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Abstract—In mobile cloud computing (MCC) paradigm, cloud
service providers not only offer powerful cloud data centers but
also provide small-scale cloudlets in some strategic locations for
mobile users to access their rich resources. Due to the flexibility
and locality of cloudlets, most requests of mobile users can be
processed locally. However, the cloudlets usually have limited
resources and processing abilities, which implies that they may
not be capable to process every incoming request. Instead, some
resource-intensive requests need to be sent to remote data centers
for processing and such a processing is transparent to users. In
this paper, we address the online request admission issue in a
cloudlet with an objective to maximize the system throughput,
for which we first propose a novel admission cost model to
model critical resource consumptions. We then devise efficient
control algorithms for online request admissions. We finally
conduct experiments by simulations to evaluate the performance
of the proposed algorithms. Experimental results indicate that
the proposed algorithms are promising and outperform other
heuristics.

I. INTRODUCTION

Many mobile devices such as smart phones and tablets are
becoming increasingly popular, people now depend heavily
on them to run various applications such as image processing,
facebook, twitter, games, and emails for social and business
purposes. However, due to small sizes and being powered by
batteries, these portable and lightweight mobile devices have
only limited energy to support their operations. To mitigate
the severe energy constraint on mobile devices is to make
use of the rich resources provided by mobile cloud computing
(MCC) platforms. That is to offload data and computation-
ally expensive tasks from mobile devices to cloud platforms
through wireless networks [4], [6], [10].

In MCC environments, wireless mobile devices access the
cloud through wireless communication such as Wi-Fi, 3G/4G,
etc. However, it is well known that wireless communication is
unreliable and constrained by its bandwidth. The long delay
of data transfer between a mobile device and the cloud is
unavoidable. Thus, offloading tasks from mobile devices to
the cloud is not always a smart choice since the cloud is
typically far from mobile users. To overcome the long delay
by offloading tasks to the remote clouds, the cloud has to
be moved closer to the mobile users in the form of the
cloudlet [18], which consists of trusted, resource rich servers
in vicinities of mobile users (e.g., near or co-located with a
wireless access point) [14], [17]. Although a cloudlet may
mitigate the delay latency, it does suffer serious drawbacks

too. As the resources in a cloudlet are not as abundant as that
in a powerful cloud, a cloudlet may run out of its resources
quickly if its resources are carelessly allocated. Particularly,
when many requests are executed at the same time, this will
lead to the cloudlet overloaded.

In this paper, we focus on developing efficient control algo-
rithms for online request admissions in the MCC environments
with an objective to maximize the system throughput of the
cloudlets, where each request can be represented by a demand
resource vector in which each component is the amount of a
specific resource demanded by the request. Our main contri-
butions are as follows. We first propose a novel admission cost
model to model different resource consumptions in a cloudlet.
We then devise efficient control algorithms for online request
admissions based on the proposed resource cost model. We
finally conduct experiments by simulations to evaluate the
performance of the proposed algorithms. Experimental results
indicate that the proposed algorithms are very promising, in
comparison with other heuristics.

The remainder of this paper is organized as follows. Section
2 introduces related work, followed by introducing the system
model and problem definitions in Section 3. The online request
and batch admission algorithms are proposed in Section 4
and Section 5, respectively. The performance evaluation of
the proposed algorithms will be conducted in Section 6, and
the conclusion is given in Section 7.

II. RELATED WORK

Admission control is a key issue in the provision of guar-
anteed quality of service (QoS) in mobile cloud computing
(MCC) environments. The design of admission control algo-
rithms for MCC is especially challenging, given the limited
and highly demand resources, and the mobility of users.
Considerable research efforts have been taken in the past few
years. Many existing works in literature focused on developing
various admission control policies and resource allocation
strategies. For example, several researchers investigated the
admission control problem based on the Markov Decision
Process. They aimed to either maximize the revenue of the
system or minimize the cost of service providers based on
the prediction information [2], [9], [11]. Specifically, Hoang et
al. [9] proposed a linear programming solution for the problem
by considering the QoS requirements of mobile users with an
aim to maximize the revenue of the service providers. Liang
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et al. [11] formulated the adaptive resource allocation problem
as a semi-Markov decision process to capture the arrivals
and departures of users dynamically with an objective to
maximize the rewards of the overall system through balancing
between the resource utilization and the resource cost. Abundo
et al. [2] employed the Markov forward-looking admission
control policy for a service broker to maximize profits of
resource providers while guaranteeing the QoS requirements of
admitted users. Almeidaa et al. [1] presented a joint admission
control and resource allocation scheme by formulating a
convex optimization problem with an objective to minimize
the cost of the service provider, i.e., maximize the revenue of
the provider.

