# Throughput and Delay Scaling of General Cognitive Networks

Wentao Huang Xinbing Wang

Department of Electronic Engineering Shanghai Jiao Tong University

April 12, 2011



### **Outline**

#### Introduction

Backgrounds

Motivation and Result

### System Models

Basic Models
Operation Rules

#### The Hybrid Protocol Model

Definition Feasibility

#### **Transmission Opportunities**

Cell Partitioning Round-Robin Mode Independent Relay Mode

**Optimal Performance Scaling** 





# Outline

#### Introduction

Backgrounds
Motivation and Result

### System Models

Basic Models
Operation Rules

#### The Hybrid Protocol Model

Definition

Feasibility

### Transmission Opportunities

Cell Partitioning Round-Robin Mode Independent Relay Mode

**Optimal Performance Scaling** 



Backgrounds

# Cognitive Networks

- Primary users (with priority) and secondary users (opportunistic).
- Form two networks overlapping in all dimensions.
  - spatial, temporal, spectral
- Both networks could be arbitrary ad hoc networks.



What is the throughput and delay performance of the primary and secondary networks?





Backgrounds

# Throughput & Delay in Cognitive Networks



Figure: Opportunistic channel access.

- Secondary users suffer from throughput and delay penalty.
- Depends on how the primary network operates.

What is the throughput and delay performance of the primary and secondary networks?





Backgrounds

### Related Previous Works

- Sang-Woon Jeon et al., submitted to TIT [14]
  - Study two overlapping static ad hoc networks.
  - Preservation regions to protect primary networks.
  - Almost all secondary users could achieve the same throughput scaling as standalone networks.
- Changchuan Yin et al., TON, 2011 [15]
  - Two overlapping static ad hoc networks.
  - Both networks can achieve the same delay-throughput tradeoff as the optimal one for standalone networks.
- Cheng Wang et al., MASS, 2009 [18]
  - Investigate multicast capacity in cognitive networks.
  - Identify numerous sub-regimes, and in most cases multicast capacity is the same as or close to that in standalone networks.





Motivation and Result

### Motivation

- All previous works consider specific primary networks with predefined communication schemes, and then design secondary protocols accordingly.
  - But primary networks could be arbitrary and diverse.
- All report similar or same results as standalone networks.
  - May imply a stronger and more general conclusion exists.







Figure: Various kinds of primary users in White Spaces networks.



Introduction

Motivation and Result

### Motivation

#### The Problem

What is the performance of a general cognitive networks with arbitrary primary users?

Mobility? TDMA? CSMA?, etc.

Are there some general conditions that the cognitive networks can perform as well as standalone networks and how?



- Motivation and Result

### Results

#### Yes, if:

- ► A1) Primary network operates at a SINR level slightly larger than reception threshold.
  - such that there are opportunities for secondary users.
- A2) Primary network employs round-robin TDMA style scheduling schemes; or its traffic flows choose relays independently for routing.
  - such that the opportunities are sufficient.
- ► A3)  $r_{\text{max}}^{\gamma-2} = o(R_{\text{min}}^{\gamma}/R_{\text{max}}^2)$ , where R, r are transmission ranges of primary and secondary networks.
  - such that the primary scheduling is "homogeneous" and secondary users can conveniently detect opportunities.





### Outline

#### Introduction

Backgrounds
Motivation and Result

### System Models

Basic Models
Operation Rules

#### The Hybrid Protocol Model

Definition

Feasibility

### **Transmission Opportunities**

Cell Partitioning Round-Robin Mode Independent Relay Mode

**Optimal Performance Scaling** 





```
System Models
Basic Models
```

# **Assumptions**

- Network extension: a unit square.
- ▶ *n* primary users  $\{X_i\}_{i=1}^n$  and *m* secondary users  $\{Y_j\}_{j=1}^m$ .
- Independently and identically distributed (i.i.d.) in the network extension.
- Random permutation traffic, no cross network traffic.



