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Abstract: 

An experimental apparatus was developed to investigate the behaviour of vertically loaded free-

head piles in sand undergoing lateral soil movement (wf). A large number of tests have been 

conducted to date. Presented herein are 14 typical model pile tests concerning 2 diameters, 2 

vertical pile loading levels, and varying sliding depths with the movement wf driven by a 

triangular loading block. The results are provided regarding driving force, and induced shear 

force (T), bending moment (M) and deflection (y) along the piles with wf /normalised sliding 

depth. The tests enable simple expressions to be proposed, capitalised on theory for laterally 

loaded pile. 

The new expressions well captures the evolution of M, T, and y with soil movement observed in 

current model tests, and the ~5 times difference in maximum bending moment (Mmax) from two 

modes of loading. They further offer good estimation of Mmax for 8 in-situ pile tests and one 

centrifuge test pile. The study quantifies the sliding resistance offered by a pile for the given wf 

profiles, pile location (related to boundary), and vertical load. It establishes the linear correlation 

between the maximum thrust (resistance T) and Mmax, regardless of magnitudes of wf. 

 

KEYWORDS:  ground improvement; model tests, piles, slopes, soil/structure interaction, 

theoretical analysis
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1.  INTRODUCTION 

Study on active piles subjected to combined lateral and vertical loads has attracted significantly 

research effort (Meyerhof et al. 1981; Meyerhof et al. 1983; Anagnostopoulos and Georgiadis 

1993; Aubeny et al. 2003; Karthigeyan et al. 2007). However, limited study on response of 

(passive) piles owing to lateral soil movement and vertical loading is available (Knappett and 

Madabhushi 2009). It is not clear how the bending moment is related to maximum sliding force 

(lateral thrust) developed in a passive pile, in particular, once coupled with vertical loads and 

various soil movement profiles. The correlation needs to be established to facilitate design and 

inspection of piles used to stabilise slope, and to support bridge abutments and foundations of 

tall buildings. The study to date has principally been based on centrifuge tests (Stewart et al. 

1994; Bransby and Springman 1997; Leung et al. 2000), laboratory model tests (Poulos et al. 

1995; Pan et al. 2002; Guo and Ghee 2004), theoretical and numerical analyses (Ito and Matsui 

1975; Viggiani 1981; Poulos 1995; Guo 2003). The results are useful in one way or another. 

Nevertheless, it is unfortunate that the correlation between the moment and the lateral thrust (i.e. 

shear force in a pile) in majority of model pile tests was not provided. The force is indeed 

required to evaluate maximum bending moment (Poulos 1995) in design piles in aforementioned 

situation. 

Limit equilibrium solutions have been derived for piles in a two-layered cohesive soil (Viggiani 

1981; Chmoulian and Rendel 2004). They allow maximum bending moment to be correlated to 

lateral thrust by stipulating (i) A fixed sliding depth; and (ii) A uniform soil movement profile 

(without axial load on pile-head). The solutions are popularly used for passive piles. Likewise, p-

y curve based methods are widely adopted in practice. However, recent study shows that the p-y 

method significantly overestimated pile deflection and bending moment, and therefore further 

research is warranted (Frank and Pouget 2008). Response of in-situ slope stabilising piles was 

recorded (Esu and D’Elia 1974; Fukuoka 1977; Carrubba et al. 1989; Kalteziotis et al. 1993; 
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Smethurst and Powrie 2007; Frank and Pouget 2008). Among others, elastic solutions  (Fukuoka 

1977; Cai and Ugai 2003) and elastic-plastic solutions (Guo 2009) were developed. The former 

compares well with measured pile response at the reported stress states. The elastic-plastic 

solutions can capture well nonlinear response of passive piles at any soil movement. 

Nevertheless, the effect of soil movement profiles on the response is yet to be clarified, coupled 

with an axial load and in pre-failure state. This can be examined through model pile tests. Above 

all, a simple correlation between lateral thrust and maximum bending moment is needed to 

facilitate practical design. 

Small scale experiment can bring about valuable insight into pile-soil interaction mechanism. It 

can clarify and quantify key parameters (Abdoun et al. 2003). To examine the response of 

passive piles, Guo and Ghee (2004) developed a new experimental apparatus. Extensive tests 

have been conducted to date on piles in sand. Some results were published previously (Guo and 

Ghee 2005; Guo et al. 2006). This paper presents 14 typical test results under an inverse 

triangular loading block, which were deduced from test piles of 2 diameters, and subjected to 2 

axial load levels. They are analysed in order to: 

 Establish the relationship between maximum bending moment and lateral sliding thrust. 

 Simulate the evolution of the moment and the sliding thrust with moving soil. 

The test results are presented in form of the profiles of bending moment, shear force and 

deflection along the pile against frame movement or normalised sliding depth. The measured 

correlation between maximum bending moment and lateral thrust, and that between the thrust 

and soil movement are provided. They allow newly developed expressions to be validated with 

respect to impact of subgrade modulus, vertical load, 2 different (translational or rotational) 

loading manner, and effective soil movement. The established correlations are further compared 

with measured data of 8 in-situ test piles and one centrifuge test pile. 
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2.  APPARATUS AND TEST PROCEDURES 

2.1.  Shear box and loading system 

Figure 1 shows an overview of the experimental apparatus developed in the current study. It is 

mainly made up of a shear box, a loading system, and a data acquisition system. The shear box 

measures 1 m both in length and width. The upper section of the shear box consists of 25 mm 

deep square laminar steel frames. The frames, which are allowed to slide, contain the “moving 

layer of soil” of thickness Lm. The lower section of the shear box comprises a 400 mm height 

fixed timber box and the desired number of laminar steel frames that are fixed, so that a “stable 

layer of soil” of thickness Ls (≥ 400 mm) can be guaranteed. Changing the number of movable 

frames in the upper section, the thicknesses of the stable and moving layers are varied 

accordingly. Note that the Lm and Ls are defined at loading location, and they do vary across the 

shear box. The actual sliding depth Lm around a test pile is unknown, but it would not affect the 

conclusions to be drawn in this paper. 

