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Abstract—We address the problem of downlink multiuser
scheduling in practical wireless networks under a desired fairness
constraint. Wireless networks such as LTE, WiMAX and WiFi
provide partial channel knowledge at the base station/access point
by means of quantized user equipment feedback. Specifically in
3GPP’s LTE, the Channel Quality Indicator (CQI) feedback pro-
vides time-frequency selective information on achievable rates.
This knowledge enables the scheduler to achieve multiuser diver-
sity gains by assigning resources to users with favorable channel
conditions. However, focusing only on the possible diversity gains
leads to unfair treatment of the individual users. To overcome
this situation we propose a method for multiuser scheduling that
operates on the boundary of the achievable multiuser rate region
while guaranteeing a desired long term average fairness. Our
method is based on a sum utility maximization of the α-fair
utility functions. To obtain a given fairness, quantified with Jain’s
fairness index, it is necessary to find an appropriate α, which we
obtain from the observed CQI probability mass function.

Index Terms—Multiuser scheduling, adaptive resource alloca-
tion, utility maximization, fairness, LTE, OFDMA

I. INTRODUCTION

The wireless channel provides frequency diversity caused

by multi path propagation and temporal diversity due to

the movement of obstacles or users. In addition, a multiuser

channel provides multiuser diversity because of the statisti-

cal independence of the individual users’ fading processes.

Exploiting this diversity by scheduling users on favorable

resources is one of the major opportunities to increase the

system capacity.

Network providers face the problem of delivering services to

users with strongly varying channel quality. System capacity

needs to be traded off against user satisfaction, requiring a

fairness metric to be considered in the resource allocation

process. This problem is mostly tackled by applying propor-

tional fair scheduling [1]. This method is a special case of

the more general framework of maximizing the α-fair utility

functions [2] for α = 1. Applying these utility functions for

multiuser scheduling, allows obtaining any fairness ranging

from the most fair solution, that is, the max. min. scheduler

for α → ∞, to the most unfair but throughput-maximizing

solution, the max. throughput scheduler for α = 0 [1].

In the literature many approaches to quantify fairness are

proposed, one of the most prominent being Jain’s fairness

index [3]. However, it is not trivial to apply the α-fair utility

functions to obtain a predefined fairness, due to the missing

relation between α and the fairness measures. The same α can
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Fig. 1. Hypothetical two user rate region of a wireless fading channel.

lead to very distinct fairness values in different situations.

We therefore propose a scheduling method that is based on

the α-fair utility functions but adapts the parameter α to the

channel statistics to obtain a desired fairness. In Section II we

provide a short motivation explaining the proposed method

in the rate region and highlight the advantages. Next, in

Section III we present a general formulation of our proposed

method and specialize it to Long Term Evolution (LTE). In

Section IV we investigate the performance of our method in

an LTE system by means of link level simulations employing

the Vienna LTE Link Level Simulator [4], [5].

II. MOTIVATION

Consider a hypothetical two-user rate region as shown in

Figure 1. User 1 has a high Signal to Noise Ratio (SNR) that

allows him to achieve a rate of up to 2 bits per channel use

while User 2’s maximum rate equals 1 bit per channel use. Due

to the fading nature of the channel it is possible to achieve

a sum rate higher than the single user rate by exploiting

multiuser diversity. The maximum sum rate is marked with a

cross in Figure 1. The other extreme, leading to equal rates of

the users, is the solution to the max. min. scheduling problem

(marked with a plus symbol) [6]. Let us next impose a fairness

constraint applying Jain’s fairness index [3] given by:

J(T̄) =

(

∑K
k=1 T̄(k)

)2

K
∑K

k=1 T̄(k)2
(1)



Here, T̄ is a vector of expected user throughputs (expectation

over channel realizations), T̄(k) is the kth entry of T̄ and K is

the number of users. Jain’s fairness index ranges from 1
K

(only

one user is served) to 1 (all users ares served at the same rate).

The constraint J(T̄) ≥ J0 (J0 is the desired fairness) can be

reformulated as a Second Order Cone Constraint (SOCC) [7]:
(

∑K
k=1 T̄(k)

)2

K
∑K

k=1 T̄(k)2
≥ J0 ⇔

⇔ 1T T̄(k) ≥
√

J0K||T̄(k)||2 (2)

Two examples are shown in Figure 1 as the two shaded cones.

