
Throughput Optimization for High-Level Synthesis

Using Resource Constraints

Peng Li1,2 Louis-Noël Pouchet3,2 Jason Cong3,1,2

1 Center for Energy-efficient Computing and Application, Peking University
2 PKU/UCLA Joint Research Institution for Science and Engineering

3 University of California, Los Angeles

January 20, 2014
Fourth International Workshop on Polyhedral Compilation Techniques

Vienna, Austria

Overview: IMPACT’14

(Very) High Level Picture

1 FPGAs: Field-Programmable Gate Arrays

2 HLS: High-Level Synthesis (from C to RTL)

3 Synthesis: “from RTL to FPGA”

4 => A toolchain from C to hardware! (ex: Xilinx Vivado ISE)

◮ Our job: C to FPGA, using source-to-source C transfo.

◮ We focus on affine C programs :-)

PKU / UCLA 2

Overview: IMPACT’14

A Previous Work: PolyOpt/HLS

The current situation:

◮ Tremendous improvements on FPGA capacity/speed/energy

◮ But off-chip communications remains very costly, on-chip memory

is scarce

◮ HLS/ESL tools have made great progresses (ex: AutoESL/Vivado)

◮ But still extensive manual effort needed for best performance

◮ Numerous previous research work on C-to-FPGA (PICO, DEFACTO,

MMAlpha, etc.) and data reuse optimizations

◮ But (strong) limitations in applicability / transformations supported

/ performance achieved

PKU / UCLA 3

Overview: IMPACT’14

A Previous Work: PolyOpt/HLS

The current situation:

◮ Tremendous improvements on FPGA capacity/speed/energy

◮ But off-chip communications remains very costly, on-chip memory

is scarce

◮ HLS/ESL tools have made great progresses (ex: AutoESL/Vivado)

◮ But still extensive manual effort needed for best performance

◮ Numerous previous research work on C-to-FPGA (PICO, DEFACTO,

MMAlpha, etc.) and data reuse optimizations

◮ But (strong) limitations in applicability / transformations supported

/ performance achieved

PKU / UCLA 3

Overview: IMPACT’14

A Previous Work: PolyOpt/HLS

The current situation:

◮ Tremendous improvements on FPGA capacity/speed/energy

◮ But off-chip communications remains very costly, on-chip memory

is scarce

◮ HLS/ESL tools have made great progresses (ex: AutoESL/Vivado)

◮ But still extensive manual effort needed for best performance

◮ Numerous previous research work on C-to-FPGA (PICO, DEFACTO,

MMAlpha, etc.) and data reuse optimizations

◮ But (strong) limitations in applicability / transformations supported

/ performance achieved

PKU / UCLA 3

Overview: IMPACT’14

A Previous Work: PolyOpt/HLS

The current situation:

◮ Tremendous improvements on FPGA capacity/speed/energy

◮ But off-chip communications remains very costly, on-chip memory is

scarce

⇒ Our solution: automatic, resource-aware data reuse optimization

framework (combining loop transformations, on-chip buffers, and

communication generation)

◮ HLS/ESL tools have made great progresses (ex: AutoESL/Vivado)

◮ But still extensive manual effort needed for best performance

◮ Numerous previous research work on C-to-FPGA (PICO, DEFACTO,

MMAlpha, etc.) and data reuse optimizations

◮ But (strong) limitations in applicability / transformations supported

/ performance achieved

PKU / UCLA 3

Overview: IMPACT’14

A Previous Work: PolyOpt/HLS

The current situation:

◮ Tremendous improvements on FPGA capacity/speed/energy

◮ But off-chip communications remains very costly, on-chip memory is

scarce

⇒ Our solution: automatic, resource-aware data reuse optimization

framework (combining loop transformations, on-chip buffers, and

communication generation)

◮ HLS/ESL tools have made great progresses (ex: AutoESL/Vivado)

