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ABSTRACT

In this paper, we exploit channel diversity for opportunistic
spectrum access (OSA). Our approach uses channel quality
as a second criterion (along with the idle/busy status of the
channel) in selecting channels to use for opportunistic trans-
mission. The difficulty of the problem comes from the fact
that it is practically infeasible for a CR to first scan all chan-
nels and then pick the best among them, due to the poten-
tially large number of channels open to OSA and the limited
power/hardware capability of a CR. As a result, the CR can
only sense and probe channels sequentially. To avoid colli-
sions with other CRs, after sensing and probing a channel,
the CR needs to make a decision on whether to terminate the
scan and use the underlying channel or to skip it and scan
the next one. The optimal use-or-skip decision strategy that
maximizes the CR’s average throughput is one of our primary
concerns in this study. This problem is further complicated
by practical considerations, such as sensing/probing overhead
and sensing errors. An optimal decision strategy that ad-
dresses all the above considerations is derived by formulat-
ing the sequential sensing/probing process as a rate-of-return
problem, which we solve using optimal stopping theory. We
further explore the special structure of this strategy to con-
duct a “second-round” optimization over the operational pa-
rameters, such as the sensing and probing times. We show
through simulations that significant throughput gains (e.g.,
about 100%) are achieved using our joint sensing/probing
scheme over the conventional one that uses sensing alone.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication
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1. INTRODUCTION

1.1 Motivation
The benefit of opportunistic spectrum access (OSA) as a

means of improving spectrum utilization is now well recog-
nized [17]. OSA aims at opening under-utilized portions of
the licensed spectrum for secondary re-use, provided that the
transmissions of secondary radios do not cause harmful in-
terference to primary radio (PR) transmissions. Because a
secondary radio is supplied with more channels than what it
can use for a single transmission, a critical challenge in OSA
is to select in real-time the channel that the secondary radios
should use. In this paper, we focus on distributed channel
selection algorithms that provide a secondary radio with the
maximum possible throughput under the constraint that PR
transmissions are not negatively affected by this selection.

Cognitive radios (CRs) have been proposed as the enabling
technology for OSA [13]. The conventional way for a CR to
select channels is to scan (sense) channels and access the ones
that are deemed idle. Although this approach guarantees a
safe (secondary) access to the spectrum, it generally does
not give optimal throughput performance. This is because
the CR does not account for the relative quality of an idle
channel, and hence it may transmit over an idle channel of
poor condition, hampering the CR’s throughput.

In this paper, we study a joint sensing/probing mechanism
that achieves higher throughput than the classic binary chan-
nel selection approach. Under this scheme, a CR not only
senses the binary status (idle/occupied) of a channel, but
also probes idle channels to decide the instantaneous max-
imum data rates being supported on these channels. Such
information is then used as a second criterion for channel
selection. This mechanism is motivated by the rich chan-
nel diversity in CR environments, where signal fluctuations
over various channels become independent once the chan-
nel bandwidth is greater than the signal’s coherence band-
width. For example, in an IEEE 802.22 WRAN (the first
standard for CR networks (CRNs)), each channel occupies
a 6-MHz bandwidth, while the signal’s delay spread typi-
cally ranges between 100 ns and 10 µs [14], corresponding
to a coherence bandwidth ranging from 16 KHz to 1.6 MHz
(coherence bandwidth = 1/(2π × delay spread) [14]). Thus,
it is possible for a CR to exploit this multi-channel diversity
by opportunistically selecting a good channel for transmis-
sion.



Supported
rate

Channel id1 2 3 4

Supported
rate

Channel id1 2 3 4 Channel id1 2 3 4

CR CR CR

(a) Parallel channel
scan.

(b) Sequential channel scan
with recalled channel

selection: ch3 is skipped in the
first place and then picked

after scanning ch4

(c) Sequential channel scan
without channel recall: ch3 is
selected in the first place and

channel scan process terminates
after that

Supported
rate

Figure 1: Various channel scan and selection
paradigms.

This work focuses on the operational aspects of the above
mechanism. This is in contrast to related works that study
the conceptual aspects of multi-channel diversity from a high-
level mathematical standpoint and tend to ignore its opera-
tional details. Specifically, we account for the following prac-
tical considerations in developing our mechanism. First, the
instantaneous condition of a channel is unknown to a CR un-
til it is sensed and probed by that CR. Due to the potentially
large number of channels and the CR’s power/hardware lim-
itations, it is infeasible for the CR to first scan all channels
simultaneously and then pick the best among them. A CR’s
channel sensing and probing can only be conducted sequen-
tially. After sensing and probing a channel, the CR needs
to decide whether to terminate the scan and use the last
scanned channel, or to skip it and scan the next one. To
avoid collisions with PRs and other CRs, a CR cannot recall
(use) a channel it previously skipped, because of the stale-
ness of that sensing/probing outcome (e.g., the channel may
have been occupied by other CR or PR, or its quality has
changed). To better understand the above process, we illus-
trate various channel scan/selection paradigms in Figure 1,
among which sub-figure (c), i.e., sequential channel scan and
non-recalled channel selection, is the one we pursue in this
work. Under this paradigm, the optimal use-or-skip decision
strategy that maximizes the CR’s average throughput is one
of the key issues investigated in this paper.

The above decision making process is further complicated
when the CR’s sensing and probing overheads need to be ac-
counted for in each step. Empirical data shows that sensing a
channel takes tens of ms and probing a new one takes from 10
to 133 ms, depending on the association and capture speed
between the transmitter and receiver after each channel hop-
ping [1]. At the same time, to reduce collisions with newly
activated PRs, a CR’s continuous transmission over an idle
channel must be limited, e.g., at most few seconds. After
that, the CR needs to sense/probe channels again. As such,
the accumulated overhead after sequentially sensing/probing
several channels could be comparable with or even greater
than the CR’s actual transmission time. When such overhead
is accounted for, the gain that may be potentially achieved
by looking for a slightly better channel than the currently
scanned one may not be justifiable.

Furthermore, we need to account for the impact of sensing
errors on the CRN throughput. Sensing errors exist in all
real systems and, as shown shortly, they significantly impact
the throughput. When sensing errors are present, a CR may,
for example, falsely identify an idle channel as being occu-
pied, thus missing a transmission opportunity. Under this
setup, the CR’s sensing time (i.e., the amount of time the
CR spends on sensing a channel) becomes a variable to be
optimized. Specifically, the sensing time determines the ac-
curacy of the channel sensing process. A shorter sensing time
reduces the scanning time of a channel, but also increases the
probability of a false alarm. This in turn increases the num-
ber of channels the CR needs to sense and probe, leading
to possibly longer overall channel search time, and thus a re-

duction in throughput. As such, the tradeoff between sensing
time and sensing accuracy needs to be carefully evaluated.

1.2 Main Contributions
We provide an integrated framework that addresses all the

above practical considerations. Our main contributions are
as follows. First, we derive the throughput-optimal decision
strategy for the sequential channel sensing/probing process.
It turns out that this optimal strategy has a threshold struc-
ture, which basically indicates whether the channel is good
or bad. To properly set this threshold, we consider the trade-
off between the achievable data rate brought by good chan-
nels and the time cost (and consequently, throughput reduc-
tion) for searching for good channels. Second, we derive the
maximum acceptable channel probing time that guarantees
a positive throughput gain for the proposed method over a
scheme that does not utilize probing. This knowledge is im-
portant because the accumulated probing time may be so sig-
nificant that it cancels out gains achieved by selecting good
channels. Third, we optimize the channel sensing time. It
turns out that this optimization is non-convex when probing
is used (and thus leads to a non-binary multi-rate setup) in
the presence of sensing error. However, by exploiting the spe-
cial structure of the problem, we still achieve a good solution
that gives provably near-optimal performance. Our work is
the first to incorporate the relationship between sensing time
and sensing accuracy in an operational CR environment.

The above contributions are made by performing two rounds
of optimization. In the first round, we treat the sensing and
probing times as parameters, and derive the parametrically
optimal probing strategy. This is achieved by formulating the
sensing/probing/access process as an infinite-horizon maxi-
mum rate-of-return problem in the optimal stopping theory
framework [6], with the number of bits that the CR is able to
send in one transmission as the return, and the overall chan-
nel search plus transmission times as the time cost. Next, we
look into the particular structure of this optimal strategy and
perform a second round of optimization over the operational
parameters, such as the sensing and probing times, aiming at
maximizing the outcome of the first-round optimization.

