
 

11/23/2003 

 

The Pennsylvania State University 

 

The Graduate School 

 

Department of Mechanical and Nuclear Engineering 

 

 

 

THRUST CHAMBER DYNAMICS  

AND PROPULSIVE PERFORMANCE OF 

AIRBREATHING PULSE DETONATION ENGINES 

 

 

 

A Thesis in 

 

Mechanical Engineering 

 

by 

 

Fuhua Ma 

 

 

 

 2003 Fuhua Ma 

 

 

 

Submitted in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

 

 

Doctor of Philosophy 

 

 

December 2003 

 

 



 

11/23/2003 

 

 

 

 

The thesis of Fuhua Ma was received and approved* by the following: 

 
 

 

Vigor Yang 

Distinguished Professor of Mechanical Engineering

Thesis Advisor 

Chair of Committee 

  

 

 

Robert J. Santoro 

Guillet Professor of Mechanical Engineering 

  

 

 

John Mahaffy 

Associate Professor of Mechanical Engineering 

  

 

 

Robert F. Kunz 

Associate Professor of Aerospace Engineering 

  

 

 

Richard C. Benson 

Professor of Mechanical Engineering 

Head of Department of Mechanical Engineering  

  

 

 

 

 

*Signatures are on file in the Graduate School. 

 



iii 

11/23/2003 

Abstract 

Pulse detonation engines (PDEs) have recently been recognized as a promising 

propulsion technology that offers potential advantages in thermodynamic cycle 

efficiency, hardware simplicity, and operation scalability.  The present work studies the 

flow dynamics and system performance of airbreathing PDEs with a stoichiometric 

hydrogen/air mixture.  The system includes a supersonic inlet, an air manifold, a rotary 

valve, a single-tube or multitube combustor, and a convergent-divergent nozzle.  The 

flight condition involves an altitude of 9.3 km and a flight Mach number of 2.1. 

The supersonic inlet dynamics is analyzed through axisymmetric two-dimensional 

simulations based on the Harten-Yee upwind total-variation-diminishing scheme.  

Turbulence closure is achieved by a two-equation model.  In addition to the steady-state 

inlet flow dynamics, the response of the inlet shock system to downstream disturbances is 

studied by imposing periodic pressure oscillations at the exit plane.  A wide range of 

fluctuation frequency and amplitude are investigated.  In general, the acoustic response of 

the inlet flow increases with increasing amplitude of the imposed oscillation, but 

decreases with the frequency. 

Both one- and two-dimensional simulations based on the recently developed 

Space-Time conservation element/solution element method are carried out for single-tube 

PDEs.  The two-dimensional code is further parallelized using the message-passing-

interface library and a domain decomposition technique for unstructured grid.  The flow 

dynamics, the effects of the operation timing and nozzle configuration on the propulsive 

performance, and the various loss mechanisms are examined.  Results show that an 
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optimum cycle frequency exists for a given configuration.  For a given frequency and 

purge time, a longer refilling period increases the specific thrust of PDEs considered.  

The nozzle studies indicate that the convergent-divergent nozzle significantly increases 

the propulsive performance.  Moreover, the throat area of the convergent-divergent 

nozzle plays a more important role than the length. 

Effort is also expended to study the flow dynamics and propulsive performance of 

multitube PDEs.  Comparison with the single-tube results demonstrates that the multitube 

design improves the engine performance in terms of specific impulse, operation 

steadiness, and timing range.  The effect of the system geometry is partially assessed by 

considering a free volume between the detonation tubes and the common nozzle.  Results 

indicate that the free volume helps to reduce the imperfect nozzle expansion loss and 

improve the engine steadiness.  However, it also induces more complicated shock waves 

and increases the internal flow loss.  The overall effect is a decrease in the propulsive 

performance. 
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Chapter 1 

Introduction 

1.1  Background and Motivation 

The combustion process is a vital mechanism in most propulsion systems.  A 

combustion process can be characterized as either a deflagration or a detonation.  The 

deflagration is mainly governed by mass and thermal diffusion and has a flame speed of 

one or more meters per second.  Usually, a deflagration process produces a slight 

decrease in pressure and can be modeled as a constant-pressure combustion process.  

Engines based on the deflagration process can be constructed to operate at steady state 

and are easy for design optimization with modular analyses of each subsystem.  Most 

conventional engines, such as turbofans, turbojets, ramjets, and rocket engines, utilize a 

steady deflagration process. 

In contrast to deflagration, the detonation process takes place much more rapidly 

and produces a supersonic combustion wave, or a detonation wave, propagating at around 

two thousand meters per second toward the unburned reactants.  The detonation wave can 

be described as a strong shock wave coupled to a reaction zone.  The shock wave 

compresses the reactants, acting like a valve between the reactants and products.  The 

reaction thus takes place at a much higher pressure.  Since there is not enough time for 

the pressure to reach its equilibrium, a detonation process closely approximates to a 

constant-volume combustion process.  It is well known that an engine based on a 

constant-volume combustion process has higher thermodynamic efficiency than that 
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based on a constant-pressure combustion process.  The potential advantage in 

thermodynamic cycle efficiency becomes the primary reason that has been driving 

people’s interests in developing engines that employ detonation processes.  Examples of 

these engine concepts include those employing standing detonation waves, such as the 

detonation thrusters, the detonation ramjet (dramjet), and the oblique detonation wave 

engine (ODWE), or those employing intermittent traveling detonation waves, such as the 

pulse detonation engine (PDE).  The engine concepts employing standing detonation 

waves are hampered by the difficulty in stabilizing the detonation wave.  The PDE thus 

becomes a more practical candidate nowadays.  

Early work on PDEs dates back to the 1940s (Hoffman, 1940; Nicholls et al., 

1957; Dunlap et al., 1958; Krzycki, 1962) and was suspended possibly due to the lack of 

funding in the late 1960s.  Interest in PDEs was reignited in the late 1980s by the work of 

Helman et al. (1986).  Recently, the PDEs have been recognized worldwide as a 

promising propulsion technology that offers potential advantages in thermodynamic cycle 

efficiency, hardware simplicity, and operation scalability and reliability (Bussing and 

Pappas, 1996; Kailasanath, 2002; Wu et al., 2003).  Several PDE concepts have been 

proposed and experimentally investigated in the past.  The main challenges are to develop 

an ignition system for repetitive detonation initiation, to integrate the inlet with the 

unsteady-operated detonation chamber, and to choose an optimized nozzle to achieve 

high performance.  Although substantial efforts have been made to overcome these 

challenges, a real PDE-based vehicle has not emerged yet.   

