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Abstract— Gupta and Kumar (2000) introduced a ran-

dom network model for studying the way throughput scales

in a wireless network when the nodes are fixed, and

showed that the throughput per source-destination pair is✂☎✄✝✆✟✞✡✠ ☛✌☞✎✍✑✏✒☛✔✓
. Grossglauser and Tse (2001) showed that

when nodes are mobile it is possible to have a constant or✂✖✕✗✆✙✘
throughput scaling per source-destination pair.

The focus of this paper is on characterizing the delay and

determining the throughput-delay trade-off in such fixed

and mobile ad hoc networks. For the Gupta-Kumar fixed

network model, we show that the optimal throughput-delay

trade-off is given by ✚ ✕✛☛✜✘✣✢✤✂✖✕✛☛✦✥✧✕★☛✜✘✩✘
, where

✥✧✕✛☛✜✘
and

✚ ✕✛☛✜✘ are the throughput and delay respectively. For the

Grossglauser-Tse mobile network model, we show that the

delay scales as
✂✪✄✛☛✬✫✩✭✯✮✰✞✟✱✲✕✛☛✜✘✝✓

, where
✱✳✕★☛✜✘

is the velocity of

the mobile nodes. We then describe a scheme that achieves

the optimal order of delay for any given throughput. The

scheme varies (i) the number of hops, (ii) the transmission

range and (iii) the degree of node mobility to achieve the

optimal throughput-delay trade-off. The scheme produces

a range of models that capture the Gupta-Kumar model at

one extreme and the Grossglauser-Tse model at the other.

In the course of our work, we recover previous results of

Gupta and Kumar, and Grossglauser and Tse using simpler

techniques, which might be of a separate interest.

Keywords: Stochastic processes/Queueing theory, Com-

binatorics, Information theory, Statistics.

I. INTRODUCTION

An ad hoc wireless network consists of a collection of

nodes, each capable of transmitting to or receiving from

other nodes. When a node transmits to another node, it

creates some interference to all other nodes in its vicin-

ity. When several nodes transmit simultaneously, a re-

ceiver can successfully receive the data sent by the desired

transmitter only if the interference from the other nodes is

sufficiently small. An important characteristic of ad hoc

wireless networks is that the topology of the nodes may

not be known. For example, it may be a sensor network

formed by a random configuration of nodes with wireless

communication capability. The wireless nodes could also

be mobile, in which case the topology could be continu-

ously changing.

Previous research has focused on determining how the

throughput of such wireless networks scales with the num-

ber of nodes, ✴ , in the network. Gupta and Kumar [5] in-

troduced a random network model for studying throughput

scaling in a fixed wireless network; i.e. when the nodes do

not move. They defined a random network to consist of ✴
nodes distributed independently and uniformly on a unit

disk. Each node has a randomly chosen destination node

and can transmit at ✵ bits-per-second provided that the in-

terference is sufficiently small. Thus, each node is simul-

taneously a source, S, a potential destination, D, and a re-

lay for other source-destination (S-D) pairs. They showed

that in such a random network the throughput scales as✶✸✷✺✹✡✻✽✼ ✴✿✾❁❀✽❂❃✴❅❄ 1 per S-D pair.

Grossglauser and Tse [4] showed that by allowing the

nodes to move, the throughput scaling changes dramat-

ically. Indeed, if node motion is independent across

nodes and has a uniform stationary distribution, a constant

throughput scaling (
✶✸✷✺✹ ❄ ) per S-D pair is feasible. Later,

Diggavi, Grossglauser and Tse [2] also showed that a con-

stant throughput per S-D pair is feasible even with a more

restricted mobility model.

The way in which delay scales for such throughput opti-

mal schemes, however, has not been well-studied. Indeed,

it is unclear precisely what “delay” means, especially in

mobile networks. One of the main contributions of this

paper is a definition of delay, which is both meaningful

and makes derivations possible.

From [5] and [4], one may make the following infer-

ences about the trade-off between throughput and delay:

(i) In a fixed random network a small transmission range

is necessary to limit interference and hence to obtain a

high throughput. This results in multi-hopping, and conse-

quently leads to high delays. (ii) On the other hand, mobil-

ity allows nodes to approach one another closely. This not

only allows the use of small transmission ranges, but more

crucially, it allows the use of a single relay node, which

boosts throughput to
✶✸✷✺✹ ❄ . However, the delay is now dic-

tated by the node velocity (which is much lower than the

❆
We recall the following notation: (i) ❇✲❈❁❉❋❊❍●❏■✌❈▲❑▼❈❁❉❋❊◆❊ means that

there exists a constant ❖ and integer P such that ❇✲❈❁❉❋❊❘◗❙❖✩❑▼❈❁❉❋❊ for ❉✿❚P . (ii) ❇✲❈❁❉❋❊❯●❲❱✡❈▲❑▼❈❁❉❋❊◆❊ means that ❳❩❨❩❬✧❭✰❪❍❫✣❇✲❈❁❉❋❊◆❴❵❑▼❈❁❉❋❊✌●❜❛ . (iii)❇✲❈❁❉❋❊❅●❞❝❡❈▲❑▼❈❁❉❋❊◆❊ means that ❑▼❈❁❉✲❊❢●❣■✌❈✛❇✲❈❁❉❋❊◆❊ , (iv) ❇✲❈❁❉❋❊❅●✐❤❅❈▲❑▼❈❁❉❋❊◆❊
means that ❑▼❈❁❉❋❊✬●❥❱✑❈✛❇✲❈❁❉❋❊◆❊ . (v) ❇✲❈❁❉❋❊❦●♠❧♥❈✛❇✲❈❁❉❋❊◆❊ means that ❇✲❈❁❉❋❊❦●■✌❈▲❑▼❈❁❉❋❊◆❊✩♦❋❑▼❈❁❉❋❊✔●❥■✌❈✛❇✲❈❁❉❋❊◆❊ .



speed of electromagnetic propagation).

The above observations point out three important fea-

tures that influence the throughput and delay in ad hoc

networks: (i) the number of hops, (ii) the transmission

range, and (iii) the node mobility and velocity. We pro-

pose schemes that exploit these three features to differ-

ent degrees to obtain different points on the throughput-

delay curve in an optimal way (see Figure 1). In fixed net-

works, our Scheme 1 achieves the throughput-delay trade-

off shown by segment PQ in Figure 1 and at the highest

throughput, it reduces to the Gupta-Kumar scheme (point

Q in the figure). In the presence of mobility, and using

only one relay per packet (no multi-hopping), our Scheme

2 is essentially the Grossglauser-Tse scheme (point R in

the figure). At this highest achievable throughput, we are

able to compute the exact order of delay as network size

increases. For lower throughputs, by using the number of

hops and node mobility optimally, Scheme 3 obtains dif-

ferent points on the throughput-delay curve shown by seg-

ment PR in Figure 1. Before summarizing these statements

more precisely, we shall need to define what we mean by

throughput and delay.

Defi nition of throughput: A throughput �✂✁☎✄ is said to

be feasible/achievable if every node can send at a rate of� bits per second to its chosen destination. We denote by✆ ✷ ✴❅❄ , the maximum feasible throughput with high prob-

ability 2 (whp). In this paper,
✆ ✷ ✴❅❄ will be the maximum

delay-constrained throughput. When there is no delay con-

straint,
✆ ✷ ✴❅❄ is simply the throughput capacity as in [5],

[4].

Defi nition of delay: The delay of a packet in a network

is the time it takes the packet to reach the destination after

it leaves the source. We do not take queueing delay at the

source into account, since our interest is in the network de-

lay. The average packet delay for a network with ✴ nodes,✝ ✷ ✴❅❄ , is obtained by averaging over all packets, all source-

destination pairs, and all random network configurations.

In a fixed network, the delay equals the sum of the times

spent at each relay. In a mobile network also, the delay is

the sum of the times spent at each relay. However, in this

case, delay depends on the velocity, ✞ ✷ ✴❅❄ , of each relay.

For a meaningful measure of delay per packet, it is

important to scale the size of a packet depending on the

throughput. If throughput is � , the transmission delay (or

service time) of a packet of fixed size would scale as
✹✡✻ � .

This would dominate the overall delay and hence would

not let us capture the delay caused by the dynamics of the

network/scheme. To counteract this, we let the packet size

scale as � so that the transmission delay (service time) is✟
In this paper, whp means with probability ✠☛✡✌☞✍✡ ❴ ❉ .

always constant.✎✑✏✓✒✕✔

✒

✖ ✒✕✗✙✘✛✚✢✜✣✒

P

Q

R

✤ ✤✤ ✗✥✒ ✤ ✗✢✦ ✒✧✘✛✚✢✜★✒ ✩ ✏✓✒✕✔
Fig. 1. Throughput-delay scaling trade-off for a wireless network assuming✪✬✫✮✭✰✯✲✱✴✳✴✵✷✶✹✸✻✺ ✭✰✼

. The marks on the axes represent the orders asymptot-

ically in
✭

.

A. Outline and Summary of results

Fixed random network: In Section II, we introduce

Scheme 1 and show that the dependence of the optimal

delay on throughput for a fixed random network is given

by✝ ✷ ✴❅❄✾✽ ✶ ✷ ✴ ✆ ✷ ✴❅❄ ❄❀✿ for
✆ ✷ ✴❅❄✾✽❂❁❄❃ ✹✡✻❆❅ ✴✿✾❁❀✽❂ ✴❈❇✴❉

(1)

The above result says the following: (i) The highest

throughput per node achievable in a fixed network is✶☎❊ ✹✡✻✽✼ ✴✿✾❁❀✽❂❃✴●❋ , as Gupta and Kumar obtained. At this

throughput the average delay
✝ ✷ ✴❅❄❍✽ ✶ ❃ ❅ ✴ ✻ ✾❁❀✽❂ ✴ ❇

(point Q in Figure 1). (ii) By increasing the transmis-

sion radius the average number of hops can be reduced.

But, because the interference is higher now, the through-

put would be lower. When throughput is smaller than✶ ❊ ✹✡✻ ✼ ✴✿✾❁❀✽❂❃✴ ❋ , equation (1) shows how
✝ ✷ ✴❅❄ is related

to
✆ ✷ ✴❅❄ (segment PQ in Figure 1).