Besides the above optimization aspects, we are also inter-
ested in evaluating the aggregate throughput performance
when a network of CRs coexist with PRs, and each CR re-
acts according to its sensing/probing/access scheme in a dis-
tributed way. A Markov-chain model is developed for our
performance analysis, whereby the contention between CRs,
the sensing strategies employed (random channel sensing and
collaborative channel sensing), and probing threshold set-
tings at individual CRs are all accounted for. Our results
show that when the sensing/probing parameters are prop-
erly set, the addition of probing can significantly improve
the CRN’s throughput, e.g., over 100% gains are observed in
our simulations.

The remainder of this paper is organized as follows. We
review related works in Section 2. Section 3 describes the sys-
tem model and its maximum rate of return formulation. Us-
ing optimal stopping theory, we solve the optimization prob-
lem in Section 4. Section 5 studies the performance for the
multi-CR case. Simulation results are presented in Section 6,
and Section 7 concludes the paper.

2. RELATED WORK
Reference [2] is probably the most relevant paper to our

work. In [2], the authors addressed the optimal channel se-
lection problem under the implicit assumption that channel
sensing is always accurate. As a result, the impact of sens-
ing time on the optimization is ignored. This simplification
makes the optimization relatively straightforward, because,
as we explained in the previous section, the relationship be-



tween sensing time and throughput is non-linear and non-
convex. In addition, the optimization in [2] is formulated
under a utility-function objective, which characterizes the
benefit of transmitting over a good channel and the over-
head of finding such a channel through an additive revenue-
cost relationship. In contrast, our optimization is formulated
as a rate of return problem, which describes the multiplica-
tive relationship between the number of bits sent in a single
transmission and the total time spent on preparing for and
executing this transmission. Our formulation eliminates the
ambiguity of setting the per-unit values for revenue and cost
for the utility function in [2], and hence has a more mean-
ingful physical interpretation (i.e., the average throughput
achieved per transmission). The more realistic considera-
tions pursued in this paper make our problem much harder
than in [2]. It requires us not only to derive the optimal sens-
ing/probing strategy under the new objective function, but
also to look into the structure of this strategy to optimize
various operational parameters.

Aside from [2], other works on exploiting channel-quality
information in CRNs tend to study the problem from a con-
ceptual standpoint, ignoring various operational details. Such
simplifications may largely overestimate the benefit brought
by multi-channel diversity. For example, the work in [8] sug-
gests to maximize CRN’s spectrum efficiency by adjusting
CRs’ sensing periods according to their channel conditions.
However, it ignores various practical considerations, i.e., se-
quential sensing/probing, overhead, and sensing errors. It
also assumes that the CR can scan all channels simultane-
ously. The authors in [18][5] studied OSA for a slotted sys-
tem. They assumed that a CR can only sense, probe, and
access one channel in one slot. If the channel is occupied or
its quality is poor such that the channel is not used by the
CR, the CR is not allowed to sense/probe other channels,
even though there is still big chunk of time remaining in the
underlying slot. Thus, the sequential exploration of channel
diversity is ignored in these works. Similarly, the work in
[10] studied the optimal sensing and transmission times that
maximize the so-called spectrum efficiency under an interfer-
ence constraint for a single-channel system. However, their
optimization has ignored the effect of a multi-channel setup,
whereby the CR may scan multiple channels before starting a
transmission. The works in [12] and [3] suggest a candidate-
set-based scheme, where each CR may precompute a subset
of channels of relatively good quality in a statistical sense.
When a CR needs to transmit, it only senses and picks chan-
nels from this subset. This scheme ignores the fact that in
a multi-CR operational environment, the subsets calculated
by various CRs may overlap significantly with each other,
because similar channel conditions are observed by close-by
CRs. As a result, this mechanism may lead to poor perfor-
mance in a multi-CR environment due to high collisions in
CRs’ channel selection.

For wireless systems with dedicated channels, there have
been several works that consider joint optimization of the re-
ward obtained from channel selection and the cost incurred
by channel probing (e.g., [15, 20, 19, 9, 7, 21]). The differ-
ences between our problem and these previous works include
the following: First, the problem of combined channel sens-
ing and probing has not been considered in all these works.
The inclusion of sensing in the channel selection problem is
non-trivial, because the sensing time can affect the through-
put by nonlinearly changing the channel sensing accuracy.
Second, previous work on channel probing involves only a
relatively small channel pool, e.g., a pool of 3 channels for
802.11 and 8 channels for 802.11a. For CRNs, this pool can
be much larger, e.g., over 100 channels in a 802.22 WRAN.
As a result, algorithms designed for small channel pools, e.g.,
the finite-horizon stopping method in [15] and the tree-based
searching algorithm in [7, 9], become practically infeasible in
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 Figure 2: Sequential channel sensing and probing be-
fore transmission.

CRNs because of their prohibitive computational complex-
ity when the number of channels is large. In our work, an
infinite-horizon formulation is employed, which is particu-
larly suitable for modeling large channel pools. Third, the
ultimate concern of all previous works is the optimal probing
strategy that maximizes the throughput. In this work, we are
not only interested in the optimal probing strategy, but also
in the particular structure of this strategy, with the objective
of performing a second-round optimization over operational
parameters such as the sensing and probing times.

Finally, we note that the impact of sensing accuracy on
throughput has been studied in [11][4] under binary use of
channels. It was shown that under this binary setup, through-
put is a concave function of sensing time. In this paper, we
study the problem under a more complicated multi-rate en-
vironment. We show that the problem loses its concavity
in this case. One key contribution of our paper is in study-
ing the special structure of the new problem and suggesting
an approximate solution that provides provably near-optimal
performance.

3. MODEL DESCRIPTION AND PROBLEM

FORMULATION

3.1 System Model
We consider a set of C licensed channels. The status of

a channel is modeled as a continuous-time random process
that alternates between two states: idle and busy. A busy
(idle) state indicates that some (no) PR user is transmitting
over the channel. Denote the average idle and busy durations
by α and β, respectively. When the channel is observed at
an arbitrary time, its idle and busy probabilities are given
by PI = α

α+β
and PB = β

α+β
, respectively. Here we fo-

cus on the homogeneous channel utilization scenario, i.e., we
assume that the states of different channels are driven by
homogeneous and independent random processes. This may
correspond to the scenario that all channels belong to the
same licensed network. The channel selection problem under
heterogeneous channel utilization is actually trivial, because
in that case a CR should select the channel with the lowest
utilization.

Along with the PR users, the spectrum is opportunistically
available to a set of CRs. To simplify the exposure, we ig-
nore for the time being the CR-to-CR contention issue. This
allows us to focus on the channel sensing/probing/access pro-
cess for a pair of CRs, a transmitter and a receiver, with the
goal of optimizing this process. We also assume that some
synchronization mechanism (e.g., based on random-number
generaters) is in place so that the CR transmitter and re-
ceiver are always sensing and probing the same channel at
the same time. We will account for the contention issue in
Section 5 when we study the multi-CR scenario.

