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pendent technique, where central node sends a binary
reward to the devices, informing if the transmission was
successful or if there was a collision between two or
more devices. Such technique does not perform well
in scenarios where the number of devices is equal to
or greater than the number of available time-slots. In
contrast to it, the collaborative Q-Learning method is
suggested, where the reward sent to the colliding devices
is the level of congestion in the time-slot. In this case,
the devices learn to choose the least disputed time-slots,
increasing the throughput of the system [4].

An alternative to the independent Q-Learning tech-
nique is the collaborative approach, which considers the
level of congestion in the reward sent from the central
node to the devices. The throughput is higher for this
technique than the independent technique, however the
reward needs to be sent in more than one bit and the
central node needs to know the number of devices that
collided in a given time-slot.

Both techniques mentioned are not fair, as the devices
that randomly select the least disputed time-slots will
transmit their packages more quickly, as the learning
method will provide them with unique time-slots. On
the other hand, devices that collide frequently will take
longer to transmit all of their packets.

The Contribution of this work is to propose a Q-
Learning RA technique that does not detract from the
devices that select the most congested time-slots at the
beginning of the transmission, as occurs in the collabora-
tive technique proposed in [4]. The proposed distributed
packet-based Q-Learning technique benefits devices that
still have many packets to transmit, sending them a
greater reward. The technique in [4] sends larger rewards
to devices that have uniquely selected time-slots, causing
some devices to end transmission very quickly, while
others take longer. In general, the distributed packet-
based method reduces the latency variance. Also, we
have proposed an improvement in the collaborative Q-
Learning technique aiming at establishing a reasonable
level of congestion with a finite number of bits, and as
result, reducing the header when sending the reward.

The remainder of the work is composed of the system
model in Section II, the proposed distributed packet-
based Q-Learning reward method in Section III; nu-
merical results are analyzed in Section IV; the main
conclusions and final remarks are presented in Section
V.

II. System model

Let’s consider an mMTC network, where there are N
machine-type devices transmitting packets with p bits
of payload to a central node. A frame is made up of K

time-slots, and the N devices select one of the slots to
transmit. Each device has L packets to transmit, with
only one packet being transmitted per time-slot. The
loading factor is given by the ratio between the number
of active devices and the number of time-slots within a
frame, L = N

K . The indexes for each device and each
time-slot are sorted in sets N = {1, . . . , N} and K =
{1, . . . ,K}, respectively. In addition, we define the set
ψk indicating which devices have chosen the k-th time-
slot. For example, if devices 2 and 5 selected the 3rd
time-slot, then ψ3 = {2, 5}.

The transmission of a packet is considered successful
when only one device selects the k-th time-slot, i.e it
results in cardinality one, |ψk| = 1. Otherwise, if two
or more devices choose the same time-slot, |ψk| > 1,
a collision occurs, and the transmission is considered a
failure.

For simplicity of analysis, the effects of physical chan-
nel losses such as multipath fading and AWGN (high
SNR regime) are not considered. As the focus of the
work is on developing the reward sending mechanisms
in Q-Learning-based RA protocols aiming to improve
the learning process of the devices, we assume, as in
[4], [9], that the signal from all devices arrive with the
same power at the central node. The random variables
are defined by the channel/slot selection in each device.
In addition, central node does not apply any collision
resolution method to decide which device wins. When
two or more devices select the same channel to transmit,
central node considers it a collision and requests that the
devices retransmit the packet.

At the end of the frame, central node sends a reward
signaling to the devices composed by b bits indicating
whether the transmission was successful or not. The
devices use the reward information to learn over the
transmissions which are the best time-slots subset to
transmit. The end of transmission occurs when all de-
vices transmit all their packets.

To illustrate the transmission process across K = 6
time-slots, Fig. 1 depicts the RA-based network consid-
ering N = 8 devices. In this simple example, only devices
3, 4 and 7 select time-slots exclusive to them. Therefore,
they are the only ones to receive a positive reward from
the central node. On the other hand, the other devices
collide with each other, and therefore the reward sent
by the central node is negative.