The loading system encompasses a loading block that is placed on the upper movable laminar 

frames, and some weights on top of the test pile. The loading block is made to different shapes in 

order to generate various soil movement profiles. The triangular loading block employed herein 

has an (loading) angle of 16.7o (see Fig. 2). A translational frame movement of wf will induce an 

increasing sliding depth of 3.33wf (at the loading location) until a pre-specified final depth of Lm. 

Thereafter, additional frame movement will be uniform over the depth Lm, resulting in an overall 

trapezoid soil movement profile. A hydraulic jack is used to drive the loading block. The jack 

stroke permits a lateral frame movement wf up to 150 mm. Response of the pile is monitored via 

strain gauges distributed along the piles (see Fig. 2a), and via two linear variable displacement 

transducers (LVDT) above the model ground (Fig. 1). The test readings are recorded and 

processed via a data acquisition system and a computer, which are transferred into ‘measured’ 

pile response using a purposely-designed program discussed later on. 
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2.2. Sample preparation and sand properties 

Medium oven-dried quartz sand was utilised in this study. Fig. 3 shows its particle size 

distribution, which has an effective grain size D10 = 0.12 mm, a uniformity coefficient Cu = 2.92, 

and a coefficient of curvature Cc = 1.15.  The sand was rained into the shear box through a rainer 

hanging over the box. The falling height is selected to generate a uniform and desired density, 

which in this study was chosen as 600 mm. This is supposed to offer a relative density of 89% 

and a unit weight of 16.27 kN/m3 (see Fig. 4). Angle of internal friction of the sand is 38˚ as 

evaluated from direct shear tests.  

2.3.  Model pile 

The aluminium pipe piles tested had a length of 1,200 mm, see Fig. 2(a). They were made of two 

configurations: One has an outer diameter (d) of 32 mm, a wall thickness (t) of 1.5 mm, and a 

flexural stiffness (EpIp) of 1.17 kNm2; while the other  has d = 50 mm, t = 2 mm, and EpIp = 6.09 

kNm2. Ten levels of strain gauges were placed on the pile surface at an interval of 100 mm. They 

were calibrated prior to the tests. This is done by applying a transverse load in the middle of the 

pile clamped at both ends. Each gauge reading measured under various loads is then compared 

with theoretically calculated strain. A calibration factor is thus obtained for each gauge, which 

permits the gauge readings to be converted to actual strains. During the pile test, the strain 

gauges were protected from damage by covering with 1 mm of epoxy and being wrapped with 

tapes. 

2.4.  Test programme 

A series of tests were conducted to date using the triangular loading block. 14 typical tests are 

presented herein as summarized in Table 1. Each test is denoted by two letters and two numbers, 

e.g. TS32-0 and TD32-294: (i) The triangular loading block is signified as T; (ii) The ‘S’ and ‘D’ 

refer to a pre-selected sliding depth (Lm) of 200 mm and 350 mm, respectively; (iii) The ‘32’ 
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indicates 32 mm in diameter, and (iv) the ‘0’ or ‘294’ represents without or with an axial load of 

294 N, respectively.  Three types of ‘Pile location’, ‘Standard’ and ‘Varying sliding depth’ tests 

are reported herein: 

 ‘Pile location’ tests were carried out to investigate the impact of relative distance between 

the loading block and pile location etc; ‘Standard’ tests were performed to explain response 

to the two final pre-selected sliding depths of 200 mm and 350 mm; and ‘Varying sliding 

depth’ tests were done to highlight bending moment raises owing to additional movement 

beyond the triangular profile.  

For each test, firstly, the sample model ground was prepared in a way described previously to a 

depth of 800 mm. Secondly, the instrumented pile was jacked in continuously to a depth of 700 

mm below the surface, while the (driving) resistance was monitored. Thirdly, an axial load was 

applied on the pile-head using a number of weights (to simulate a free-head pile condition) that 

were secured (by using a sling) at 500 mm above the soil surface. Fourth, the lateral force was 

applied via the triangular block on the movable frames to enforce translational soil movement 

towards the pile. And finally, the sand was emptied from the shear box after each test. 

During the passive loading, the gauge readings, LVDT readings and the lateral force on the 

frames were generally taken at every 10 mm movement of the top laminar steel frame (e.g. frame 

movement, wf) to ~150 mm. A number of trial tests prove the repeatability and consistency of 

test results presented herein. 

2.5.  Determining pile response  

A spreadsheet program via Microsoft Excel VBA was written to process and analyze the data 

obtained from strain gauges and LVDTs. The inclination and deflection profiles along the pile 

were derived, respectively from 1st and 2nd order numerical integration of the bending moment 

profile. The shear force, and soil reaction profiles were deduced by using single and double 

numerical differentiation of the bending moment profile, respectively. With this program, typical 
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response profiles of bending moment, shear force, soil reaction, deflection and rotation profiles 

(Guo and Qin 2006) were deduced for all the tests. They allow the following response to be 

gained for typical frame movement wf : maximum bending moment Mmax, depth of the moment 

dmax, maximum thrust (shear force in the pile) Tmax, and pile deflection at groundline yt (see 

Table 1). 

2.6. Influence factors on test results 

The current test apparatus allows non-uniform mobilisation of soil movement across the shear 

box. The resulting impact is revealed by the ‘pile location’ tests. A pile (with d = 32 mm) was 

installed at a distance sb of 340 mm, or 500 mm, or 660 mm from the loading jack side. For 

instance, the sb of 500 mm is for a pile installed at the centre of the box. Driving the loading 

block at the pre-specified final sliding depth of 200 mm, three tests were conducted. The Mmax 

obtained is plotted against sb in Fig. 5. It shows a reduction of ~ 32 kNmm (at wf = 70~80 mm) 

in the moment as the pile was relocated from sb = 340 mm to 500 mm, and a reduction of ~ 10 

kNmm from sb = 500 mm to 660 mm. The total maximum moment was 45~50 kNmm for the 

pile tested at the centre of the box. All the piles reported subsequently were tested at the centre.                       