The above mentioned studies focused mainly on the CPU re-
source by ignoring other important resources such as memory,
secondary storage, network bandwidth, while these resources
also impact the system performance significantly. Srikantaiah
et al. [15] considered the request consolidation problem in
virtualized heterogeneous systems to minimize the energy
consumption while meeting the performance requirement, for
which they proposed an approach to optimize multiple re-
sources, i.e., CPU and disk usage jointly, using the bin-packing
algorithm. The proposed approach requires the optimal oper-
ating point from profiling data and calculates the Euclidean
distance between the optimal point and the current workload
allocation. However, finding such an optimal operating point
is difficult due to its dependence on experimental data. In
contrast to these studies, in this paper we approach the cloudlet
resource allocation by responding user requests without the
knowledge of future request arrival rate. We propose admission
algorithms that can effectively and efficiently admit requests
according to the current workload of each resource in the
system with an objective to maximize the system throughput.

III. PRELIMINARIES

In this section, we first introduce the system model. We then
define the problems precisely.

A. System model
We consider a mobile cloudlet computing environment as

shown in Fig. 1, where a cloudlet connecting to a remote
powerful cloud computing platform through the Internet pro-
vides cloud services to a set of local wireless mobile users.
Denote by {ui | 1  i  N} the set of local mobile users,
where N is the number of mobile users. Due to stringent
constraints on mobile devices such as limited battery lifetime,
limited storage, and relatively weak computation capability,
mobile users usually offload their computing intensive or large
volume of data storage tasks to the cloudlet to save the limited
resources of mobile devices. To this end, mobile users first
send their requests in terms of amounts of resources needed
to the cloudlet. The cloudlet then decides whether to admit
the requests according to its resource availability and the
admission costs of these requests. For the sake of convenience,
we assume that time is slotted into equal time slots. We further
assume that the system has no knowledge on the future request

Fig. 1. The system model of mobile cloud computing

generation and arrival rates. The acceptance or rejection of a
request by the system is made at the beginning of each time
slot t.

More specifically, we assume that the cloudlet provides K
different resources. Let Ck be the capacity of resource k for
all k with 1  k  K. Let H(t) = hH1(t), . . . , HK(t)i be
the amounts of resources occupied by the admitted requests at
time slot t. In all our discussions we assume that H(t) is given.
Let A(t) = hA1(t), . . . , AK(t)i be the vector of available re-
sources in the cloudlet at time slot t, then Ak(t) = Ck�Hk(t)
for all k with 1  k  K. Denote by ri(t) = hri,1(t), . . . ,
ri,K(t); ⌧ii the amounts of resource demanded by a request
ri(t) at time slot t, where ri,k(t) 2 Z is the amount of resource
k requested and ⌧i is the occupation period of the requested
resources. We further assume that requests arrive one by one
and use hr1, . . . , rN i to denote the sequence of requests.

Within each time slot, we consider two different request
admission scenarios: one is that only one request is evaluated,
that is, the admission control algorithm will determine whether
the request is admitted, depending on not only whether there
are enough available resources for the request but also whether
it is too high to admit the request in terms of the admission
cost. The other is that multiple requests are evaluated, i.e., a
set of requests will be admitted at each time slot.

B. Problem definitions
Given a mobile cloudlet, each mobile user ui sends its

request ri(t) at time slot t to the cloudlet. Each request
ri(t) consists of a set of specified amounts of resource
demands on the cloudlet and the occupation period ⌧i, i.e.,
ri(t) = hri,1(t), . . . , ri,K(t); ⌧ii, where ri,k(t) is the amount
of resource k needed. Assuming that requests arrive one by
one, and there is no knowledge of future request generation
and arrival rates.

