− ε′)(1− ε), (18)

where the first inequality follows from focusing on the ex-
pected rewards obtained during the random period [1, tN ] and
from the optional sampling theorem for Martingales. The sec-
ond inequality follows from the Markov inequality. The third
inequality follows from the fact that when n((λ− ε′)N) < N
we must have tN ≥ (λ− ε′)N . By letting N →∞ and then
ε, ε′ → 0, the asymptotic throughput is ≥ λp. The proof for
the case p < 1

λ is complete.

Now we consider the case when p > 1
λ . Let λ′ = 1

p+ε < λ,
where ε > 0 is a small number. We would like to have p + ε
being a fractional number so that we can choose a sufficiently
large B such that Bλ′ being an integer. Note that p < 1

λ′ .
We now define a new, auxiliary advancement function q′(t) =
n(t) − t

λ′ and will show that q′(t) has a negative drift when
q′(t) > B. Suppose q′(t1) = n(t1)− t1

λ′ > B for some t1. Set
t2 = t1 + λ′B. Therefore, for any ε > 0, and δ > 0, we can
find a large enough B such that

P

(
Cj(t1, t2)

λ′B
− p > ε

)
< δ, for j = 1, 2.

Hence, we have

P

(
maxj=1,2 Cj(t1, t2)

λ′B
− p > ε

)

≤ P

(
C1(t1, t2)

λ′B
− p > ε

)
+ P

(
C2(t1, t2)

λ′B
− p > ε

)

≤ 2δ.

By our construction of t2 = t1 + λ′B and its relationship
to q′(t1) > B, we also have t2 < λ′n(t1) ≤ λn(t1). By
Lemma 1, we have

n(t2)− n(t1) ≤ max
j=1,2

Cj(t1, t2) + 1,

and

P (n(t2)− n(t1) ≥ (p + ε)(λ′B) + 1) < 2δ.

Since we also have n(t2) − n(t1) ≤ t2 − t1 = λ′B. Jointly,
we have

E{n(t2)− n(t1)|q′(t1) > B)}
≤ ((p + ε)λ′B + 1) (1− 2δ) + 2λ′Bδ.

By the above analysis, the conditional expectation that q(t1) >
B must satisfy

E {q′(t1 + λ′B)− q′(t1)| q′(t1) > B}
= E

{(
n(t2)− t2

λ′

)
−

(
n(t1)− t1

λ′

)∣∣∣∣ q′(t1) > B

}

≤
(

(p + ε)(1− 2δ)− 1
λ′

+ 2δ

)
(t2 − t1) + 1− 2δ.

=
(

(p + ε)(1− 2δ)− 1
λ′

+ 2δ

)
λ′B + 1− 2δ. (19)

Since p < 1
λ′ , one can choose sufficiently small ε and δ

and a sufficiently large B such that the drift in (19) is strictly
negative. The negative drift can then be used to show that for
any ε, ε′ > 0, there exists an N0 > 0 such that

P

(
q((λ′ − ε′)N) ≥ ε′N

λ′

)
< ε, (20)

for all N > N0. For those N > N0, we then have

E{Nsuccess}
2N

≥ 2pE{tN}
2N

≥ 2p(λ′ − ε′)NP(tN ≥ (λ′ − ε′)N)
2N

≥ 2p(λ′ − ε′)NP(q((λ′ − ε′)N) + (λ′−ε′)N
λ′ < N)

2N

= p(λ′ − ε′)(1− P(q((λ′ − ε′)N) ≥ ε′N
λ′

))

≥ p(λ′ − ε′)(1− ε), (21)

where the first inequality follows from focusing on the ex-
pected rewards obtained during the random period [1, tN ] and
from the optional sampling theorem for Martingales. The sec-
ond inequality follows from the Markov inequality. The third
inequality follows from the fact that when n((λ′−ε′)N) < N
we must have tN ≥ (λ′ − ε′)N . By letting N → ∞ and
then ε, ε′ → 0, the asymptotic throughput is ≥ pλ′. When
ε→ 0, so that p→ 1

λ′ , the asymptotic throughput can achieve
the capacity upper bound. The proof for the case p ≥ 1

λ is
complete.

The finiteness of the index advancement q(t) is also highly
relevant to the transmission delay in the setting of sequential
packet arrivals. Our proof can be used to show that the
total transmission delay (from the packet arrival at the base
station to decoding at the individual user) remains finite with
probability one. We will discuss this point in more detail in
Section V-C.