### Interference Model

The Physical Model: a transmission between two primary users is successful if the SINR at receiver satisfies:

$$SINR = \frac{\text{Received Power}}{N_0 + I_{P \to P} + I_{S \to P}} \ge \alpha$$
 (1)

where,

 $I_{P \to P}$ : Interference from other primary TXs  $I_{S \to P}$ : Interference from all secondary TXs

- If successful, transmits with bandwidth W.
- Define the physical model for secondary users similarly.
- Similar results also hold for the Gaussian Channel Model.





```
System Models
Basic Models
```

# **Asymptotic Capacity**

#### Definition

Asymptotic per-node capacity  $\lambda(n)$  of the network is said to be  $\Theta(g(n))$  if there exist two positive constants c and c' such that:

$$\left\{\begin{array}{l} \lim_{n\to\infty}\Pr\left\{\lambda(n)=cg(n)\text{ is feasible}\right\}=1\\ \lim_{n\to\infty}\Pr\left\{\lambda(n)=c'g(n)\text{ is feasible}\right\}<1 \end{array}\right.$$



Operation Rules

# **Operation Rules**

- Essential difference between cognitive networks and normal (standalone) networks.
- Should be as general as possible.
- To formulate the concept of priority:
  - Primary users disregard secondary users.
  - Secondary users must take care of both themselves and primary users.



Operation Rules

# **Operation Rules**

### Rule 1 (the scheduling decision model of primary users)

A transmission is eligible to be scheduled if:

$$\frac{\text{Received Power}}{N_0 + I_{P \to P}} \ge \alpha + \epsilon \tag{2}$$

- Note that I<sub>S→P</sub> is not included, i.e., the primary scheduler may not be aware of secondary users.
- ▶ Though it could be arbitrarily small, the allowance  $\epsilon$  is necessary to provide opportunities for secondary users.



└ Operation Rules

# Operation Rules

Rule 2 (scheduling decision model of secondary users)

Given a set of primary transmissions satisfying Eq. 2 (Rule 1), a secondary transmission is eligible to be scheduled if it guarantees that the set of all primary and secondary links indeed satisfies the physical model (e.g., Eq. 1).

# Outline

#### Introduction

Backgrounds
Motivation and Result

### System Models

Basic Models
Operation Bules

### The Hybrid Protocol Model

Definition

Feasibility

### **Transmission Opportunities**

Cell Partitioning Round-Robin Mode Independent Relay Mode

**Optimal Performance Scaling** 





# Why this model?

- ► The operation rules are general to define, intuitive to understand, but awkward to use:
  - Complexity: depends on location, power, and aggregate interference.
  - Very difficult for secondary users to detect opportunities.
- We need a simpler criterion for secondary users to identify potential transmission opportunities.



#### Definition

let  $A \in \{p, s\}$ , and nodes  $i, j \in A$ . Denote  $d_{ij}$  as the distance between them. Then a transmission from i to jis considered successful under the hybrid protocol model if

$$d_{kj} > (1 + \Delta_{AB})d_{ij}$$

for any other node  $k \in \mathcal{B}$ ,  $\mathcal{B} \in \{p, s\}$  transmitting simultaneously.

► Simplicity: only involves *pairwise distance*.



Figure: Guard zone for other PUs interfering with the transmitting PU.



#### Definition

let  $\mathcal{A} \in \{p, s\}$ , and nodes  $i, j \in \mathcal{A}$ . Denote  $d_{ij}$  as the distance between them. Then a transmission from i to j is considered successful under the hybrid protocol model if

$$d_{kj} > (1 + \Delta_{AB})d_{ij}$$

for any other node  $k \in \mathcal{B}$ ,  $\mathcal{B} \in \{p, s\}$  transmitting simultaneously.



Figure: Guard zone for other SUs interfering with the transmitting PU.

Simplicity: only involves pairwise distance.



# Hybrid Protocol Model vs. Operation Rules

The hybrid protocol model (HP) should be consistent with the operation rules:

- Any primary schedule allowed by Rule 1 must also be allowed by HP (HP should be *flexible*).
- Any schedule allowed by HP must be indeed physical feasible, thus satisfying Rule 2 (HP should be stringent).

#### How?

- ▶ Adjust protocol parameters  $\Delta_{pp}$ ,  $\Delta_{ps}$ ,  $\Delta_{sp}$  and  $\Delta_{ss}$ .
- Control underlying parameters such as transmission power.



### HP is Flexible

#### Lemma

For any  $\alpha + \epsilon$  specified by Rule 1, let  $\Delta_{pp} \leq (\alpha + \epsilon)^{\frac{1}{\gamma}} - 1$ , then all feasible schedules of Rule 1 are feasible under HP.

#### Intuition

Decreasing  $\Delta_{pp}$  will allow for more concurrent primary transmissions, even at a very poor SINR.

▶ Therefore HP complies with Rule 1.