The constraint J ≥ 0.7 corresponds to the large cone (ranging

from the line with an angle of approximately 80◦ to the line

with 15◦). The constraint J ≥ 0.85 is shown as the inner

cone. Increasing J0 shrinks the aperture of the cone until it

converges to a line for J0 = 1 going through the max. min.

solution.

The scheduling problem is to allocate resources (transmis-

sion time, bandwidth) to users such, that the rate tuple that

maximizes the sum throughput while lying in the intersection

of the rate region and the cone given by the fairness constraint

is achieved. This suggests to formulate the scheduling problem

as a Second Order Cone Program (SOCP) [7]:

maximize:

K
∑

k=1

T̄(k)

subject to:
√

J0K||T̄(k)||2 ≤ 1T T̄(k) (3)

The difficulty in this formulation is that the resource allocation

must be performed for the whole time-frequency interval

of interest at once in order to obtain an optimal solution.

Typically this is not possible because the channel qualities

are not known in advance, just instantaneous values are fed

back. This allows solving the SOCP for every time instance,

leading to a loss of temporal diversity (see Section IV).

In order to benefit from temporal diversity, another approach

to the problem is required. By solving a weighted sum

rate maximization problem, points on the boundary of the

multiuser achievable rate region can be achieved [8], [9].

Varying the individual users weights, it is possible to trace

out the complete boundary. Directly applying such a weighted

sum rate maximization in our context, with a desired fairness

constraint, requires to find the weights of all users that fulfill

the fairness constraint and simultaneously maximize the sum

rate. To avoid the difficulties of finding so many weights, we

alternatively apply a utility maximization. A user’s utility rates

his satisfaction with respect to the resource allocation. The task

then is to find appropriate utility functions that allow to trade

off network fairness versus network throughput. This problem

is tackled in Section III.

III. ADJUSTABLE FAIRNESS SCHEDULING

In this section we formulate the utility maximization prob-

lem in a general context and specialize it to the requirements

of 3GPP LTE by applying the framework presented in [6]. We

moreover focus on finding the appropriate utility functions in

order to maximize the network throughput and attain a desired

fairness specified in terms of Jain’s fairness index.

A. General Formulation

Denote by C the achievable rate region and by J the region

corresponding to the SOCC. The sum utility maximization

problem is then given by:

maximize:

K
∑

k=1

Uα(T̄(k))

subject to: T̄ ∈ C ∩ J (4)

The utility of a user is rated with the α-fair utility functions [2]:

Uα(x) =

{ x1−α

1− α
, α ≥ 0, α 6= 1

log(x), α = 1

(5)

It depends on the user’s average throughput and the parameter α.

The solution of problem (4) achieves special points on the

boundary of the rate region [2]. By varying α from 0 to ∞, the

line segment in between the max. throughput solution and the

max. min. solution is traced out (see Figure 1). Points on this

line segment are guaranteed to be Pareto optimal [2], meaning

that other points achieving the same fairness do not achieve

a larger sum rate. E.g. in Figure 1 the two points marked a)

and b) both fulfill the constraint J0 = 0.85, but only the point

marked b) attains the maximum sum rate. The points marked

c) and d) both satisfy J0 = 0.7, but neither of the two is

optimal because a higher sum rate is possible at an even higher

fairness, given by the max. throughput solution. In both cases

the optimal point lies on the considered line segment. With an

appropriate value of α, the α-fair utility functions yield the

desired trade-off between fairness and throughput.