In our scheme, the BS sends the uncoded packets first and
combines two information packets together only when there
are coding opportunities involving both users. Namely, we
only transmit network coded packet that can serve both users
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Fig. 2. The capacity curves for the dynamic-programming non-coding policy
and for the proposed network coding policy.

simultaneously. It is possible that when we are waiting for such
beneficial coding opportunities, some of the packets that have
only been received by one user may have expired. Since those
packets are heard by only one user, the throughput suffers.
However, the above proof shows that the proposed scheme
is asymptotically throughput optimal, which means that such
expiration of coding opportunities happens only infrequently.
Most of the packets can be pumped through the broadcast
channel within the deadline constraints even if we wait for
the occurence of the coding opportunities that benefit both
users.

V. SIMULATION

Our previous analyses focus on the asymptotic case when
N → ∞. In this section, we use simulation to verify the
performance of the uncoded DP policy and the proposed net-
work coding (NC) scheme for finite N . For all our simulation
results, we assume that the deadline of the n-th packet is 3n,
i.e., λ = 3.

A. Performance for Large N

Fig. 2 contains four curves: the asymptotic capacity regions
for coded and uncoded transmissions and the achievable
throughputs for the proposed NC scheme and the DP non-
coding policy with N = 10000. The capacity regions are plot-
ted according to the closed form expressions in Sections III-B
and IV-B. For the DP non-coding policy, for each given p
value, we evaluate the expected throughput by the iterative
equations in (2). For the proposed NC policy, for each given
p value, we run the simulation and count the number of
successes for both users.

As illustrated in Fig. 2, the asymptotic capacity curves for
coded/uncoded transmissions fit the numerical results for large
N = 10000. When p value is less than 3−√32−3

3 ≈ 0.18 or
when p > 3+1−√32+1−3

3 ≈ 0.45, both the DP policy and the
NC policy achieve the broadcast channel capacity. However,
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Fig. 3. Performance comparison between NC and DP policies for small finite
N = 50, 100, 150, 500.
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Fig. 4. The packet-by-packet delivery rate of the NC scheme for first 50
packets. The deadline is 3n for the n-th packet.

when 0.18 < p < 0.45, the performance of the best non-
coding policy is strictly worse than the broadcast capacity,
which can only be achieved by the NC policy. The largest
performance gain happens at the critical erasure probability
p = 1

λ = 1/3, for which we see 25% throughput improvement
for the NC policy over the DP policy.

B. Performance for Small N

In Fig. 3 we compare the NC and DP policies for small,
finite file size N . Even for file size as small as N = 50,
the performance of NC scheme is better than that of DP.
We also note that the expected rewards for small N follow
closely with their asymptotic counterparts, especially when
the DP policy is used. The normalized expected rewards for
the DP policy is almost indistinguishable from N = 50 to
500. The expected throughput of the NC scheme deviates
slightly more from its asymptotic expression for small N (i.e.,
N < 500). The performance degradation of the NC scheme at
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small N is due to the following reason. Initially, the index
advancement q(t) is small, which means that the ongoing
packet n that have recently been transmitted are going to
expire quickly (with the deadline λn close to t). Due to the
randomness of the channel, those initial packets have a larger
probability to expire, which affects the throughput. In Fig. 4
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Fig. 5. The packet-by-packet delivery rate of the NC scheme for packets
with indicies between 400 and 450. The deadline is 3n for the n-th packet

we perform multiple experiments and calculate the averaged
total number of successes (for both users) for the first 50
packets n = 1 to 50. For example, for the case in which
p = 0.5, among 2000 different realizations of the NC scheme,
the first packet n = 1 has been successfully received/decoded
in average by ≈ 1.4 users. All packets with index n ≥ 6
have been successfully received/decoded on average by ≥ 1.8
users, which is above 90% of the achievable throughput. Even
for a noisy environment p = 0.35, which is close to the
critical delivery probability p∗ = 1

λ = 1/3, the first packet
is received/decoded by ≈ 1.15 users, and 90% of the optimal
throughput (avg. 1.8 users) can be achieved after n ≥ 26.
When p = 0.3 < p∗, the maximal achievable throughput is
pλ = 0.9. The per-packet throughput for p = 0.3 is thus
upper bounded by avg. 1.8 users as also illustrated in Fig. 4.
The relatively large packet loss for the initial packets (those
with small n) is the cause of the throughput degradation in
Fig. 3. For example, for the case in which p = 0.5, the total
area under the curve from n = 1 to n = 50 is approximately
96, which means that there are roughly 4% throughput losses
in the first 50 packets. This 4% loss is also illustrated in Fig. 3
by the intersecting point of the “NC-50” curve and the p = 0.5
vertical line.