III. Random access with Q-Learning

Q-Learning is a type of machine learning (ML), which
is model-free and it can be implemented in a distributed
way and with low complexity. The advantage of using
Q-Learning to solve the RA problem is that it is easily
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Figure 1. Reward-based RA network with N = 8 devices and K
= 6 time-slots.

implemented on thousands of mMTC devices due to its
low complexity, while the devices decide in a distributed
and decentralized way the best time-slots to transmit
based on previous transmissions. The learning method of
each device can be modeled as a Markov decision process
(MDP), where the change to a future state depends on
the factors: the current state, the transition probability
function and the reward value [17].

The n-th device has a Q-value, namely Qt
n,k, that

indicates the preference to transmit in the k-th time-
slot and step t. All Q-values make up a Q-table of N
rows andK columns. Initially, the entire Q-table is set to
zero: Qn,k = 0,∀n ∈ 1, . . . , N, ∀k ∈ 1, . . . ,K. Hence,
in order to transmit a packet, the device selects the time-
slot with the highest Q-value from its Q-table. If there is
more than one time-slot whose Q-value is the maximum,
then the choice is random among these Q-values.

At the end of the frame, the central node sends a
reward to each device indicating whether the transmis-
sion was successful or not in a given time-slot. Thus the
Q-value in the next step of the n-th device and k-th
time-slot is updated to

Qt+1
n,k = Qt

n,k + α(Rn,k −Qt
n,k) (1)

where Rn,k is the reward transmitted by central node,
and α is the learning rate. The learning rate is a weight
value in the range α ∈ [0; 1]. In this work, α is assumed
fixed and equal for all devices in the system.

The Q-table update, and the packet transmission
are performed subsequently until each device transmits
all of its packets. The reward-based RA algorithm is
considered to have converged when all devices have
transmitted all their packets. In the convergence process,
it is defined that the total number of successes is S, the
total number of failures is F and the total number of
time-slots spent is T .

A. Independent Q-Learning

The independent Q-Learning technique requires that
central node send only one bit (b = 1) for each device.
The reward sent to the n-th device that chose the k-th
time-slot is simply defined as: [4]:

Rind
n,k =

{
+1, if transmission succeeds,
−1, otherwise.

(2)

Therefore, if only the n-th device has chosen the k-th
slot, the transmission is successful and the reward is +1.
If two or more devices choose the k-th slot, a collision
occurs and the reward is -1 for all of them. Reward Rind

n,k

is used to update the Q-table for all devices and time-
slots through Eq. (1).

B. Collaborative Q-Learning

Assuming that central node is aware of the number of
devices that tried to access the k-th slot, it is possible
to define a congestion level Ck in slot k, given by

Ck =
|ψk|
N

, (3)

As a result, the reward sent by central node to the n-th
device that chose the k-th time-slot is given by [4]

Rcol
n,k =

{
+1, if transmission succeeds,
−Mb{Ck}, otherwise,

(4)

where Mb{Ck} is a quantized value of Ck based on
the number of bits b available for the header, e.g., if
b = 2 bits and assuming that the level of congestion
varies from 0 to 1, then the reward values can be
unambiguously represented by four quantized levels,
Mb{Ck} ∈ {0.25, 0.5, 0.75, 1}.

As Ck in this case is a real number, then the
central node should transmit a quantized version of
such real number, decreasing the spectral efficiency of
transmission, and the devices will have to use a certain
number of quantization bits b to represent this real
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value. Therefore, there is a trade-off between bandwidth
overhead and accuracy when quantized version (limited
number of bits) is transmitted by the central node and
the true value of the reward. Hence, the fixed number
of bit of quantization must be selected carefully.

The advantage of the collaborative method over the
independent one is that the devices learn to choose the
time-slots with lower levels of congestion to transmit
their packages. The disadvantage is that the central
node needs to know the number of interfering devices.
In addition, the reward becomes a real number and no
longer a bit, as in the independent method.

C. Distributed Packet-based RA for Crowded MTC Sce-
narios

With the increase in the number of devices and the
increase in the probability of collision in crowded mMTC
mode, it becomes more difficult for central node to
identify the number of interfering devices. Therefore, the
advantage of the collaborative Q-learning technique in
regions with high density of devices depends on an ideal
non-feasible scenario. In addition, independent and col-
laborative Q-learning techniques are not completely fair,
as a time-slot becomes unique for one device over the
entire learning period, while the other devices continue
to collide and expect to randomly find a suitable time-
slot to finish transmitting all packets.