One of the most important concerns is to estimate the propulsive performance of 

PDE concepts and to compare it with those of the conventional engines.  In parallel to 
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experimental investigations, attempts were made both theoretically and numerically to 

estimate the performance of PDEs.  However, a general agreement on the performance 

has not been reached yet.  Most previous numerical simulations were either limited to 

single-pulse operation with one- and two- dimensional models, or multicycle operation 

with only one-dimensional models.  Very few efforts have been expended to simulate a 

PDE with multicycle operations using multidimensional models.  On the other hand, 

since the unsteady nature of the PDE is dominated by the unsteady flow dynamics during 

a steady periodic cycle, it is thus very important to understand the flow dynamics prior to 

calculating the performance.  Also, this understanding may help in improving the PDE 

designs.  Unfortunately, none of the previous studies have ever presented the detailed 

multidimensional flow evolution within a whole cycle.  Hence, the main motivation of 

this thesis is to establish a multidimensional numerical analysis to examine the flow 

dynamics involved in PDEs with multicycle operations, to provide a more convincible 

estimation of the propulsive performance of PDEs, and to investigate the effect of the 

various design parameters on the performance.  

1.2  Detonation Physics 

Studies of detonation phenomena date back to the end of the 19th century.  The 

simplest theory was proposed by Chapman (1889) and Jouguet (1905), usually referred to 

as the CJ theory.  It treats the detonation wave as a discontinuity plane in one dimension.  

This theory can be used to predict the detonation wave velocity without the need to know 

the details of the chemical reaction and the detonation wave structure.  A significant 
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advance in the understanding of the detonation wave structure was made independently 

by Zeldovich (1940) in Russia, von Neumann (1942) in the United States, and Döring 

(1943) in Germany.  They considered the detonation wave as a leading planar shock 

wave with a chemical reaction zone behind the shock.  Their treatment has come to be 

called the ZND model of detonation, and the corresponding detonation wave structure is 

called the ZND detonation wave structure.  Although all the experimentally observed 

detonation waves have much more complex cellular three-dimensional structures 

resulting from the strong nonlinear coupling between gasdynamics and chemical kinetics 

(Glassman, 1996), the CJ theory and the ZND model, which assume a planar one-

dimensional detonation wave, are still very useful.  An overview of them is hence given 

in this subsection to provide some basic knowledge on detonation physics.  More detailed 

and extended discussions about detonation physics and phenomena can be found from 

several textbooks (Fickett and David, 1979; Kuo, 1986; Glassman, 1996). 

1.2.1  CJ Theory 

For a steady, planar, one-dimensional detonation wave (see Fig. 1.1), with both 

the reactants and products modeled as the same perfect gas and the detonation wave 

modeled as a discontinuity plane at which heat addition occurs, the conservations of 

mass, momentum, and energy in a coordinate system fixed at the wave front give: 

 1 2 2( )D Du u uρ ρ= −  (1.1) 

 2 2

1 1 2 2 2( )D Dp u p u uρ ρ+ = + −  (1.2) 

 2 21 2
2

1 2

1 1
( )

1 2 1 2
D D

p p
u q u u

γ γ
γ ρ γ ρ

+ + = + −
− −

 (1.3) 
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where the velocities relative to the wave front have already been expressed out with the 

velocities relative to the tube; uD is the detonation wave velocity, q the heat release per 

unit mass of reactants due to chemical reaction, and γ the specific heat ratio; ρ, p, and u 

represent the density, pressure, and velocity, respectively; subscript 1 refers to the state of 

unburned gas or reactants and subscript 2 for the final state, i.e., the state of the burned 

gas immediately behind the detonation wave.  Since there are only three equations, one 

extra equation is needed to solve for the four unknowns p2, ρ2, u2 and uD.  This extra 

equation will be revealed through the following analysis.  

 

burned gas (p2, ρ2) unburned gas (p1, ρ1)

(relative velocity)2 2Du u u′ = − 0 1 Du u′ =

2u Du
1 0u = (actual velocity)

wave front

 

 

 Fig. 1.1   Steady planar detonation wave in a tube 

 

Combining the mass and momentum conservation equations leads to the so-called 

Rayleigh relation,   

 2 2

2 1 1

2 1

1 1
( ) /( ) Dp p uρ

ρ ρ
− − = −  (1.4) 

Manipulations of Eqs. (1.1) − (1.3) yield the following Hugoniot relation, 

 2 1
2 1

2 1 2 1

1 1 1
( ) ( )( )

1 2

p p
p p q

γ
γ ρ ρ ρ ρ

− − − + =
−

 (1.5) 

If these two relations are plotted in the p2 ~ 1/ρ2 plane, a Rayleigh line and a 

Hugoniot curve can be constructed.  Figure 1.2 shows the schematic of the Hugoniot 
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curve and the Rayleigh line.  The point corresponding to the unburned gas state is 

denoted by A.  Apparently, all the Rayleigh lines pass through point A.  The possible 

final states are defined by the intersection of the Rayleigh line and the Hugoniot curve.  

Among all the straight lines passing through point A, there are two which are tangent to 

the Hugoniot curve. The corresponding tangent points are generally called as the CJ 

points, denoted in the figure by point U for the upper CJ point and L for the lower CJ 

point.  The horizontal and vertical lines passing through point A correspond to a constant-

pressure and a constant-volume process, respectively.  The Hugoniot curve is divided into 

five regions, i.e., regions I~V, by the two tangent lines and the horizontal and vertical 

lines.  Region V is unphysical since the Rayleigh lines defined by Eq. (1.4) cannot have 

positive slope.  Regions I and II are called detonation branch, within which the velocity 

of the wave front is supersonic; regions III and IV are called deflagration branch, within 

which the velocity of the wave front is subsonic.  The upper CJ point corresponds to a 

minimum detonation velocity, whereas the lower CJ point corresponds to a maximum 

deflagration velocity. 

Through simple mathematical derivations, i.e., equating the slope of the Hugoniot 

curve to that of the Rayleigh line, the following relation, usually referred to as the CJ 

condition, can be obtained at the CJ points, 

 2 2 2 2 2/Du u u p cγ ρ′ = − = =   or  2 2 2/ 1M u c′ ′= =  (1.6) 

where 2c is the sound speed of the burned gas, 2u′  and 2M ′  the velocity and Mach number 

of the burned gas relative to the wave front, respectively.  The flow velocity relative to 

the wave front at the CJ points equaling to the local sound speed is one of the notable 
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characteristics of the CJ points.  At the upper CJ point, since 2 2 Du c u+ = , any rarefaction 

waves arising behind the wave front will not overtake the detonation wave and thus a 

self-sustained steady detonation wave can be established. 

 

p2

I (strong detonation)

II (weak detonation)

III (weak deflagration)

IV (strong deflagration)

upper CJ point

V

L lower CJ point

1/ρ2

1/ρ1

�

p1

A

U

 
 

Fig. 1.2   Schematic of Rayleigh lines and Hugoniot curve in p2 ~ 1/ρ2 plane (adapted 

from Kuo, 1986) 

 

Region I is called the strong-detonation region.  In this region, the velocity of the 

burned gas relative to the wave front is subsonic, i.e., 2 2 Du c u+ > , thus, any rarefaction 

waves arising behind the wave front will overtake and weaken the detonation wave.  As a 

matter of fact, a strong detonation, also called overdriven detonation, is not stable and is 

thus seldom observed experimentally.  It may, however, appear during a transient process 

or be generated with a driving piston.  