We also plot the average number of users that receive
the n-th packet before the deadline for n = 400 to 450
in Fig 5. When p = 0.35, 0.4, and p = 0.5, all packets
with indices between 400 and 450 are received by almost 2
users on average. This means nearly 100 % throughput can be
achieved. This is because by this time, the index advancement
q(t) = n(t) − t

λ has grown to a sufficiently large value. The
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Fig. 6. Time evolution of the index advancement q(t) for p = 0.33.
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Fig. 7. Time evolution of the index advancement q(t) = n(t) − t
λ

for
p = 0.25.

probability of deadline violation will be small. When p = 0.3
being less than the critical probability 1

λ = 1
3 , the normalized

capacity is 0.9 as proven in Section IV-C. As illustrated in
Fig 5, the per-packet throughput for p = 0.3 approaches
the upper bound 1.8 = 0.9 × 2 users for the packets with
indicies between 400 and 450. This also verifies the asymptotic
optimality of the proposed scheme.

On the other hand, when N is large, the initial loss of
4 packets in the first 50 packets is averaged over all N
packets. Therefore, the asymptotic performance of large N
approaches the broadcast capacity, as predicted in Section IV-C
and verified in Fig. 2.

C. Time Evolution of q(t)

Fig. 6 shows the time evolution of the index advancement
q(t) = n(t)− t

λ for p = 0.33, which contains the trajectories
of the q(t) for 40 random realizations. As predicted in Sec-
tion IV-C, q(t) remains small (≤ 85) for the entire duration



13

t ∈ [1, 5000]. Among 1000 random realizations, only 70 of
the q(t) curves have ever been over 85. As shown in (16), the
smaller the p value is, the larger the negative drift is going
to be. This phenomenon can also be verified in simulation.
In another simulation (Fig. 7) with p = 0.25 we found that
the index advancement q(t) for all 40 realizations are upper
bounded by 15.

In addition to its role in network coded throughput, the index
advancement q(t) is also highly relevant to transmission delay
in the setting of sequential packet arrival. More explicitly,
suppose that instead of transmitting a single file, we consider
live video for which not all packets are available in the
beginning of the broadcast session. In live video streaming,
suppose the n-th packet arrives at the BS at time λn−∆, where
∆ > 0 is the time offset between the arrival time at the BS
and the deadline λn at the end users. This ∆ thus represents
the maximum allowable transmission delay that includes the
queueing, propagation, and decoding delays. Note that in the
proposed NC protocol, the packet sent at t0 is generated (either
codedly or non-codedly) by packets of index ≤ n(t0). If the
n(t0)-th packet has already arrived at the BS by time t0, i.e.,
if

t0 ≥ λn(t0)−∆ = λ(q(t0) +
t0
λ

)−∆

⇔ ∆ ≥ λq(t0),

then the NC protocol, originally proposed for file streaming
with all packets available in the beginning of the session, can
also be applied to the sequential-arrival live streaming appli-
cations with maximum transmission delay ∆. The analysis
in Section IV-C shows that, the NC scheme achieves close
to optimal throughput for a sequential arrival setting with a
sufficiently large ∆. The simulation results show that with
λ = 3, p = 0.33 (resp. p = 0.25), if the maximum allowable
delay is ∆ = 85 × 3 (resp. ∆ = 14 × 3), then in 93.0%
(resp. 96.7%) of the 1000 realizations, the NC scheme can
achieve the optimal throughput of live-video streaming under
the maximum allowable delay constraint ∆.

VI. CONCLUSIONS

In this work, we have modeled and analyzed the streaming
broadcast problem over downlinks in a single cell. We have
characterized the optimal throughput for both the uncoded and
coded transmission schemes with hard deadline constraints,
and shown that the capacity region of network coded trans-
mission is strictly larger than that of the uncoded schemes.

In the uncoded case, an optimal policy has been devised
based on finite-horizon dynamic programming (DP) within a
Markov decision framework. And we have obtained a closed
form expression of the optimal throughput in the asymptotic
sense, i.e., when broadcasting files of size N →∞. For coded
transmission, we have proposed a novel network coding (NC)
scheme, which achieves the asymptotic capacity without the
knowledge about the packet delivery probability. In addition
to the asymptotic analysis, our simulation results show that
the proposed NC scheme achieves strictly higher throughput

than that of the best uncoded scheme even for very small file
size N . A new Lyapunov analysis of the index advancement
has been developed, which sheds further insight into the
NC scheme for both the file-streaming and live-streaming
applications.

For the uncoded case, the analysis techniques in this work
can be immediately applied to the case of more than two users.
We are currently investigating the Lyapunov analysis for >
2 users and its corresponding applications for the setting of
sequential arrivals and even with random arrival processes.
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