The online request throughput maximization problem is to
determine whether an arrival request to be admitted or rejected
by the system such that the system throughput is maximized
for a specified time period T . The system throughput is the
ratio of the number of admitted requests to the number of
requests for period T , where a request is admitted if the request
will be implemented by the cloudlet. Otherwise, it is rejected
immediately at the current time slot, and can be resubmitted at
future time slots. The admission decision of a request depends
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on its requested resource availability and its admission cost.
Once a request is admitted, its processing in the cloudlet may
last more than one time slot. If it cannot be finished within
the current time slot, it will continue occupying the system
resources at the next time slot until it finally finishes. In
other words, we assume that the request scheduling is non-
preemptive scheduling.

The online batch request throughput maximization problem
is to maximize the system throughput if multiple requests,
instead of one request, will be admitted per time slot.

As each of K different resources in a cloudlet can be treated
as one dimension of a K-dimension bin with capacity Ck

of dimension k, the online request throughput maximization
problem is equivalent to packing as many online requests as
possible without knowing of future requests. If each request
can be implemented within a single time slot, then its occupied
resources can be released at the next time slot. Clearly, this
special case of the problem is an online bin packing problem
which is NP-hard [5]. Thus, the online request throughput
maximization problem is NP-hard, too. Meanwhile, the online
request throughput maximization problem is a special case
of the online batch request throughput maximization problem
when there is only one request considered at each time slot,
thus, the latter is NP-hard, too.

IV. ALGORITHM FOR THE ONLINE REQUEST THROUGHPUT
MAXIMIZATION PROBLEM

In this section, an algorithm for the online request
throughput maximization problem is devised. Let ri(t) =

hri,1(t), . . . , ri,K(t); ⌧ii be the request being considered at
this moment. The system proceeds as follows. It first checks
whether the requested amount of each resource ri,k(t) can be
met by the system. If not, the request is rejected immediately;
otherwise the system calculates the admission cost of pro-
cessing the request based on the load of each resource at this
moment. If its admission cost is beyond a specified threshold
of each resource in the system, the request will be rejected;
otherwise, it is admitted by the cloudlet. In the following we
propose the admission cost modeling of processing a request.

A. Admission cost modeling
We here model the admission cost of each demand resource

k as a convex function of the quantity of the resource with
an increasing marginal cost. That is, the cost of allocating a
unit specific resource to a request increases with the demand
quantity of that resource. The unit admission cost of using
resource k with demand ri,k(t) (6= 0) by request ri(t) is
defined as follows.

⇣(ri,k(t), Hk(t)) = a
Hk(t)
Ck

k (a
ri,k(t)

Ck

k � 1), (1)

where ak > 1 is a constant and Hk(t) is the amount of
resource k occupied by admitted requests at time slot t prior
to request ri(t).

From Eq. (1), it can be seen that ⇣(ri,k(t), Hk(t)) is in
the range of (0, ak � 1]. Notice that the unit admission cost
of demanding a resource is closely related to the demanding

quantities of that resource. That is, a higher ri,k(t) means a
higher admission cost of ri(t).

Denote by �(ri(t), H(t)) the admission cost of a request
ri(t) with occupation period ⌧i for all resources at time slot
t, then

�(ri(t), H(t)) = ⌧i ·
KX

k=1

⇣(ri,k(t), Hk(t) | ri,k(t) 6= 0)

= ⌧i ·
KX

k=1

a
Hk(t)
Ck

k (a
ri,k(t)

Ck

k � 1).

(2)

B. Admission policy

Given a request ri(t), there is an admission control strategy
that determines whether it will be admitted. That is, for each
request ri(t), a threshold Bk of the unit admission cost of
using resource k is given. Recall that the value range of a
unit admission cost of using resource k is in (0, ak � 1], Bk

thus is in the range of (0, ak � 1]. Let ✓k be a constant with
✓k 2 (0, 1], Bk can be rewritten as (ak � 1) · ✓k. For each
request, a threshold of the average admission cost B of using
all demanded resources is also given, which is B = ✓ · (a �
1) = ✓ · (maxk=1,...,K{ak}�1), where ✓ 2 (0, 1]. Let ||ri(t)||
be the number of resources requested by request ri(t), then
||ri(t)||  K. Thus, a request ri(t) is admitted if it meets the
following two inequalities:

(i) ⇣(ri,k(t), Hk(t))  Bk for each its demanded
amount of resource k, ri,k(t) with ri,k(t) 6= 0;

(ii) �(ri(t),H(t))
||ri(t)||·⌧i  B.