3.  TEST RESULTS 

3.1. Driving force and lateral force on frames 

The jack-in forces for six typical tests were recorded during the installation. They were plotted in 

Fig. 6. The figure shows more or less linear increase in driving force with the pile penetration. At 

the final penetration of 700 mm, the average total forces of the same diameter piles reach 5.4 kN 

(d = 50 mm piles) and 3.8 kN (d = 32 mm piles), respectively, with a variation of ~ 20%. This 

reflects the possible variations in model ground properties, as the jack-in procedure was 

consistent. (Note the axial load of 294N on the pile head was 7~9% the final jacking resistance). 
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The average shaft friction for the installation is estimated as 54 kPa (d = 32 mm) and 49.1 kPa (d 

= 50mm), respectively, ignoring the end-resistances on the open-ended piles. 

Total lateral force on the frames was recorded via the lateral jack during the tests upon each 10 

mm frame movement (wf). They are plotted in Fig. 7 for the six tests. Figs. 8a-8g provide the 

photos taken during the test TS50-294 for a few typical wf. Fig. 7 demonstrates the following: 

 The force in general linearly increases with the frame movement until it attains a constant.   

 Shear modulus of the sand Gs is deduced as 15~20 kPa using the linear portion of each 

force-movement curve. For instance, with the TS test series, the maximum shear stress  is 

estimated as 4.5~5.0 kPa (= 4.5~5.0 kN on loading block /shear area of 1.0m2). The 

maximum shear strain  is evaluated as 0.25~0.3 (= wf/Lm, with wf = 50~60 mm and Lm = 

200 mm), assuming the shear force is transferred across the sliding depth Lm of 200 mm. 

The ultimate shear resistance offered by the pile is ~ 0.6 kN (see Fig. 9), which accounts for 

~10% the total applied force of 5~8 kN on the frames. The determined shear stress and 

modulus thus may be reduced by ~10% for the tests without the pile. 

 The average overburden stress v at the sliding depth of 200 mm is about 1.63 kPa (= 

16.30.1). At this low stress level, sand dialatancy is evident, which generates a number of 

‘heaves’ (see Fig. 8h). 

 Lateral force attained maximum either around wf = 50~60 mm (TS series) or around 90~120 

mm (TD series), and dropped slightly afterwards. The slight fluctuation in the force at large 

frame movements reflects stress build-up and redistribution around the pile featured by the 

gradual formation of ‘heaves’. The pile response, however, attained maximum at a higher wf 

of either 70~90 mm (TS series) or 120 mm (TD series) shown later on, indicating a 

difference of ~30 mm in wf (i.e. wi shown later) in transferring the applied force to the pile. 

Figure 8 shows the sequential frame movements in lateral and vertical dimensions as the loading 

block advances. Table 2 shows the typical wf and the sliding depth induced. A sliding depth ratio 
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RL is defined herein as the ratio of thickness of moving soil (Lm) over the pile embedment length 

(i.e. L = Lm +Ls). It is utilized later to quantify the impact of depth of moving layer. For instance, 

in the TS test series, a wf  60 mm would correspond to a triangular profile to a sliding depth Lm 

of 200 mm, otherwise to a trapezoid soil movement profile with a constant RL = 0.29.  

3.2. Response of Mmax, dmax, yt versus wi (wf) 

Figure 10 shows the profiles of bending moment, shear force and pile deflection deduced from 

the test on the 32 mm diameter pile without axial load (TS32-0). Fig. 11 provides the same 

profiles for the test on the pile with a load of 294 N (TS32-294). They reflect the impact of the 

triangular movement profile for wf  60 mm and that of trapezoid profile afterwards. Critical 

responses of maximum bending moment Mmax, the depth dmax, and the head deflection at 

groundline yt are obtained and highlighted below: 

 At the maximum response state and without axial load (TS32-0): Mmax = 49.7 kNm, dmax = 

370 mm, and yt = 10 mm. The pile mainly rotated (see Fig. 10) about the pile tip. 

 Imposing the axial load, the Mmax increases to 78.6 kNmm (i.e. 60% increase compared to 

without load) (see Fig. 11). Negative bending moment was observed around sand surface at 

the initial stage with wf = ~40 mm (RL<0.17). The pile rotated about a depth of 550 ~ 700 

mm (pile-tip level), and induced a deflection yt of ~13 mm (i.e. 30% increase). 

Strongest response profiles are observed at wf = 70 ~90 mm (d =32 mm) for the two tested piles. 

They are plotted in Figs. 12a and 12b along with those reported previously for d = 50 mm (Guo 

and Qin 2006). The evolution of the maximum bending moment Mmax and shear force Tmax are 

furnished in Figs. 13a and 13b against the movement wf (for d = 50 mm and 32 mm), 

respectively. The figures demonstrate the following. 

 A small thickness of moving soil (with RL< 0.17, thus Lm < 120 mm) did not render sand to 

move around the piles located at sb = 500 mm. The initial frame movement wf (denoted by 
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wi hereafter) of 37 mm causes trivial response on each of the four test piles. An effective 

frame movement should be wf - wi (mm). 

 As the wf increases from 37 to 80 mm (RL = 0.17~0.29), the Mmax for all tests increases 

proportionally, irrespective of the axial loads, perhaps the wf is prevailed by a triangular soil 

movement profile. At higher wf (> 80~90 mm), the Mmax maintains at a constant and 

conforms to a trapezoid soil movement.  

 Given wf = 37~80 mm, the Mmax in tests with the axial load (e.g. TS32-294, and TS50-294) 

exhibits a ‘delayed’ stiff increase and attains a high ultimate value, compared to the pile 

without the load. (The effect is more remarkable for deep sliding case, as shown 

subsequently). A 60% increase in the Mmax owing to the axial load for the 32 mm diameter 

pile is noted compared to 30% for the 50 mm diameter piles. 

The wi captures the impact of the evolution of strain wedges carried by the loading block. For 

instance, at wf = 30 mm, Lm =105 mm, the lateral extent (at surface) of the wedge is calculated as 

225 mm [= 105 tan(45o+40o/2), the frictional angle of 40o is used to cater for the compaction 

effect associated with the moving]. This extent is vindicated by the few ‘heaves’ mentioned 

earlier (see Fig. 8h). The correlation between maximum shear force Tmax and the Mmax is 

discussed later on. 