Therefore, this work proposes a distributed packet-
based Q-Learning random access technique where the
Q-table updating takes into account the number of
remaining packet that each device still has to transmit
in that frame. The higher this number, the greater is the
respective reward, increasing the frequency of transmis-
sion attempt in that time-slot; hence, it is expected that
on average all devices finish transmitting their packets
at the same time.

Let’s define the factor εn for each device as:

εn = 1− `n
L
, (5)

where `n is the number of remaining packets to be
transmitted by the n-th device; hence, when the device
has already transmitted a large number of packets, εn
tends to 1.

In the proposed Q-learning-based RA method, the
reward sent by central node to the n-th device at
the k-th time-slot is defined in a same way as in the
independent Q-learning method:

Rpac
n,k = Rind

n,k =

{
+1, if transmission succeeds,
−1, otherwise.

(6)

However, since the proposed method is totally dis-
tributed, the reward processing is utterly done by the
devices. Hence, under this method, the Q-Table updat-
ing takes into account the number of packets that the
device still has to transmit results:

Qt+1
n,k =

{
Qt

n,k + α(Rpac
n,k −Qt

n,k), if Tx succeeds,
Qt

n,k + α(εnR
pac
n,k −Qt

n,k), otherwise.
(7)

=

{
Qt

n,k + α(1−Qt
n,k), if Tx succeeds,

Qt
n,k − α(εn +Qt

n,k), otherwise.
(8)

where eq. (8) can be obtained by substituting (6) into
(7).

Notice that in the distributed packet-based RA
method, the central node does not need to know the
number of devices that has collided in a given time-
slot. Therefore, the reward to be transmitted is binary
(b = 1), requiring the same infra-structure than the
independent technique. In addition, among the devices
that collided, devices that need to transmit more packets
are privileged with a more positive reward compared
to those devices with less packets remaining to be
transmitted, making the technique more appropriate to
attain improved throughput-complexity tradeoff when
compared to collaborative and independent-like meth-
ods. The pseudo code for the proposed distributed
packet-based technique is present in Algorithm 1.

Algorithm 1 Distributed Packet-Based RA Method
Initialize Qn,k = 0, ∀n ∈ N , ∀k ∈ K
Initialize `n = L, ∀n ∈ N ; T = 0, S = 0
while

∑N
n=1 `n > 0 do

Initialize cn = 0, ∀n ∈ N
for n = 1 : N do

if `n > 0 then
Cn = {k ∈ K | Qn,k = max

k
{Qn,k}}

Select randomly: cn ∈ Cn
for k = 1 : K do

T ← T + 1
ψk = {n ∈ N | cn = k}
if |ψk| = 1 then

S ← S + 1
Rpac

n,k = +1, ∀n ∈ ψk

Qn,k ← Qn,k + α(1−Qn,k), ∀n ∈ ψk

`n ← `n − 1, ∀n ∈ ψk

else if |ψk| > 1 then
εn = 1− `n

L , ∀n ∈ ψk

Rpac
n,k = −1, ∀n ∈ ψk

Qn,k ← Qn,k−α(εn+Qn,k), ∀n ∈ ψk
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IV. Numerical results

In this section, proposed Q-Learning RA technique
is numerically validated via computer simulations, and
compared with the independent and collaborative learn-
ing methods. In order to guarantee an average behavior
of the number of transmissions carried out successfully,
104 realizations for each experiment were considered.
The main simulation parameter values used are shown
in Table I.

Table I
Numerical parameters.

Parameter Value
Monte-Carlo realizations Nreps = 10,000

Time-slots per frame K = 400
Network Loading factor L = N

K
∈ [0.25; 3.00]

Packets per device L ∈ [50; 500]
Learning rate α ∈ [0.05; 0.5]

Header bits (collab.) b ∈ [1; 2; 4; 8; 16] bits
Payload bits p ∈ [1; 2; 4; 8; . . . ; 256] bits

An important figure of merit is the normalized
throughput, defined as the ratio between the number of
successful packet transmissions, S, and the correspond-
ing number of time-slots required, T . However, as not all
bits in the transmission are data from the devices, so the
ratio between the payload bits and reward bits should be
taken into account. Hence, the normalized throughput
is defined as

T =

(
p

b+ p

)
S

T
=

(
p

b+ p

)
NL

T
. (9)

The calculation of normalized throughput is performed
after the convergence of the algorithm, when all devices
transmit all their packets, and it indicates how efficiently
the time-frames have being used in each RA method.