◮ But still extensive manual effort needed for best performance

⇒ Our solution: complete HLS-focused source-to-source compiler

◮ Numerous previous research work on C-to-FPGA (PICO, DEFACTO,

MMAlpha, etc.) and data reuse optimizations

◮ But (strong) limitations in applicability / transformations supported

/ performance achieved

PKU / UCLA 3

Overview: IMPACT’14

A Previous Work: PolyOpt/HLS

The current situation:

◮ Tremendous improvements on FPGA capacity/speed/energy

◮ But off-chip communications remains very costly, on-chip memory is

scarce

⇒ Our solution: automatic, resource-aware data reuse optimization

framework (combining loop transformations, on-chip buffers, and

communication generation)

◮ HLS/ESL tools have made great progresses (ex: AutoESL/Vivado)

◮ But still extensive manual effort needed for best performance

⇒ Our solution: complete HLS-focused source-to-source compiler

◮ Numerous previous research work on C-to-FPGA (PICO, DEFACTO,

MMAlpha, etc.) and data reuse optimizations

◮ But (strong) limitations in applicability / transformations supported /

performance achieved

⇒ Our solution: unleash the power of the polyhedral framework (loop

transfo., comm. scheduling, etc.)
PKU / UCLA 3

Overview: IMPACT’14

Performance Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08

T
o
ta

l
B

R
A

M
s
 (

in
 1

6
k
B

 b
lo

c
k
s
)

Total execution time (in cycles)

Denoise: Pareto-optimal

 0

 100

 200

 300

 400

 500

 600

 1e+09 1.5e+09 2e+09 2.5e+09 3e+09 3.5e+09 4e+09 4.5e+09

T
o
ta

l
B

R
A

M
s
 (

in
 1

6
k
B

 b
lo

c
k
s
)

Total execution time (in cycles)

Segmentation: Pareto-optimal

 0

 20

 40

 60

 80

 100

 120

 140

 1.8e+07 1.9e+07 2e+07 2.1e+07 2.2e+07 2.3e+07 2.4e+07 2.5e+07 2.6e+07 2.7e+07 2.8e+07

T
o
ta

l
B

R
A

M
s
 (

in
 1

6
k
B

 b
lo

c
k
s
)

Total execution time (in cycles)

DGEMM: Pareto-optimal

Benchmark Description basic off-chip PolyOpt hand-tuned [17]

denoise 3D Jacobi+Seidel-like 7-point stencils 0.02 GF/s 4.58 GF/s 52.0 GF/s

segmentation 3D Jacobi-like 7-point stencils 0.05 GF/s 24.91 GF/s 23.39 GF/s

DGEMM matrix-multiplication 0.04 GF/s 22.72 GF/s N/A

GEMVER sequence of matrix-vector 0.10 GF/s 1.07 GF/s N/A

◮ Convey HC-1 (4 Xilinx Virtex-6 FPGAs), total bandwidth up to 80GB/s

◮ AutoESL version 2011.1, use memory/control interfaces provided by Convey

◮ Core design frequency: 150MHz, off-chip memory frequency: 300HMz

PKU / UCLA 4

Overview: IMPACT’14

Context of This Work

How to get good throughput?

1 Good management of off-chip communications, and on-chip data reuse

2 Effective on-chip computation module

◮ Previous work focused on tiling, comm. optimization, localization, and

“coarse-grain” parallelism exposure

◮ This work: focus on improving computation module (assume data is

on-chip)

◮ Question: are previous techniques enough?
◮ Question: can we design techniques to improve pipelining efficiency?