When a CR wants to transmit, it starts scanning the chan-
nels sequentially, as shown in Figure 2. Specifically, it ran-
domly picks a channel, say c1, 1 ≤ c1 ≤ C, and samples
it for τs time. Then the CR decides whether channel c1 is
idle or busy. If it is busy, the CR randomly selects the next



channel c2, 1 ≤ c2 ≤ C, to sample, and so on. Suppose that
in the nth step, channel cn is determined to be idle. Then
the CR transmitter begins to probe that channel by send-
ing a channel probing packet (CPP) over channel cn using
a predefined transmission power. The CR receiver measures
the strength of the CPP signal and decides the maximum
achievable data rate (MADR), rn, that can be supported by
the current channel. The value of rn is selected from a set
of discrete rates: {Rk, k = 0, 1, . . . , K}, where Rk increases

with k and R0
def
= 0. This MADR value is then embedded into

a probing feedback packet (PFP), which is sent back from the
receiver to the transmitter over channel cn. The time spent
on one CPP/PFP exchange plus the preceding time for as-
sociation and capture between the transmitter and receiver
is called the channel probing time τp. After receiving the
PFP, the transmitter decides whether or not to use this chan-
nel. This is done by comparing rn with some channel quality
threshold, r∗. If rn ≥ r∗, then the transmitter terminates the
channel search and transmits at rate rn over channel cn for τt

duration of time (τt should not be too long to reduce the like-
lihood of collisions with newly activated PRs). If rn < r∗,
the CR skips this channel and continues to sense the next
one. Because the CR receiver also has knowledge of r∗ (e.g.,
this information can be embedded into the CPP), there is
no need for the transmitter to notify the receiver about its
decision. Note that if the channel is busy during the sensing
phase, no probing packets should be exchanged between the
CR transmitter and receiver, to avoid interfering with PRs.
However, the receiver still has to wait for τp time to real-
ize that the channel is busy1. Therefore, whether or not the
channel is idle, the time cost for one step of channel search
is τs + τp.
Remark: If a CR can transmit over J idle channels at a
time, 1 ≤ J ≪ C, then J parallel channel scanning/access
instances can be initiated and maintained by the CR. Each
instance will independently search and use one idle channel
according to the above sequential process. Therefore, we only
need to focus on one such instance in our treatment.

Channel sensing is modeled as a binary hypothesis test,
where H0 indicates an idle channel and H1 indicates an oc-
cupied channel. Let x(t) be the sample collected by the CR.
Then,

x(t) =

{

n(t), H0 (idle)
s(t) + n(t), H1 (occupied)

(1)

where n(t) is the AWGN and s(t) is the received PR’s signal
at the CR. For this sensing process, the probabilities of false
alarm Pfa and miss detection Pmd are defined as follows:

Pfa(τs) = Pr{CR decides the channel is busy|H0} (2)

Pmd(τs) = Pr{CR decides the channel is idle|H1}. (3)

Note that these two probabilities, which represent sensing
accuracy, are functions of the sensing time τs.

The unconditional probabilities that a CR determines that
the channel is idle (QI) or busy (QB) are given by:

QI = PBPmd + PI(1 − Pfa) ≈ PI(1 − Pfa) (4)

QB = PB(1 − Pmd) + PIPfa ≈ PB + PIPfa (5)

The approximation in the above equations is due to the
practical requirement that Pmd ≪ 1 (e.g., 1% is a typical
value), which ensures negligible interference from CRs.

1Depending on the distance between the transmitter and the
receiver, they may sense different status for a channel. The
fixed τs + τp scanning time guarantees perfect tx-rx synchro-
nization under any case.

3.2 Problem Formulation
The throughput-optimal sequential channel sensing/probing/

access process can be formulated as an optimal stopping
problem. We first briefly describe the definition of an op-
timal stopping problem and then present our formulation.

An optimal stopping problem is defined by the following
two components [6]:

1. A sequence of random variables (rvs) X1, X2, . . . , whose
joint distribution is assumed to be known.

2. A sequence of real-valued reward functions, y0, y1(x1),
y2(x1, x2), . . . , y∞(x1, x2, . . .).

The rvs X1, X2, . . ., can be observed sequentially (one vari-
able at a time) for as long as needed. For each observa-
tion instance n = 1, 2, . . . , after observing X1 = x1, X2 =
x2, . . . , Xn = xn, one may stop and receive the known re-
ward yn(x1, . . . , xn), or one may continue to observe Xn+1.
If no observations are made, the received reward is the con-
stant y0. If the observer never stops, the received reward is
y∞(x1, x2, . . .). The goal is to choose a rule to stop such that
the expected reward at the stopping time N , E{yN}, is max-
imized. According to this framework, the optimal-stopping
formulation of our problem is as follows.

First, we define the sequence of observations. For the nth
sensing and probing step, n ≥ 1, the MADR value of the
channel, rn ∈ {0, R1, . . . , RK}, can be obtained. Let the
distribution of rn be pk = Pr{rn = Rk}, k = 0, 1, . . . , K (we
assume the fluctuations on different channels are i.i.d.). This
distribution depends on fading and shadowing effects on the
channel. We define Xn as the outcome of the nth sensing and
probing step: Xn = 0 if the channel is busy and Xn = rn if
the channel is idle. The distribution of Xn can be calculated
as follows.

q0
def
= Pr{Xn = 0} = QB + QIp0 (6)

qk
def
= Pr{Xn = Rk} = QIpk, for 1 ≤ k ≤ K. (7)

Next, we define the sequence of rewards. The reward of
stopping after observing Xn is defined as the throughput
achieved by transmitting over channel cn and with the en-
tire time span (i.e., from the beginning of observing X1 until
the end of transmission over channel cn) taken into account.
Note that the use of channel must be non-recall. Mathemat-
ically, the reward for transmitting over channel cn is given
by

yn(X1, . . . , Xn)
def
= yn(Xn) =

Beff (n)

Ttot(n)
=

Xnτt(1 − Ploss)

n(τs + τp) + τt

(8)

where Beff (n) is the number of collision-free data bits that
can be transmitted over channel cn, Ttot(n) is the total time
cost including channel search and transmission times, and
Ploss is the probability that channel cn is re-occupied by some
returning PR during the CR’s transmission, which leads to
a collision that voids the CR’s transmission. Defining the
moment of sensing as the reference point, denote the forward
recurrence time of the channel’s idle period by the random
variable τ̃0 and its pdf by f̃0. We can calculate Ploss as follows

Ploss = Pr{τ̃0 < τt} =

∫ τt

0
f̃0(t)dt. (9)

Following standard renewal theory analysis:

f̃0(t) =
1 −

∫ t
0 f0(τ)dτ

∫ ∞
0 τf0(τ)dτ

(10)

where f0 is the pdf of the channel’s idle period. For example,
if f0 is an exponential distribution with mean α, then f̃0 = f0

and Ploss = 1 − e−
τt
α .



Define Ψ = {N : N ≥ 1, E[Ttot(N)] < ∞} as the set of
all possible stopping rules. Our goal is to find an optimal
stopping rule N∗ ∈ Ψ that maximizes the following rate-of-
return objective function:

maximizeN∈Ψ
E{Beff (N)}

E{Ttot(N)}
. (11)

Clearly, because the CR decides after each observation whether
or not to stop (according to some rule), the final stopping
time N is a random variable. Therefore, the number of bits
that can be effectively transmitted at the stopping point,
Beff (N), together with the time cost Ttot(N), are both ran-
dom variables related to N . This is in contrast to the Beff (n)
and Ttot(n) in (8), where n is a constant.

4. OPTIMAL STOPPING RULE AND OPTI-

MIZATION CONSIDERATIONS
In this section, we first solve the maximum-rate-of-return

problem (11) using optimal stopping theory. We then fur-
ther examine the structure of our solution to address the
optimization issues raised in Section 1.

4.1 Throughput-optimal Stopping Rule
To solve (11), we first consider a transformed version of

the problem, whose reward sequence is defined by

wn = Beff (n) − λTtot(n)

= Xnτt(1 − Ploss) − λ[n(τs + τp) + τt]. (12)

Following [6], if the parameter λ is chosen such that the
optimal expected reward of the transformed problem, i.e.,

V ∗ def
= supN∈Ψ E{Beff (N)− λTtot(N)}, is zero, then the op-

timal stopping rule N∗ of this transformed problem is also
the optimal stopping rule of the original problem (11). In
addition, the value of λ that gives V ∗ = 0, denoted as λ∗,
is the maximum throughput in (11) achieved by the optimal
stopping rule N∗. Applying this philosophy, we present the
following results regarding the existence and solution of the
optimal stopping rule for problem (11).
Theorem 1: An optimal solution to (11) exists. The maxi-
mum throughput λ∗ that is achieved by this optimal stopping
rule is the solution of: E{max(Xnτt(1 − Ploss) − λ∗τt, 0)} =
λ∗(τs + τp). The optimal stopping rule is given by N∗ =

min{n ≥ 1 : Xn ≥ λ∗

1−Ploss
}.

The proof of this theorem is presented in Appendix A.
Regarding the calculation of the optimal throughput and the
optimal stopping rule of (11), we have the following theorem:
Theorem 2: λ∗ is unique.