A. Number of bits of quantized collaborative reward

To find the smallest number of bits that results in
a suitable accuracy in representing the actual number
of the congestion level in the collaborative technique
without reducing the throughput, Fig. 2 depicts the av-
erage throughput calculated as a function of the loading
factor L. The result shows that, within the analyzed
scenario, a suitable tradeoff choice for the number of
quantization bits that maximize the mean throughput
in the collaborative Q-Learning technique is b = 4 bits.
By deploying four bits, it is possible to attain a good
level of quantization for the real number of the reward,
but without reducing the throughput due to the increase
in header bits; hereafter, this value was adopted in all
simulations of the collaborative technique.

0.5 1.0 1.5 2.0 2.5 3.0
Loading factor

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No
rm

al
ize

d 
th
ro
ug

hp
ut

b = 1
b = 2
b = 4
b = 8
b = 16

Figure 2. Throughput for collaborative method varying the loading
factor, considering p = 64, L = 100, and α = 0.1.

B. Normalized Throughput

In Fig. 3, the throughput is analyzed as a function
of the loading factor. It is observed that the maximum
throughput is obtained when L = 1 for all techniques,
because in this scenario, the frame is being used with
greater efficiency, where in average there is a time-slot
for each device. Hence, as expected, the throughput is
lower in underloaded and overloaded scenarios, i.e., L 6=
1, where there are fewer or many devices than time-
slots and is not the ideal scenario, as more and more
devices could be allocated on the network to increase
the spectral efficiency. In particular, we are interest in
crowded MTC scenarios.
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Figure 3. Normalized throughput in function of loading factor for
independent, collaborative, and packet-based Q-Learning, consid-
ering p = 64, L = 100, K = 400, and α = 0.1.

In the L > 1 scenario, the RA techniques start
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to have a worse throughput because, when there are
more devices than time-slots, the probability of collision
increases substantially and unavoidably, which conse-
quently reduces the success probability and throughput.
The difference between independent and collaborative
Q-Learning RA techniques stands out in this impor-
tant scenario of practical interest. The collaborative
technique has greater throughput because the central
node indicates to the devices which time-slots have the
highest congestion level, through the information sent
as a reward. The devices learn to transmit in the least
congested time-slots, thus reducing the probability of
collision and, consequently, increasing throughput.

The performance of the packet-based technique is
superior to other techniques up to L = 1.6. From that
point on, the collaborative technique becomes supe-
rior in the interval 1.6 ≤ L ≤ 3.0, and then the
techniques converge to the same throughput value. It
is expected that the collaborative technique presents
a higher throughput in relation to the others in the
medium-high congestion scenarios (1.75 ≤ L ≤ 3.0)
because the reward sent by the central node provides
more details about the level of congestion of each time-
slot. However, the packet-based technique still proves
to be superior to the independent one in this scenario,
in addition to being less complex than the collaborative
one in relation to the central node, since the reward sent
is binary.

C. Asymptotic Throughput
In Fig. 4, the throughput for the three reward tech-

niques was analyzed with the change in the number of
packets that each device has to transmit, from L = 50
to L = 500 packets. For this result, we consider L = 1,
payload p = 64 bits, and learning rate α = 0.1.

It is possible to conclude that the throughput in-
creases with the increase in the number of packets. This
is because the number of successes increases, without
having a significant increase in the number of time-
slots needed to transmit all packets. However, the curves
begin to converge to a constant value. This indicates
that, even if the number of packets increases, the time
to transmit them in the same proportion is increased,
which makes the throughput constant. The proposed
distributed packet-based RA method reveals a superior
asymptotic normalized throughput:

T∞(L) = lim
L,T→∞

(
p

b+ p

)
NL

T
,

resulting for the specific network loading factor:
T pac
∞ (1) ≈ 0.965; T ind

∞ (1) ≈ 0.940; T col
∞ (1) ≈

0.915
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Figure 4. Throughput as a function of the number of packets,
considering loading factor L = 1, K = 400 time-slots, p = 64
bits, and α = 0.1.