C. Algorithm

As mentioned in the previous subsection, the online request
throughput maximization problem is equivalent to the online
K-dimensional bin packing problem. Meanwhile, different
dimensions (e.g., wireless communication bandwidth require-
ment, and the number of CPU instructions) have different
attributes, we reduce this K-dimensional bin packing problem
to one dimension bin packing problem with admission control
by introducing the admission cost (see Eq. (2)). The detailed
algorithm is described in Algorithm 1, which is also referred
to as Algorithm Online-OBO.

Theorem 1: Given a mobile cloudlet environment and an
online admission request sequence, there is an online algorithm
for the request throughput maximization problem, which takes
O(K) time per request at each time slot.

Proof: Following Algorithm 1, there is only a single
request ri(t) per time slot to be determined. To respond to this
incoming request, it checks whether the request is admitted. If
yes, it takes O(K) time to update the amounts of occupied and
available system resources. Otherwise, the request is rejected.
Thus, the Algorithm 1 takes O(K) time to decide whether to
admit a request ri(t) at time slot t.
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Algorithm 1 Algorithm for the online request throughput
maximization problem
Input: Bk, B, an arrival request ri(t), the occupied infor-

mation H(t) of resources at time slot t, where ri(t) =

hri,1(t), . . . , ri,K(t); ⌧ii and 1  k  K.
Output: Admit or reject request ri(t).

1: /* The admission cost of request ri(t) */;
�(ri(t), H(t)) 0;

2: for each ri,k(t) in ri(t) do
3: Calculate Ak(t) Ck �Hk(t), which is the available

amount of resource k;
4: if ri,k(t) > Ak(t) then
5: Reject request ri(t);
6: EXIT;
7: else
8: if ri,k(t) 6= 0 then
9: Calculate the cost ⇣(ri,k(t), Hk(t)) by Eq. (1);

10: if ⇣(ri,k(t), Hk(t))  Bk then
11: �(ri(t), H(t)) �(ri(t), H(t))

+ ⌧i · ⇣(ri,k(t), Hk(t))
12: else
13: Reject the request;
14: EXIT;
15: end if
16: end if;
17: end if;
18: end for;
19: if �(ri(t),H(t))

||ri(t)||·⌧i  B then
20: /* Update the amounts of occupied resources */;

H(t) hH1(t) + ri,1(t), . . . , HK(t) + ri,K(t)i;
21: return Admit request ri(t)
22: else
23: Reject request ri(t);
24: EXIT;
25: end if.

V. ALGORITHM FOR THE ONLINE BATCH REQUEST
THROUGHPUT MAXIMIZATION PROBLEM

In this section, we deal with multiple request admissions
at each time slot by proposing an algorithm. Specifically,
let �S(t) be the set of requests arrived at time slot t. We
determine a subset �S0

(t) ✓ �S(t) of requests to be admitted
if not all the requests in �S(t) are admitted.

The basic idea for the online batch request maximization
problem is to admit a set of requests one by one using a
greedy strategy, according to the admission criteria made by
the system. Specifically, given the available resources A(t) and
occupied resources H(t) at time slot t, let �S(t) and �S0

(t)
be the set of requests arriving at time slot t and the subset
of these requests to be admitted by the system, respectively,
where �S0

(t) ✓ �S(t).
The proposed algorithm proceeds as follows. Initially,

�S0
(t) = ;. For each request r 2 �S(t), compute its unit

admission cost based on H(t), using the similar admission

criteria as we set for a single request in the previous section,
Eq. (1) and Eq. (2). If a request does not meet the criteria, it
is rejected and removed from �S(t). Otherwise, it becomes
a candidate to be admitted. A candidate request with the
minimum admission cost is then identified. If two candidate
requests have the same minimum admission cost, the one with
a smaller occupation period will be chosen to add to the
admission set �S0

(t), and �S(t) = �S(t)��S0
(t). Let rt1

be the request that has been admitted with 1  t1  |�S(t)|.
The system then updates its available resources A0

(t) =

hA1(t)� rt1,1(t), . . . , AK(t)� rt1,K(t)i. The algorithm con-
tinues to identify the next request from �S(t)�{rt1(t)} based
on the updated available resources A0

(t) to see whether it can
be admitted. This procedure continues until �S(t) = ;.