The proof is given in Appendix B. For the particular discrete-
rate CRs considered in our work, a fast numerical algorithm
can be developed to calculate the exact λ∗ in at most O(K)
time, where K is the number of rates supported by the CR.
Such an algorithm is based on the following observations.
First, for the multi-rate system Xn ∈ {R0, R1, . . . , RK}, where
R0 = 0 < R1 < . . . < RK , define k∗ to be the minimum in-

teger that satisfies Rk∗ ≥ λ∗

1−Ploss
. Obviously, 1 ≤ k∗ ≤ K.

Using this notation, the equation E{max(Xnτt(1 − Ploss) −
λ∗τt, 0)} = λ∗(τs + τp) can be written as

K
∑

k=k∗

(Rkτt(1 − Ploss) − λ∗τt)qk = λ∗(τs + τp),

subject to Rk∗−1 <
λ∗

1 − Ploss

≤ Rk∗ . (13)

This gives a candidate solution for λ∗

λ∗ =
τt(1 − Ploss)

∑K
k=k∗ Rkqk

τs + τp + τt

∑K
k=k∗ qk

,

subject to Rk∗−1 <
λ∗

1 − Ploss

≤ Rk∗ (14)

The range of values for k∗ is from 1 to K. Therefore, one
can first enumerate all candidates of λ∗ according to (14) by
setting k∗ = 1, . . . , K, respectively, and then pick the one

that satisfies the condition Rk∗−1 < λ∗

1−Ploss
≤ Rk∗ . The-

orem 2 guarantees that there is only one solution satisfying
this condition. The particular Rk∗ under which the right λ∗

is obtained is the threshold rule that determines whether an
idle channel is good enough to be used.

4.2 Optimization Considerations

4.2.1 Impact of Probing Overhead
In this section, we evaluate λ∗ as a function of the pa-

rameters τs and τp. An examination of (14) reveals that
λ∗ can be written as a segmented function. Specifically,
for the jth segment, 1 ≤ j ≤ K, the value of λ∗ satisfies
Rj−1(1 − Ploss) < λ∗ ≤ Rj(1 − Ploss). To satisfy this condi-
tion, it must be the case that

Rj−1 <
τt

∑K
k=j Rkqk

τs + τp + τt

∑K
k=j qk

≤ Rj . (15)

After some mathematical manipulations, (15) leads to the
following condition:

∑K
k=j Rkqk − Rj

∑K
k=j qk

Rj

≤
τs + τp

τt

<

∑K
k=j Rkqk − Rj−1

∑K
k=j qk

Rj−1
.

(16)

The ratio η
def
=

τs+τp

τt
represents the efficiency of the chan-

nel sensing/probing/access scheme. All the time factors in
(16) are separated from the upper and lower bounds of the
segment, allowing a neat partition of segments based on η.
Following this thread, λ∗ can be explicitly written in the fol-
lowing segmented form:

λ∗ =































λ∗
1(η) for φ1 ≤ η < Φ1

...
λ∗

j (η) for φj ≤ η < Φj

...
λ∗

K(η) for φK ≤ η < ΦK

(17)

where λ∗
j (η)

def
=

(1−Ploss)
∑K

k=j Rkqk

η+
∑

K
k=j

qk
, φj

def
=

∑K
k=j Rkqk−Rj

∑K
k=j qk

Rj
,

and Φj
def
=

∑K
k=j Rkqk−Rj−1

∑K
k=j qk

Rj−1
, j = 1, . . . , K. Because we

are interested in determining whether the inclusion of prob-
ing leads to better performance, we can assume τs and τt to
be fixed (we later discuss the case when τs is an optimization
variable), and analyze the structure of λ∗ as a function of τp.
In this sense, η becomes a one-to-one image of τp.
Theorem 3: Given τs and τt, the function λ∗ defined in
(17) is a continuous and strictly mono-decreasing segmented
function over the entire domain of η.

The proof is given in Appendix C. When probing is not
used, the average throughput, denoted by λno−probing, can
be derived as follows. First, the number of channels that
are sensed until an idle channel is found follows a geometric
distribution with parameter QI . So the average time cost for

finding an idle channel is given by Ts
def
= τs/QI . Once an idle



channel is found, the average data rate supported by that
channel is R̄ =

∑K

k=1 Rkpk. So λnoprobing is calculated as

λno−probing =
(1 − Ploss)τt

∑K
k=1 Rkpk

Ts + τt

=
(1 − Ploss)

∑K
k=1 Rkqk

η′ + QI

(18)

where η′ def
= τs

τt
. Given τs and τt, λno−probing is a constant.

The equation λ∗(η) = λno−probing must have a unique solu-
tion. This is because when τt = 0, the sensing/probing/access
scheme is at least as good as the sensing/access scheme;
whereas when τt → ∞, λ∗(∞) = 0 < λno−probing. The
property presented in Theorem 3 guarantees the existence of
a unique positive intersection between λ∗(η) and λno−probing.
Therefore, the maximum acceptable τp that guarantees a
throughput gain for sensing/probing/access scheme is given
by

τmax
p = τtλ

∗−1(λno−probing) − τs (19)

where λ∗−1(·) denotes the inverse function of λ∗(η). The
significance of (19) is that it dictates when probing should be
used for a given set of sensing/probing/access parameters.

4.2.2 Impact of Sensing Time
In this section, we are interested in the impact of τs on

the optimal throughput. It is well known that for a given
sensing/access CR system, throughput is a concave function
of τs [11]. So there exists an optimal sensing time that max-
imizes the throughput. However, our finding in this section
reveals that, in general, the concavity of the throughput is not
preserved when probing is included, largely due to the more
complicated structure of the multi-rate system. The encour-
aging aspect of our finding is that when τs is the variable,
the throughput maintains its segmented structure. Treating
a segment as our evaluation unit, the trend in throughput is
concave over the segments of τs. Based on this fact, we can
derive a closed range To

s that contains the optimal sensing
time τo

s . The importance of this range is that any τs ∈ To
s

leads to a throughput greater than what can be achieved un-
der any τs /∈ To

s. The range To
s is also “provably efficient”,

i.e., any value inside this range can achieve at least a prov-
able fraction of the maximum throughput achieved with τo

s .
As a result, achieving provably near-optimal performance is
still guaranteed.

Our analysis involves evaluating the partition points of
each segment defined in (17). In total, there are K + 1 dis-

tinct partition points: φ0
def
= Φ1 = ∞ > φ1 > φ2 > . . . >

φK−1 > φK = 0, where the new notation φ0 is defined for
presentation convenience. For 1 ≤ j ≤ K − 1, φj can be
written as

φj = (1 − Pfa(τs))Cj (20)

where Cj
def
=

PI

∑K
k=j(Rk−Rj)pk

Rj
is a channel-dependent quan-

tity that does not depend on τs.
We consider an energy detector for channel sensing, for

which the false alarm probability is approximated by [11]

Pfa(τs) = Q

((

ǫ

σ2
u

− 1

)

√

τsfs

)

(21)

where ǫ
σ2

u
is the decision threshold for sensing, fs is the

channel bandwidth, and Q(.) is the Q-function. Given a tar-
get minimum sensing time τmin

s and a desired miss detection
probability P̄md, the decision threshold should be chosen such
that for any τs ≥ τmin

s , we have Pmd(τs) ≤ P̄md, i.e., [11]

ǫ

σ2
u

= Q−1(1 − P̄md)
√

2γ + 1τmin
s fs + γ + 1 (22)

where γ is the received signal-to-noise ratio of the PR signal
as measured at the CR. The relationship between Pfa and τs
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Figure 3: Exponential curve fitting of the false alarm
rate.

in (21) is not in closed-form and thus is hard to manipulate.
Given the parameters γ, τmin

s , Pmd, and fs, we suggest an
exponential curve fitting for (21), yielding Pfa(τs) ≈ e−bτs .
Mathematically, this fitting is inspired by the well-known ap-

proximation [16] erfc(x) ≤ e−x2

. Numerically, we found this
exponential fitting to achieve good accuracy. Figure 3 shows
an example when γ = 0.01, τmin

s = 0.1 ms, Pmd = 1%, and
fs = 1 MHz. The average fitting error in this case is less
than 8%.