# Physical Feasibility of HP

### Key Challenges:

- ► Ensure secondary transmissions harmless to primary network: upper bound  $I_{S\rightarrow P}$ .
- ▶ Establish secondary links given uncontrollable interference from primary network: upper bound  $I_{P\rightarrow S}$ .

Secondary users should employ flexible power control.



Feasibility

# Upper Bounding $I_{S\rightarrow P}$ : Main Idea



Figure: Hybrid protocol model: transmissions consume area.



Feasibility

# Upper Bounding $I_{S\rightarrow P}$ : Main Idea



Figure: The amount of interference that can be "plugged" around the receiver is upper bounded.



Feasibility

# Upper Bounding $I_{S\rightarrow P}$ : Main Idea



Figure: By carefully tuning secondary transmission power, the interference that primary users suffer can be bounded by integral.



# Physical Feasibility of HP: Main Idea

- ▶ Similarly we can bound  $I_{P\to S}$ .
- ►  $I_{S\to P}$  is roughly bounded by  $CR_{ij}^{2-\gamma}$  and  $I_{P\to S}$  by  $R_{\min}^{-\gamma}$ .
- If  $r_{\max}^{\gamma-2} = o(\frac{R_{\min}^{\gamma}}{R_{\max}^2})$ , then we can indeed find a proper C, such that the SINR of any primary and secondary users is larger than physical reception threshold.

Therefore HP is physical feasible.



Transmission Opportunities

### Outline

#### Introduction

Backgrounds

Motivation and Result

### System Models

Basic Models
Operation Rules

#### The Hybrid Protocol Model

Definition

Feasibility

### **Transmission Opportunities**

Cell Partitioning Round-Robin Mode Independent Relay Mode

**Optimal Performance Scaling** 





Cell Partitioning Round-Robin Mode

# Cell Partition Round-Robin Scheduling

- Tessellate the network into cells.
- Group non-interfering cells into the same color, allow concurrent transmissions in cells with the same color.
- Different groups take turns to be active, such that every cell has constant fraction of time to transmit.



Transmission Opportunities

# Cell Partition Round-Robin Scheduling





Figure: Simple 16-TDMA (the left figure) and its general form: Voronoi Cells (the right figure).



Transmission Opportunities

Cell Partitioning Round-Robin Mode

# Availability of Transmission Opportunities

#### Intuition

As a result of the hybrid protocol model, for any secondary user i, we can find a corresponding nearby primary cell V, such that i is able to transmit without interfering the primary network whenever V is activated.

- Secondary users have constant fraction of time to be active.
- Only wait constant time before the opportunities occur.

Thus same throughput & delay scaling as standalone networks.



Transmission Opportunities

Cell Partitioning Round-Robin Mode

# Independent Relay Routing

- Tessellate network into arbitrary cells.
- Packets are forwarded along these cells hop by hop following arbitrary path.
- Different traffic flows choose relays independently in cells.



Independent Relay Mode

# Independent Relay Routing





Figure: Two examples of independent relaying.



Transmission Opportunities

# Availability of Transmission Opportunities

#### **Theorem**

If a secondary link is muted from transmission for a constant fraction of time, then with high probability there also exists a constant fraction of time that it can transmit without constraint.

Intuition: muted and triggered region.



Figure: Muted region (in pink) and triggered region (in blue).



# Availability of Transmission Opportunities



Figure: Region muted and triggered by a specific link in the network.



Transmission Opportunities

Independent Relay Mode

Independent Relay Mode

# Availability of Transmission Opportunities



Figure: Region muted and triggered by a specific link in the network.



Transmission Opportunities

# Availability of Transmission Opportunities

#### Lemma

Whether a secondary link is muted or triggered can be characterized by random Bernoulli trials, i.e., if muted with probability  $p_1$ , then constant c>0 exists such that triggering probability  $p_2>cp_1$ .





Figure: Regions muted and triggered by specific links in the network.



Transmission Opportunities

Independent Relay Mode

Optimal Performance Scaling

# Outline

#### Introduction

Backgrounds

Motivation and Result

### System Models

Basic Models
Operation Rules

#### The Hybrid Protocol Model

Definition

Feasibility

### **Transmission Opportunities**

Cell Partitioning Round-Robin Mode Independent Relay Mode

Optimal Performance Scaling





# Performance Scaling for General Cognitive Networks

#### **Theorem**

For any schemes that satisfies conditions A1)-A3) (pp. 9), and achieves throughput  $\lambda_s$  and delay  $D_s$  in case that the secondary network were standalone, there exists a corresponding scheme which can achieve throughput  $\Theta(\lambda_s)$  and delay  $\Theta(D_s)$  when primary network is present and Operation Rules 1 and 2 apply.