The utility maximization problem (4) depends on the ex-

pected user throughputs T̄(k). In [9] it is shown how such a

problem is reformulated to an online algorithm that converges

to the true solution using standard stochastic approximation

techniques. For that purpose the expected throughput T̄ is

replaced with an average throughput T̂n at time instance n

using the stochastic approximation recursion

T̂n =

(

1−
1

β

)

T̂n−1 +
1

β
Tn (6)

with Tn being the instantaneous throughput and the step

size β > 1. The recursion is equal to averaging utilizing

an exponentially decaying window function. The parameter

β determines the decay rate of the window. Substituting (6)

into (4) and approximating (4) with a Taylor expansion of first

order (see [9]) leads to the online utility maximization problem

at time instant n

maximize:

K
∑

k=1

U ′
α(T̂n−1(k))Tn(k)

subject to: J(T̄) ≥ J0 (7)



which has to be maximized with respect to the resource

allocation. Jain’s fairness index still depends on the expected

throughput. The first derivative U ′
α of the utility is given by:

U ′
α(x) =

1

xα
α ≥ 0 (8)

For α = 1 and ignoring the fairness constraint in (7) this

problem reduces to the well known formulation of proportional

fair scheduling. The difficulty arising from the stochastic

approximation is the question of how to deal with the fairness

constraint. Simply performing a sum rate maximization as

in (3) and substituting (6) for the expected throughput in

the fairness constraint enforces the constraint at each time

instance and therefore leads to a loss of multiuser diversity (see

Section IV). In the following we will not consider the fairness

constraint explicitly in the maximization problem anymore but

choose the parameter α such that the constraint is met.

B. Specialization to LTE

3GPP UMTS/LTE [10] is an Orthogonal Frequency Division

Multiple Access (OFDMA) system that imposes several con-

straints to be considered in multiuser scheduling. LTE divides

the time-frequency grid spanned by OFDM into Resource

Blocks (RBs) which consist of several contiguous OFDM

samples. Different RBs can be assigned to different users.

Users provide an RB selective Channel Quality Indicator

(CQI) feedback [11], which informs the base station about

the achievable rates on every RB. Scheduling decisions can

be carried out every subframe (1 ms duration) for the next

subframe. A user utilizes the same Adaptive Modulation and

Coding (AMC) scheme on all resources he is scheduled onto

[10]. The power allocation for all resources is equal and

already accounted for in the CQI feedback. In this work, we

utilize an approximate linear framework that takes all LTE

specific constraints into account [6].

The number of available RBs per subframe is denoted R.

With c
(k)
n ∈ R

R×1 we refer to the vector of rates1 achievable

by user k on the R RBs at subframe n. The vector c
(k)
n is

computed from the CQI feedback vector CQI(k)n (see [6]).

Denote by b
(k)
n ∈ {0, 1}R×1 the resource allocation vector of

user k at subframe n. b
(k)
n (i) = 1 means that resource i is

allocated to user k at subframe n. Excluding multi user MIMO,

the resource allocation vectors of the users are mutually

orthogonal. With this notation the stochastically approximated

utility maximization problem in (7) can be specialized to

{b(1)
n

⋆
, . . . ,b(K)

n

⋆
} = argmax

{b
(1)
n ,...,b

(K)
n }

K
∑

k=1

c
(k)
n

T
b
(k)
n

T̂α
n−1(k)

subject to: b(i)
n

T
b(j)
n = 0 ∀i, ∀j 6= i (9)

with T̂n(k) being given by

T̂n(k) =

(

1−
1

β

)

T̂n−1(k) +
1

β
c(k)n

T
b(k)
n . (10)

1Note the slightly changed notation compared to [6] because the time index
is explicitly included

Introducing an equivalent matrix formulation as in [6] allows

to reformulate the problem as a Linear Program (LP). Alter-

natively the reduced complexity proportional fair scheduling

strategy for OFDMA systems proposed in [12] can be gener-

alized to arbitrary α.

C. Evaluation of the Parameter α

In order to achieve the goal of a desired fairness, we need

to adapt the parameter α to the channel statistics. The channel

statistics are a-priori unknown but can be learned online by

the scheduler simply by observing the User Equipment (UE)

feedback. Specifically we need to learn the probability mass

function (pmf) of the achievable rates per resource (RB in

LTE). In a practical wireless system there is just a finite

number of achievable rates per resource, NAMC, corresponding

to the different supported AMC schemes (each scheme has a

specific spectral efficiency), which we subsume in the vector

c ∈ R
NAMC×1. The achievable rate pmf allows predicting the

expected throughput of each user for a given α. Then we only

need to adapt α such that the predicted expected throughputs

meet the fairness constraint.