3.3.  Response at ‘Deepest’ sliding depth 

Figures 14 and 15 provide the response profiles obtained using the deepest pre-selected sliding 

depth of 350 mm and the triangular loading block (TD32-0 and TD32-294). Without the axial 

load, the 32 mm diameter pile principally rotated about the middle pile embedment, and the yt 

reached 46 mm at wf = 110 mm. Imposing the axial load of 294 N (TD32-294), the same size 

pile translated and rotated around the pile tip and the yt reached 62.5mm. The moment and shear 

force profiles for the 32 mm piles and the 50 mm piles at maximum state (wf = 120 mm) are 

depicted in Figs. 16a and 16b, respectively. The evolution of the maximum bending moments 
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and shear forces with the advance of the frames is illustrated in Figs. 17a and 17b.  These figures 

show the following features:  

 Reaction from the 50 mm piles is negligible within a wi of 30 mm, which is less than 37 mm 

for d = 32 mm piles 

 The axial load causes constant bending moments down to a depth of 200 mm (Fig. 16), 

below which, the moment distribution resembles that from TS tests (Fig. 12); and it renders 

the Mmax increase to ~143 kNmm (see Fig. 16) that occurs at a depth dmax of 0.465m.  

 The thrust Tmax and the Mmax in the pile will in general attain higher values than these seen in 

the figures, as the movement wf of 120 mm just mobilises a sliding depth Lm of 350 mm (see 

Table 2). 

3.4.  Progressive moving sand on Mmax 

The evolution of Mmax with the normalised sliding depth RL is given in Fig. 18a. It shows three 

distinct stages: A small value of Mmax at 0  wf < 37 mm (RL < 0.17); the linear increase in Mmax 

owing to the triangular movement profile with 37 mm  wf < 60 mm (Lm = 200 mm, RL = 0.29) 

or with 37 mm  wf  < 120 mm (Lm = 350 mm, RL = 0.5); and the moment raises at either RL = 

0.29 or 0.5 that caused by uniform movement beyond the triangular movement. The moment 

raises were determined by conducting 4 more tests on the piles (d = 32 mm) to the pre-selected 

final sliding depths of 125(RL = 0.179), 250(0.357), 300(0.429) and 350 mm (0.5), (without axial 

load), respectively. The magnitudes of Mmax obtained are 5.2, 62.6, 115.3, 118.1 kNmm upon 

initiating the trapezoid profile (see Table 2). They finally reached 5.7, 123.5, 175.0, and 140.0 

(not yet to limit) kNmm, respectively. These values are plotted in Fig. 18b against the RL, 

together with the TS32-0 test. The Mmax along with dmax, Tmax and yt are also provided in Table 1. 

Note that the Mmax and Tmax from T32-0 (Lm = 350 mm) at wf = 120 mm are 1.2% and ~5% less 

than those from TD32-0, showing the repeatability and accuracy of the current tests. 
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4.  SIMPLE SOLUTIONS 

4.1 Relationship between Mmax and Tmax 

Guo (2008b,2009) demonstrated that analytical solutions for laterally loaded (active) piles can be 

employed to study passive piles subjected to soil movement, for which, the lateral load P is taken 

as the maximum sliding force, Tmax induced in a pile. This use with particular reference to rigid 

piles is further corroborated using the measured correlation between the Mmax and the Tmax, and 

that between the effective yo (= wf – wi) and the Tmax. 

Solutions for active rigid piles 

Given a free-head, floating-base, laterally loaded  pile, elastic solutions offer (Scott 1981) 

[1] Mmax = (0.148~0.26)PL       and       dmax = (0.33~0.42)L  

where P is lateral load applied at pile-head level; and dmax is depth of maximum bending 

moment. The coefficient of 0.33 or 0.148 is used for a uniform k, while 0.42 or 0.26 is for a 

Gibson k.  For the pile, elastic-plastic solutions provide the following correlation (Guo 2008a) 

[2] PedM )
3

2
( maxmax       

where e is the real or fictitious free-length of the lateral load above the ground surface.  Eq. [2] is 

of identical form to that developed for laterally loaded piles at ultimate state (Broms 1964).  

Use of equivalent load for passive piles 

Equations [1] and [2] are used for passive piles by replacing load P with Tmax. This is justified 

from two new experimental outcomes, in addition to the similarity of on-pile force profiles 

between passive and active loading revealed previously (Guo 2003; Guo 2008b). 

 Bending moment profile for the passive piles (see Figs. 12a and 16a) shows that dmax = 

0.35~0.4 m or (0.5~0.6)L, such that Mmax = (0.33~0.4)LTmax. 



Wei Dong Guo and H.Y. Qin Thrust and bending moment for rigid piles subjected to moving soil 
_____________________________________________________________________________ 
 

_____________________________________________________________________________ 
12 

 The correlation between Tmax and Mmax is observed as linear for all the current model tests, 

as is demonstrated in Figs. 19a and 19b and for almost all the wf. Using P = Tmax in eq. [2] to 

fit the measured data in Figs. 19a and 19b allows Mmax = 0.357 TmaxL to be gained. 

Points 1 and 2 indicate an elastic-plastic pile-soil interaction for the current model piles, and eq. 

[1] can be rewritten as   

[3] Mmax = (0.148~0.4)TmaxL  

4.2 Equivalent elastic solutions for passive piles 

The current model tests on passive piles support the following hypotheses: 

 The distance between the pile and the loading block sb renders a remarkable portion of initial 

frame movement wi of 30~37 mm to cause rather small reaction in the pile.  

 The effective frame movement of wf–wi (= yo) causes the groundline deflection yt during the 

passive loading process. Any pile-soil relative rigid movement is incorporated into the wi 

and modulus of subgrade reaction k. The yo may be grossly estimated by using elastic theory 

for a lateral pile in a homogenous soil featured by  

[4] yo = 4Tmax/(kL)  

where k = (2.4~3)Gs (Guo 2008a). The ‘k’ here is proportional to pile diameter d, as is noted 

in later calculation. 