Region II is called the weak-detonation region.  In this region, the velocity of the 

burned gas relative to the wave front is supersonic, i.e., 2 2 Du c u+ < .  If the ZND 

detonation wave structure is adopted, the detonation wave can be considered as a shock 
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wave and a following heat addition zone.  The gas velocity immediately behind the shock 

relative to the wave front is known to be subsonic from classical shock dynamics theory.  

On the other hand, it is also well known that for a steady flow in a constant-area tube, the 

fluid cannot be accelerated from subsonic to supersonic by heat addition.  This means 

that the velocity of the burned gas relative to the wave front cannot be supersonic.  Thus, 

region II is physically impossible as long as the ZND detonation wave structure is 

assumed.  Another discussion leading to the same conclusion can be found in the 

textbook of Glassman (1996). 

Region III is called the weak-detonation region.  The weak deflagration, or simply 

the deflagration, is often observed in experiments.  A deflagration wave propagates 

toward the unburned gas at a subsonic velocity.  Across a deflagration wave, the velocity 

of the gas relative to the wave front is accelerated within the subsonic regime, and the 

pressure is reduced.  

Region IV is called the strong-deflagration region.  Passing through a strong-

deflagration wave, the gas velocity relative to the wave front is to be accelerated from 

subsonic to supersonic.  Similar to the discussion for region II, this violates the common 

conclusion that for a steady flow in a constant-area tube, the fluid cannot be accelerated 

from subsonic to supersonic by heat addition.  Thus, region IV is physically impossible, 

and a strong deflagration is never observed experimentally.  

Based on the above discussions, the upper CJ point is the only possible state for a 

self-sustained steady detonation wave commonly observed.  Thus, the CJ condition, Eq. 

(1.6), can be used as an additional equation along with Eqs. (1.1) ~ (1.3) to solve for the 

four unknowns aforementioned, i.e., p2, ρ2, u2 and uD.  It is convenient to find the 
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detonation wave Mach number DM  first and then express the other unknowns with 

respect to it.  For concision, the corresponding mathematical manipulations are skipped, 

and the solutions for the unknowns as well as several other properties of the final state are 

listed as below.  

 
2 2

1 1 1

1 1
1

2 2

D
D

u q q
M

c RT RT

γ γ
γ γ
− −

≡ = + +  (1.7) 

 1D Du M RTγ=  (1.8) 

 
2

2 1

1
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D
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+

 (1.9) 
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)1(

D
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M
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ρ
ρ

+
+

=  (1.13) 

 

2
2

2 2 2

1 1 1

/( ) 1

/( ) (1 )

D

D

T p R M

T p R M

ρ γ
ρ γ

 +
≡ =  + 

 (1.14) 

where R is the gas constant; T1 and c1 are the temperature and sound speed of the 

unburned gas, respectively; T2, c2, and M2, are the temperature, sound speed, and Mach 

number of the unburned gas, respectively. 
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In most cases, the square of the detonation wave Mach number, 2

DM , is much 

larger than 1.  Some of the above expressions can thus be approximately reduced to the 

following ones.   

 2

1

1
Du u

γ
≅

+
 (1.15) 

 Duc
γ

γ
+

≅
1

2  (1.16) 

 2

1
M

γ
≅  (1.17) 

 22

1

 
1

D

p
M

p

γ
γ

≅
+

 (1.18) 

 2

1

1ρ γ
ρ γ

+
≅  (1.19) 

 

2

2

1 1

DT M

T

γ
γ

 
≅  + 

 (1.20) 

1.2.2  ZND Detonation Wave Structure 

The CJ theory brought great success in predicting the detonation wave velocity.  

It, however, gives no information about the details of the detonation wave structure.  In 

the early 1940s, Zeldovich (1940), von Neumann (1942), and Döring (1943) 

independently extended the CJ theory to consider the detonation wave structure that has 

become the well-known ZND detonation structure.  Their treatment is referred to as the 

ZND model.  According to them, the detonation wave is interpreted as a strong planar 

shock wave propagating at the CJ detonation velocity, with a chemical reaction region 
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followed and coupled to the shock wave.  The shock wave compresses and heats the 

reactants to a temperature at which a reaction takes place at a rate high enough for the 

ensuring deflagration to propagate as fast as the shock wave.  From the energy point of 

view, the shock wave provides activation energy to ignite reaction, whereas the energy 

released by reaction keeps the shock moving.  Their assumption that no reaction takes 

place in the shock wave region was based on the fact that the width of the shock wave is 

in the order of a few mean free paths of the gas molecules, whereas the width of the 

reaction region is in the order of one centimeter (Kuo, 1986). 

Figure 1.3 shows schematically the variation of physical properties through a 

ZND detonation wave.  Plane 1 denotes the state of unburned gas.  Plane 1' denotes the 

state immediately after the shock wave.  Chemical reaction starts at plane 1' and finishes 

at plane 2, at which the CJ state reaches.  If a single variable is used to represent the 

reaction progress or the degree of reaction, it will have a value of 0 at plane 1' and a value 

of 1 at plane 2.  Generally, the reaction rate, such as that that follows the Arrhenius law, 

increases with temperature, and the chemical reaction region can be further divided into 

an induction and a heat addition zone.  In the induction zone directly behind the shock 

wave where the temperature is not very high, the reaction rate is relatively slow and as a 

result, the temperature, pressure, and density profiles are relatively flat.  In the heat 

addition zone behind the induction zone, the reaction rate increases drastically to high 

values along with a large amount of heat release from the reaction so that the gas 

properties change sharply. 
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Fig. 1.3   Variation of physical properties through a ZND detonation wave (adapted from 

Kuo, 1986) 

 

The ZND detonation wave structure can be also interpreted by Hugoniot curves 

shown in Fig. 1.4.  There are many paths, such as a, b, c, and d, by which a reacting 

mixture may pass through the detonation wave from the unburned state to the burned 

state (Kuo, 1986).  In the limit of zero chemical-energy release in the shock, a path will 

reach point s, the intersection of the shock Hugoniot curve and the Rayleigh line, and 

then the upper CJ point.  The point s is referred to as the von Neumann spike.  The von 

Neumann spike pressure can be determined from a normal shock relation: 

 1
1

)1(2
2

1

−
+

+
=

γ
γ Ds M

p

p
 (1.21) 

Using Eq. (1.12), the von Neumann spike pressure relates to the CJ pressure as follows: 

 12
1

2

1

−=
p

p

p

ps  (1.22) 

Hence, the von Neumann spike pressure is about twice of the CJ pressure.   
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The ZND model marks a great advance from the CJ theory in recognizing the 

detonation wave structure.  However, all the experimentally observed detonation waves 

exhibit much more complex cellular three-dimensional structures.  The smoked-foil 

record of a detonation shown in Fig. 1.5 displays the typical cellular structure (Strehlow, 