In order to learn the pmf of the achievable rates per resource

of user k, p̄(k), we utilize the same recursive stochastic

approximation as in (6)

p̂(k)
n =

(

1−
1

β

)

p̂
(k)
n−1 +

1

β
p(k)
n . (11)

For LTE the length of the stochastically approximated pmf

vector p̂
(k)
n ∈ [0, 1]NAMC×1 is equal to the number of different

CQI values (16 including CQI zero). The vector p
(k)
n is an

instantaneous approximation of the pmf computed from the

feedback values at time instant n. For LTE this vector can be

computed from CQI(k)n by

p(k)
n (i) =

1

R

R
∑

r=1

[CQI(k)n (r) = i] i ∈ {0, . . . , NAMC} (12)

with [i = j] being the indicator function for i = j.

We next provide an iterative algorithm that computes the pa-

rameter α from the approximated pmfs. Utilizing the stochastic

approximation (7) the adjustable fairness scheduler allocates a

resource to the user for which the ratio of achievable rate and

average rate raised to the α-th power is largest (this maximizes

the sum in (7)). This allows to predict the expected throughput

of user k at iteration instant m+ 1 in the following way2:

E(T′
m+1(k)) =

NAMC
∑

i=1

P{k is served|i} · c(i) · p̂(k)
n (i). (13)

2Note the difference between n and m: the online algorithm described in
Sections III-A and III-B uses the index n and is executed at every scheduling
instant. The algorithm described now for computation of the α value does not
need to be run online. It is only necessary to run it if the pmfs change over
time, requiring the computation of a new α value.



Algorithm 1 Algorithm to compute the parameter α

T̂
′

m
(l) = T̂n(l) ∀l ∈ {1, . . . ,K}

α1 = α

J1 = Jn(T̂n)
m = 1
stop = false
while stop = false do

for k = 1 to K do
Compute E(T′

m+1(k)) utilizing (13) and (14)

Update T̂
′

m+1
(k) utilizing (6)

end for

Compute Jain’s fairness index Jm+1(T̂′

m+1
) utilizing (1)

Update α utilizing (15)
if Jm+1 has converged to J0 then

stop = true
else

m = m+ 1
end if

end while
α = αm

The probability that user k is served given he experiences an

achievable rate i, P{k is served|i}, can be further developed:

P{k is served|i} =

K
∏

l=1
l 6=k

NAMC
∑

j=1

[

c(j)

T̂′αm

m (l)
<

c(i)

T̂′αm

m (k)

]

p̂(l)
n (j).

(14)

From (13) we compute the update T̂′
m+1 utilizing the recursive

stochastic approximation (6). Then we compute Jain’s fairness

index (1) at iteration instant m+1, Jm+1(T̂
′
m+1), and update

α according to

αm+1 = αm + µ(J0 − Jm+1) (15)

with step size µ. This update rule is obtained by applying

the gradient descent algorithm to the cost function C(α) =
(J0 − Jm+1(α))

2. The step size µ incorporates the term
∂Jm+1(α)

∂α
, which cannot be computed in closed form but could

be approximated numerically. For simplicity we employ a

fixed step size of µ = 1 in our simulations. The complete

algorithm, including the initialization and the termination

condition, is summarized in Algorithm 1. We apply the ex-

perienced throughput and fairness values as initialization.

It is also possible to compute an online update for α

using (15) at every scheduling instant n from the experienced

fairness Jn(T̂n). But we observed that such an algorithm

converges much too slowly especially for high fairness values.

IV. SIMULATION RESULTS

In this section we present simulation results obtained with a

standard compliant LTE link level simulator [4] implemented

in MATLAB. The simulator is publicly available [5]. All

simulation results can be reproduced by calling prepared

scripts (Schwarz ICC2011) in the folder “paper scripts”, part

of the “Vienna LTE Link Level Simulator” version 1.5.