These observations offer: 

[5] Tmax = (wf – wi)kL/4  

And Eq. [3] may be recast into 

[6]  Mmax = (wf - wi)kL2/(10~27)  

where wi is the initial frame movement which depends on the sb, pile diameter, and loading 

manner. For instance, wi = 0.03~0.037 m (the current translational tests), and wi = 0.0 for the 

rotational tests reported by Poulos et al (1995). The value of 15.38~27 corresponds to elastic 

case of Gibson ~ constant k, whereas a value of 11.2 or 10 is adopted for that shown in Fig. 19 
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and the rotating tests, respectively. Later on, all ‘elastic calculation’ is based on a value of 15.38 

(Gibson k) unless specified. The length L for each pile was taken as the smallest values of Li 

(pile embedment in ith layer, i = 1, 2 for sliding and stable layer respectively in this paper) and 

Lci. For model tests, as sliding layer is not evident around a test pile, the length L has to be taken 

as the pile embedment length. The Lci is given by (Guo and Lee 2001) 

[7] 25.0)(05.1 spci GEdL    

where Ep = Young’s modulus of an equivalent solid cylinder pile; sG  = average shear modulus 

of soil over the depth of ith layer.  In using the expressions, it must stress that  

 The modulus k is deduced from overall sliding process characterised by the sand–pile-shear 

box interaction. This should not be adopted for predicting pile deflection at groundline yt 

and for those provided in Table 1 that reflect a local pile-soil interaction (Guo 2008b). A 

higher modulus k is generally seen for predicting yt than the k for overall sliding, especially 

for a local pile-soil interaction (shallow sliding depth). Pile deflection yt in the overall 

sliding process does encompass a significant component of ‘rigid’ rotation, while it does not 

in the local interaction. Two local-interaction cases are as follows: (i) the deflection at 

groundline yt was measured as 46 mm for TD32-0 under wf = 110 mm. Given the measured 

Tmax = 0.4 kN, k = 50 kPa, and L = 0.7 m, eq. [4] yielded a similar deflection yo of 45.7 mm. 

(ii) The yo at wf = 110 mm was evaluated as 63.5 mm for TD32-294, in light of the measured 

Tmax = 0.5 kN, k = 45 kPa, and L = 0.7 m, which also compares well with the measured yt of 

62.5 mm. As expected, the values of k used here are higher than those adopted for overall-

interaction illustrated in Fig. 17b. 

 The estimated Tmax and Mmax must be capped by those deduced for ultimate state (Guo 

2008b). 
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4.3.  Example calculations of Mmax 

The current tests were conducted by translational movement of the loading block that has a 

loading angle of 16.7o. The sliding depth increases with the movement. The previous model pile 

tests (Poulos et al. 1995) were carried out by rotating loading block (rotational loading) about a 

constant sliding depth for each test. The current tests were generally associated with an effective 

soil movement yo of 30~70 mm (= wf -37 (mm) in Table 3), similar to the movement of 37 mm 

(RL < 0.5) or 60 mm (RL> 0.5) enforced previously (Poulos et al. 1995). Nevertheless, Fig. 18 

shows a 3~5 times difference in the magnitudes of the measured bending moment Mmax between 

the current and the previous tests. This difference/impact is investigated herein from 3 aspects 

using eqs. [5] and [6].  

(1) TS, TD tests and k:  The measured curves of Mmax ~ wf and Tmax~ wf (see Figs. 13 and 17) 

were simulated regarding the pre-specified final sliding depths of 200 mm (TS tests) and 350 

mm (TD tests), respectively. Elastic theory offers (Guo 2008a): k/Gs = 2.841 (d = 50 mm) and 

2.516 (d = 32 mm). The Gs was deduced previously as 15~21 kPa, thus the k was obtained as 

45~60 kPa (d = 50 mm). Given wi = 30 mm (TD50-294) and 37 mm (TS50-294), the moment is 

thus calculated using Mmax = (wf - wi)kL2/11.2. They agree well with the measured data shown in 

the figures. As the diameter is changed to 32 mm, the k reduces to 25~35 kPa, in view of its 

proportional reduction to the diameter (resulting in 28.8~ 38.4 kPa), and further to the ratio of 

2.516/2.841. This k offers good estimations for the d = 32 mm tests as well, as shown in the 

figures. Eqs. (4) –(6) are thus sufficiently accurate for the deep and shallow sliding cases. 

(2) Translational loading with variable sliding depths (constant L): The measured Mmax of 

the piles TD32-0 and T32-0 (Lm = 350, Table 1) tested to a final sliding depth of 350 mm is 

presented in Table 3. It is modelled using Mmax = (wf -0.037)kL2/11.2, and k = 35 kPa. The 

estimated Mmax for a series of wf (or RL) are also provided in Table 3 and plotted in Fig. 18a. The 

RL was based on actual observation during the tests, which may be slightly different from the 
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calculated one using RL = 0.33wf/L. The same calculation is also plotted in Fig. 18b. Especially 

the moment raise at RL = 0.5 (for wf >120 mm) was estimated using an additional movement of 

30 mm beyond the  wf of 120 mm to show the (capped) ultimate value (Guo 2008b).  Table 3 

shows the calculated agrees with the two sets of measured Mmax, in view of using the same wi of 

37 mm for either test. 

(3) Rotational loading about a fixed sliding depth: The Mmax was obtained in model pile tests 

by loading with rotation about a fixed sliding depth (thus a typical RL) (Poulos et al. 1995). The 

results for a series of RL were depicted in Fig. 18b, and are tabulated in Table 4. This measured 

Mmax is simulated via the following steps:  

 The ratio of k/Gs was obtained as 2.39~2.79 using the closed-form expression by Guo and 

Lee (2001), which itself is a function of a factor  (= 1.05d/L). 

 Shear modulus was stipulated as Gs =10z (Gs in kPa, z = Ls+Lm in m), from which the k was 

thus calculated. 

 With wi = 0 (as observed), the Tmax was estimated using eq. [5] for wf = 37 mm (RL < 0.5) or 

wf = 60 mm (RL> 0.5), respectively 

 The Mmax was calculated as Mmax = wfkL2/10 as per eq. [6].  

The test piles are of lengths 375~675 mm, and the Gs was 3.75~6.75 kPa. The values of the Mmax 

calculated for the 10 model piles are provided in Table 4. They are plotted against the ratio RL in 

Fig. 18b, which serve well as an upper bound of all the measured data. 