Applying the exponential fitting of Pfa(τs) and treating τs

as a variable, the domain of the jth segment defined in (17)
now becomes:

(1 − e−bτs )Cjτt < τs + τp ≤ (1 − e−bτs )Cj−1τt. (23)

The above partition is not in explicit form of τs because τs

appears on both sides of each inequality. To get the explicit
partitions, we need to solve the following set of equations of
τs:

τs = (1 − e−bτs )Cjτt − τp, 1 ≤ j ≤ K. (24)

For each equation, if a non-negative solution exists, then it
gives a partition point over τs. The difficulty here is that
such a solution does not always exist.
Theorem 4: The following statements specify the existen-
tial condition and structure of the solutions to (24):
1. Existential condition: An equation in (24) has solutions if
and only if Cjτt −

1
b
− 1

b
ln bCjτt ≥ 0;

2. Number of solutions: Each equation in (24) can have at
most two solutions. At most one equation can have exactly
one solution;
3. Sign of solutions: If an equation has two solutions, then
both solutions are positive (or negative) if 1

b
ln bCjτt is pos-

itive (or negative). In other words, it is impossible to have
one positive solution and one negative solution for the same
equation;
4. Structure of solutions: If the jth equation has two positive

solutions, denoted as τ
(j,high)
s and τ

(j,low)
s , where τ

(j,high)
s ≥

τ
(j,low)
s > 0, then the (j − 1)th equation must have two

positive solutions, which satisfy the condition τ
(j−1,high)
s >

τ
(j,high)
s ≥ τ

(j,low)
s > τ

(j−1,low)
s > 0.

To emphasize the structure of the solutions to (24), we
present the proof in the body of the paper.
Proof: 1. We first prove the existential condition. Define

hj(τs) =
(

1 − e−bτs

)

Cjτt − τp − τs, 1 ≤ j ≤ K. (25)

The equation set hj(τs) = 0, 1 ≤ j ≤ K, is equivalent
to (24). The function hj is concave since its second-order
derivative is:

d2hj

dτ2
s

= −b2Cjτte
−bτs < 0. (26)
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Figure 4: Structure of the solutions to (24) and the
partition points over τs.

Because of this concavity, it is clear that hj(τs) = 0 has
solutions if and only if the function’s maximum value is not
smaller than 0. The maximum value is calculated as follows:

dhj

dτs

= e−bτsbCjτt − 1 = 0. (27)

From (27) we can get τo
s = 1

b
ln bCjτt. Accordingly, the

maximum value of hj(τs) is given by

hmax
j

def
= hj(τ

o
s ) = Cjτt −

1

b
−

1

b
ln bCjτt (28)

Then statement 1 follows.
2. The first half of statement 2 is clear due to the concavity

of hj(τs). We prove the second half after proving statement
4.

3. The proof is by contradiction. We first consider the
case when τo

s = 1
b

ln bCjτt > 0. From the concavity of hj , it is
clear that at least one solution must be positive. Now suppose
the second solution is negative. Then hj(0) ≥ 0 must hold.
However, from (25), when τs = 0, hj(0) = −τp < 0. A similar
contradiction can be established when τo

s = 1
b

ln bCjτt < 0.
So statement 3 holds.

4. From the definition of Cj in (20), it is clear that Cj <

Cj−1. Now consider the solution τ
(j,high)
s of the jth equation.

From (24), we have

τ
(j,high)
s = (1−ebτ

(j,high)
s )Cjτt − τp < (1−ebτ

(j,high)
s )Cj−1τt − τp.

(29)

As τs → ∞, (1 − e−bτs)Cj−1τt − τp → Cj−1τt − τp < ∞.

So the function (1 − e−bτs)Cj−1τt − τp must intersect with

the function τs between τ
(j,high)
s and ∞ (the two boundaries

not included). Applying a similar logic to τ
(j,low)
s , it is clear

that the function (1 − e−bτs)Cj−1τt − τp also intersects with

the function τs between 0 and τ
(j,low)
s (the two boundaries

not included). Note that the domains (τ
(j,up)
s , ∞) and (0,

τ
(j,low)
s ) do not overlap. Accounting for statements 2 and 3,

it can be concluded that there are only two solutions to the
(j − 1)th equation, each of which is positive. One solution

is located in (τ
(j,high)
s , ∞) and the other in (0, τ

(j,low)
s ). So

statement 4 follows.
Based on statement 4, the second half of statement 2 is

straightforward: Counting down from j = K to j = 1 in
(24), the first equation that has solutions, say the j∗th one,
is the only one that can have exactly one solution. For all
j < j∗, each equation must have two solutions.

The structure of the solutions to (24) and the resulting
partition points over τs are illustrated in Figure 4. The op-
timization of τs is based on examining the structure of this
segmentation. Specifically, counting down from j = K to 1

in (24), let the j∗th equation be the first one that has posi-
tive solution(s). The segmented function λ∗(τs) is described
as follows: 1. The total number of segments is 2j∗ + 1. 2.
The domains of these segments are given from left to right

by [0, τ
(1,low)
s ), [τ

(1,low)
s , τ

(2,low)
s ), . . ., [τ

(j∗,low)
s , τ

(j∗,high)
s ),

[τ
(j∗,high)
s , τ

(j∗−1,high)
s ), . . ., [τ

(1,high)
s ,∞). 3. Recalling the

condition (15) required for λ∗, for the jth left-most and the
jth right-most segments, where 1 ≤ j ≤ j∗, the correspond-
ing λ∗ must satisfy (1 − Ploss)Rj−1 < λ∗ ≤ (1 − Ploss)Rj .
In addition, the specific value of λ∗ in these two segments is
given by

λ∗ =
(1 − e−bτs )τtPI(1 − Ploss)

∑K
k=j Rkpk

τs + τp + (1 − e−bτs )τtPI

∑K
k=j pk

. (30)

Three properties regarding this segmentation can be ob-
served: First, inside each segment, the relationship between
λ∗ and τs, i.e., (30), is no longer convex or monotonic. So
λ∗ is in general neither convex nor monotonic for the entire
domain τs ≥ 0. Second, the trend of λ∗ is concave with τs

if we treat segment as our observation unit: Starting from

the left-most segment, [0, τ
(1,low)
s ), any τs in the next seg-

ment gives greater λ∗ than any τs in the previous segment.
This trend is valid until reaching the segment in the mid-

dle, [τ
(j∗,low)
s , τ

(j∗,high)
s ). Starting from this segment and un-

til the last one, any τs in the next segment gives smaller
λ∗ than any τs in the previous segment. Third, the seg-

ment [τ
(j∗,low)
s , τ

(j∗,high)
s ) gives λ∗s that are greater than any

other segments. In other words, we can define To
s

def
= {τs :

τ
(j∗,low)
s ≤ τs ≤ τ

(j∗,high)
s )}. To

s is a closed range that con-
tains the optimal τo

s . In addition, any τs ∈ To
s achieves

greater throughput than any τs /∈ To
s, and its throughput is

bounded by (1 − Ploss)Rj∗ ≤ λ∗ ≤ (1 − Ploss)Rj∗+1. There-
fore, for the sensing/probing/access scheme, even though we
cannot find τo

s explicitly, we can still decide a good range for
τs that provably gives near-optimal performance.

Theorem 5: The closed range To
s is

Rj∗

Rj∗+1
-optimal, i.e., any

τs ∈ To
s can achieve at least

Rj∗

Rj∗+1
fraction of the maximum

throughput, where j∗ denotes the id of the first equation that
has positive solution(s) when counting down from the Kth
to the first equation in (24).

5. THROUGHPUT ANALYSIS FOR CRNS
In this section, we study the aggregate throughput when

multiple close-by CRs share the same spectrum, each being
driven by its own sensing/probing/access process discussed
before. Such an investigation allows us to better appreciate
the proposed scheme from a network’s standpoint. An impor-
tant factor we need to consider in this scenario is collisions
between CRs, i.e., more than one CR transmitter/receiver
pair are sensing and probing the same channel at the same
time, so their probing packets collide. As a result, none of
them can use the channel at this moment even if this channel
is idle and is of a good quality.

We consider two sensing strategies for CRs: random sens-
ing and collaborative sensing. In random channel sensing,
each CR pair randomly selects a channel to sense in each
step. There is no information exchange between different CR
pairs. For collaborative sensing, CRs exchange their channel-
hopping information in every step to avoid multiple CRs hop-
ping to the same channel at the same time.