Delay in a mobile network for
✆ ✷ ✴❅❄■✽ ✶ ✷✺✹ ❄ : In Sec-

tion III, we introduce Scheme 2 in which nodes move ac-

cording to independent Brownian motions and use a single

relay as in Grossglauser and Tse. This scheme achieves

throughput
✆ ✷ ✴❅❄❏✽ ✶✸✷✺✹ ❄ . Using results from random

walks [3] and queueing theory [8] we show that the de-

lay,
✝ ✷ ✴❅❄ , (both due to node mobility and queueing at the

relay) is given by✝ ✷ ✴❅❄✾✽❑❁ ❊ ✼ ✴ ✻ ✞ ✷ ✴❅❄▲❋ when
✆ ✷ ✴❅❄✾✽ ✶✸✷✺✹ ❄▼❉

Here ✞ ✷ ✴❅❄ denotes the way node velocity scales with ✴ .

Taking ✞ ✷ ✴❅❄◆✽ ✶✸✷✺✹✡✻ ✼ ✴❅❄ , the above point is shown as R

in Figure 1.



Throughput delay trade-off in a mobile network: In

Section IV we introduce Scheme 3, where the trade-

off is achieved using multiple hops. The trade-off is

parametrized by � ✷ ✴❅❄ , where
❅ � ✷ ✴❅❄ corresponds to the

average distance traveled in one hop. The range of � ✷ ✴❅❄ is

from
✶✸✷ ✾❁❀✽❂❍✴ ✻ ✴❅❄ (corresponding to the Grossglauser-Tse

model, point R)3 to
✶✸✷✺✹ ❄ (corresponding to the Gupta-

Kumar model, point Q). The optimal throughput-delay

trade-off for
✆ ✷ ✴❅❄ , in the range between

✶ ❊ ✹✡✻✽✼ ✴✿✾❁❀✽❂❃✴✌❋
and

✶ ✷✺✹✡✻ ✾❁❀✽❂ ✴❅❄ ✿ is given by✆ ✷ ✴❅❄✾✽ ✶ ❃ ✹✡✻ ❅ ✴✁� ✷ ✴❅❄✲✾❁❀✽❂❃✴✌❇ ✿ and

✝ ✷ ✴❅❄ ✽ ✶ ❃ ✹✡✻ ✞ ✷ ✴❅❄ ❅ � ✷ ✴❅❄ ❇✴❉
This is shown by the segment QR in Figure 1.

II. THROUGHPUT-DELAY TRADE-OFF FOR FIXED

NETWORKS

We consider a random network model similar to that

introduced by Gupta and Kumar [5]. There are ✴ nodes

distributed uniformly at random on a unit torus and each

node has a randomly chosen destination. We assume the

unit torus to avoid edge effects, which otherwise compli-

cates the analysis. We note, however, that the results in the

paper hold for a unit square as well. Each node transmits

at ✵ bits per second, which is a constant, independent of

✴ .

We assume slotted time for transmission. For successful

transmission, we assume a model similar to the Protocol

model as defined [5]. Under our Relaxed Protocol model,

a transmission from node
✂

to node ✄ is successful if for

any other node ☎ that is transmitting simultaneously,✆ ✷ ☎❀✿✝✄❋❄✟✞ ✷✺✹✡✠☞☛ ❄ ✆ ✷ ✂ ✿✝✄✲❄ for
☛ ✁ ✄

where
✆ ✷ ✂ ✿✝✄✲❄ is the distance between nodes

✂
and ✄ . This is

a slightly more general version of the model presented in

[5] in the sense that nodes do not require a common range

of transmission.

In the other commonly used model (e.g., [5], [4]),

known as the Physical model, a transmission is success-

ful if the Signal to Interference and Noise Ratio (SINR) is

greater than some constant. It is well known [5] that with

a fading factor ✌❍✁✎✍ , the Protocol model is equivalent to

the Physical model, where each transmitter uses the same

power. In the rest of the paper we shall assume the Relaxed

Protocol model.✏
To be precise, their scheme corresponds to ✑▼❈❁❉❋❊❘● ❧♥❈ ✡ ❴ ❉❋❊ , which

is covered by our Scheme 2. For the technique we use to analyze

Scheme 3 to work, we need ✑▼❈❁❉❋❊♥● ❝❡❈❁❳✓✒✕✔❦❉❋❴ ❉❋❊ . For the same rea-

son, we also consider ✖ ❈❁❉❋❊✔●❥■✌❈ ✡❵❴✦❳✗✒✘✔❦❉❋❊ instead of ✖❍❈❁❉✲❊✦●❥■✌❈ ✡ ❊ in

Scheme 3.

We now present a parametrized communication scheme

and show that it achieves the optimal trade-off between

throughput and delay. This scheme is a generalization of

the Gupta-Kumar random network scheme [5].

Scheme 1:✙ Divide the unit torus using a square grid into square

cells, each of area � ✷ ✴❅❄ (see Figure 2).✙ A cellular time-division multi-access (TDMA) transmis-

sion scheme is used, in which, each cell becomes active,

i.e., its nodes can transmit successfully to nodes in the cell

or in neighboring cells, at regularly scheduled cell time-

slots (see Figure 3).✙ Let the straight line connecting a source S to its desti-

nation D be denoted as an S-D line. A source S transmits

data to its destination D by hops along the adjacent cells

lying on its S-D line as shown in Figure 2.✙ When a cell becomes active, it transmits a single packet

for each of the S-D lines passing through it. This is again

performed using a TDMA scheme that slots each cell time-

slot into packet time-slots as shown in Figure 3.

The following theorem characterizes the achievable trade-

off for the above scheme. The optimality of this scheme

will be proved in Theorem 2.

Theorem 1. For Scheme 1 with � ✷ ✴❅❄✚✞✛✍❡✾★❀✽❂❍✴ ✻ ✴ ,

✆ ✷ ✴❅❄✾✽ ✶✢✜ ✹
✴ ❅ � ✷ ✴❅❄✤✣ and

✝ ✷ ✴❅❄✾✽ ✶✥✜ ✹❅ � ✷ ✴❅❄✤✣ ✿
i.e., the achievable throughput-delay trade-off is✆ ✷ ✴❅❄✾✽ ✶✧✦ ✝ ✷ ✴❅❄

✴ ★ ❉
To prove Theorem 1, we need the following three lem-

mas. Lemma 1 shows that each cell will have at least one

node whp, thus guaranteeing successful transmission along

each S-D line. Lemma 2 shows that each cell can be active

for a constant fraction of time, independent of ✴ . Lemma 3

bounds the maximum number of S-D lines passing through

any cell. Combining these results yields a proof of Theo-

rem 1.

Lemma 1. (a) If � ✷ ✴❅❄✩✞✪✍❡✾★❀✽❂❍✴ ✻ ✴ , then all cells have at

least one node whp.

(b) For � ✷ ✴❅❄ ✽ ✫ ✷ ✾❁❀✽❂❃✴ ✻ ✴❅❄ , each cell has ✴✁� ✷ ✴❅❄✭✬❅ ✍ ✴✁� ✷ ✴❅❄✲✾❁❀✽❂❍✴ nodes whp. In particular, if � ✷ ✴❅❄ ✽✮ ✷ ✾❁❀✽❂ ✴ ✻ ✴❅❄ then each cell has ✴✁� ✷ ✴❅❄✯✬☞✰ ✷ ✴✁� ✷ ✴❅❄ ❄ nodes.

(c) Let � ✷ ✴❅❄✾✽ ✹✡✻ ✴ and let ✱✳✲ ✷ ✴❅❄▼✿✴☎✵✞ ✄ be the fraction of

cells with ☎ nodes. Then whp✱✶✲ ✷ ✴❅❄✾✽✎✷✹✸ ✶ ✻ ☎✻✺✛❉
This lemma can be proved using well-known results (for

example, see [7], Chapter 3). Due to space constraints, we

do not repeat the proof here.
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Cell of size � ✷ ✴❅❄ S-D lines

Fig. 2. The unit torus is divided into cells of size ✄ ✫ ✭✢✯ for Scheme 1. The

S-D lines passing through the shaded cell in the center are shown.
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Fig. 3. The TDMA transmission schedule of Scheme 1. The number

of cell time-slots is constant while the number of packet time-slots is☎ ✫✝✆ ✭ ✄ ✫ ✭✢✯✷✯ . (Note that a cell here refers to a square cell obtained by

the overlay of the unit torus by a square grid and not a packet of fi xed size

as commonly used in networking literature.)

Before stating Lemma 2, we make the following defini-

tion: We say that cell B interferes with another cell A if a

transmission by a node in cell B can affect the success of

a simultaneous transmission by a node in cell A.

Lemma 2. Under the Relaxed Protocol model, the number

of cells that interfere with any given cell is bounded above

by a constant ✱ ✶ , independent of ✴ .

Proof. Consider a node in a cell transmitting to another

node within the same cell or in one of its 8 neighboring

cells. Since each cell has area � ✷ ✴❅❄ , the distance between

the transmitting and receiving nodes cannot be more than✞ ✽ ❅ ✟ � ✷ ✴❅❄ . Under the Relaxed Protocol model, data is

successfully received if no node within distance ✠✞ ✽ ✷✺✹✚✠☛ ❄ ✞ of the receiver transmits at the same time. Therefore,

the number of interfering cells, ✱ ✶ , is at most✱ ✶☛✡ ✍ ✠✞✌☞� ✷ ✴❅❄ ✽ ✹✎✍✦✷✺✹✚✠ ☛ ❄ ☞ ✿
which, for a constant

☛
, is a constant, independent of ✴

(and � ✷ ✴❅❄ ).
A consequence of Lemma 2 is that interference-free

scheduling among all cells is possible, where each cell be-

comes active once in every
✹ ✠ ✱ ✶ slots. In other words,

each cell can have a constant throughput. Now we bound

the maximum number of S-D lines passing through any

cell.

Lemma 3. The number of S-D lines passing through any

cell is ❁ ✷ ✴ ❅ � ✷ ✴❅❄ ❄ , whp.