The detailed algorithm is described in Algorithm 2, which
is also referred to as Algorithm Online-Batch.

Lemma 1: If a request is rejected in an iteration of the
while loop of Algorithm 2, it will not be admitted in the
rest of iterations at time slot t, i.e, it is removed from further
consideration at time slot t.

Proof: We show this by contradiction. Assume that a
request ri(t) is rejected in an iteration of the while loop,
which means that (i) either its requested amount of a specific
resource k is larger than the available amount of resource
k, if this is the case, it will not be admitted in the future
as well because the available amount of resource k becomes
smaller and smaller with more and more requests being added
to �S0

(t); or (ii) the total admission cost of ri(t) is beyond the
threshold. For each resource it requested, the resource becomes
less than that of it in the iteration that ri(t) is rejected, the
admission cost becomes larger in comparison with the one in
which it was rejected for the first time, i.e, its admission cost
is still larger than the given threshold, so it will be rejected.

Theorem 2: Given a cloudlet environment, there is an on-
line algorithm for the batch request throughput maximization
problem that takes O(K|�S(t)|2) time at each time slot,
where �S(t) is the set of requests at time slot t.

Proof: Following Algorithm 2, within the while loop,
updating the information of occupied resources and calculating
the amounts of available resources take O(K) time, while
checking whether the demanded amounts of resource k of the
request can be met takes O(K) time. It finally takes O(K)

time to decide whether the admission cost �(ri(t), ri,k(t)) of
each required resource satisfies the threshold requirement. In
total, there are |�S(t)| iterations. Thus, Algorithm 2 takesP|�S(t)|

i=1 O(i ·K) = O(K · |�S(t)|2) time.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms and investigate the impact of different parameters
on the algorithm performance.
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Algorithm 2 Algorithm for the online batch request through-
put maximization problem
Input: A set of requests �S(t), Bk, B, H(t) =

{H1(t), . . . , HK(t)}.
Output: a subset of admitted requests �S0

(t) ✓ �S(t) at
time slot t.

1: U  �S; �S0
(t) ;; H 0

(t) H(t);
2: while U 6= ; do
3: /* A variable indicating the minimum admission cost */;

min cost 1;
4: /* A variable indicating the index of the request with

the minimum admission cost */;
i0  1;

5: for each request ri(t) in U do
6: /* The admission cost by processing request ri(t) */;

�(ri(t), H 0
(t)) 0;

7: for each ri,k(t) in ri(t) do
8: Calculate the available amount of resource k:

A0
k(t) Ck �H 0

k(t);
9: if ri,k(t) > A0

k(t) then
10: U  U � {ri(t)}; Reject request ri(t);
11: else
12: Calculate the unit admission cost

⇣(ri,k(t), Hk(t)) of ri(t) by Eq. (1);
13: if ⇣(ri,k(t), Hk(t)) > Bk then
14: U  U � {ri(t)}; Reject request ri(t);
15: else
16: �(ri(t), H 0

(t)) �(ri(t), H 0
(t))

+⌧i · ⇣(ri,k(t), Hk(t));
17: end if;
18: end if;
19: end for;
20: if �(ri(t),H

0(t))
||ri(t)||·⌧i > B then

21: U  U � {ri(t)}; Reject request ri(t);
22: end if;
23: if �(ri(t),H

0(t))
||ri(t)||·⌧i < min cost then

24: min cost �(ri(t),H
0(t))

||ri(t)||·⌧i ;
25: i0  i;
26: else
27: if �(ri(t),H

0(t))
||ri(t)||·⌧i = min cost then

28: Select the request ri0(t) with a smaller occu-
pation period between the two requests, i.e.,
min cost �(ri0 (t),H

0(t))
||ri0 (t)||·⌧i0

;
29: i0  i0;
30: end if;
31: end if;
32: end for
33: �S0

(t)  �S0
(t) [ {ri0(t)} where ri0(t) has the

minimum admission cost;
34: U  U � {ri(t)};
35: Update the amounts of occupied resources H 0

(t) by
taking the occupied resources by ri(t) into H 0

(t);
36: end while
37: return �S0

(t) ✓ �S(t).