D. Payload bits
Fig. 5 shows the result of the throughput as a function

of the number of payload bits b. The numerical result
indicates that when the number of payload bits is
small, with a value close to the number of header bits,
the throughput is low. As the number of payload bits
increases, the throughput increases until it converges
to a ceiling value. This convergence occurs in our
configuration setup close to p = 64, and for this reason,
this payload value was considered in the rest of the
simulations in this work.

As the collaborative technique has a larger number
of header bits (b = 4), then it depends on a larger
number of payload bits to present the same throughput
as the packet-based technique. For example, to achieve
a normalized throughput of Tp = 0.5, the collaborative
technique needs 16 bits of payload, while the packet-
based one needs 4 bits in the analyzed scenario. The
reduction in the number of payload bits can be an
advantage in simplifying the process in which a bunch
of devices randomly access the channel and transmitting
their packets.

E. Latency
Latency in this work is defined as the total amount

of time-slots T that all devices need to transmit a fixed
number of packets. In Fig. 6, there is an analysis of
the total number of time-slots required for the complete
transmission of L = 100 packets/device according to an
increasing in the loading factor of the system.

As expected, latency in terms of total time-slots
required increases when the loading factor increases, as
the system becomes more congested and the number



7

0 50 100 150 200 250
Payload bits

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ize

d 
th

ro
ug

hp
ut

Independent
Collaborative, b = 4
Packet-based

Figure 5. Normalized throughput as as function of payload bits,
considering L = 1.5, α = 0.1, and L = 100.
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Figure 6. Total number of time-slots as a function of loading
factor considering L = 100, and α = 0.1.

of collisions increases, requiring more retransmissions.
The result can be analyzed in three different scenarios.
For a low-medium loading factor, L ≤ 1.0, all tech-
niques have the same latency. For slightly-crowded and
crowded scenarios, i.e., 1.2 ≤ L ≤ 2.5,, the independent
technique has the highest latency in relation to the
others. Finally, for high-loading over-crowded scenarios,
the Q-Learning packet-based RA technique approaches
the latency of the independent technique, while the
collaborative technique holds the lowest latency.

Hence, from Fig. 3, 4, 5, and 6, one can infer that the
proposed distributed packet-based RA method attains
the best throughput-latency trade-off for a wide range
loading factors, 0.75 ≤ L ≤ 2.5, mainly in typically
(over)crowded scenarios.

F. Learning Rate
Finally, the adopted value for the learning rate is

justified. For that, latency was evaluated according to
the learning rate, as shown in Fig. 7. The adoption of
an increasing value for the learning rate negatively af-
fects the performance of reward-based RA techniques in
crowded scenarios, as the latency to achieve convergence
increases. When the learning rate is high, the weight
given to the reward of the central node is greater. Hence,
in more congested scenarios, more negative than positive
rewards can be expected. Therefore, when devices give
greater weight to negative rewards, the latency of the
technique increases. This behavior is observed when L
= 1.5, as the latency increases significantly with the
increase in the learning rate. When L = 1, this behavior
is smoothed, since the increase in latency only occurs
when α = 0.5 for the collaborative and packet-based
techniques.
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Figure 7. Total number of time-slots as a function of learning rate
considering L = 100.

V. Conclusions

Q-Learning-based random access methods for mMTC
networks have been investigated in terms of through-
put and latency. The numerical results and analyses
have demonstrated that the proposed distributed packet-
based RA method attains higher throughput combined
with lower latency than the conventional independent
Q-learning RA technique, even with the central node
transmitting only a bit of reward for both existing
techniques. In addition, the proposed distributed packet-
based method conferred the best throughput-latency
trade-off regarding both existing techniques for different
loading factor scenarios (0.25 ≤ L ≤ 1.5). Such trade-
off improvement reduces the number of bits transmitted
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by the central node to one while distributing the pro-
cessing among the devices. Finally, in highly congested
machine type scenarios, e.g., L ≈ 3, the throughput
of the proposed technique is the same as that of the
collaborative technique.
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