Proof. Consider ✴ S-D pairs. Let
✆✑✏

be the distance be-

tween the S-D pair
✂
, i.e., the length of S-D line

✂
. Let✒ ✏

be the number of hops per packet for S-D pair
✂
. Then✒✓✏ ✽ ✆✔✏ ✻ ❅ � ✷ ✴❅❄ . Let ✕ ✽✗✖ ✭✏ ✱✕✶ ✒✓✏ , i.e., the total number

of hops required to send one packet from each sender S to

its corresponding destination D.

Now consider a particular cell and define the Bernoulli

random variables ✘ ✏✲ , for S-D pairs
✹ ✡ ✂ ✡ ✴ and

hops
✹ ✡ ☎ ✡ ✒✓✏

, to be equal to
✹

if hop ☎ of S-D

pair
✂
’s packet originates from a node in the cell. Hence,

the total number of S-D lines passing through the cell is✘ ✽ ✖ ✭✏ ✱✕✶ ✖✚✙✜✛✲ ✱✕✶ ✘ ✏✲ . Note that since the nodes are ran-

domly distributed, the ✘ ✏✲ s are identically distributed. For

any
✹ ✡ ✂✚✢✽ ✄ ✡ ✴ , ✘ ✏✲ and ✘✤✣✥ (for any

✹ ✡ ☎ ✡✒✓✏ ✿ ✹ ✡✧✦★✡ ✒ ✣ ) are independent. However, for any given✹ ✡ ✂ ✡ ✴ , ✘ ✏✲ and ✘ ✏✥ (for any
✹ ✡ ☎ ✢✽ ✦✩✡ ✒✪✏

) are

dependent and in fact the event
� ✘ ✏✲ ✽ ✹ ✿✫✘ ✏✥ ✽ ✹ ✁ is not

possible, as S-D line
✂

can intersect the cell at most once.

First consider the random variable ✕ ✽✬✖ ✭✏ ✱✕✶ ✆✭✏ ✻ ❅ � ✷ ✴❅❄ .
Since, for all

✂
,
✆✔✏✯✮✱✰ ✄❆✿ ✹✡✻ ✼ ✍✌✲ , ✕ ✽ ❁ ✷ ✴ ✻ ❅ � ✷ ✴❅❄ ❄ . Now,

we use this result to find a bound on ✳ ✰ ✘✴✲ as follows✳ ✰ ✘✵✲ ✽ ✳✷✶ ✰ ✳ ✰ ✘✹✸ ✕✺✲✻✲
✽ ✳ ✶ ✼ ✭✽ ✏ ✱✕✶ ✙✎✛✽✲ ✱✕✶ ✳ ✰ ✘ ✏✲ ✸ ✕✹✲✻✾✽ ✳ ✶❀✿ ✕❁✳ ✰ ✘ ✶✶ ✲❃❂
✽ ✶✸✷ ✴ ❅ � ✷ ✴❅❄❵❄▼✿ (2)

where (2) follows from the fact that, by the symmetry of

the torus, any hop is equally likely to originate from any

of the
✹✡✻ � ✷ ✴❅❄ cells .

Consider a random variable ❄✘ ✽ ✖ ✶✥ ✱✕✶ ❄✘ ✥ , where ❄✘ ✥
are i.i.d. Bernoulli random variables with ❅✯❆ ✷ ❄✘ ✶ ✽ ✹ ❄◆✽❅✯❆ ✷ ✘ ✶✶ ✽ ✹ ❄ ✽ � ✷ ✴❅❄ . Because of the particular de-

pendence of ✘ ✏✥ and ✘ ✏✲ (for any given
✹ ✡ ✂ ✡ ✴ and✹ ✡ ☎ ✢✽ ✦❇✡ ✒✓✏ ), it can be shown that, for any ❈ ,✳ ✰ ✘❊❉☛✲ ✡ ✳ ✰ ❄✘❋❉●✲ ❉



This implies that, for any �✑✁ ✄ ,✳ ✰ ✁✄✂✆☎ ✷ � ✘ ❄ ✲ ✡ ✳ ✰ ✁✄✂✆☎ ✷ � ❄✘ ❄ ✲ ❉ (3)

For any ✝ ✁☎✄ , define ✞ ✷ ❄✘✍✿✟✝ ❄ ✠✽✬❅✯❆ ✷ ❄✘ ✞ ✷✺✹ ✠ ✝ ❄ ✳ ✰ ❄✘❋✲ ❄ .
By the Chernoff bound for i.i.d. Bernoulli random vari-

ables,

✞ ✷ ❄✘✍✿✟✝ ❄ ✡ ✁✄✂✡☎ ✷☞☛ ✝ ☞ ✳ ✰ ❄✘✵✲ ✻ ✍▼❄▼❉ (4)

Consider the following:

✞ ✷ ✘✣✿✟✝ ❄ ✠✽ ❅✯❆ ✷ ✘ ✞ ✷✺✹✡✠ ✝ ❄ ✳ ✰ ✘❋✲ ❄✽ ❅✯❆ ✷ ✁✄✂✡☎ ✷ � ✘ ❄ ✞ ✁✄✂✆☎ ✷ � ✷✺✹✚✠ ✝ ❄ ✳ ✰ ✘✵✲ ❄ ❄✡ ✳ ✰ ✁✄✂✡☎ ✷ � ✘✸❄ ✲✁✄✂✆☎ ✷ � ✷✺✹✚✠ ✝ ❄ ✳ ✰ ✘❋✲ ❄ (5)

✡ ✳ ✰ ✁✄✂✡☎ ✷ � ❄✘✸❄ ✲✁✄✂✆☎ ✷ � ✷✺✹✚✠ ✝ ❄ ✳ ✰ ❄✘❋✲ ❄ ✿ (6)

where (5) follows by the Markov inequality and (6) follows

from (3) and the fact that
✁✄✂✡☎ ✷ � ✷✺✹ ✠ ✝ ❄ ✳ ✰ ✘❋✲ ❄ ✽ ✁✄✂✆☎ ✷ � ✷✺✹ ✠✝ ❄ ✳ ✰ ❄✘❋✲ ❄ . From (6) and the proof of the Chernoff bound

(for example, see [7], pg. 68) it follows that ✞ ✷ ✘★✿✟✝ ❄ can

be bounded above by the bound on ✞ ✷ ❄✘ ✿✟✝ ❄ as given in (4).

By taking ✝◆✽✎✍ ❅ ✾❁❀✽❂ ✴ ✻ ✳ ✰ ✘❊✲ , we obtain❅✯❆ ✷ ✘✥✞ ✳✵✘ ✠ ✍ ❅ ✾❁❀✽❂❍✴ ✳ ✰ ✘✴✲ ❄ ✡ ✹✡✻ ✴ ☞ ❉ (7)

Thus, for any cell, the number of hops originating from

it are bounded above by ✴ ❅ � ✷ ✴❅❄ ✠ ✰ ✷ ✴ ❅ � ✷ ✴❅❄ ❄ with prob-

ability ✞ ✹✌☛ ✹✡✻ ✴ ☞ . Since there are at most ✴ cells, by the

union of events bound, the above bound holds for all cells

with probability ✞ ✹✍☛❜✹✡✻ ✴ . This completes the proof of

the lemma.

We are now ready to prove Theorem 1.

Proof of Theorem 1. From Lemma 2, it follows that each

cell can be active for a guaranteed fraction of time, i.e., it

can have a constant throughput. Lemma 3 suggests that

if each cell divides its cell time-slot into
✶ ❃ ✴ ❅ � ✷ ✴❅❄ ❇

packet time-slots, each S-D pair hopping through it can

use one packet time-slot. Equivalently, each S-D pair

can successfully transmit for
✶ ❃ ✹✡✻ ✴ ❅ � ✷ ✴❅❄ ❇ fraction of

time. That is, the achievable throughput per S-D pair is✆ ✷ ✴❅❄✾✽ ✶ ❃ ✹✡✻ ✴ ❅ � ✷ ✴❅❄ ❇ .

Next we compute the average packet delay
✝ ✷ ✴❅❄ . As

defined earlier, packet delay is the sum of the amount of

time spent in each hop. We first bound the average num-

ber of hops then show that the time spent in each hop is

constant, independent of ✴ .

Since each hop covers a distance of
✶ ❃ ❅ � ✷ ✴❅❄ ❇ ,

the number of hops per packet for S-D pair
✂

is✶ ❃ ✆✭✏ ✻ ❅ � ✷ ✴❅❄ ❇ , where
✆✔✏

is the length of S-D line
✂
. Thus

the number of hops taken by a packet averaged over all S-

D pairs is
✶ ❃ ✶✭ ✖ ✭✏ ✱✕✶ ✆✭✏ ✻ ❅ � ✷ ✴❅❄▲❇ . Since for large ✴ , the

average distance between S-D pairs is
✶✭ ✖ ✭✏ ✱✕✶ ✆✔✏ ✽ ✶✸✷✺✹ ❄ ,

the average number of hops is
✶ ❃ ✹✡✻ ❅ � ✷ ✴❅❄ ❇ .

Now note that by Lemma 2 each cell can be active once

every constant number of cell time-slots and by Lemma 3

each S-D line passing through a cell can have its own

packet time-slot within that cell’s time-slot. Since we as-

sumed that packet size scales in proportion to the through-

put
✆ ✷ ✴❅❄ , each packet arriving at a node in the cell departs

within a constant time.

From the above discussion, we conclude that the delay✝ ✷ ✴❅❄✾✽ ✶ ❃ ✹✡✻ ❅ � ✷ ✴❅❄▲❇ . This concludes the proof of The-

orem 1.

Next we show that Scheme 1 provides the optimal

throughput-delay trade-off for a fixed wireless network.

Theorem 2. Let the average delay be bounded above

by
✝ ✷ ✴❅❄ . Then the achievable throughput

✆ ✷ ✴❅❄ for any

scheme scales as ❁ ❃✏✎ ✫ ✭✢✯✭ ❇ .