A. Simulation environment

We consider a mobile cloudlet environment that consists
of n servers [8] and a set of mobile devices sending their
requests to the cloudlet for processing as depicted in Fig. 1.
The cloudlet contains four resources: CPU, memory, and disk
storage with capacities 2.99 GHz, 8 GB and 1024 GB for
each server, and the bandwidth capacity of the wireless access
point with 75 Mbps [13].

Recall that Bk = ✓k · (ak � 1) and B = ✓ · (a � 1) in
the section IV-B, in our default settings, we assume that all
resources have the same threshold Bk = B. We set ✓k =

✓ = 0.3 and ak = a = 4 for algorithms Online-OBO and
Online-Batch. The number of server n is 16 in the default
setting. Unless otherwise specified, we will adopt these default
settings in our simulations. Each value in all figures is the
average of the results by applying the nominated algorithm
for 20 different request sequences.

We assume that each time slot lasts 10 seconds [14] and
the system monitoring time period is T = 8, 000 time slots.
We further assume that only a single request is evaluated at
each time slot for the online request throughput maximization
problem, while the number of requests at each time slot
is randomly generated within the range of [2, 10] for the
online batch request throughput maximization problem. The
requirements of resources by each request are set according to
Amazon Small Instance [3] settings. If a request does require
resource k, then the required amount of resource k is generated
randomly within the range of resource k listed in Table. I,
of which the maximum occupation period ⌧max means the
demanded occupation period for the system resources of a
request is at most ⌧max.

TABLE I
PARAMETERS OF REQUESTS

Type One-by-one Batch
CPU power (GHz) [1, 6] [1, 6]

Memory (MB) [1, 400] [1, 400]
Storage (GB) [0.06, 1.2] [0.06, 1.2]

Bandwidth (Mbps) [0.05, 1.5] [0.05, 1.5]
Maximum occupation period (time slots) 20 20

We consider two heuristics as our evaluation benchmarks.
The first heuristic admits requests according to the First-Come-
First-Service strategy, and a request will be admitted as long
as the cloudlet can fulfil its resource demands, otherwise
the request will be rejected immediately. We refer to this
algorithm as FCFS-OBO and FCFS-Batch for the online
request throughput maximization problem and the online
batch request throughput maximization problem, respectively.
The second heuristic [15] considers the request consolidation
problem in a virtualized heterogeneous server system with
an aim to minimize the operation energy consumption of
servers. The proposed solution finds an optimal operating
point which occurs at 70% CPU utilization and 50% disk
utilization from profiling data through the calculating of the
Euclidean distance between the optimal point and the current
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(b) The system throughput of algorithms Online-Batch,
Euclidean-Batch and FCFS-Batch over different
monitoring periods
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(c) The system throughput of algorithms Online-OBO,
Euclidean-OBO and FCFS-OBO with various maxi-
mum occupation periods at T = 8, 000 time slots
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(d) The system throughput of algorithms
Online-Batch, Euclidean-Batch and
FCFS-Batch with various maximum occupation
periods at T = 8, 000 time slots

Fig. 2. Performance evaluations of different algorithms.

workload allocation [15]. As their objective is to minimize
the energy consumption of the system, we aim to maximize
the system throughput in a cloudlet environment, we treat the
optimal point as the one that fully utilizes all resources in
the system. That is, the optimal point for each resource is the
capacity of the resource. We refer to the modified algorithms
as algorithms Euclidean-OBO and Euclidean-Batch
for the two problems.