1968).  More detailed discussions about these structures can be obtained from the 

textbooks of Kuo (1986) and Glassman (1996). 
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Fig. 1.4   Schematic of ZND detonation structure in p2 ~ 1/ρ2 plane (adapted from Kuo, 

1986) 

 

 

 Fig. 1.5   Smoked-foil record of a detonation (Strehlow, 1968) 
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1.2.3  ZND Detonation Wave Propagation in a Tube 

This subsection considers the ZND detonation propagation in a constant-area tube 

that is closed at one end and open at the other, as shown schematically in Fig. 1.6.  The 

tube is initially filled with a static premixed detonable mixture.  Detonation is initiated at 

the closed end and propagates downstream toward the open end.  Following the 

detonation wave is a centered rarefaction wave, known as the Taylor wave, emanating 

from the closed end to satisfy the stationary boundary condition there.  After the passage 

of the Taylor wave, a uniform region forms.  The corresponding wave diagram in the 

space-time plane is given in Fig. 1.7.  Figure 1.8 schematically shows the pressure profile 

within the tube.  The width of the detonation wave is enlarged for visualization.  The 

states 1, s, 2, and 3 denote the unburned gas state, the von Neumann spike state, the CJ 

state, and the uniform region state, respectively.  The von Neumann spike state and the 

CJ state can be readily determined using the equations derived in the previous subsection.  

The focus of this subsection is hence on the solution of the Taylor wave and uniform 

regions. 

 

burned gas unburned gas
Du

wave front
burned gas unburned gas

Du

wave front

 

 Fig. 1.6   ZND detonation propagation in a tube closed at one end 
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 Fig. 1.7   Space-time wave diagram for a ZND detonation wave propagation in a tube 
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Fig. 1.8   Schematic of pressure profile for a ZND detonation propagation in a tube closed 

at one end. (adapted from Bussing and Pappas, 1994) 

 

The properties of the uniform region can be obtained as follows.  Applying the 

Riemann invariant relation along the characteristic line passing through the Taylor wave 

from state 2 to state 3 gets 

 3 3 2 2

2 2

1 1
u c u c

γ γ
− = −

− −
 (1.23) 
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where u3 and c3 are the velocity and sound speed in the uniform region, respectively.  

Since u3 = 0, the above equation yields, 

 
2

3 2
2 2

2 2

1 1 1 1
1 1 1

2 2 2 1

D

D

c u M
M

c c M

γ γ γ
γ

− − − −
= − ⋅ = − = −

+
 (1.24) 

where M2 is the Mach number of the gas at state 2 expressed with Eq. (1.11).  

Consequently, the temperature in the uniform region is  
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1 1
1

2 1

D

D

T M

T M

γ
γ

 − −
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 (1.25) 

Through an isentropic relation from state 2 to state 3, the pressure can be determined as: 
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 (1.26) 

The relation of the sound speed c3 with the detonation wave velocity uD can be obtained 

by combining Eqs. (1.24), (1.10), and (1.8): 

 
2

3

2

1

2

D

D D

c M

u M

+
=  (1.27) 

With the sound speed c3 available, the length of the uniform region, Lconst, at a 

particular instant of time t, can also be determined.  Since the rear of the Taylor wave 

propagates at c3, thus, 

 tcLconst 3=  (1.28) 

Similar to the previous subsection, considering that the square of the detonation 

wave Mach number, 2

DM , is much larger than 1, the above expressions, Eqs. (1.24)~ 

(1.27) can be further simplified with approximation:   
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 3 1

2D

c

u
≅  (1.32) 

The length of the uniform region can thus be approximated as: 

 tutcL Dconst
2

1
3 ≅=  (1.33) 

It indicates that the length of the uniform region is about halfway between the detonation 

wave front and the head end (Fickett and Davis, 1979). 

The flow properties within the Taylor wave region, 3 Dc t x u t≤ ≤ , can also be 

derived.  The Riemann invariant relation along the characteristic line from state 3 to the 

point (x, t) gives: 

 3

2 2
0

1 1
c u c

γ γ
− = −

− −
 (1.34) 

where u and c are the velocity and sound speed at point (x, t).  On the other hand, since 

the forward characteristic lines are straight, thus, 

 cu
t

x
+=  (1.35) 

Combination of the above two equations leads to the following solutions of u and c. 
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Other properties such as the temperature and pressure at point (x, t) are: 
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1.3  Pulse Detonation Engine Concept 

The pulse detonation engine (PDE) is an unsteady propulsion device that 

produces periodic impulse by utilizing repetitive detonations.  Based on whether or not to 

use the ambient air as working fluid, it can be classified as an airbreathing version 

referred to as the airbreathing PDE and a rocket version referred to as the pulse 

detonation rocket engine (PDRE).  The PDE differs from the conventional engines by its 

two distinguishing characteristics: unsteady operation and detonation process.  It is 

noteworthy that the PDE concept is also different from the widely known pulsejets, such 

as the German V-1 “buzz bomb” used in World War II.  These pulsejets employ a 

deflagration combustion process although they are unsteady engines.  A comparison of 

the PDE with the existing engines is briefly summarized in Fig. 1.9.  The cycle operation, 

potential advantages, and typical structure of the PDE are discussed in detail in the 

following paragraphs. 
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 Fig. 1.9   Conceptual comparison of PDEs with other engines 
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1.3.1  Cycle Operation of PDE 

A typical PDE cycle operation includes four basic processes: initiation of 

detonation wave, propagation of detonation wave, exhaust of combustion products or the 

blowdown process, and refilling of fresh reactants (Bussing and Pappas, 1994).  These 

four processes are schematically shown in Fig. 1.10 for an idealized PDE which involves 

a straight detonation tube along with a valve located at the head end. 
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 Fig. 1.10   Schematic of cycle operation for idealized PDE 

 

The cycle begins as the tube is filled with reactants at pressure p1.  The valve is 

then closed and the detonation is initiated either directly or after a deflagration-to-

detonation transition (DDT) by an ignition source near the closed end.  The detonation 

wave propagates toward the open end at the CJ detonation velocity uD, usually in the 

order of 2000 m/s.  Following the detonation wave is a set of rarefaction waves known as 

the Taylor wave emanating from the closed end to ensure the zero velocity condition at 
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the closed end.  The tail of the Taylor wave propagates toward the open end at the local 

sound speed c3 which is in the order of 1000 m/s.  Between the tail of the Taylor wave 

and the closed end is a uniform region, as discussed in Section 1.2.3.  The Taylor wave 

reduces the CJ pressure (p2) immediately behind the detonation wave to a relatively lower 

level (p3) in the uniform region.  This pressure, usually referred to as the plateau pressure, 

is still much higher than the ambient pressure (p0) so that thrust is produced on the closed 

end. 

When the detonation wave exits the tube, another set of rarefaction waves are 

generated and propagate back into the tube to reduce the pressure thereby, marking the 

beginning of the blowdown process.  The reflection of these rarefaction waves off the 

closed end forms another set of rarefaction waves propagating downstream toward the 

open end, further reducing the chamber.  The unsteady blowdown process is 

characterized by a series of compression and rarefaction waves which are alternately 

generated from the closed and open ends (Bussing and Pappas, 1994).  Eventually, the 

chamber pressure decays to the ambient level and the blowdown process is finished.   