Proof. The proof uses similar techniques to the proof of

Theorem 2.1 in [5]. Consider a given fixed placement of

✴ nodes in the unit torus. Let ✠✑ be the sample mean of

the lengths of the S-D lines for the given node placement

and let the throughput be � . Consider a large enough time✒
over which the total number of bits transported in the

network is �✔✴ ✒ . Let
✒ ✷✔✓ ❄ be the number of hops taken by

bit
✓
,
✹ ✡ ✓ ✡ �✦✴ ✒ and let ✞ ✷✔✓ ✿ ✒ ❄ denote the length of hop✒

of bit
✓
. Therefore,✕ ✭✗✖✽

✘ ✱✕✶
✙ ✫ ✘ ✯✽
✙ ✱✕✶ ✞ ✷✔✓ ✿ ✒ ❄✚✞ �✦✴ ✒ ✠✑ ❉ (8)

Now, for two simultaneous transmissions from node
✂

to

node ✄ and from node ☎ to node ✦ ,✆ ✷ ✄✢✿ ✦ ❄ ✞ ✆ ✷ ✄✢✿✴☎✔❄ ☛ ✆ ✷ ✦ ✿✴☎✔❄✞ ✷✺✹✡✠ ☛ ❄ ✆ ✷ ✂ ✿✝✄❋❄ ☛ ✆ ✷ ✦ ✿✴☎✔❄▼✿
and similarly,✆ ✷ ✄✢✿ ✦ ❄ ✞ ✆ ✷ ✦ ✿ ✂ ❄ ☛ ✆ ✷ ✂ ✿✝✄❋❄✞ ✷✺✹✡✠ ☛ ❄ ✆ ✷ ✦ ✿✴☎✔❄ ☛ ✆ ✷ ✂ ✿✝✄✲❄▼❉
Combining the above two inequalities, we obtain✆ ✷ ✄✢✿ ✦ ❄ ✞ ☛ ✍ ✷ ✆ ✷ ✂ ✿✝✄✲❄ ✠ ✆ ✷ ☎❀✿ ✦ ❄ ❄ ❉

This result implies that if we place a disk around each

receiver of radius
☛✣✻ ✍ times the length of the hop, the

disks must be disjoint for successful transmission under

the Protocol model. Since a node transmits at ✵ bits per



second, each bit transmission time is
✹✡✻ ✵ seconds. Dur-

ing each bit transmission, the total area covered by the

disks surrounding the receivers must be less than the to-

tal unit area. Summing over the ✵ ✒
bits transmitted in

time
✒
, we obtain✕ ✭✗✖✽

✘ ✱✕✶
✙ ✫ ✘ ✯✽ ✥ ✱✕✶ � ✁ ✦ ☛ ✍ ✞ ✷✔✓ ✿ ✦ ❄ ★ ☞ ✡ ✵ ✒ ❉ (9)

Let the total number of hops taken by all bits be ✕ ✽✖ ✕ ✭✗✖✘ ✱✕✶ ✒ ✷✔✓ ❄▼❉ Then, by convexity, it follows that✂✄ ✕ ✭ ✖✽
✘ ✱✕✶

✙ ✫ ✘ ✯✽
✙ ✱✕✶

✹✕ ✞ ✷✔✓ ✿ ✒ ❄✆☎✝ ☞ ✡
✕ ✭✗✖✽
✘ ✱✕✶

✙ ✫ ✘ ✯✽
✙ ✱✕✶

✹✕ ✞ ✷✔✓ ✿ ✒ ❄ ☞ ❉ (10)

Combining (9) and (10) gives✂✄ ✕ ✭ ✖✽
✘ ✱✕✶

✙ ✫ ✘ ✯✽
✙ ✱✕✶

✹✕ ✞ ✷✔✓ ✿ ✒ ❄✆☎✝ ☞ ✡ ✹✎✍ ✵ ✒� ☛ ☞ ✕ ❉ (11)

Substituting from (8) into (11) and rearranging, we obtain❊ �✦✴ ✒ ✠✑ ❋ ☞ ✡ ✦ ✹✎✍ ✵ ✒� ☛ ☞ ★ ✕ ❉
Now defining

✒ ✷✔✓ ❄ to be the sample mean of the number

of hops over �✔✴ ✒ bits, we obtain✒ ✷✔✓ ❄✣✽ ✹
�✦✴ ✒

✕ ✭✗✖✽
✘ ✱✕✶ ✒ ✷✔✓ ❄✣✽ ✹

�✦✴ ✒ ✕ ❉ (12)

Substituting from (12) into (11) and rearranging, we obtain

�✦✴ ✡ ✹✎✍ ✵� ☛ ☞ ✠✑ ☞ ✒ ✷✔✓ ❄ ❉ (13)

By definition the throughput capacity
✆ ✷ ✴❅❄ ✡ � with high

probability. As a result, ✳ ✷ �❦❄ ✞ ✆ ✷ ✴❅❄ . Substituting into

(13), we obtain

✴ ✆ ✷ ✴❅❄ ✡ ✳ ✷ �❦❄✩✴ ✡ ✹✎✍ ✵� ☛ ☞ ✠✑ ☞ ✳ ✷ ✒ ✷✔✓ ❄ ❄▼❉
Now, since the average number of hops per bit is the same

as the average number of hops per packet and the packet-

size scales as
✆ ✷ ✴❅❄ , the time spent by a packet at each relay

is ✫ ✷✺✹ ❄ . Therefore, the average delay,
✝ ✷ ✴❅❄ , is of the same

order as the average number of hops per bit, ✳ ✷ ✒ ✷✔✓ ❄ ❄ . This

concludes the proof of Theorem 2.

III. DELAY IN A MOBILE NETWORK FOR
✆ ✷ ✴❅❄✾✽ ✶ ✷✺✹ ❄

In this section we consider a random network with mo-

bile nodes similar to the model introduced by Grossglauser

and Tse in [4]. They showed that under the Physical model✆ ✷ ✴❅❄ ✽ ✶✸✷✺✹ ❄ is achievable. We assume ✴ nodes form-

ing ✴ S-D pairs in a torus of unit area and assume slotted

transmission time. Each node moves independently and

uniformly on the unit torus. Thus, at a given time, a node

is equally likely to be in any part of the torus indepen-

dent of the location of any other node. We first present a

scheme (which is similar to that in [4]) and show that it

achieves constant throughput and then analyze its delay in

Subsection III-A.

Scheme 2:✙ Divide the unit torus into ✴ square cells, each of area✹✡✻ ✴ .✙ Each cell becomes active once in every
✹ ✠ ✱ ✶ cell time-

slots as discussed in Lemma 2.✙ In an active cell, the transmission is always between two

nodes within the same cell.✙ In an active cell, if two or more nodes are present pick

one at random. Each cell time-slot is divided into two sub-

slots A and B.

– In sub-slot A, the randomly chosen node transmits to

its destination node if it is present in the same cell. Other-

wise, it transmits its packet to a randomly chosen node in

the same cell, which acts as a relay.

– In sub-slot B, the randomly chosen node picks another

node at random from the same cell and transmits to it a

packet that is destined to it.

We now prove that this scheme achieves constant

throughput scaling. The proof is simpler than the one given

in [4] and, as we shall see, will help us analyze delay and

characterize the throughput-delay trade-off in mobile wire-

less networks (see Section IV).

Theorem 3. The throughput using Scheme 2 is
✆ ✷ ✴❅❄✍✽✶✸✷✺✹ ❄ .

Proof. The proof is based on Part (c) of Lemma 1 and

Lemma 2 as follows:

Each packet is transmitted directly to its destination or

relayed at most once and hence the net traffic is at most

twice the original traffic. Since: (i) a node is chosen to be

a relay at random from the other nodes in the same cell and

(ii) the nodes have independent and uniformly distributed

motion, each source’s traffic gets spread uniformly among

all other nodes (similar to the argument in [4]). As a result,

in steady state, each node has packets for every other node

for a constant fraction of time ✱ ☞ .
Since in any cell time-slot, the ✴ nodes are uniformly

distributed on the torus and the unit torus is divided into ✴
square cells each of area

✹✡✻ ✴ , by Lemma 1(c),
✹ ☛ ✍ ✷ ✸ ✶✟✞✄❆❉✓✍ ✍ fraction of the cells contain at least ✍ nodes. Thus

from Lemma 2, ✄❆❉✓✍ ✍ ✱ ☞ ✻✳✷✺✹ ✠ ✱ ✶ ❄ fraction of cells can

execute the scheme successfully. Since each cell has a

throughput of
✶ ✷✺✹ ❄ , the net throughput in any time-slot is✶✸✷ ✴❅❄ whp. Moreover, due to reasons (i) and (ii) above, the

throughput of
✶✸✷ ✴❅❄ is divided among all ✴ pairs equally.

Thus, the throughput per S-D pair is
✆ ✷ ✴❅❄ ✽ ✶✸✷✺✹ ❄ .



A. Analysis of Delay

To analyze the delay for Scheme 2, we make the addi-

tional assumption that each node moves according to an

independent 2-dimensional Brownian motion on the torus.

Note that in the cellular setting with ✴ cells, a Brownian

motion on the torus yields a symmetric random walk on a

2-D torus of size
✼ ✴✁� ✼ ✴ .

Let the node velocity scale as ✞ ✷ ✴❅❄ . We assume that✞ ✷ ✴❅❄ scales down as a function of ✴ . This is motivated by

the fact that in a real network, each node would occupy a

constant amount of area, and thus as the network scales,

the overall area must scale accordingly. However, in our

model, as in [5], [4], we keep the total area fixed and there-

fore to simulate a real network we must scale ✞ ✷ ✴❅❄ down.

Note that a node travels to one of its neighboring cells

every
✒ ✷ ✴❅❄ time-slots, where✒ ✷ ✴❅❄ ✽ ✶ ❊ ✹✡✻ ✼ ✴ ✞ ✷ ✴❅❄ ❋ ❉ (14)

Thus, we assume that each node moves according to a ran-

dom walk on the torus, where each move occurs every
✒ ✷ ✴❅❄

time-slots.