B. Algorithm performance evaluation

We first evaluate the proposed algorithms against the
benchmark algorithms in the default parameter settings un-
der different monitoring periods and with various max-
imum occupation periods of requests. The performance
curves of these algorithms are plotted in Fig. 2. From
Fig. 2(a) and Fig. 2(b) we can see that the pro-
posed algorithms Online-OBO and Online-Batch out-
perform their counterparts Euclidean-OBO, FCFS-OBO,
Euclidean-Batch and FCFS-Batch in terms of the
system throughput over different monitoring periods T .
For example, the system throughput of Online-OBO is
around 10% higher than that of Euclidean-OBO, and 30%

higher than that of FCFS-OBO. Also, the system through-
put of Online-Batch is around 4% and 23% higher
than its counterparts of algorithms Euclidean-Batch and
FCFS-Batch. The rationale behind is that the proposed
algorithms will reject those requests that have large quantity of
resource demands and occupation of the demanded resources
for a long period, while these requests will reduce the future
system throughput since they occupy large amounts of re-
sources for long periods if they were admitted. In contrast, the
other two heuristics failed to reject such requests. In addition,
from Fig. 2(c) and Fig. 2(d), it can be seen that the proposed
algorithms Online-OBO and Online-Batch significantly
outperform all the other mentioned algorithms in terms of the
system throughput with various maximum occupation periods
⌧max of requests for a given monitoring period T = 8, 000
time slots. It can also be seen from Fig. 2(c) and Fig. 2(d)
that the system throughput decreases with the increase of the
⌧max, because a longer occupation period of a request leads to
a higher load to the system, which generates a smaller system
throughput.
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C. Impact of parameters on algorithm performance
We then study the impact of different parameters on the

algorithm performance under different maximum occupation
periods ⌧max at T = 8, 000 time slots as follows.

1) Impact of parameter a: We first investigate the impact
of the value of a on the system throughput by varying a from
2 to 2

9. Fig. 3 plots the performance curves of algorithms
Online-OBO and Online-Batch with various maximum
occupation periods ⌧max. For the sake of convenience, we use
⌧ to represent ⌧max in Fig. 3, from which it can be seen that the
system throughput increases with the growth of a. Specifically,
the system throughput reaches the peak at a = 4, and follows
decreasing. We thus set a = 4 in our default setting. Notice
that the system throughput decreases with the growth of ⌧max

of requests, the arguments are similar as we did in Fig. 2(c)
and Fig. 2(d).
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(a) The impact of a on the system throughput of algorithm
Online-OBO with various maximum occupation periods
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(b) The impact of a on the system throughput of algorithm
Online-Batch with various maximum occupation peri-
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Fig. 3. The impact of values of a on the system throughput of algorithms
Online-OBO and Online-Batch with various maximum occupation
periods at T = 8, 000 time slots.

2) Impact of parameter ✓: We then evaluate the impact
of the threshold coefficient ✓ in Bk = B = ✓ · (a � 1)

on the system throughput of algorithms Online-OBO and
Online-Batch by varying ✓ from 0.1 to 0.9. Fig. 4 (a)
and Fig. 4 (b) imply that the system throughput increases
with the growth of ✓, reaches the peak at ✓ = 0.2, then
keeps stable until ✓ = 0.5 and decreases subsequently. We

thus choose ✓ = 0.3. Recall that a = 4, the threshold
Bk = B = ✓ · (a�1) = 0.9 in our default setting. The system
throughput varies with the change of the threshold, this is
because the system tends to reject requests when the threshold
is small, thereby reducing the system throughput. However,
when the threshold is large, requests with higher resource
demands can be admitted, which lead to a reduction of the
system throughput due to the large resource demands of such
requests. That is, the optimal system throughput arises only
when the threshold neither large nor small. Also, the system
throughput decreases with the increase of ⌧max, following the
similar arguments as we did in Fig. 2(c) and Fig. 2(d).
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Fig. 4. The impact of ✓ on the system throughput of algorithms
Online-OBO and Online-Batch with various maximum occupation
periods at T = 8, 000 time slots.

VII. CONCLUSIONS

In this paper, we considered the online request throughput
maximization problem in a cloudlet. We developed novel
admission control algorithms through proposing a novel ad-
mission cost model to model different resource consumptions.
We also conducted extensive experiments by simulations to
evaluate the performance of the proposed algorithms against
existing heuristics in terms of system throughput. Experi-
mental results demonstrate that the proposed algorithms are
promising and outperform the mentioned heuristics.
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