To make the analysis tractable, we relax the condition that
CR’s transmission time has a fixed length τt. We assume
that the transmission time is exponentially distributed with
mean τt. In the simulation section, we test the validity of



this assumption and show that it has a negligible impact on
network performance. A discrete-time Markov-chain model is
used to analyze the throughput of the CRN. Time is divided
into slots with slot length = τs + τp. So for a CR, each step
of channel sensing/probing takes exactly one slot and each

transmission takes on average L
def
= ⌈ τt

τs+τp
⌉ slots. We assume

that CRs are synchronized, i.e., the slots of different CRs are
aligned. Let the number of CR transmitter/receiver pairs be
M . To simplify the presentation, here we only consider the
fundamental case when each CR link can only sense, probe,
and transmit over one channel at a time. The case that a CR
link can simultaneously use J > 1 channels can be treated
as J independent one-channel virtual CR links and analyzed
accordingly. To evaluate the CRN’s capability of harvesting
the spectrum, we are interested in a saturated traffic scenario,
i.e., there is always backlogged traffic at each CR link. The
state of the Markov chain is defined by the tuple (x1, . . . , xM ),
where each element xm ∈ {0, 1} indicates the activity of the
mth CR link in the current slot: xm = 0 means that CR
link m is sensing and probing a channel; xm = 1 denotes an
ongoing transmission by that link. A CR link’s activity in the
current slot depends on the effect of all CR links’ activities in
the previous slot, (x′

1, . . . , x
′
M ), i.e., the transition probability

of the chain satisfies

Pr(x1, . . . , xM |x′
1, . . . , x

′
M ) =

M
∏

m=1

Pr(xm|x′
1, . . . , x

′
M ) (31)

Without loss of generality, we consider the transition prob-
ability of CR link 1. We first consider the random sensing
strategy. Our analysis covers the following four cases:
Case 1: Pr(0|0, x′

2, . . . , x
′
M )

In this case, the transition probability contains four compo-
nents

Pr(0|0, x′
2, . . . , x′

M ) = Pcr occupied + Pcr collision + Ppr occupied

+Ppoor channel (32)

where Pcr occupied denotes the probability that the channel
that was sensed/probed by CR link 1 in the previous slot was
being occupied (transmitted over) by other CR links, and
thus CR link 1 has to sense/probe another channel in cur-
rent slot; Pcr collision denotes the probability that the chan-
nel that was sensed/probed by CR link 1 in the previous
slot was not being occupied by any other CR, but was be-
ing sensed/probed by other CR links, and hence there was a
collision and CR link 1 has to sense/probe another channel
in the current slot; Ppr occupied denotes that the channel that
was sensed/probed by CR link 1 was neither being occupied
nor being sensed/probed by any other CR, but was being
used by a PR, and hence CR link 1 has to sense/probe an-
other channel in current slot; Ppoor channel denotes that the
channel that was sensed/probed by CR link 1 in the previous
slot was neither being occupied by either CR or PR, nor be-
ing sensed/probed by any other CR, but it was having a bad
channel condition, and hence CR link 1 has to sense/probe
another channel in current slot.

To calculate these four probabilities, we note that a col-
lision of multiple CRs that are sensing the same channel
can be detected during the probing phase. After detecting
a collision, the CRs will sense/probe other channels in the
next slot. Therefore a CR’s transmission over some chan-
nel indicates this channel is collision-free between CRs. We
define the following notations: M

(m)
1

def
=

∑M

i=1;i6=m x′
i and

M
(m)
0

def
= (M − 1) − M

(m)
1 . M

(m)
1 denotes the number of

transmitting CR links in the previous slot, not counting the

mth link; M
(m)
0 is the number of sensing/probing channels in

the previous slot, not counting the mth link. Then, we have

Pcr occupied = M
(1)
1 /C (33)

Pcr collision =

(

1 −
M

(1)
1

C

)



1 −

(

C − 1

C

)M
(1)
0



 (34)

Ppr occupied =

(

1 −
M

(1)
1

C

)

(

C − 1

C

)M
(1)
0

QB (35)

Ppoor channel =

(

1 −
M

(1)
1

C

)

(

C − 1

C

)M
(1)
0

QI

k∗−1
∑

k=0

pk (36)

Case 2: Pr{1|0, x′
2, . . . , x

′
M}

This transition probability is simply given by

Pr{1|0, x′
2, . . . , x′

M} = 1 − Pr{0|0, x′
2, . . . , x′

M}

=

(

1 −
M

(1)
1

C

)

(

C − 1

C

)M
(1)
0

QI

K
∑

k=k∗

pk (37)

Case 3: Pr{0|1, x′
2, . . . , x

′
M}

This case means that CR link 1 finishes its transmission in
the previous slot, so it starts looking for a new channel in the
current slot. The transition probability is given by

Pr{0|1, x′
2, . . . , x′

M} = 1/L (38)

Case 4: Pr{1|1, x′
2, . . . , x

′
M}

This is simply calculated as

Pr{1|1, x′
2, . . . , x′

M} = 1−Pr{0|1, x′
2, . . . , x′

M} = (L−1)/L. (39)

Having obtained the transition probability matrix, the Markov
chain’s stationary distribution for the random vector (x1, . . . , xM )
can be calculated using standard state-transition balance equa-
tions. Among all the states, those with

∑M

m=1 xi > C are
infeasible, and therefore their stationary distribution proba-
bility is 0. The CRN’s throughput is then calculated as

Rtot =
1

∑

x1=0

. . .
1

∑

xM =0

(

Pr{x1, . . . , xM}
M
∑

m=1

xmR̄

)

(40)

where R̄
def
=

(1−Ploss)
∑K

k=k∗ Rkpk
∑

K
k=k∗

pk
is the average throughput

a CR link can achieve when transmitting.
In the above calculation, we have assumed a fully-distributed

random channel sensing strategy. Under a collaborative sens-
ing strategy, the above calculation should be modified as fol-

lows: the term
(

C−1
C

)M
(1)
0 should be replaced by

(

C−1
C

)max(0,M
(1)
0 +1−C)

in (33) through (37). This is because under collaborative
sensing, if the number of links that are sensing channels is
not greater than the number of channels, then there is no
collision. Otherwise, the collision is only due to those links
that exceed the number of channels.

6. PERFORMANCE EVALUATION
In this section, we use simulations to evaluate the perfor-

mance of the proposed sequential channel sensing/probing
scheme. Our simulations are developed using CSIM programs
(CSIM is a C-based process-oriented discrete-event simula-
tion package). The simulation results presented below are
based on the average of ten independent runs, each lasting
for 500 seconds of simulation time.

6.1 Simulations for a Single CR link
We first study the performance of a single CR link as a

function of various operational parameters. This scenario is
meant to verify the accuracy of our analytical model and
illustrate the significance of our optimization. We are inter-
ested in the following performance metrics: (1) the average
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throughput, defined as the average number of bits transmit-
ted by the CR link in each second; (2) the average channel
access delay, defined as the average time the CR spends until
it finds a good channel and starts transmitting over it; and
(3) the average number of sensed/probed channels before a
transmission takes place. Note that although the average
throughput is the primary objective of our optimization, the
delay-related metrics (2) and (3) carry some significance due
to the sequential natural of the scheme.

We simulate a CR link that supports five rates: 0, 1, 2, 3,
and 4 Mbps. We consider the rate distribution, (p0, p1, p2, p3, p4),
under two channel conditions: a good channel condition with
rate distribution (0.1, 0.1, 0.2, 0.2, 0.4) and a poor channel
condition with rate distribution (0.4, 0.2, 0.2, 0.1, 0.1). We
assume that the rate distributions over various channels are
i.i.d. and that the fluctuation over a channel is quasi-static,
i.e., the maximum rate supported by the channel remains un-
changed during the CR’s transmission time. We set τt = 500
ms, and the average idle and busy period of each channel
α = β = 500 ms.