Overall, eqs. (5) and (6) offer good estimations of Mmax (thus Tmax) for all the current 12 model 

piles (e.g. Table 3) and the previous 10 tests (e.g. Table 4). The 3~5 times difference in the Mmax 

is likely owing to the dominant impact of the pile dimensions (via the L and the ratio k/Gs), the 

subgrade modulus k, the effective movement (wf-wi), and the loading manner (wi). 
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4.4.  Calibration against in-situ test piles 

The simple correlations proposed herein are validated using measured response of 8 in-situ test 

piles and one centrifuge test pile subjected to soil movement. The pile and soil properties are 

tabulated in Table 5, along with the measured values of the maximum bending moment Mmax. 

The shear force Tmax, however, was measured for 3 of the 9 piles. The Tmax for the rest 6 piles 

was thus taken as that deduced using elastic and elastic-plastic theory (Cai and Ugai 2003; Guo 

2009). Modulus of subgrade reaction ki, and equivalent length of rigid pile Lci were calculated 

previously (Guo 2009). The length L for each pile was taken as the smallest values of Li and Lci. 

This allows the ratio Mmax/(TmaxL) for each case to be evaluated. The results are tabulated in 

Table 5, and are plotted in Fig. 20. The ratios all fall into the range of the elastic solutions 

capitalised on constant k to the plastic solution of eq. [3]. The slightly higher ratio for the 

exceptional Katamachi-B is anticipated (Guo 2009). It may argue that 4 piles with a ratio of 

0.26-0.4 exhibit elastic-plastic pile-soil interaction and with an eccentricity greater than 0.  

Figure 19 shows the ratio Mmax/(TmaxL) from model pile tests stays almost invariably at 0.357 

from initial to ultimate loading state. The same ratio for the in-situ pile (Frank and Pouget 2008) 

was calculated, for sliding and stable layer, respectively, with respect to the ‘Pre-pull back’ 

(behaving as free-head) and ‘After-pull back (fixed-head)’ situation for the 16 years’ test 

duration. It is plotted in Fig. 21. The ratio for the pile in sliding layer stays around 0.25. (Note 

the ratio for stable layers as plotted in Fig. 21 seems to be complicated, but it is beyond the scope 

of this paper). In brief, the ratio Mmax/(TmaxL) is independent of  loading level for either the 

model tests or the field test. 

Determination of the Tmax is however, more pertinent to pile-head or base constraints. A fully 

fixed head observes yt = Tmax/(kL) (Guo and Lee 2001), and a semi-fixed head follows yt = 

(1~4)Tmax/(kL).  
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 The in-situ pile (Frank and Pouget 2008) at pre-pull back situation is evaluated using the 

free-head solution. The k was obtained as 8.8 MPa (= 100su, undrained shear strength su = 

88 kPa). At a groundline deflection yt = 32 mm (recorded on 05/07/1995), the Tmax was 

estimated as 478.7 kN (= ytkL/4). This Tmax agrees well with the measured load of 487 kN. 

Note the measured pile deflection increases approximately linearly from groundline to a 

depth of 6.8~8.0m, exhibiting ‘rigid’ characteristics. 

 Calculation of deflection and bending moment for rigid piles is illustrated in light of the 

two-row piles used to stabilise a sliding slope (Kalteziotis et al. 1993). The steel piles had a 

length of 12 m, an external diameter of 1.03 m, a wall thickness t of 18 mm, and a flexural 

stiffness EpIp of 1,540 MNm2. Given k = k1 =15 MPa (Chen and Poulos 1997),  and an 

equivalent rigid pile length L = L1 = 4 m (sliding depth), it follows Tmax = 45 kN (= ytkL/4) 

at yt = 0.003 m. This Tmax compares well with the measured 40~45 kN. The Tmax gives a 

uniform on-pile force per unit length of 10-11.25 kN/m. The moment is thus estimated as 

80~90 kNm(= 0.5*(10~11.25)*42) about the sliding depth, and as 180~202.5 kNm about the 

depth 6 m. The average moment agrees well with the measured 150 kNm, considering that 

the depth of sliding may be 4-6 m (Chow 1996; Chen and Poulos 1997). 

5.  CONCLUSIONS 

An experimental apparatus was developed to investigate the behaviour of vertically loaded free-

head piles in sand undergoing lateral soil movement. A large number of tests have been 

conducted to date. Presented herein are 14 typical tests concerning 2 diameters (32 and 50 mm), 

2 loading levels (0 and 294 N, 7-9% the driving force), and varying sliding depths enforced by a 

triangular loading block. The results are provided regarding the applied force, the induced shear 

force, bending moment and deflection along the piles. The tests enable simple solutions to be 

proposed for predicting the pile response.  

The model tests show the following features: 
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 The Mmax is largely linearly related to the sliding force Tmax, even for the initial frame 

movement up to wi and the extra large wf for trapezoid movement profile.  

 Maximum bending moment increases by 60% for the 32 mm diameter piles or 30% for the 

50 mm piles, and its depth by ~50%, upon applying a static load of 7-9% the maximum 

driving force. 

 3~5 times different bending moment can occur given similar size of model piles but 

different loading manner. 

With respect to the solutions, the following can be drawn. 

 Equation [6] may be used to estimate the maximum bending moment Mmax, for which the 

sliding thrust Tmax is calculated using eq. [5]. The estimation should adopt an effective frame 

movement of wf-wi, in which the wi depends on the pile diameter, pile position, and loading 

manner. 

 The subgrade modulus k may be estimated using the theoretical ratio of k/Gs and the shear 

modulus Gs (e.g. 15~20 kPa in the current tests). The Gs is pertinent to either overall shear 

process of the pile-soil-shear box system or local pile-soil interaction. The k varies with 

diameter and should be considered accordingly. 

 Capitalized on equivalent elastic pile-soil interaction, the Tmax from eq. [5] must be capped 

by ultimate plastic state. 