We now precisely define delay for Scheme 2. Since the

nodes perform independent random walks, only
✶✸✷✺✹✡✻ ✴❅❄

of the packets belonging to any S-D pair reach their des-

tination in a single hop (which happens when both S and

D are in the same cell). Thus, most of the packets reach

their destination via a relay node, where the delay has two

components: (i) hop-delay, which is constant, independent

of ✴ , and (ii) mobile-delay, which is the time the packet

spends at the relay while it is moving. To compute mobile-

delay we first model the queues formed at a relay node for

each S-D pair as a GI/GI/1-FCFS. Then we characterize

the inter-arrival and inter-departure times of the queue to

obtain the average delay in the mobile case.

Relay queue model: For each S-D pair, each of the re-

maining ✴ ☛ ✍ nodes can act as a relay. Each node keeps

a separate queue for each S-D pair as illustrated in Fig-

ure 4. Thus the mobile-delay is the average delay at such a

queue. By symmetry, all such queues at all relay nodes are

identical. Consider one such queue4, i.e., fix an S-D pair

and a relay node R. To compute the average delay for this

queue, we need to study the characteristics of its arrival

and departure processes. A packet arrives when (i) R is in

the same cell as S, and (ii) the cell becomes active. Simi-

larly, a packet departs when R is in the same active cell as

D. Let ✂ be the probability that the cell is active when both

R and S are in it. Note that ✂ does not vary with ✴ . Define

the inter-meeting time of two nodes as the time between✄
For delay to be fi nite, the arrival rate must be strictly smaller than the

service rate. To ensure this, we assume that if the available throughput

is ✖❍❈❁❉❋❊ , each source transmits at a rate ❈ ✡❈☞✆☎✩❊ ✖❍❈❁❉❋❊ , for some ☎ ❚✣❛ .

S D

Direct transmission

✹

✍
✴ ☛ ✍

Fig. 4. For any S-D pair, the remaining ✭ ✸ ☞ nodes act as relays. Each node

maintains a separate queue for each of the
✭ ✸ ☞ S-D pairs.

two consecutive instants where they are both in the same

cell. Since the node motion is independent of the event

that the cell is active, the inter-arrival time is a sum of a

Geometric number, ✝✟✞ Geom
✷ ✂❘❄ , of inter-meeting times

of S and R. Hence the inter-arrival time is of the same or-

der as the the inter-meeting time of S and R. Similarly, the

inter-departure time is also of the same order as the inter-

meeting time of R and D.

Average delay of GI/GI/1-FCFS queue: Since the nodes

perform independent symmetric random walks, the queue

at each relay node is GI/GI/1-FCFS. The average delay for

a GI/GI/1-FCFS queue can be bounded using the first and

second moments of the inter-arrival and inter-departure

times. We recall the following upper bound on the aver-

age delay for a GI/GI/1-FCFS queue known as Kingman’s

upper bound (see [8], page 476).

Lemma 4. Consider a discrete GI/GI/1-FCFS queue. Let✠ ✷ ✂ ❄▼✿ ✂ ✮☛✡
be stationary independent inter-arrival times,

and ☞ ✷ ✂ ❄▼✿ ✂ ✮✌✡
be stationary independent inter-departure

times. Let✳ ✰ ✠ ✷ ✄ ❄ ✲●✽✎✍✑✏ ✳ ✰ ☞ ✷ ✄ ❄ ✲●✽ ✷✺✹✌☛✓✒ ❄✔✍✾✿
Var

✷ ✠ ✷ ✄ ❄ ❄★✽✖✕ ☞✄ ✏ Var
✷ ☞ ✷ ✄ ❄ ❄✣✽✗✕ ☞✘ ❉

Then, the average delay is bounded above as✳ ✰ ✝ ✲ ✡ ✙✛✚ ✂✢✜ ✍✾✿ ✕ ☞✄ ✠ ✕ ☞✘✍✣✍ ✒ ✤ ❉ (15)

Also it is trivially true that✳ ✰ ✝ ✲ ✽ ✫ ✷ ✍❅❄▼❉ (16)

Inter-meeting time analysis: In view of the above lemma,

we proceed to compute the first and second moments of the

inter-meeting time. The torus with ✴ cells can be viewed

as a
✼ ✴✥� ✼ ✴ grid. Let the position of node

✂
at time

✒
be

✷✧✦ ✏✶ ✷ ✒ ❄▼✿ ✦ ✏☞ ✷ ✒ ❄ ❄ , where
✦ ✏✲ ✷ ✒ ❄ ✮ � ✄❆✿✬❉✬❉✬❉✥✿ ✼ ✴ ☛ ✹ ✁ ✿✴☎☛✽✹ ✿✴✍ . Now consider the difference random walk between



nodes
✂

and ✄ , defined by
✷✧✦ ✏ ✣✶ ✷ ✒ ❄▼✿ ✦ ✏ ✣☞ ✷ ✒ ❄ ❄ where

✦ ✏ ✣✲ ✷ ✒ ❄✾✽✦ ✏✲ ✷ ✒ ❄ ☛ ✦ ✣✲ ✷ ✒ ❄ ✙ ❀ ✁ ✼ ✴ , for ☎✑✽ ✹ ✿✴✍ . Since each node

is performing an independent symmetric random walk on

a 2-dimensional grid (or torus), each of the components� ✦ ✏ ✣✲ ✷ ✒ ❄▼✿✟☎ ✽ ✹ ✿✴✍❋✁ is independent of all others. Further

since we are interested only in the first two moments, each

component can be modeled as an independent symmetric

random walk on a one dimensional grid of size
✼ ✴ , i.e.,

for ☎ ✽ ✹ ✿✴✍ ,✦ ✏ ✣✲ ✷ ✒ ✠❜✹ ❄✣✽
✂ ✦ ✏ ✣✲ ✷ ✒ ❄ ✠❜✹ ✙ ❀ ✁ ✼ ✴ w.p.

✹✡✻ ✍✦ ✏ ✣✲ ✷ ✒ ❄ ☛ ✹ ✙ ❀ ✁ ✼ ✴ w.p.
✹✡✻ ✍ ❉

The meeting time of two nodes
✂

and ✄ is iden-

tified by the event
� ✷✧✦ ✏ ✣✶ ✷ ✒ ❄▼✿ ✦ ✏ ✣☞ ✷ ✒ ❄ ❄ ✽ ✷ ✄❆✿ ✄ ❄ ✁ .

Thus the inter-meeting time is the random stopping

time
✆ ✽ ✄✆☎✞✝ � ✒ ✞ ✹ ✟ ✷✧✦ ✏ ✣✶ ✷ ✒ ❄▼✿ ✦ ✏ ✣☞ ✷ ✒ ❄ ❄ ✽✷ ✄❆✿ ✄ ❄ given that

✷✧✦ ✏ ✣✶ ✷ ✄ ❄▼✿ ✦ ✏ ✣☞ ✷ ✄ ❄ ❄ ✽ ✷ ✄❆✿ ✄ ❄ ✁ . We need

to compute ✕ ☞✠ ✽✚✳ ✰ ✆ ☞ ✲ ☛ ✳ ✰ ✆ ✲ ☞ . For further analysis, we

consider only the difference random walk. Also note that

the unit time step of the random walk is actually of order✒ ✷ ✴❅❄ in real time.

For ☎ ✽ ✹ ✿✴✍ , let✆ ✲◆✽✡✄✆☎✞✝ � ✒ ✞ ✹☛✟ ✦ ✏ ✣✲ ✷ ✒ ❄ ✽☎✄ such that
✦ ✏ ✣✲ ✷ ✄ ❄ ✽ ✄✲✁ ❉

Define ☞
✽

✠✽
✖ ✱✕✶✍✌✏✎✒✑ ✛ ✓❆ ✫ ✖ ✯✷✱✕✔✗✖ ❉

Then
✆ ✽✗✖✙✘✥ ✱✕✶ ✆ ✶ ✷ ✦ ❄ where

✆ ✶ ✷ ✦ ❄ are i.i.d. random vari-

ables with the same distribution as
✆ ✶ . As a result,

✳ ✰ ✆ ☞ ✲ ✽ ✳ ✰ ✷ ✘✽ ✥ ✱✕✶ ✆ ✶ ✷ ✦ ❄ ❄ ☞ ✲
✽ ✳ ✰ ✳ ✰ ✷ ✘✽ ✥ ✱✕✶ ✆ ✶ ✷ ✦ ❄ ❄ ☞ ✸

☞ ✲✻✲
✽ ✳ ✰ ☞ ✳ ✰ ✆ ☞✶ ✲ ✠ ☞

✷
☞ ☛ ✹ ❄ ✳ ✰ ✆ ✶ ✲ ☞ ✲✽ ✳ ✰ ☞ ✲ ✳ ✰ ✆ ☞✶ ✲ ✠ ✳ ✰ ☞ ☞ ☛ ☞ ✲ ✳ ✰ ✆ ✶ ✲ ☞ ❉ (17)

The sequence
✷✧✦ ✏ ✣✶ ✷ ✒ ❄▼✿ ✦ ✏ ✣☞ ✷ ✒ ❄ ❄ forms a Markov chain

with a uniform distribution on the ✴ states
� ✷ � ✿ ✓ ❄ ✮� ✄❆✿✬❉✬❉✬❉ ✿ ✼ ✴ ☛ ✹ ✁ ☞ ✁ . By definition

✆
is the inter-visit time

of this Markov chain to state
✷ ✄❆✿ ✄ ❄ . Since it is a finite

state Markov chain with a uniform stationary distribution,✳ ✰ ✆ ✲ ✽ ✴ . Similarly, ✳ ✰ ✆ ✶ ✲ ✽ ✼ ✴ . By definition, we

obtain, ✳ ✰ ✆ ✲✌✽✧✳ ✰ ☞ ✲ ✳ ✰ ✆ ✶ ✲ and hence ✳ ✰ ☞ ✲✌✽ ✼ ✴ . Com-

bining this with (17), we obtain✳ ✰ ✆ ☞ ✲ ☛ ✳ ✰ ✆ ✲ ☞ ✽ ✼ ✴ ✳ ✰ ✆ ☞✶ ✲ ☛ ✴✛✚ ✸ ☞ ✠ ✳ ✰ ☞ ☞ ✲★✴ ☛ ✴ ☞ ❉ (18)

Bound on ✳ ✰ ✆ ☞✶ ✲ : Let ❄✦✪✷ ✒ ❄ be a symmetric random walk

on
✡

starting at position ✄ and let ❄✆ ✽✜✄✆☎✞✝ � ✒ ✟ ❄✦ ✷ ✒ ❄ ✽☛✿✹
or ❄✦✪✷ ✒ ❄ ✽ ✼ ✴❡✁ . Then ✳ ✰ ✆ ☞✶ ✲✧✽ ✶✸✷ ✳ ✰ ❄✆ ☞ ✲ ❄ . Now,

consider the following lemma, which follows from stan-

dard results in probability theory for martingales.