Upon the end of the blowdown process, the valve opens to allow for the fresh 

reactants to be charged into the tube.  The valve timing is controlled so that no fresh 

reactants escape from the open end to the ambient.  This requires that the leading fresh 

reactants should be caught by the detonation wave of the next cycle somewhere within 

the detonation tube, or ideally, at the exit plane of the detonation tube.  After the refilling 

process finishes, the valve closes and the next cycle begins.  

In a more practical cycle operation, the refilling process may start when the 

closed-end pressure decays to a prespecified pressure level instead of the ambient value, 
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to avoid the very low or even negative thrust produced on the closed end during the later 

period of the blowdown process.  In addition, the temperature of the products near the 

closed end may be still very high and ignite the refilling fresh reactants if they contact 

directly.  This kind of preignition may cause engine unstart.  Thus, a purging process, i.e., 

filling a little inert gas or cold air before filling the reactants, would be necessary to 

prevent the preignition. 

1.3.2  Potential Advantages of PDE 

Due to the much more rapid burning or material conversion rate of a detonation 

process than a deflagration process, PDEs possess several potential advantages over those 

conventional engines based on the deflagration process.  The first and also the most 

attractive one is the higher thermodynamic cycle efficiency, which is attributed to the 

facts that a detonation process approximately closes to a constant-volume combustion 

process (Kailasanath, 2002) and that a constant-volume combustion based engine cycle 

(the Humphrey cycle) has higher thermodynamic cycle efficiency than a constant-

pressure combustion based engine cycle (the Brayton cycle).  The thermodynamic cycle 

efficiencies of the Brayton, Humphrey, and ideal PDE cycle are given in Appendix A.  It 

has been noted that the Humphrey cycle efficiency may be 30% to 50% higher than that 

of Brayton cycle for stoichiometric hydrogen/air mixture (Bussing and Pappas, 1994).  

The potentially higher thermodynamic cycle efficiency of PDEs directly translates to 

their potentially higher specific impulse.  Figure 1.11, provided by Adroit System Inc., 

shows the anticipated specific impulse and operational envelope of various airbreathing 

engines including PDEs, turbojets, ramjets, and scramjets using hydrogen or hydrocarbon 
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fuels (Roy, 1999).  Clearly from this figure, PDEs have a performance advantage over 

their counterpart ramjet within their mutual flight regime.  The lower performance of 

PDEs than turbojets within the regime of flight Mach number less than 2 is due to the fact 

that the turbojets utilize an additional compressor for precompression of the incoming air. 
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 Fig. 1.11   Anticipated specific impulses of airbreathing engines (Roy, 1999) 

 

In addition to their potentially higher thermodynamic cycle efficiency and specific 

impulse, PDEs have a wider operation range in terms of flight Mach number.  The 

turbojets used nowadays in most commercial and military aircrafts are suitable for 

subsonic and low supersonic flight speed because of their high performance resulting 

from the precompression of the incoming air by the compressor.  They become expensive 

and inefficient as the flight Mach number increases and cannot be used at a flight Mach 

number of greater than about 3 due to the cooling problem of the compressor blade.  

Ramjets, on the other hand, are designed for supersonic operation with a flight Mach 
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number greater than 2.  They usually require solid propellant rocket boosters for 

accelerating to the ramjet take over speed.  PDEs, however, can produce thrust at static 

conditions and thus have the potential to operate in both subsonic and supersonic flight 

regimes with competitive efficiencies. 

Other desirable features of PDEs over current propulsion systems include 

hardware simplicity and configuration scalability.  PDEs do not necessarily require 

compressors to precompress the incoming air, nor turbines to produce work, nor boosters 

to produce thrust at static condition, thus significantly reducing the hardware complexity 

and design cost of the engine.  Unlike pulsejets, which are tuned to the acoustical 

resonances of the combustion chamber, PDEs are uncoupled from the acoustical chamber 

resonance (Eidelman et al., 1990).  It is theoretically possible to construct PDEs of a large 

range of sizes and thrust levels.  In addition, the detonation frequency is physically 

restricted by the filling velocity of the fresh reactants into the detonation tube and is thus 

also scalable. 

In summary, PDEs offer the potential advantages of higher thermodynamics cycle 

efficiency and specific impulse, wider operating region, hardware simplicity, and 

operation scalability over other existing propulsion systems.  However, it should be 

mentioned that, in spite of these advantages, PDEs have also encountered a lot of 

challenging design issues such as the low-energy repetitive detonation initiation, inlet 

integration, nozzle optimization, and so forth.  A real PDE-powered vehicle will not 

emerge until all these challenging issues are resolved. 
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1.3.3  Typical Structure of PDE 

Figure 1.12 shows schematically the typical structure of an airbreathing PDE, 

which includes the following components (Bussing and Pappas, 1996): inlet, fuel and/or 

oxidizer sources, distribution manifolds, mixer, initiator, detonation tube, nozzle, and 

interfaces.  The incoming air delivered by the inlet is distributed by the air manifold and 

mixes with the fuel distributed by the fuel manifold from the fuel source.  The resultant 

mixture is fed into the detonation tube for detonation.  The detonation products exhaust 

through the nozzle to generate thrust.  
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 Fig. 1.12   Typical structure of airbreathing PDE (Bussing and Pappas, 1996) 

 

All conventional airbreathing engines require an inlet to compress the air from the 

freestream velocity and pressure to lower velocity and higher pressure for further 

processing by other engine components.  So do the airbreathing PDEs.  The inlet of 

conventional airbreathing engines is designed to provide stable airflow to the combustor 
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with the highest possible recovery of total pressure and lowest possible external drag and 

weight (Yang and Cappuccio, 1991).  In airbreathing PDEs, because of the strong 

pressure waves arising from the unsteady operation of the detonation tube, additional 

concerns should be placed in the inlet design.  Several approaches have been proposed.  

The first is to design an inlet manifold large enough to dampen the pressure waves.  It is, 

however, not practical for volume-limited applications (Bussing and Pappas, 1996).  The 

second approach is to bleed excess air between detonation cycles through a well-designed 

inlet/detonation tube manifold (Bussing and Pappas, 1996).  A more practical approach 

would be to utilize a combustor consisting of multiple detonation tubes that operate out of 

phase to enable continuous airflow to the combustor (Bussing and Pappas, 1996) so that 

the pressure waves propagating to the inlet are significantly reduced to a level within the 

stable margin of the inlet.   

The inlet/detonation tube interface serves both to isolate the detonation tube 

flowfield from the inlet flowfield during the detonation initiation and propagation and the 

blowdown processes, and to allow for the air and reactants to be delivered to the 

detonation tube during the purging and refilling processes.  An example of this interface 

is a mechanical valve located at the head end of the detonation tube as mentioned in 

Section 1.3.1.  Another way to achieve the same purpose would be through some kind of 

aerodynamic means.  