In Figures 5 to 7, we study the performance as a function
of the channel probing time. The channel sensing time is
fixed at 10 ms. We take Pfa = 0.1. To verify the accuracy
of our analysis, the throughput calculated according to the
analytical model and the one obtained from the simulations
are compared in Figure 5. The throughput in the absence
of probing is also plotted. We observe that the simulated
throughput matches well the one obtained analytically. Fur-
thermore, it is clear that as long as τp is kept sufficiently
small, e.g., τp < 45 ms under a good channel condition or
τp < 100 ms under a poor channel condition, the incorpora-
tion of probing leads to a throughput gain. Recalling that
the per-channel probing time in current 802.11 WLAN sys-
tems ranges from 10 to 133 ms [1], the above probing time
requirement is non-trivial, because there is still a reasonable
chance under the current technology that the use of probing
could actually undermine the throughput. In addition, the
benefit of probing is more significantly observed under poor
channel conditions, e.g., the throughput gain reaches about
120% when τp = 10 ms. At the same time, the maximum
acceptable channel probing time becomes 100 ms. These re-
sults favor the use of probing when the channel condition is
bad, which is in line with our intuition.

Figure 6 shows that significant channel access delay is caused
by the sequential channel sensing and probing. Such delay
is expected, because as shown in Figure 7, the CR needs
to sense and probe more channels to find an idle one that
also meets the probing threshold. (Note that this delay has
been accounted for in calculating the throughput in Figure 5.)
The long channel access delay also suggests that the proposed
scheme is most suitable for non-realtime applications, which
can tolerate certain delay in exchange of higher throughput.

In addition, we also observe from Figure 7 that the larger
the τp, the smaller the number of channels that are scanned
before a transmission. This is because as τp increases, so
does the cost of scanning each channel. The increased cost
of scanning a channel will eventually cancel out the benefit
of finding a better channel via scanning more channels, and
thus leading to smaller number of channels scanned before a
transmission. The reduced number of scanned channels also
leads to a smaller probing threshold. For example, as shown
in Figure 7, under poor channel conditions, the rate threshold
becomes 4, 3, and 2, for τp ≤ 20 ms, 20 ms < τp ≤ 140 ms,
and 140 ms < τp ≤ 200 ms, respectively. It is these switches
in the rate threshold that incur the non-smooth change of
delay observed in Figure 6.

The performance as a function of the channel sensing time
is shown in Figures 8 to 10. Here we use the exponential
curve fitting with parameter b = 14.8349 to describe the Pfa

vs. τs relationship. The theoretical and simulated through-
put results are plotted in Figure 8. It is clear from this figure
that the sensing time has a significant impact on the CR’s
throughput. For example, under good channel conditions,
the ratio between the highest and the lowest throughput ob-
served in the simulation can be as high as 190%. This wide
range supports the need to optimize the sensing time. In ad-
dition, the concave trend in the throughput curve is clearly
observed in this figure. More importantly, even though we
cannot analytically derive the globally optimal τo

s that max-
imizes the throughput, our analysis in Section 4 shows that
they must be located in the ranges denoted by the dotted
boxes, i.e., τo

s ∈ [15.1, 43.9] ms under good channel condi-
tions, and τo

s ∈ [6.8, 140.5] ms under poor channel conditions.
In practice, the sensing time should be selected from these
ranges to achieve near-optimal throughput.

Figures 9 and 10 demonstrate the tradeoff between sens-
ing time and sensing accuracy. More specifically, when τs is
small, the CR needs to scan many channels before each trans-
mission due to its poor sensing accuracy. The accumulated
scanning time over these channels causes excessive channel
access delay. As τs increases, the CR can more accurately
detect each spectrum opportunity, requiring the scanning of
fewer channels before a transmission. This mono-decreasing
relationship between the number of scanned channels and τs

is seen in Figure 10.

6.2 Sensitivity Analysis
In this section, we study the performance of the proposed

scheme when there is uncertainty, e.g., errors or fluctuations,
in the CR’s working environment. Such uncertainty captures
deviations from the nominal setup used in the optimization,
and thus the optimized parameters may not be actually op-
timal in practice. We are interested in the performance gap
between the nominal setting and the one that uses exact
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knowledge of the environment as input to the optimization.
In particular, we focus on the uncertainty in the following
two factors: channel’s rate distribution (p0, . . . , pK) and the
relationship between sensing accuracy and sensing time. Un-
certainty in the rate distribution arises when the online mea-
surement is not accurate due to, for example, a limited ob-
servation window. Uncertainty also happens when the actual
distribution shifts with time. Similar situations apply to the
Pfa vs. τs relationship. Furthermore, this relationship also
suffers from intrinsic curve-fitting errors.

We study the impact of rate-distribution uncertainty on
throughput in Figure 11. We use the following model to de-
scribe uncertainty in the rate distribution. The distributions
(0.4, 0.2, 0.2, 0.1, 0.1) and (0.1, 0.1, 0.2, 0.2, 0.4) are taken as
the nominal rate distributions for the poor and good chan-
nel conditions, respectively. An actual rate distribution is
generated according to a distribution error, δ, in the follow-
ing way. Under poor channel conditions, for a given distri-
bution error δ, the corresponding actual rate distribution is

given by 1
0.6(1+δ)+0.4

(0.4(1 + δ), 0.2(1 + δ), 0.2, 0.1, 0.1). Un-

der good channel conditions, the actual rate distribution is
given by 1

0.6(1+δ)+0.4
(0.1, 0.1, 0.2, 0.2(1 + δ), 0.4(1 + δ)). In

this way, an actual rate distribution literally differs from the
nominal one, but still retains the basic pattern that makes
it in line with good (or bad) channel conditions. For ex-
ample, under bad channel conditions, when δ = −0.5 and
0.5, the corresponding actual rate distributions are (0.2857,
0.1429, 0.2857, 0.1429, 0.1429) and (0.4615, 0.2308, 0.1538,
0.0769, 0.0769), respectively, for which the low rates still oc-
cur with relatively high probabilities (and thus representing
bad channel). Under each channel condition, we first con-
duct optimization based on the nominal rate distribution to
derive the theoretically optimal operational parameters. For
example, under the poor channel condition, we found that
τo

s ∈ [6.8, 140.5] ms. So we use the middle point τs = 74
ms and the corresponding rate threshold k∗ = 2 to drive
the sequential channel sensing and probing process in our
simulation. During the simulation, channel conditions are
generated according to the actual rate distribution. For each
actual rate distribution, the optimal throughput is also de-
cided by exhaustively testing various combinations of opera-
tional parameters via simulation. Figure 11 depicts through-
put achieved by using the nominal distribution as input to
the optimization compared with the actual optimal through-
put obtained via exhaustive testing. It is clear that the gap
between these two are minor (less than 5% in the worst case).
This observation suggests that our optimization framework
is insensitive to rate distribution errors, and thus the oper-
ational parameters derived from our analytical model still
achieve good performance in actual environments.

We study the impact of sensing inaccuracy in Figure 12.
To model the uncertainty in the false alarm rate of the chan-
nel sensing process, we modify the exponential curve-fitting
function into Pfa(τs) = (1 + |θ|)e−bτs , where θ is a random
variable that follows a normal distribution N(0, σ2). The pa-
rameter σ denotes the standard deviation of the error in the
false alarm rate normalized by the deterministic component
e−bτs . Here, we take the absolute value of the error. This
leads to false alarm rates that are always larger than the
deterministic component. The simulation results gathered
under this setup can be considered as a lower bound on the
performance when both positive and negative errors on false
alarm rate can happen. From Figure 12, the throughput is
shown to degrade with the magnitude of the error. However,
the throughput shows some tolerance to errors when their
magnitudes are limited. For example, no obvious throughput
degradation is observed when σ is smaller than 0.4 and 0.6
under good and poor channel conditions, respectively. Re-
calling that the exponential fitting induces less than 8% fit-



ting errors, the proposed framework presents enough margin
to accommodate those errors without significantly impacting
the effectiveness of the optimization.

6.3 Simulations for A CR Network
In this set of simulations, we use the optimal threshold

derived for individual links to drive the operation of the CRN.
In Figures 13, we fix the number of CR links M = 8 and plot
the CRN throughput as a function of the number of channels,
C. The rate distribution for each CR link is given by (0.2,
0.2, 0.2, 0.2, 0.2). We set τs = τt = 10 ms, and τt = 500 ms.
Both simulation and analytical results are plotted. Note that
in the analysis we have assumed exponentially distributed
transmission time, but in the simulation a CR’s transmission
time has a fixed length. Figure 13 shows that as long as the
mean transmission time remains the same, the distribution
of the transmission time only has a minor impact on the
throughput, as evidenced by the good match between the
analytical and the simulation results.