Lemma 5. ✳ ✰ ❄✆ ☞ ✲ ✽ ✶ ❊ ✴ ✚ ✸ ☞ ❋ ❉
Using this result, it follows that✳ ✰ ✆ ☞✶ ✲❀✽ ✶ ❃ ✴ ✚ ✸ ☞ ❇✴❉ (19)

Bound on ✳ ✰ ☞ ☞ ✲ : Consider two nodes ✴ ✶ and ✴ ☞ , both

starting at position ✄ at time
✒ ✽ ✄ and performing inde-

pendent symmetric random walks on a 1-D torus of size✼ ✴ . By definition,

☞
is the number of times node ✴ ✶ vis-

its ✄ until both ✴ ✶ and ✴ ☞ are at position ✄ for the first time✆ ✁ ✄ . Consider the conditional probability of ✴ ☞ being

at ✄ at any time
✒ ✁☎✄ given that it was at ✄ at time

✒ ✽ ✄ .
This probability is ✞ ✹✡✻ ✼ ✴ since the stationary distribu-

tion of the position of ✴ ☞ has probability
✹✡✻ ✼ ✴ for position✄ . Moreover, node ✴ ☞ performs a random walk indepen-

dent of ✴ ✶ and hence it is easy to see that

☞
is stochasti-

cally upper bounded by a Geometric random variable with

parameter
✹✡✻ ✼ ✴ . Therefore✳ ✰ ☞ ☞ ✲ ✡ ✴✾❉ (20)

Finally from the above discussion, by combining (18),

(19) and (20), we obtain the following result.

Lemma 6. ✳ ✰ ✆ ✲ ✽ ✴✾✿✕ ☞✠ ✽✚✳ ✰ ✆ ☞ ✲ ☛ ✳ ✰ ✆ ✲ ☞ ✽ ✶ ❊ ✴ ☞ ❋ ❉
Now we are ready to compute the average delay of a

packet for Scheme 2. From Lemma 6, we obtain ✍ ✽ ✶ ✷ ✴❅❄
and ✕ ☞✄ ✿ ✕ ☞✘ ✽ ✶✸✷ ✴ ☞ ❄ . Now using (15) and (16) along with

the fact that the actual number of time-slots per unit time

as considered for the random walk model is
✒ ✷ ✴❅❄ (as given

by (14)), we obtain the following theorem.

Theorem 4. Under Scheme 2, the average delay incurred

by a packet ✝ ✷ ✴❅❄✾✽ ✶ ✦ ✼ ✴✞ ✷ ✴❅❄ ★ ❉
From Theorem 4, for ✞ ✷ ✴❅❄❏✽ ✶✸✷✺✹✡✻ ✼ ✴❢❄ , we obtain,✝ ✷ ✴❅❄✾✽ ✶✸✷ ✴❅❄ , which corresponds to the point R in Figure

1.

IV. THROUGHPUT-DELAY TRADE-OFF IN MOBILE

NETWORKS

In this section we find the optimal throughput-delay

trade-off in random mobile networks. To achieve this

trade-off, we introduce Scheme 3. This scheme is divided

into two parts based on the range of throughput: Scheme

3(a) is for
✆ ✷ ✴❅❄ ✽ ❁ ✷✺✹✡✻ ✼ ✴✿✾❁❀✽❂❍✴✒❄ , while Scheme 3(b) is

for
✆ ✷ ✴❅❄✾✽ ✮ ✷✺✹✡✻ ✼ ✴✿✾❁❀✽❂❃✴❅❄ .



For fixed networks, with throughput
✆ ✷ ✴❅❄ ✽❁ ✷✺✹✡✻ ✼ ✴✿✾❁❀✽❂❃✴❅❄ , Scheme 1 achieves the optimal trade-

off of
✝ ✷ ✴❅❄ ✽ ✶✸✷ ✴ ✆ ✷ ✴❅❄ ❄ . Since the nodes move ran-

domly and independently, use of mobility can only result

in higher delays. Hence to achieve a trade-off for through-

put
✆ ✷ ✴❅❄✾✽❑❁ ✷✺✹✡✻ ✼ ✴✿✾❁❀✽❂❃✴❅❄ , we use Scheme 3(a) which is

an adaptation of Scheme 1 for mobile networks.

To achieve constant throughput scaling, in Scheme 2,

the unit torus was divided into square cells of area
✹✡✻ ✴ .

The transmissions occurred only when the source (or des-

tination) and relay were in the same cell. The effective

“neighborhood” of a node was the area of the cell con-

taining it, and the scheme used mobility to bring the relay

node into the “neighborhood” of the destination to deliver

the packet. This suggests that delay can be decreased by

increasing the size of the “neighborhood” of each node.

But a larger neighborhood would result in lower through-

put due to increased interference, thus providing a trade-

off. To achieve the trade-off for
✆ ✷ ✴❅❄ ✽ ✮ ✷✺✹✡✻ ✼ ✴✿✾❁❀✽❂❍✴❢❄ ,

we use Scheme 3(b) which employs both mobility of nodes

and relaying across cells to reduce interference.

Scheme 3(a):✙ As in Scheme 1, divide the unit torus using a square grid

into square cells, each of area � ✷ ✴❅❄ (see Figure 2).✙ A cellular TDMA transmission scheme is used, in

which, each cell becomes active at regularly scheduled cell

time-slots (see Figure 3). From Lemma 2, each cell gets a

chance to be active once every
✹ ✠ ✱ ✶ cell time-slots.✙ A source S sends its packet directly to its destination D if

it is in any of the neighboring cells. Otherwise, it randomly

chooses a relay node R in an adjacent cell on the S-D line

at the time of transmission.✙ When the cell containing the relay node R is active, R

transmits the packet directly to D, if D is in a neighbor-

ing cell. Otherwise, it relays the packet again to a ran-

domly chosen node in a neighboring cell on the straight

line connecting it to D. This process continues until the

packet reaches the destination.

The following theorem shows that in spite of node mo-

bility, Scheme 3(a) achieves the same throughput-delay

trade-off as Scheme 1 for fixed networks.

Theorem 5. If ✞ ✷ ✴❅❄ satisfies the condition✞ ✷ ✴❅❄ ✽ ✰ ✷✻❅ ✾★❀✽❂❃✴ ✻ ✴❅❄▼✿ (21)

Scheme 3(a) achieves the following trade-off:✆ ✷ ✴❅❄✾✽ ✶ ✦ ✝ ✷ ✴❅❄
✴ ★ ✿ for

✆ ✷ ✴❅❄ ✽❑❁ ✦ ✹
✼ ✴✿✾❁❀✽❂❍✴ ★ ❉

Proof. First we show that condition (21) is necessary for

every packet to be eventually delivered. Consider a packet

relayed from a source toward its destination, and let the

initial distance between the source and its destination be

✆
. Each relaying step occurs within

✹ ✠ ✱ ✶ time slots.

Each time the packet is relayed, the distance between the

center of the cell containing the packet and its destination

decreases by at least
❅ � ✷ ✴❅❄ . On the other hand, since

the nodes move with velocity ✞ ✷ ✴❅❄ , this distance can in-

crease by at most
✷✺✹ ✠ ✱ ✶ ❄✹✞ ✷ ✴❅❄ . Thus after the packet is

relayed ✦ times, the distance between the center of the cell

containing the packet and its destination will be less than✆ ☛ ✦ ✷ ❅ � ✷ ✴❅❄ ☛✣✷✺✹ ✠ ✱ ✶ ❄✹✞ ✷ ✴❅❄ ❄ . Hence if
❅ � ✷ ✴❅❄✾✽ ✮ ✷ ✞ ✷ ✴❅❄ ❄ ,

the packet eventually reaches its destination. Since we

have � ✷ ✴❅❄ ✽ ❁ ✷ ✾❁❀✽❂❍✴ ✻ ✴❅❄ , this results in condition (21)

being necessary for the success of the scheme.

Note that when condition (21) is satisfied, the average

number of times a packet has to be relayed in order to

reach its destination is of order
✶✸✷✺✹✡✻ ❅ � ✷ ✴❅❄ ❄ , which is the

same as in Scheme 1 for fixed networks. Hence the delay✝ ✷ ✴❅❄✾✽ ✶✸✷✺✹✡✻ ❅ � ✷ ✴❅❄ ❄ .
Next we analyze the throughput for Scheme 3(a). De-

fine an S-D path (which is not necessarily a straight line)

of a packet for a particular S-D pair as the concatenation

of line-segments joining the centers of the cells through

which it hops. As in the analysis of Scheme 1, in order to

determine the throughput, we consider the S-D paths pass-

ing through a cell in some time-slot.