The fuel source supplies fuel to the mixer through the fuel distribution manifold.  

In some cases, a separate oxidizer source and oxidizer manifold may be required to 

reduce the time and physical distance required for detonation initiation.  The mixer is to 

provide efficient mixing of fuel and air, and/or fuel and oxidizer for further detonation. 
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The initiator is used to initiate the detonation wave in the detonation tube.  The 

detonation can be initiated either directly through a large amount of energy deposition, or 

indirectly through a low-energy deposition along with a deflagration-to-detonation 

transition (DDT) process.  In general, the energy required for a direct initiation of fuel/air 

mixture is impractical for repetitive operation.  On the other hand, the DDT length 

associated with the indirect initiation might be quite large.  One of the possible ways to 

reduce the DDT length is to fill the initiator section with the fuel/oxidizer mixture which 

is known to be more detonable than its corresponding fuel/air mixture.  The detonation is 

first initiated in the initiator section, usually referred to as the predetonator, and then 

propagates into the detonation tube to initiate the detonation in the fuel/air mixture. 

The detonation tube is the kernel part designed to sustain and confine the 

detonation process.  Since the tube wall is exposed periodically to high-temperature, 

high-pressure detonation products and low-temperature, low-pressure reactants, the 

selection of proper material and the cooling of the detonation tube are two major design 

considerations.  In addition, the size of the detonation tube should be scaled to satisfy the 

performance requirement such as the thrust level and the operation frequency.  

The nozzle plays an important role in determining the PDE performance. In 

conventional steady engines, the nozzle is simply optimized by matching the exhaust 

pressure with the ambient pressure.  This approach is, however, not available for PDEs 

since the exhaust flow is unsteady and the exit pressure is not constant.  The situation is 

further compounded by the presence of the strong shock waves arising from the 

detonation process.  Therefore, the nozzle design of PDEs represents a challenging task. 
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1.4  Literature Survey on PDE Studies 

Studies of PDEs have been conducted for several decades.  The first reported 

work on intermittent or pulse detonation engines is attributed to Hoffman (1940) in 

Germany.  The device involved no valves.  Holes were bored in a long detonation tube to 

allow gas jets to escape.  The heights of the gas jets escaping through the holes were used 

to indicate the progress of the combustion wave and the onset of the detonation.  Both 

gaseous acetylene and liquid benzene fuels were employed with oxygen in his 

experiments.  He found that a continuous injection of the combustible mixture leads to 

only a narrow range of ignition frequencies that produce an intermittent detonation cycle.  

He also pointed out the importance of the spark plug location with respect to the tube 

length.  World Wall II prevented further work by Hoffmann and colleagues. 

A substantial effort was made by Nicholls et al. (1957) at the University of 

Michigan in the United States.  They performed a series of single- and multiple-cycle 

detonation experiments with hydrogen/oxygen, hydrogen/air, acetylene/oxygen, and 

acetylene/oxygen mixtures in a stainless-steel detonation tube mounted on a pendulum 

platform suspended by support wires.  The tube has a length of 182.9 cm (6 feet) and an 

internal diameter of 2.54 cm (1 inch).  Fuel and oxidizer were injected coannually from 

the head end of the tube and ignited by a spark plug located 25.4 cm (10 inches) 

downstream.  A maximum frequency of 35 Hz was obtained in their tests.  The most 

promising results were demonstrated for the hydrogen/air mixture, where fuel-based 

specific impulses up to 2100 s were reached and agreed well with the predictions from 

their simplified theoretical analyses.  However, the agreement was partly fortuitous since 
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the measured thrust-time history was significantly different from the theoretical results.  

Moreover, because a low-energy spark ignitor was used in their experiments and no 

deflagration-to-detonation transition (DDT) augmentation device was utilized, it is not 

clear whether full detonation waves were realized. 

In a setup similar to Nicholls’, Krzycki (1962) performed experimental 

investigations of PDEs at the US Naval Ordinance Test Station.  A gaseous propane/air 

mixture was continuously injected at the head end of the detonation tube through a 

reverse-flow injector and ignited by an automobile spark plug at frequencies up to 60 Hz.   

The power output of the spark plug varied inversely with the ignition frequency and was 

only 0.65 J at the frequency of 60 Hz.  This fact implies that a substantial part of the 

combustion process occurring in the detonation tube was deflagration.  Krzycki also used 

the method of characteristics to calculate the pressure history at the head end of the 

detonation tube, with the effect of the blowdown process taken into account.  Based on 

his well-documented experimental results, Krzycki concluded that the PDEs are not 

promising for propulsion application.  Possibly due to this conclusion, most experimental 

works related to the PDE concept were stopped in the late 1960’s. 

A different design concept was proposed by Nicholls et al. (1966).  They 

examined the feasibility of a rocket motor that utilized a rotating detonation wave 

propagating in an annular combustor chamber.  Both hydrogen/oxygen and 

methane/oxygen mixtures were employed in their experiments.  A unidirectional 

detonation wave was created after transition from a deflagration wave.  However, 

multicycle operations were not achieved.  Their experiments and accompanying analyses 
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indicated that the ideal performance of such a rocket motor is essentially the same as that 

of a conventional rocket engine. 

Applications of the pulse detonation devices to fields rather than propulsion were 

reported in Russia in the 1980s.  Korovin et al. (1981) examined the efficiency of thermal 

oxidation of nitrogen in a detonation reactor involving intermittent detonation waves with 

initiation frequencies from 2 to 16 Hz.  The reactor was reported to be able to operate 

without significant changes for 2000 hours.   Smirnov and Boichenko (1986) studied 

intermittent detonations of a gasoline/air mixture in a 3-m-long tube with frequencies up 

to 8 Hz, aiming at improving the efficiency of a commercial rock-crushing apparatus.   

In the late 1980s, Helman and colleagues (1986) reexamined the PDE concept at 

the US Naval Postgraduate School.  They carried out a series of experiments with an 

ethylene/air mixture, showing the first successful self-aspirating airbreathing PDE.  The 

system was operated at frequencies up to 25 Hz, the maximum frequency allowed by the 

solenoid valve that was used to control the gas flow.  An important new idea employed in 

their experiments is the use of a predetonator to overcome the energy requirement for 

detonation initiation.  The detonation was first initiated in the predetonator, a small tube 

containing an ethylene/oxygen mixture, and then transmitted to the primary detonation 

tube.  The volume of the predetonator is only 2% of that of the primary detonation tube.  

Based on the experimental results, they suggested that frequencies of 150 Hz and specific 

impulse in the range of 1000-1400 s might be obtained in a practical PDE. 