PKU / UCLA 5

Loop Pipelining: IMPACT’14

Loop Pipelining [1/3]

◮ Depth: number of cycles needed to complete one iteration

◮ Initiation Interval (II): number of cycles to wait before the next iteration

can start

II=3

Depth=8

◮ Total cycles: (LoopTripCount - 1) * II + Depth

◮ Reasons for II > 1

◮ Data dependence (typically loop-carried dependence)
◮ Resource constraints (typically the resource needed is still in use)

PKU / UCLA 6

Loop Pipelining: IMPACT’14

Loop Pipelining [2/3]

Example (dgemm)

for (i = 0; i < ni; i++)

for (j = 0; j < nj; j++)

#pragma AP pipeline II=1

for (k = 0; k < nk; ++k)

C[i][j] += alpha * A[i][k] * B[k][j];

This code has:

◮ inner loop marked for pipelining, target is 1

◮ but a loop-carried dependence

◮ Vivado finally uses II=6

PKU / UCLA 7

Loop Pipelining: IMPACT’14

Loop Pipelining [2/3]

Example (dgemm)

for (i = 0; i < ni; i++)

for (k = 0; k < nk; k++)

#pragma AP pipeline II=1

for (j = 0; j < nj; ++j)

C[i][j] += alpha * A[i][k] * B[k][j];

This code has:

◮ inner loop marked for pipelining, target is 1

◮ no loop-carried dependence

◮ Vivado finally uses II=1, a 6x speedup

PKU / UCLA 7

Loop Pipelining: IMPACT’14

Loop Pipelining [3/3]

Loop pipelining in our work:

◮ Critical performance impact on loop-dominated codes

◮ We focus on pipelining inner loops only

◮ Each inner loop is marked for pipelining

◮ Our goal: reach II=1 through loop transformations

◮ Parallelization (affine scheduling and ISS)
◮ Split loops with resource conflicts into multiple loops

PKU / UCLA 8

Affine Scheduling: IMPACT’14

Reminder: Tiling + Parallelization

First scheme: “Pluto” plus vectorization-like transfo.

1 Schedule/transform the code for maximal locality + tilability

2 Move one of the parallel dimension inner-most

◮ integrated in pluto
◮ complemented by a post-pass to perform loop permutation

3 Implemented in PolyOpt/HLS [FPGA’13]

What’s special for FPGAs?

◮ inner loop parallelization is NOT vectorization (simpler problem)

◮ trade-off latency vs. resource

◮ Tile size drives the (scarce!) on-chip BRAM usage
◮ Resource sharing happens when statements are fused
◮ Conservative scheduling: a single slow iteration slows the whole loop