The current simple solutions, although approximate, offer satisfactory estimations of the 3~5 

times different Mmax recorded in the current and previous model pile tests; and the correct ranges 

of Mmax /(TmaxL) for 8 in-situ test piles and a centrifuge test pile. 
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Figure Captions 

Fig. 1 Schematic diagram of shear box 

Fig. 2.  Schematic test of a pile subjected to triangular loading block 

Fig. 3.   Particle size distribution of used sand            

Fig. 4.   Relationship between falling height and sand density 

Fig. 5. Variation of Mmax versus distance of pile from loading side, sb 

Fig. 6.  Jack-in resistance measured during pile installation 

Fig. 7.  Total applied force on frames against frame movements 

Fig. 8.  Progressively moving sand induced by a triangular loading block 

Fig. 9. Variation of maximum shear force versus lateral force on loading block 

Fig. 10. Response of pile during TS32-0 

Fig. 11. Response of pile during TS32-294 

Fig. 12.  Maximum response profiles of piles (final sliding depth = 200 mm) 

Fig. 13.  Evolution of maximum response of piles (final sliding depth = 200 mm) 

Fig. 14. Response of pile during TD32-0 

Fig. 15. Response of pile during TD32-294 

Fig. 16.  Maximum response profiles of piles (final sliding depth = 350 mm) 

Fig. 17.  Evolution of maximum response of piles (final sliding depth = 350 mm) 

Fig. 18. Variation of maximum bending moment versus sliding depth ratio 

Fig. 19. Maximum shear force versus maximum bending moment 

Fig. 20. Calculated versus measured ratios of Mmax/(TmaxL) 

Fig. 21. Measured Mmax and Tmax (Frank and Pouget 2008) 
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Table 1. Summary of 14 typical pile tests 

 

Test description 

 

Frame 
movement 
at ground 
surface wf 

(mm) 

Maximum bending moment 
Mmax (kNmm) 

Depth 
of 

Mmax, 
dmax 
(mm) 

Max shear force, Tmax (N) Pile 
deflection at 
groundline, yt 

(mm) 

Lm/Ls 

(mm) 

Remarks 

  
Tension 

side 
compression 

side 
Stable layer Sliding layer 

TS32-0 (sb = 340)* 60/80 63.8/81.0 400 266.9/327.7 266.6/325.8 11.5/14.8 200/500 
Pile location 

TS32-0 (sb = 660)* 60/80 30.0/40.0 400 114.9/150.3 120.4/153.7 7.8/10.8 200/500 

TS32-0 ( Lm =200) 60/70 39.3/49.7 -34.2/-45.0 370 147.2/183.8 159.8/201.1 7.1/10.3 200/500 

Standard 
Tests 

(sb = 500) 

TS32-294 60/90 29.8/78.6 -26.8/-76.5 375 108.5/295.5 98.0/279.9 5.4/13.1 200/500 

TS50-0 60/80 45.8/89.2 -37.9/-80.2 380 191.9/363.9 180.3/355.7 2.9/7.2 200/500 

TS50-294 60/80 58.5/115.6 -59.2/-120.0 400 229.6/445.5 241.4/467.5 3.5/7.3 200/500 

TD32-0 120 119.5 -112.1 450 495.9 414.8 58.7 350/350 

TD32-294 120 124.6 -117.5 465 532.4 463.5 73.8 350/350 

TD50-0 120 93.2 -84.4 450 393.8 353.1 58.9 350/350 

TD50-294 120 143.0 -135.1 450 577.6 453.4 67.5 350/350 

T32-0 (Lm = 125) 40/60 5.2/5.7 325 18.9/18.2 22.8/22.5 0.5/0.6 125/575 

Varying 
sliding depth 

(sb = 500)  

T32-0 ( Lm =250) 80/120 62.6/123.5 450 258.1/509.4 233.9/457.3 22.4/47.7 250/450 

T32-0 ( Lm =300) 100/150 115.3/175.0 450 450.6/675.2 399.4/619.6 25.1/54.8 300/400 

T32-0 ( Lm =350) 120/150 118.1/140.0 475 471.7/557.3 406.7/535.3 42.2/73.9 350/350 
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Table 2.  Frame movement (wf) versus depth of moving soil (Lm) 

Profile 
Frame movement, wf  

(mm) 
10 20 30 50 70 110 120 

Triangular 
(Final Lm = 
200 mm) 

Number of fully 
Mobilized frames 

2 3 4 6 8 8 8 

Depth of soil 
movement, Lm (mm) 

50 75 100 150 200 200 200 

Sliding depth ratio, RL 0.07 0.10 0.14 0.21 0.29 0.29 0.29 

Triangular 
(Final Lm = 
350 mm) 

Frame movement, wf 
(mm) 

 
60 

 
70 

 
80 

 
90 

 
100 

 
  110 

 
120 

Number of fully 
Mobilized frames 

 
8 

 
9 

 
10 

 
11 

 
12 

    13 
 

14 
Depth of soil 

movement, Lm (mm) 
200 225 250 275 300 325 350 

Sliding depth ratio, RL 0.29 0.32 0.36 0.39 0.43 0.46 0.50 
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Table 3.  Calculation for ‘translating’ pile test TD32-0 and T32-0(Lm = 350 mm,)  

Input data Calculated a  
Measured  

Mmax(kNmm) 

wf  (mm) 
Gs 

(kPa) 
RL 

Tmax 
(kN) 

Mmax  
(kNm) 

T32-0 TD32-0 

30 14 0.1270 0 0 0.86 3.66 

40 14 0.1693 0.018 4.62 2.78 8.80 

50 14 0.2116 0.080 20.04 11.68 26.37 

60 14 0.2540 0.142 35.45 21.69 44.42 

70 14 0.2963 0.203 50.86 38.47 56.56 

80 14 0.3386 0.265 66.27 63.96 57.50 

90 14 0.3809 0.327 81.68 84.23 68.40 

100 14 0.4233 0.388 97.09 97.51 85.17 

110 14 0.4656 0.450 112.50 106.98 96.56 

120 14 0.6398 0.512 127.92 118.12 119.50 

150 b 14 0.7997 0.697 174.15 139.78  

Note 
a wi = 37 mm,  = 0.048, k/Gs = 2.516, L = 0.7 m, d = 32mm 
b  Trapezoid movement profile 

 
 

Table 4.  Calculation for ‘rotating’ tests (Poulos et al. 1995) 