Since the renewed work of Helman et al., there has been a growing interest in the 

PDE as an advanced propulsion system.  A number of reviews can be obtained from the 

literature.  Eidelman et al. (1991) reviewed some of the early research as well as that 
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done in the late 1980s.  Bussing and Pappas (1996) discussed the basic theory and design 

concepts.  Kailasanath (2000) reviewed the applications of detonations to propulsion.  A 

comprehensive review of the more recent progress in PDE research was provided by 

Kailasanath (2003).  Wu, Ma, and Yang (2003) summarized the experimental work up to 

date.  For clarity, the research on PDEs since 1986 is divided into three categories: 

experimental, numerical, and analytical studies, and is reviewed in the following 

subsections. 

1.4.1  Experimental Studies on PDEs 

Much effort has been expended in studying various important aspects of PDEs 

experimentally.  These studies can be divided into single-pulse and multicycle 

experiments and are briefly summarized in Tables 1.1 and 1.2.  Single-pulse experiments 

involve only the detonation initiation and propagation and the blowdown processes, 

whereas multicycle experiments include the additional purging and refilling processes.  

Single-pulse experiments can be used to determine the detonation initiation energy 

required for a given mixture, to measure the detonation wave properties, and to validate 

the concepts, serving as the basis for the more complex multicycle experiments.  Both 

hydrogen and hydrocarbon fuels were involved in the experiments.  The hydrocarbon 

fuels include both gaseous fuels such as ethylene (C2H4) and propane (C3H8) and liquid 

fuels such as JP10 (C10H16).  Ethylene (C2H4) was selected by many researchers because 

of its well-documented detonation properties and as a common decomposition of some 

typical heavy hydrocarbon fuels. 
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Table 1.1   Survey of single-pulse experimental investigations of PDEs 

 

reference propellants tube length 
ignitor 

energy 

DDT  

augmentation 

impulse 

measurement 

Hinkey et al. (1995) 
H2/air 

H2/O2 
unknown 1.7 J Shchelkin spiral 

pressure history 

load cell 

Sterling et al. (1996) H2/air 175.9 cm N/A unspecified device N/A 

Broda et al. (1999) C2H4/air 182.9 cm 3.5 J half-disk protrusion N/A 

Daniau et al. (2000) C2H4/O2 6.5~10 cm 30 J 
direct initiation 

Shchelkin spiral 
ballistic pendulum

Sanders et al. (2000) 
C2H4/air 

C2H4/O2 
135 cm N/A Shchelkin spiral N/A 

Sinibaldi et al. (2000) C2H4/O2/N2 190.5 cm 0.33~8.31 J none N/A 

Litchford (2001) H2/O2 90 cm 0.11 J Shchelkin spiral load cell 

Sinibaldi et al. (2001) 

C2H4/air 

C2H4/O2 

C3H8/O2 

120 cm N/A N/A N/A 

Cooper et al. (2002) 
C2H4/O2/N2 

C3H8/O2/N2 
60.9~150 cm 0.03 J 

Shchelkin spiral 

blockage plate 

orifice plate 

ballistic pendulum

Lieberman et al. (2002) C3H8/O2/N2 100 cm 0.03 J hot jet initiation ballistic pendulum

Meyer et al. (2002) H2/air 91.4 cm N/A 

Shchelkin spiral 

extended cavity 

coannulus 

N/A 

Cooper et al. (2003) C2H4/O2 105.7 cm 0.03 J none ballistic pendulum
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Table 1.2   Survey of multicycle experimental investigations of PDEs 

 

reference propellants tube length 
ignitor 

energy

DDT 

augmentation  

impulse 

measurement 
frequency 

Aarnio et al. (1996) H2/air 121.9 cm 1.7 J N/A 
pressure history

 load cell 
5 Hz 

Sterling et al. (1996) 
H2/O2 

C2H4/O2 

15.2 cm 

50.8 cm 
N/A 

unspecified 

device 
N/A 

33 Hz 

100 Hz 

Stuessy and Wilson 

(1996) 
H2/O2 53.3 cm N/A N/A N/A 10~12 Hz 

Hinkey et al. (1997) H2/air 91.4 cm 1.5 J N/A N/A 10 Hz 

Stuessy and Wilson 

(1997) 
C3H8/O2 53.3 cm N/A N/A N/A 

20.4~28.5 

Hz 

Brophy et al. (1998) JP10/O2 15.2~76.2 cm 1.4 J N/A N/A 5 Hz 

Schauer et al. (1999) H2/air 
91.4 cm  

(1~4 tubes) 
N/A Shchelkin spiral N/A 

0.5~100 Hz 

(per tube) 

Broda et al. (1999) C2H4/air 182.9 cm 4~8 J obstacle N/A 8~10 Hz 

Brophy and Netzer 

(1999) 
JP10/O2 29 cm 0.5 J N/A N/A 10 Hz 

Zitoun and Desbordes 

(1999) 
C2H4/O2 6.1~43.6 cm 35 J none pressure history 1~15 Hz 

Schauer et al. (2000) H2/air 91.4 cm N/A Shchelkin spiral pressure history 14~40 Hz 

Watts et al. (2000) C2H4/air N/A 25 J obstacle N/A 10 Hz 

Falempin et al. (2001) C2H4/O2 5.0~42.6 cm N/A N/A N/A 80 Hz 

Litchford (2001) H2/O2 90 cm 0.11 J Shchelkin spiral load cell 5 Hz 

McManus et al. (2001) H2/air 25.4 cm 0.02 J N/A load cell 10~35Hz 

Frankey et al. (2002) H2/air 182.88 cm N/A Shchelkin spiral pressure history 11~21 Hz 

Shimo et al. (2002) C2H4/air 82.2 cm N/A Shchelkin spiral N/A 15 Hz 

Brophy et al. (2002) 
C2H4/air 

JP10/O2 
25 cm N/A N/A pressure history 

80 Hz 

30 Hz 

Farinaccio et al. (2002) C3H8/O2 40 cm N/A N/A load cell 10~25 Hz 

Brophy et al. (2003) 
C2H4/air 

C3H8/air 
100 cm N/A obstacle N/A 30 Hz 

Meyers et al. (2003) C3H8/O2 7.62~30.5 cm N/A Shchelkin spiral pressure history 4.4~20 Hz 

Rasheed et al. (2003) H2/air 100 cm N/A orifice plate spring-damper 10 Hz 

Shehadeh et al. (2003) C2H4/O2/N2 184 cm N/A N/A spring-damper 10 Hz 
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1.4.1.2  Impulse Measurements 

Impulse is one of the key performance measures of a PDE.  Several techniques 

have been proposed for the impulse measurement.  The most straightforward one is to 

integrate the pressure history at the closed end of the detonation tube.  This technique 

doesn’t require complex measurement setup but can be implemented only to a simple 

detonation tube without internal obstacles.  Another popular technique used in single-

pulse experiments is known as ballistic pendulum technique, in which the detonation tube 

is suspended as a pendulum by support wires and the impulse is determined by measuring 

the maximum horizontal deflection of the tube (Cooper et al., 2003).  In multicycle 

experiments, the load cell technique is often used.  In this technique, the force history is 

directly measured by the load cell attached to the detonation tube through a load cell cage 

(Hinkey et al., 1995).  Since the negative thrust cannot be recorded, the impulse may be 

overestimated in this technique.  In addition, the response of the structure must be taken 

into account.  Other reported techniques include using damped thrust stand (Schaller et 

al., 2001) and spring-damper system (Shehadeh et al., 2003).  Due to the limitation of 

each technique, a combination of these techniques may be required to obtain reliable 

impulse measurements.  Hinkey et al. (1995) measured the impulse in their single-pulse 

experiments using both the pressure history and load cell techniques and found that the 

impulse from the pressure history is about 20% lower than that from the load cell data. 