PKU / UCLA 9

Affine Scheduling: IMPACT’14

How Good is This Approach?
Bmk. Description Version II Cycles CP(ns) LUT FF

2mm Matrix-multiply D=α*A*B*C+β*D
Orig 5 21512194 7.981 1612 1410

Affine 1 8335874 7.612 1782 1510

3mm Matrix-multiply G=(A*B)*(C*D)
Orig 5 31948803 8.174 1600 1552

Affine 1 636371 8.908 2580 2371

atax Matrix Transpose and Vector Mult
Orig 5 1511502 8.257 1385 1093

Affine 1 531852 7.726 1488 1174

bicg Kernel of BiCGStab Linear Solver
Orig 5 1255502 8.176 1438 1158

Affine 1 53185 7.763 1606 1428

doitgen Multiresolution Analysis Kernel
Orig 5 5607425 7.828 1126 1024

Affine 1 1114331 7.659 1769 1776

gemm Matrix-multiply C = α.A.B + β.C
Orig 6 12582925 7.701 1225 1089

Affine 1 2124418 8.062 1783 1753

gemver Vector Mult. and Matrix Addition
Orig 5 3250551 7.902 2778 2427

Affine 1 555991 7.791 3733 3656

gesummv Scalar, Vector and Matrix Mult
Orig 5 1260501 7.705 1652 1541

Affine 1 532737 7.705 1652 1541

mvt Matrix Vector Product and Transpose
Orig 6 3000016 7.496 1371 1108

Affine 1 265361 7.573 1897 1890

syrk Symmetric rank-k operations
Orig 6 12599316 7.808 1397 1217

Affine 1 2124418 8.028 1784 1793

syr2k Symmetric rank-2k operations
Orig 10 20987924 8.123 1675 1415

Affine 1 2126978 7.982 3055 3069

PKU / UCLA 10

Affine Scheduling + ISS: IMPACT’14

Room for Improvement

Bmk. Description Version II Cycles CP(ns) LUT FF

floyd-
Finding Shortest Paths in a Graph

Orig 8 16777218 5.827 1085 791

walshall Affine 8 16980993 5.889 1182 852

trmm Triangular matrix-multiply
Orig 5 5642753 7.398 1387 1229

Affine 5 3913057 7.418 2160 1964

trisolv Triangular Solver
Orig 5 637001 9.091 4418 2962

Affine 2 266002 9.035 4445 2992

PKU / UCLA 11

Affine Scheduling + ISS: IMPACT’14

A Detour to Vivado HLS

◮ Vivado HLS is a compiler :-)

◮ Very powerful, but fragile
◮ Limited support for high-level optimizations
◮ Conservative dependence/resource analysis
◮ Excellent report on optimizations attempted

◮ Our goal: transform the code to eliminate the reason for failing to meet

II=1, and pass information to Vivado

◮ Pragma for pipelining, with target II
◮ Pragma for lack of data dependence
◮ Pragma for Array Partitioning
◮ But no pragma for lack of resource conflict!

PKU / UCLA 12

Affine Scheduling + ISS: IMPACT’14

Exposing Inner Parallel Loops

◮ Fact: for many affine benchmarks, we can expose one parallel inner

loop with affine scheduling

◮ Fact: for some benchmarks partial and non-uniform dependences make

our tool fail

◮ Proposed solution:

◮ Goal: expose parallel inner loops for pipelining
◮ => develop a customized algorithm using scheduling+ISS
◮ Make our life “simple” by focusing only the problems observed

PKU / UCLA 13

Affine Scheduling + ISS: IMPACT’14

Proposed Algorithm

DependenceSplit:

Input:

l: Polyhedral loop nest (SCoP)

Output:

l: in-place modification of l

1 D ← getAllDepsBetweenStatementsInLoop(l)

2 D ← removeAllLoopIndependentDeps(D, l)

3 parts ← {}
4 foreach dependence polyhedron Dx,y ∈ D do

5 Dy ← getTargetIterSet(Dx,y) ∩ Dl

6 if |Dy| < |Dl | then

7 parts ← parts
⋃

{Dy}
8 else

9 continue

10 end if

11 end do

12 l′ ← split(l, parts)

13 if sinkParallelLoops(l′) ̸= true

.or. parentLoop(l) = null then

14 l ← l′
15 return

16 else

17 DependenceSplit(parentLoop(l))

18 end if

◮ Works from inner-most

to outer-most level

◮ Always legal (split

does not change exec.

order)

◮ Split can re-merge

loops

PKU / UCLA 14

Affine Scheduling + ISS: IMPACT’14

Some Results and Comments

Bmk. Description Version II Cycles CP(ns) LUT FF

floyd-

Finding Shortest Paths in a Graph

Orig 8 16777218 5.827 1085 791

walshall
Affine 8 16980993 5.889 1182 852

ISS-Dep 2 4407041 5.645 1435 1481

trmm Triangular matrix-multiply

Orig 5 5642753 7.398 1387 1229

Affine 5 3913057 7.418 2160 1964

ISS-Dep 2 2101106 7.696 1374 1500

◮ Useful for only two cases in our experiments

◮ Severe trade-off in resource usage (split increases resource)

◮ ISS should be used with caution, only when needed

◮ Parallelism exposure is needed for next stage

PKU / UCLA 15

Transformation using Resource Constraints: IMPACT’14

Where Is My II=1?