From the preceding discussion about the delay, the

number of hops
✒✪✏

, for any packet of an S-D pair
✂
, is✶✸✷✺✹✡✻ ❅ � ✷ ✴❅❄ ❄ . Hence ✕ ✽ ✖ ✭✏ ✱✕✶ ✒✓✏ , as defined in the

proof of Lemma 3, has the same order. For a fixed cell and

time-slot, define ✘ ✏✲ as in the proof of Lemma 3, i.e., ✘ ✏✲
is the indicator for the event that hop ☎ of an S-D pair

✂
’s

packet originates in the cell during this time-slot. The ran-

dom variable ✘ ✏✲ has the same properties as that in Lemma

3, i.e., (i) independence between ✘ ✏✲ and ✘✤✣✥ for
✂✱✢✽ ✄ ,

(ii) event
� ✘ ✏✥ ✽ ✹ ✿✫✘ ✏✲ ✽ ✹ ✁ cannot occur for any given✹ ✡ ✂ ✡ ✴ ,
✹ ✡ ✦ ✢✽ ☎ ✡ ✒✪✏

, and (iii) ✳ ✰ ✘ ✏✲ ✲ ✽ ✹✡✻ � ✷ ✴❅❄ .
As a result, as in Lemma 3, the number of S-D paths pass-

ing through any cell at any given time-slot is ❁ ✷ ✴ ❅ � ✷ ✴❅❄ ❄ .
Consequently, the achievable throughput per S-D pair is at

least
✶✸✷✺✹✡✻ ✴ ❅ � ✷ ✴❅❄ ❄ . By choosing a particular � ✷ ✴❅❄ such

that � ✷ ✴❅❄ ✽ ✫ ✷ ✾❁❀✽❂ ✴ ✻ ✴❅❄ we obtain the trade-off region

stated in the theorem.

To obtain higher throughputs, we need to use mobility,

and to obtain lower delay, we need to use multiple hops

cleverly. This leads to the following scheme.

Scheme 3(b):✙ As in Scheme 3(a), divide the unit torus using a square

grid into square cells, each of area � ✷ ✴❅❄ . We further lay

out an additional grid formed by square sub-cells of size✓ ✷ ✴❅❄ ✽ ✶✸✷ ✾❁❀✽❂ ✴ ✻ ✴❅❄ as shown in Fig 5. Thus each square

cell of area � ✷ ✴❅❄ contains � ✷ ✴❅❄ ✻ ✓ ✷ ✴❅❄ sub-cells each of area
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Fig. 5. Scheme 3(b) for throughput-delay trade-off in a mobile network.

✓ ✷ ✴❅❄ .✙ A cellular TDMA transmission scheme is used, in

which, each cell becomes active at regularly scheduled cell

time-slots (see Figure 3). A cell time-slot is divided into✶✸✷ ✴✁� ✷ ✴❅❄ ❄ packet time-slots.✙ An active packet time-slot is divided into two sub-slots

A and B.

– In sub-slot A, each node sends a packet to its destina-

tion node if it is present in the same cell. Otherwise, it

sends its packet to a randomly chosen node in the same

cell, which acts as a relay. The packet is sent using hops

along sub-cells of size
✓ ✷ ✴❅❄ as in Scheme 3(a).

– In sub-slot B, each node picks another node at random

from the same cell and sends a packet that is destined to it.

Again, the packet is sent using hops along sub-cells as in

Scheme 3(a).

We note that, the above scheme requires the packet-size

to scale as
✶ ✷✺✹✡✻ ✴✁� ✷ ✴❅❄ ❄ instead of as

✶✸✷✺✹✡✻ ❅ ✴✁� ✷ ✴❅❄✯❄ .
The scheme is depicted in Figure 5. A source S first de-

livers its packet to a mobile relay node R which is chosen at

random from all nodes in the same cell. The mobile relay

node R delivers the packet to the destination node D when

R and D are in the same cell. In this sense the scheme is

similar to Scheme 2. However the packet delivery in both

these cases is by hops along sub-cells as in Scheme 3(a).

The following theorem states the trade-off achievable by

Scheme 3(b) for mobile networks.

Theorem 6. If condition (21), i.e., ✞ ✷ ✴❅❄ ✽ ✰ ✷ ❅ ✾❁❀✽❂❃✴ ✻ ✴❅❄ ,
is satisfied, then Scheme 3(b) achieves the throughput-

delay trade-off given by

✆ ✷ ✴❅❄✾✽ ✶ ✜ ✹❅ ✴✁� ✷ ✴❅❄✲✾❁❀✽❂❃✴ ✣ and

✝ ✷ ✴❅❄✾✽❂❁ ✦ ✹� ✷ ✴❅❄ ✶✹✸ ☞ ✞ ✷ ✴❅❄ ★ ✿
where � ✷ ✴❅❄✾✽❑❁ ✷✺✹ ❄ and � ✷ ✴❅❄ ✽ ✫ ✷ ✾★❀✽❂❍✴ ✻ ✴❅❄ .
Proof. As discussed in the proof of Theorem 5, in order

to guarantee that after leaving its source a packet is even-

tually delivered to its destination, we must have
✓ ✷ ✴❅❄ ✽✮ ✷ ✞ ☞ ✷ ✴❅❄ ❄ . Since

✓ ✷ ✴❅❄■✽ ✶✸✷ ✾❁❀✽❂ ✴ ✻ ✴❅❄ , this implies that

condition (21) is necessary for the scheme to be successful.

In steady state, each node has packets for every other

node for a constant fraction of the time and the traffic

between each source-destination pair is spread uniformly

across all other nodes. Note that this is simply a repeat of

the statements from the proof of Theorem 3 for Scheme 2.

In any packet time-slot in a given cell: (i) the S-R or

R-D pairs are randomly chosen according to Scheme 3(b),

(ii) packets are communicated according to Scheme 3(a),

and (iii) there are
✆ ✷ ✴❅❄ ✽ � ✷ ✴❅❄ ✻ ✓ ✷ ✴❅❄ sub-cells and ❈ ✽

✴✁� ✷ ✴❅❄ ✷✺✹ ✠ ✰ ✷✺✹ ❄ ❄ nodes. Hence, as in the proof of Theo-

rem 5 for Scheme 3(a), the throughput between S-R / R-D

pairs is
✶ ✷✺✹✡✻ ❈ ❅ ✆ ✷ ✴❅❄❵❄ ✽ ✶✸✷✺✹✡✻ ❅ ✴✁� ✷ ✴❅❄✲✾❁❀✽❂❍✴❅❄ . Thus the

throughput for any S-D pair is
✶✸✷✺✹✡✻ ❅ ✴✁� ✷ ✴❅❄✲✾❁❀✽❂❍✴❅❄ .

The delay has two components: (i) hop-delay, which is

proportional to the number of hops along sub-cells from

a source to the mobile relay and from the mobile relay to

the destination and (ii) mobile-delay, which is the time it

takes the mobile relay node to reach the cell containing

the destination and to deliver the packet to it. The average

number of hops taken by a packet in sub-slots A and B is

then
✶✸✷ � ✷ ✴❅❄ ✻ ✓ ✷ ✴❅❄ ❄✴✽ ✶✸✷ ✴✁� ✷ ✴❅❄ ✻ ✾❁❀✽❂❍✴❅❄ . Hence the hop-

delay is
✶✸✷ � ✷ ✴❅❄ ✻ ✓ ✷ ✴❅❄ ❄ ✽ ✶✸✷ ✴✁� ✷ ✴❅❄ ✻ ✾❁❀✽❂❍✴❅❄ . The mobile-

delay can be analyzed in the same manner as for Scheme

2 with the following differences.✙ The inter-meeting time of nodes for Scheme 3(b) is for

a random walk on a discrete-torus of size
❅ ✹✡✻ � ✷ ✴❅❄✛�❅ ✹✡✻ � ✷ ✴❅❄ , instead of

✼ ✴✁� ✼ ✴ .✙ The time taken by a node to move out of a cell is
✒ ✷ ✴❅❄✾✽✶✸✷ ❅ � ✷ ✴❅❄ ✻ ✞ ✷ ✴❅❄ ❄ , instead of

✶✸✷✺✹✡✻ ✼ ✴ ✞ ✷ ✴❅❄ ❄
Now using Lemma 6 and Lemma 4 with the two differ-

ences mentioned above, the mobile-delay is✶ ❊ ✹✡✻ � ✷ ✴❅❄ ✶✹✸ ☞ ✞ ✷ ✴❅❄ ❋ . Due to condition (21), the mobile-

delay always dominates the hop-delay and hence the aver-

age delay is of the same order as the mobile-delay.

The trade-off obtained by Scheme 3 is demonstrated

graphically in Figure 1 assuming ✞ ✷ ✴❅❄✾✽ ✶ ✷ ✹✡✻ ✼ ✴❅❄ .



A. Optimality of Scheme 3

Consider any communication scheme for the random

mobile network introduced in Section III. The distance

traveled by a packet between its source and destination is

the sum of the total distance traveled by hops and the total

distance traveled by the mobile relays used. Let ✠✦ ✷ ✴❅❄ be

the sample mean distance traveled by hops averaged over

all packets. In the following lemma we obtain a bound on

the throughput scaling as a function of ✠✦ ✷ ✴❅❄ using a tech-

nique similar to the one used in Theorem 2. We then show

that to achieve this optimal throughput, the minimum de-

lay incurred is of the same order as the delay of Scheme 3,

which will establish the optimality of Scheme 3.

Lemma 7. The achievable throughput
✆ ✷ ✴❅❄ for any

scheme with sample mean distance traveled by hops ✠✦ ✷ ✴❅❄
is bounded above as✆ ✷ ✴❅❄✾✽❂❁ ✦ ✹✠✦ ✷ ✴❅❄ ✼ ✴✿✾❁❀✽❂❃✴ ★ ❉ (22)

Proof. We merely outline the proof as it is similar to that

of Theorem 2. Here the equivalents of (8) and (11) are:✭✗✖ ✠ ✫✮✭✰✯✽
✘ ✱✕✶

✙ ✫ ✘ ✯✽
✙ ✱✕✶ ✞ ✷✔✓ ✿ ✒ ❄✚✞ ✴ ✒ ✆ ✷ ✴❅❄ ✠✦ ✷ ✴❅❄ (23)

and ✂✄ ✭✗✖ ✠ ✫ ✭✢✯✽
✘ ✱✕✶

✙ ✫ ✘ ✯✽
✙ ✱✕✶

✹✕ ✞ ✷✔✓ ✿ ✒ ❄✆☎✝ ☞ ✡ ✹✎✍ ✵ ✒� ☛ ☞ ✕ ✽✎✱ ✚ ✒✕ ✿ (24)

where ✱ ✚ is a constant that does not depend on ✴ . Substi-

tuting from (23) into (24) and rearranging we obtain

✴ ✒ ✆ ✷ ✴❅❄ ✠✦ ✷ ✴❅❄✕ ✠✞ ✡ ✱ ✚ ✒✕ ✿ (25)

where ✠✞ ✽ ✭✗✖ ✠ ✫ ✭✢✯✽
✘ ✱✕✶

✙ ✫ ✘ ✯✽
✙ ✱✕✶

✹✕ ✞ ✷✔✓ ✿ ✒ ❄
is the sample mean of hop-lengths over ✕ hops. Rearrang-

ing we obtain ✆ ✷ ✴❅❄ ✡ ✱ ✚✴ ✠✦ ✷ ✴❅❄✎✠✞ ❉ (26)

Now for any cellular scheme requiring full connectivity,

the hop distance is ✫ ✦✁� ✂☎✄✝✆ ✭✭ ★ and hence we obtain✆ ✷ ✴❅❄✾✽❂❁ ❊ ✹✡✻ ✠✦ ✷ ✴❅❄ ✼ ✴✿✾★❀✽❂❃✴ ❋ .
Note that for Schemes 3(a) and 3(b) with parameter� ✷ ✴❅❄ , the average hop distance ✠✦ ✷ ✴❅❄✣✽ ✶ ❃ ❅ � ✷ ✴❅❄ ❇ . Thus

the above bound on throughput has the same order as the

bounds in Theorems 5-6.