From Figure 13, it is also clear that the collaborative sens-
ing strategy achieves higher throughput than the random
sensing strategy, mainly due to the former’s smaller collision
probability. Under both strategies, the throughput increases
with C. However, the rate of increase is fast when C is small,
and slow when C is large. This trend is due to the smaller
collision probability and the more likelihood of finding an idle
channel when C is large. A third observation is that when C
is large the slope of the throughput curve in the case of collab-
orative sensing is less steep than in the random sensing case.
This is because the collision probability under collaborative
sensing approximates zero when C is large, and therefore the
throughput increase is only due to the increased probability
of finding a good idle channel.

In Figures 14 and 15 we compare the sequential channel
sensing/probing scheme with the candidate-set-based chan-
nel selection scheme [12]. As discussed in Section 2, the main
limitation of this scheme is the overlap between the sets of
candidate channels pre-computed by various CRs. We sim-
ulate two scenarios: light overlap, where each candidate set,
which is of size 5, contains 2 network-wide common channels,
and high overlap, where there are 4 network-wide common
channels in each candidate set. The remaining channels in a
set are randomly picked from the pool that does not include
the network-wide common channels. Such a setup mimics
the realistic situation where CRs are located close to each
other, and thus may sense similar channel conditions. Vari-
ous channels differ in their statistical quality. However, the
difference is slight. Otherwise, various candidate sets would
completely overlap. To conduct a fair comparison, we assume
that within a set of candidate channels, a CR could only se-
quentially sense/probe each channel, just as in the sequential
sensing/probing scheme. From Figure 14, it can be observed
that when the number of CRs in the system is low, there is
no significant difference in the throughput between the two
schemes. However, as we increase the number of CRs, less
throughput can be achieved under the candidate-set-based
scheme. The gap becomes even larger in the high-overlap
scenario. The worse performance of the candidate-set-based
scheme is because the overlap between the sets of candidate
channels leads to high collisions during channel probing and
access, especially when the number of CRs is large.

In Figure 15, we study the impact of the size of the can-
didate set on the CRN throughput. In this simulation, the
number of common channels in a candidate set is taken as
the smallest integer that is greater than or equal to C times
the fraction of common channels (0.4 or 0.7, corresponding to
low and high overlap considered in the simulation). In gen-
eral, the throughput achieved under the candidate-set based
scheme increases with the size of the candidate set, because
of the smaller collision between channel probing and access.

Ultimately, when the candidate set contains all the chan-
nels, both schemes achieve the same throughput, because the
candidate-set-based scheme actually reduces to the sequen-
tial channel sensing/probing scheme at this point.

7. CONCLUSIONS
Our study has indicated that a carefully designed joint

channel sensing/probing scheme for CRNs can achieve signif-
icant throughput gains over the conventional mechanism that
uses sensing alone. Our findings include: (1) the throughput-
optimal probing strategy has a threshold structure, which
basically determines whether a probed idle channel is good
or bad, (2) to achieve throughput gain over the conventional
sensing approach, the probing time has to be smaller than a
certain value; otherwise using sensing alone can achieve bet-
ter throughput, (3) when probing is used, the throughput in
general is no longer a concave function of the sensing time,
largely due to the more complicated multi-rate structure in-
duced by the inclusion of probing. However, this function
has a segmented structure. If we treat segments as our ob-
servation instances, the trend in this function is concave. We
exploited this property to derive a range of values for the
sensing time that provides provably near-optimal through-
put performance.
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APPENDIX

A. PROOF OF THEOREM 1
1. Existence. We need to prove that for any finite λ, an op-
timal stopping rule exists for the transformed problem (12).
It follows from Theorem 1 in Chapter 3 of [6] that the op-
timal stopping rule exists if the following two conditions are
satisfied:

1. E{supn wn} < ∞.

2. limn→∞ supn wn = −∞, a.s.

By examining (12), condition 2 is clearly satisfied. Condi-
tion 1 can be verified by applying Theorem 1 in Chapter 4 of
[6]. Specifically, it is easy to see that the random variable

X′
n

def
= Xnτt(1 − Ploss) − λτt (41)

is related only to the random variable Xn. Because Xn’s
are i.i.d. for n = 1, 2, . . ., the X ′

n’s must also be i.i.d.. In
addition, because Xn takes a finite number of values and λ
is finite, X ′

n must also be finite. Therefore, it holds that
E{max(X ′

n, 0)} < ∞ and E{(max(X ′
n, 0))2} < ∞. So ac-

cording to Theorem 1 in Chapter 4 of [6], it holds that E{supn wn} =
E{supn X ′

n − nλ(τs + τp)} < ∞. So condition 1 is satisfied.
2. Optimal solution. wn can be written as wn = X ′

n −
nλ(τs + τp), where X ′

n is defined in (41). So X ′
n can be

considered as the reward for observing w1, . . . , wn, and λ(τs+
τp) can be deemed as the cost for each observation. Applying
the principle of optimality in Chapter 2 of [6], the optimal
stopping rule of the transformed problem (12) is given by

N∗ = min{n ≥ 1 : X′
n ≥ V ∗} (42)

where V ∗ denotes the expected return from an optimal stop-
ping rule; it satisfies the following optimality equation

V ∗ = E{max{X′
n, V ∗}} − λ(τs + τp). (43)

Equivalently, the above equation can be written as

E{max(X′
n − V ∗, 0)} = λ(τs + τp). (44)

Recalling the connection between the original problem and
its transformed version, the value of λ that gives V ∗ = 0
is simply the solution of (11). With V ∗ = 0, we have the
following equation:

E{max(Xnτt(1 − Ploss) − λ∗τt, 0)} = λ∗(τs + τp). (45)

According to Theorem 1 in Chapter 6 of [6], the solution to
the above equation, λ∗, is the maximum objective function
value for problem (11). At the same time, substituting V ∗ =
0 into (42), we derive the optimal stopping rule to problem
(11):

N∗ = min{n ≥ 1 : Xn ≥
λ∗

1 − Ploss

} (46)

This concludes the proof of Theorem 1.

B. PROOF OF THEOREM 2
The main idea is to show that the LHS of (45) is a mono-
decreasing function in λ∗, whereas the RHS is mono-increasing
in λ∗. The two functions must intersect at one and only
one point. Particularly, we define g(λ) = E{max(Xnτt(1 −
Ploss)−λτt, 0)}. For the general case of a continuous random
variable Xn with pdf q(x), g(λ) can be extended as

g(λ) =

∫ ∞

λ
1−Ploss

xτt(1−Ploss)q(x)dx−

∫ ∞

λ
1−Ploss

λτtq(x)dx. (47)

The first-order derivative of g is given by

dg(λ)

dλ
= −λτtq

(

λ

1 − Ploss

)

−



τt

∫ ∞

λ
1−Ploss

q(x)dx − λτtq

(

λ

1 − Ploss

)





= −2λτtq

(

λ

1 − Ploss

)

− τt

∫ ∞

λ
1−Ploss

q(x)dx. (48)

Clearly, both terms in (48) are strictly negative, and there-
fore g(λ) is a strictly mono-decreasing function. In addition,
g(0) = τt(1 − Ploss)E[Xn] < ∞ and g(∞) = 0. It is clear
that the RHS of (45) is a strictly mono-increasing function of
λ with function values of 0 and ∞ when λ = 0 and λ = ∞,
respectively. For the case of discrete random variable Xn, it
is easy to see that the above monotonic property does not
change. Therefore, λ∗ must have a unique solution.

C. PROOF OF THEOREM 3
First, by evaluating λ∗

j (η), it is clear that inside each seg-
ment, λ∗ is continuous and strictly mono-decreasing. Next,
it can be easily verified that Φj = φj−1 and limη→Φj

λ∗
j (η) =

λ∗
j−1(φj−1) for j = 2, . . . , K. Therefore, λ∗ is continuous and

strictly mono-decreasing over the entire domain of η.