### Static Wireless Ad Hoc Networks

### Corollary

In static cognitive networks, the optimal throughput delay tradeoff is  $D_p = \Theta(n\lambda_p)$ ,  $\lambda_p \leq \Theta(1/\sqrt{n})$  for primary network and  $D_s = \Theta(m\lambda_s)$ ,  $\Theta(n\lambda_p/m) < \lambda_s \leq \Theta(1/\sqrt{m})$  for secondary network, if  $\Theta(1/\sqrt{m}) > \Theta(n\lambda_p/m)$ .

[1] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah, "Optimal throughput delay scaling in wireless networks: part i: the fluid model," IEEE/ACM Trans. on Networking, 2006.

# Networks with Random Walk Mobility

### Corollary

If primary nodes move according to random walk model, then the optimal throughput delay tradeoff for primary network is  $D_p = \Theta(n\lambda_p)$  if  $\lambda_p \leq \Theta(1/\sqrt{n}), D_p = \Theta(n\log n)$  if  $\Theta(1/\sqrt{n}) < \lambda_p \leq \Theta(1)$ . And the optimal throughput delay tradeoff for secondary network is  $D_s = \Theta(m\lambda_s), \Theta(n\min(1/\sqrt{n},\lambda_p)/m) < \lambda_s \leq \Theta(1/\sqrt{m})$ , if  $\Theta(1/\sqrt{m}) > \Theta(n\min(1/\sqrt{n},\lambda_p)/m)$ .

[1] A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah, "Optimal throughput delay scaling in wireless networks: part i: the fluid model," IEEE/ACM Trans. on Networking, 2006.

# Hybrid Networks

### Corollary

If primary network is equipped with  $k = \Omega(\sqrt{n})$  base stations, the capacity of it is  $\lambda_p = \Theta(k/n)$ , and the optimal throughput delay tradeoff for the secondary network is  $D_s = \Theta(m\lambda_s)$ ,  $\Theta(\sqrt{\lambda_p n}/m) < \lambda_s \leq \Theta(1/\sqrt{m}), \text{ if } \Theta(1/\sqrt{m}) > \Theta(\sqrt{\lambda_p n}/m).$ 

[2] B. Liu, Z. Liu, and D. Towsley, "On the capacity of hybrid wireless networks," in IEEE Infocom, 2003.



### Corollary

If the primary network employs independent relay protocol and CSMA protocol. The capacity of primary network is  $\Theta(\frac{1}{\sqrt{n\log n}})$ . The optimal throughput delay tradeoff for secondary network is  $D_s = \Theta(m\lambda_s), \, \Theta(\sqrt{n}/m\sqrt{\log n}) < \lambda_s \leq \Theta(1/\sqrt{m}), \, \text{if } m = \Omega(n^M)$  for some constant M > 1.

[3] C.-K. Chau, M. Chen, and S. C. Liew, "Capacity of large-scale CSMA wireless networks," in Proc. ACM Mobicom, 2009.



# Networks with General Mobility

### Corollary

If the mobility of primary users can be described by a stationary spatial distribution with support of diameter  $f(n) = \omega(\frac{1}{\sqrt{n}})$ , then the capacity of primary network is  $\lambda_p = \Theta(f(n))$ . The optimal throughput delay tradeoff for secondary network is  $D_s = \Theta(m\lambda_s), \, \Theta(\sqrt{n}/m) < \lambda_s \leq \Theta(1/\sqrt{m}), \, \text{if } m = \omega(n).$ 

[4] M. Garetto, P. Giaccone, and E. Leonardi, "Capacity scaling in delay tolerant networks with heterogeneous mobile nodes," in Proc. of ACM MobiHoc. 2007.



Optimal Performance Scaling

# And More ...

- Multicast networks
- MIMO networks
- Clustered networks
- **...**

# Summary

- The hybrid protocol model for opportunity detection
- Round-robin scheduling and independent relay routing
- Examples that cognitive networks achieve the same performance scaling as standalone networks: static networks, mobile networks, hybrid networks, CSMA networks ...



Questions?

Thanks for listening.