Input data Calculated Measured 

Embedded 
length L 

(mm) 

wf 
(mm) 

Gs 
(kPa) 

RL Factor  (= 
1.05d/L) 

k/Gs 
Tmax 
(kN) 

Mmax 
(kNmm) 

Mmax 
(kNmm) 

525 37 5.25 0.38 0.05000 2.54 0.0648 13.62 8.0 

575 37 5.75 0.43 0.04565 2.48 0.0760 17.47 17.4 

625 37 6.25 0.48 0.04200 2.43 0.0879 21.97 25.0 

675 60 6.75 0.52 0.03889 2.39 0.1631 44.03 44.2 

625 60 6.25 0.56 0.04200 2.43 0.1425 35.63 36.1 

575 60 5.75 0.61 0.04565 2.48 0.1232 28.33 25.5 

525 60 5.25 0.67 0.05000 2.54 0.1051 22.08 15.8 

475 60 4.75 0.74 0.05526 2.61 0.0884 16.79 7.1 

425 60 4.25 0.82 0.06176 2.69 0.0729 12.39 3.0 

375 60 3.75 0.93 0.07000 2.79 0.0588 8.82 0.8 
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Table 5  Mmax/(TmaxL) determined for field tests 

Piles Soil  Measured  References 
D/t a 
(mm) 

Ep 
a
 

(GPa) 
L1/L2 

a 
(m) 

k1/k2 
a 

(MPa) 
Lc1/Lc2

a  
(m)a 

Mmax
a, b 

(kNm) 
Tmax 

a 
(kN) LT

M

max

max b  

790/395 20 7.5/22.5 

0.8

0.8
 

19.5/19.5 903 310 0.388 Esu and D’Elia 

(1974)  

1200/600 20 9.5/13.0 

15

15
 

12.7/12.7 2,250 600 0.395 Carrubba et al 

(1989)  

630/315 28.45 2.5/10.0 

8.28

4.14
 

23.1/23.1 60.2 56-60 c 0.40-0.43 Leung et al 

(2000) (2.5 m)  

630/315 28.45 3.5/9.0 

8.28

4.14
 

23.1/23.1 73.8 65-85 c 0.25-0.32 Leung et al 

(2000) (3.5 m)  

630/315 28.45 4.5/8.0 

8.28

4.14
 

23.1/23.1 81.2 72-100 c 0.18-0.25 Leung et al 

(2000) (4.5 m)  

318.5/6.9 210 11.2/12.8 
0.8

0.5  6.3/5.6 165.2 144-150 c 0.18-0.20 Hataori-2 d 

318.5/6.9 210 8.0/9.0 
0.15

0.5  6.3/4.9 65.7 70-71.2 c 0.15-0.19 Hataori-3 d 

318.5/6.9 210 6.5/7.5 
0.8

0.5  6.3/5.6 197.2 143-300 c 0.10-0.25 Kamimoku-4 d  

318.5/6.9 210 4.0/6.0 
0.8

0.5  6.3/5.6 290.3 231-250 c 0.18-0.22 Kamimoku-6 d  

300/60 20 7.3/5.7 
0.10

0.6  3.2/2.8 69.5 40-56.2 c 0.38-0.62 Katamachi-B d 

915/19 31.1e 6.8/4.2 
8.8

8.8  9.7/9.7 

5.312

9.901 f 
9.221

6.532 f 
207.0

249.0 f 
86,4

86,5

Nov

Nov g 

6.536

3.1102 f 
5.369

3.642 f 
214.0

252.0 f 
88,10

88,11

Nov

Nov g 

3.544

5.1473 f 
5.378

4.796 f 
211.0

272.0 f 
92,30

92,1

Sept

Oct g 

   
 

 

1.756

2.1434 f 
0.487

7.834 f 
228.0

253.0 f 
95,5

95,6

July

July g 

a Guo (2009); D = outside diameter; t = wall thickness; Ep = Young’s modulus of pile; L1/L2 = 
thickness of sliding/stable layer; k1/k2 = subgrade modulus of sliding/stable layer. Lc1/Lc2 = 
equivalent length for rigid pile in sliding/stable layer. In the estimation, Gsi was simply taken as 
ki/3. bMmax = measured maximum bending moment; L = the smallest value of Li and Lci. c 
estimated using elastic and elastic-plastic solutions against measured bending moment and pile 
deflection and soil movement profiles; d Cai and Ugai (2003); e EpIp (flexural stiffness) = 1,070 
MN-m2; f all for sliding layer; g Frank and Pouget (2008). 
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(a) Elevation view 

(b) Initial plan view (A-A) 

Fig. 1. Schematic diagram of shear box
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(a)  An instrumented model pile      (b) Schematic diagram of testing 

Fig. 2.  Schematic test of a pile subjected to triangular loading block
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Fig. 6.  Jack-in resistance measured during pile installation

Fig. 5.  Variation of Mmax versus distance of pile from loading side, sb

200 400 600 800
30

40

50

60

70

80

90

M
ax

im
um

 b
en

di
ng

 m
om

en
t, 

M
m

ax
: k

Nm
m

Distance, sb: mm

800

700

600

500

400

300

200

100

0

0 1 2 3 4 5 6

Driving force: kN

Pi
le

 p
en

et
ra

tio
n:

 m
m

TS32-0
TS32-294
TS50-0
TS50-294
TD32-0
TD32-294



W. D. Guo and H.Y. Qin Thrust and bending moment for rigid piles subjected to moving soil 
_____________________________________________________________________________

5

Fig. 7.  Total applied force on frames against frame movements
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wf: mm (a) 10       (b) 20               (c) 30              (d) 50             (e) 70            (f) 110          (g) 140 

(h) Overview of sand heaves at wf  = 150 mm 

Fig. 8.  Progressively moving sand induced by a triangular loading block 
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Fig. 9. Variation of maximum shear force versus lateral force on loading block 
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Fig. 12.  Maximum response profiles of piles (final sliding depth = 200 mm) 
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Fig. 16.  Maximum response profiles of piles (final sliding depth = 350 mm) 
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Fig. 21. Measured Mmax and Tmax (Frank and Pouget 2008) 
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