Optimality of Scheme 3(a): First consider the case when

mobility is not used, i.e., ✠✦ ✷ ✴❅❄ ✽ ✶✸✷✺✹ ❄ . In this case, from

(26), we obtain,
✆ ✷ ✴❅❄ ✡ ✱ ✻ ✴ ✠✞ , and delay

✝ ✷ ✴❅❄✾✽ ✶✸✷✺✹✡✻ ✠✞ ❄
which is only due to hops.

Now suppose mobility is used for the same throughput,

i.e., ✠✦ ✷ ✴❅❄ ✠✞ remains of the same order in (26). If ✠✦ ✷ ✴❅❄ ✽✶✸✷✺✹ ❄ , then the delay due to hopping is
✶ ✷✺✹✡✻ ✠✞ ❄ in addition

to mobile-delay. This implies that, use of mobility will

result in a worse trade-off. Thus, the use of mobility when✠✦ ✷ ✴❅❄✾✽ ✶✸✷✺✹ ❄ does not help.

If ✠✦ ✷ ✴❅❄ ✽ ✰ ✷✺✹ ❄ , then the average distance traveled by

a packet via node mobility is
✶✸✷✺✹ ❄ . From condition 21,

since ✞ ✷ ✴❅❄ ✽ ✰ ✷ ❅ ✾★❀✽❂❃✴ ✻ ✴❅❄ , the average mobile-delay is✮ ✷ ❅ ✴ ✻ ✾❁❀✽❂ ✴❢❄ . Since ✠✞ ✽ ✫ ✷ ❅ ✾★❀✽❂❍✴ ✻ ✴❢❄ , the hop-delay

is
✶✸✷ ✠✦ ✷ ✴❅❄ ✻ ✠✞ ❄ ✽ ✰ ✷ ❅ ✴ ✻ ✾❁❀✽❂❍✴❢❄ . Clearly the mobile-delay✮ ✷ ❅ ✴ ✻ ✾❁❀✽❂ ✴❢❄ dominates the hop-delay for any ✠✦ ✷ ✴❅❄ .
From the above discussion, the optimal throughput-

delay trade-off is bounded as✆ ✷ ✴❅❄✾✽❂❁ ✷ ✝ ✷ ✴❅❄ ✻ ✴❅❄▼✿ for
✆ ✷ ✴❅❄✾✽❂❁ ✷✺✹✡✻ ❅ ✴✿✾❁❀✽❂❍✴❅❄▼❉

Since this throughput-delay trade-off is achieved by

Scheme 3(a), it is optimal.

Optimality of Scheme 3(b): From (22), it is clear that

achieving
✆ ✷ ✴❅❄ ✽ ✮ ✷✺✹✡✻▼✼ ✴✿✾❁❀✽❂❃✴❅❄ requires that ✠✦ ✷ ✴❅❄ ✽✰ ✷✺✹ ❄ . But from the preceding discussion, for any ✠✞ , when✠✦ ✽ ✰ ✷✺✹ ❄ , the mobile-delay dominates the hop-delay. Thus,

to maximize the throughput for a given delay, any op-

timal scheme must have ✠✞ ✽ ✶✸✷ ❅ ✾❁❀✽❂ ✴ ✻ ✴✒❄ . There-

fore, for any optimal scheme, the throughput
✆ ✷ ✴❅❄☎✽✶ ❊ ✹✡✻ ✠✦ ✷ ✴❅❄ ✼ ✴✿✾❁❀✽❂❍✴ ❋ .

Consider a throughput-delay optimal scheme with av-

erage hop distance ✠✦ ✷ ✴❅❄ . For any such scheme, fixing

a throughput
✆ ✷ ✴❅❄ , fixes ✠✦ ✷ ✴❅❄ . The goal of an optimal

scheme is to use hops to minimize the time for a packet

to reach its destination.

Consider the transmission of a packet ✂ starting from its

source S and moving towards its destination D, initially at

a distance
✆

from S. Recall that a packet travels a distance✠✦ ✽ ✠✦ ✷ ✴❅❄ through hops and the rest through the motion of

the nodes relaying it. Define
✒✟✞

to be the time it takes the

packet ✂ , after leaving its source S, to reach its destination

D. We ignore the time required for hops as the mobile de-

lay dominates the total delay. Let ✳ ✰ ✒✟✞ ✲ be the expectation

of
✒✠✞

for a given ✠✦ and
✆
. Note that, the expectation is over

the distribution induced by random walks of the nodes.

We claim the following.

Lemma 8. For any ✠✦ and
✆
, a scheme that minimizes ✳ ✰ ✒✟✞ ✲

must perform all the hops the first time the packet is at a

distance less than or equal to ✠✦ from its destination D.

Proof. For ✠✦ ✞ ✆ , the Lemma clearly holds. For ✠✦☛✡ ✆ ,
consider the following two schemes. Scheme A uses the

entire hop distance ✠✦ when the packet reaches within a dis-

tance ✠✦ of D for the first time, which is consistent with the



claim of the lemma. Scheme B uses a hop of length
✒

when

the packet is at a distance ❄✆
(

✆ ✁ ❄✆ ✁ ✠✦ ) from D, and uses

the remaining hop distance ✠✦ ☛ ✒
at the end, as in Scheme

A.

We want to show that, on average, a packet takes longer

to reach D in Scheme B than in Scheme A. For simplicity,

we assume that D is fixed. This does not affect general-

ity as all nodes perform independent symmetric random

walks.

Consider the path of a packet originating at distance
✆

from D. Until the packet reaches within a distance ❄✆
of D,

its path is the same in both schemes. As illustrated in Fig-

ure 6, under Scheme B, at point X, which is at a distance ❄✆
from D, the packet travels a distance

✒
by hops toward D to

reach Y. Under Scheme A, the packet remains at point X.

At this instant, the remaining time for the packet to reach

D under Scheme A,
✒✁�

, is the time taken to reach a ball✂ ✷ ✝ ✿ ✠✦ ❄ starting from X, and under Scheme B, it is the

time
✒✁✄

taken to reach
✂ ✷ ✝ ✿ ✠✦ ☛ ✒ ❄ , starting from Y. We

now show that on average
✒✁☎ ✡ ✒✝✆

. Consider a point D’

on the line X–D at distance
✒

from D (as depicted in Fig-

ure 6). Since all nodes perform independent symmetric

random walks, the probability that a path starting from X

reaches
✂ ✷ ✝ ✿ ✠✦ ❄ is the same as the probability that any path

starting from ✘ reaches
✂ ✷ ✝✟✞ ✿ ✠✦ ❄ . Note that, by construc-

tion,
✂ ✷ ✝ ✿ ✠✦ ☛✁✒ ❄✡✠ ✂ ✷ ✝ ✞ ✿ ✠✦ ❄ . Hence the time for a packet

at Y to reach
✂ ✷ ✝☛✞ ✿ ✠✦ ❄ is stochastically dominated by the

time needed to reach
✂ ✷ ✝ ✿ ✠✦ ☛ ✒ ❄ . This proves that the time

taken by Scheme A is strictly smaller than the time taken

by Scheme B on average.

Using the above argument inductively for all hops es-

tablishes the lemma.

The above lemma shows that a throughput-delay opti-

mal scheme must utilize all the hops at the end. Since in

Scheme 3(b) half the hops are performed at the end, it fol-

lows that its achievable throughput-delay trade-off is of the

same order as that of an optimal scheme. This establishes

the following theorem.

Theorem 7. Scheme 3 obtains the optimal throughput-

delay trade-off for mobile networks.

V. CONCLUSION

The way throughput scales with the number of nodes in

ad hoc fixed and mobile wireless networks has been well-

studied. However, the way delay scales with the size of

such networks has not been addressed previously. This

paper provides a definition of delay in ad hoc networks

and obtains optimal throughput-delay trade-off in fixed

and mobile ad hoc networks. For the Gupta-Kumar fixed

network model, we showed that the optimal throughput-

delay trade-off is given by
✝ ✷ ✴❅❄✍✽ ✶ ✷ ✴ ✆ ✷ ✴❅❄ ❄ . For the

D

D’

✂ ✷ ✝ ✿ ✠✦ ❄

✂ ✷ ✝ ✿ ✠✦ ☛ ✒ ❄
✂ ✷ ✝ ✞ ✿ ✠✦ ❄

X

Y

Fig. 6. Illustration for comparison of Schemes A and B.

Grossglauser-Tse mobile network model, we showed that

the delay scales as ❁ ❊ ✴ ✶✹✸ ☞ ✻ ✞ ✷ ✴❅❄ ❋ . For a mobile wireless

network we described a scheme that achieves the optimal

throughput-delay trade-off by varying the number of hops,

the transmission range, and the degree of node mobility.

The scheme captures the Gupta-Kumar model at one ex-

treme and the Grossglauser-Tse model at the other. The

proofs use a unified framework and simpler tools than used

in previous work.
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