In the first simulation we consider a two user SISO system

with the two users experiencing different average SNRs. The

main simulation parameters are summarized in Table I. We do

not adapt α to obtain a certain fairness, but fix α to a value in

TABLE I
SIMULATION PARAMETERS

Parameter Value

System bandwidth 1.4 MHz

Number of RBs R 12

Number of users K 2

Average SNR of user 1 15 dB

Average SNR of user 2 0 dB

α range [0,1000]

Channel Model 3GPP TU

Antenna configuration 1 transmit, 1 receive (1× 1)

Receiver Zero Forcing ZF
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Fig. 2. Jain’s fairness index versus sum throughput obtained with several
schedulers in a two user scenario.

the range [0, 1000]. The performance of the α-fair utility based

scheduler is compared to several other standard schedulers [6].

The Best CQI scheduler is equal to the max. throughput solu-

tion discussed earlier. The resource fair scheduler guarantees

the same amount of resources for all users while trying to

maximize the sum rate. The round robin scheduler allocates

to all users the same amount of resources according to a fixed

pattern. The SOCP scheduler implements the SOCP described

in Equation (3) with the expected throughput T̄(k) replaced by

the average throughput T̂n(k). The fairness constraint J0 for

this scheduler varies between 0.5 and 0.975. Figure 2 shows

that the Best CQI scheduler yields the largest throughput, but

the worst fairness, just slightly above the minimum possible

fairness of 0.5 (for two users). The SOCP based scheduler,

employing a fairness constraint of 0.5, achieves the same

performance. The corresponding cone in the rate region equals

the non negative orthant. The α-fair scheduler reaches that

performance for α = 0. The highest fairness, J = 1, is

attained by the max. min. scheduler. The α fair scheduler

obtains the same fairness if α is chosen sufficiently large.

But, due to the large SNR difference of the two users, even at

α = 1000 the fairness is only J = 0.99. Above this value the

throughput decreases strongly due to the large SNR difference.

The SOCP based scheduler performs worse than the α-fair

scheduler because it does not exploit any temporal diversity.

The worst scheduler is the round robin type, which neither

realizes any temporal nor any frequency diversity.

Next we demonstrate the performance of the pmf based



TABLE II
SIMULATION PARAMETERS

Parameter Value

System bandwidth 1.4 MHz

Number of RBs R 12

Number of users K 5

Average SNR of users 1 to 5 [15,12,10,5,0] dB

Step size β 100

Channel Model 3GPP TU

Antenna configuration 1 transmit, 1 receive (1× 1)

Receiver Zero Forcing ZF

Schedulers α-fair utility based
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Fig. 3. Temporal behavior of user throughputs and fairness for a correlated
channel.

parameter α evaluation. We consider a five user scenario, with

simulation parameters summarized in Table II. We consider

two extreme cases for the correlation of consecutive channel

realizations of the block fading channel model. Firstly, the

channels of all users stay constant over time. In that case,

the achievable rate pmf obtained from the first UE feedback

values is already valid and α needs to be computed only

once. We impose the fairness constraint J0 = 0.95. Figure 3

shows the throughput of the individual users and the achieved

fairness over subframes. The throughput is computed with a

moving average filter of length 200 (explaining the ramp up

at the beginning). The obtained long term average fairness

(averaged over all subframes) equals J = 0.954. The slight

deviation from the desired fairness is caused by the non zero

Block Error Ratio (BLER) that is not taken into account in

the α estimation. Next we consider a block fading channel

model with independent channel realizations. The estimate of

α improves over time as the observed pmf converges to the true

value. The offline α computation algorithm is called every 50

subframes. Already after 100 subframes (the second call of the

α computation algorithm) the α value stays almost constant.

The obtained long term average fairness equals J = 0.955.

V. CONCLUSION

In this paper we propose an adjustable fairness scheduler

that allows to specify a desired fairness constraint. We propose

a general formulation and specialize it to the needs of LTE.

The scheduler solves a sum utility maximization problem. The

utility of a user is measured by means of the α-fair utility
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Fig. 4. Temporal behavior of user throughputs and fairness for an independent
channel.

functions. In order to set a desired fairness we propose an

algorithm that predicts the required α from the observed pmf

of achievable user rates per resource. We demonstrate the

performance of this prediction scheme by means of LTE link

level simulations. Already after few channel realizations the

predicted α converges, closely achieving the desired fairness.
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