◮ For 4 benchmarks, still II=2

◮ Reason (as per Vivado): memory port conflict

◮ Two accesses to the same array/bank in the same cycle
◮ Must wait 2 cycles before starting the next loop iteration

◮ A careful manual analysis showed:

◮ not all loop iterations have a conflict, only some
◮ it is often possible to split the iterations in two sets: one “conflict-free” and

another for the rest

PKU / UCLA 16

Transformation using Resource Constraints: IMPACT’14

Memory Port Conflict

◮ Rationale: memory port conflicts usually do not occur between each

loop iteration, but only between a subset of them

◮ when accessing the same banks: A[i], A[i+4], A[i+8], ... if we have

four banks

Definition (Bank conflict)

Given two memory add-resses x and y (assuming cyclic mapping of

addresses to banks using the % function). They access the same bank iff:

x % B = y % B (1)

with B the number of banks. It can be equivalently written:

∃k ∈ Z, x− y = B∗ k

PKU / UCLA 17

Transformation using Resource Constraints: IMPACT’14

Bank Conflict Set

Definition (Bank conflict set)

Given an inner-most loop l, whose iteration domain is Dl, and two references

F1

A and F2

A accessing the same array A. The bank conflict set CF1

A,F
2

A
⊆ Dl is:

CF1

A,F
2

A
:
{

~xl ∈ Dl | ∃k ∈ Z, lin
(

F1

A

)

− lin
(

F2

A

)

= k ∗B
}

With lin(x) the linearized form of x.

PKU / UCLA 18

Transformation using Resource Constraints: IMPACT’14

Proposed Algorithm

ResourceSplit:

Input:

l: inner-most parallel affine loop

sz: size of arrays in l

B: number of banks available

Output:

l: in-place modification of l

1 lst ← {}
2 all ← /0

3 foreach array A ∈ l do

4 foreach distinct pair of references F i
A,F

j
A ∈ l do

5 C
Fi

A
,F

j
A

← buildConflictSet(B,sizes(A),F1
A ,F2

A ,Dl)

6 lst ← lst
⋃

{C
F1

A
,F2

A
}

7 all ← all ∪ C
F1

A
,F2

A

8 end do

9 end do

10 rem ← Dl \ all

11 lst ← { lst, rem}
12 l′ ← codegen(lst)

13 l ← finalize(l, l′)

◮ Works only on parallel

inner loops (always

legal)

◮ Codegen is ISL

codegen

◮ Finalize can

re-merge loops

PKU / UCLA 19

Transformation using Resource Constraints: IMPACT’14

Some Discussions...

Bmk. Description Version II Cycles CP(ns) LUT FF

floyd-

Finding Shortest Paths in a Graph

Orig 8 16777218 5.827 1085 791

walshall
Affine 8 16980993 5.889 1182 852

ISS-Dep 2 4407041 5.645 1435 1481

trmm Triangular matrix-multiply

Orig 5 5642753 7.398 1387 1229

Affine 5 3913057 7.418 2160 1964

ISS-Dep 2 2101106 7.696 1374 1500

trisolv Triangular Solver

Orig 5 637001 9.091 4418 2962

Affine 2 266002 9.035 4445 2992

ISS-Res 1.5 219002 8.799 5360 3575

◮ ISS (dep or res) useful for three benchmarks

◮ Big resource increase! But good latency improv.

◮ Many open questions left, comparison missing

◮ Interesting “simple” approach: separate out problematic iterations

PKU / UCLA 20

Conclusion: IMPACT’14

Conclusions and Future Work

Take-home message:

◮ Vivado HLS is fragile, lots of room for improvement

◮ Index-Set Splitting can be very useful also for HLS

◮ Memory port conflict may be solved with simple splitting

◮ Trade-off latency vs. resource needs to be considered

◮ Better / more integrated solution should be designed

◮ Useful only in special cases (but really useful!)

Future work:

◮ Extensive comparison with other approaches (array partitioning, ...)

◮ Remove restrictions of the algorithms (legality)

◮ Single unified problem for throughput optimization

PKU / UCLA 21

	Overview
	Loop Pipelining
	Affine Scheduling
	Affine Scheduling + ISS
	Transformation using Resource Constraints
	Conclusion