With the measured impulse and the weight of fuel to generate this impulse, the 

propulsive performance parameter such as the specific impulse can be readily obtained.  

It should be mentioned that the specific impulse calculated from these direct-connect 

experiments doesn’t represent the specific impulse of PDEs at flight condition, under 
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which the engine inlet and the momentum of the incoming air must be taken into account. 

On the other hand, because the purging and refilling processes are not included in the 

single-pulse experiments and the negative thrust may appear during these two processes, 

the impulses from single-pulse experiments are usually lower than those from multicycle 

experiments. 

1.4.1.3  Detonation Initiation 

Detonation initiation is one of the major challenges in the PDE design.  A 

detonation can be initiated either directly through a large amount of energy deposition or 

indirectly through a low-energy deposition along with a deflagration-to-detonation 

(DDT) process.  Typical values for direct initiation energy for hydrocarbon fuel/air 

mixtures are of the order of Kilo-Joules to Meg-Joules (Benedick et al., 1986).  The 

deposition of such high initiation energies is impractical for repetitive initiations.  Most 

PDE experiments have thus relied on a DDT process for detonation initiation. 

According to the literature (Oppenheim, 1963; Lee and Moen, 1980; Kuo, 1986), 

a DDT process consists of the following sequence of events: 1) deflagration initiation  

a deflagration combustion is initiated by a low-energy deposition; 2) shock wave 

formation  the energy released by the deflagration increases the volume of the products 

and generates a train of weak compression waves that propagate into the reactants ahead 

of the flame and finally merge into a shock wave; 3) onset of “an explosion in an 

explosion”  the shock wave heats and compresses the reactants ahead of the flame,  

creates a turbulent reaction zone within the flame front, and eventually cause one or more 

explosive centers formed behind the shock front; 4) overdriven detonation formation  
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strong shock waves are produced by the explosions and couple with the reaction zone to 

form a overdriven detonation; 5) stable detonation establishment  the overdriven 

detonation wave decreases to a steady speed at around the CJ detonation velocity. 

The distance from the ignition to the detonation formation point is referred to as 

the DDT length, which is in general a function of the fuel and oxidizer, the tube diameter 

and geometry, the tube wall surface roughness, and the method used to ignite the mixture.  

Sinibaldi et al. (2000) investigated the dependence of the DDT length on the ignition 

energy, ignition location, and mixture stoichiometry for a C2H4/O2/N2 mixture.  They 

found that ignition energies above 0.28 J had little effect on DDT lengths.  The ignition 

location tests revealed that when the ignitor was placed 1.33 tube diameter from the head 

wall, the DDT length could be reduced by up to 32%.  Their results also showed that the 

mixture equivalence ratio significantly affects the DDT length.  The minimum DDT 

length of around 7.5 cm for the C2H4/O2 mixture was obtained with an equivalence ratio 

of 1.2.  A drastic increase in DDT length was observed when the equivalence ratio is less 

than 0.75. 

In general, the DDT length could be large compared to the tube length used in 

PDE experiments.  Hinkey et al. (1995) carried out a series of tests with H2/O2 mixtures 

of various equivalence ratios and found that the DDT lengths are on the order of 30 to 

100 cm.  They thus suggested using some DDT augmentation devices to enhance the 

DDT process and reduce the DDT length, which was adopted in most late PDE 

experiments.  In the early multicycle experimental work of Nicholls (1957) and Krzycki 

(1962), it is not clear whether full detonation waves were realized because a low-energy 



37 

11/23/2003 

spark ignitor was used in their experiments and no DDT augmentation devices were 

implemented. 

A classical approach for DDT enhancement is to place a spiral, known as the 

Shchelkin spiral (Shchelkin, 1940), into the detonation tube.  Hinkey et al. (1995) first 

applied this approach to their single-pulse PDE experiments with H2/O2 mixture and 

found that the Shchelkin spiral reduced the DDT length by a factor of about 3.  In 

addition to the Shchelkin spirals, other internal obstacles such as half-disk protrusions 

(Broda et al., 1999), blockage plates and orifice plates (Cooper et al., 2002), and 

coannulus (Mayer et al., 2002) have also been used by various researchers.  It should be 

noted, however, while enhancing the DDT processes, all these obstacles result in 

significant total pressure loss and degrade the propulsive performance.  Cooper et al. 

(2002) reported that the DDT lengths could be reduced by an average of 65% in various 

C3H8/O2/N2 and C2H4/O2/N2 mixtures using obstacles with a blockage ratio of 0.43, 

whereas the impulse was reduced by up to 25%. 

Another traditional detonation initiation concept involves using a predetonator 

(Helman et al., 1986), which is in essence a detonation-to-detonation initiator.  A 

detonation is initiated in a more easily detonable mixture called as the driver gas and then 

propagates into and initiates a detonation in the primary mixture.  A simple example of 

this concept is to fill a fuel/oxygen mixture or the driver gas in an initiation section near 

the closed end of the detonation tube (Hinkey et al., 1995; Sanders et al., 2000).  The 

minimum length of the initiation section is the DDT length of the driver gas.  The 

aforementioned DDT augmentation devices can be further implemented within the 

initiation section to achieve more rapid initiation.  A disadvantage of this concept is the 
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need to carry an additional driver gas or oxygen generator, which increases the system 

weight.  The additional driver gas also lowers the specific impulse since the weight flow 

rates of both the fuel and the driver gas should be taken into account in calculating the 

specific impulse.  To mitigate this disadvantage, the amount of the driver gas or the 

volume of the driver gas region must be as small as possible.  A practical way to reduce 

the volume of the driver gas region is to utilize an additional smaller tube for the driver 

gas.  This additional tube, usually with a volume on the order of 1% of that of the main 

detonation tube, is called a predetonator.  The detonation transmission from the 

predetonator to the main detonation tube is thus a key issue in the predetonator 

applications (Sinibaldi et al., 2001; Santoro et al., 2003). 

Diffraction of detonation from a small tube into an unconfined space has been 

extensively investigated in the past (Lee, 1984; Desbordes, 1988).  According to the 

literature, a successful detonation transmission happens if the tube diameter is larger than 

the critical diameter.  This critical diameter is usually expressed in terms of the 

detonation cell size of the mixture.  It is now commonly accepted that the critical 

diameter is about thirteen times of the detonation cell size for smooth circular tubes.  The 

detonation transmission from the predetonator to the main detonation tube has also been 

investigated recently (Sinibaldi et al., 2001; Santoro et al., 2003; Brophy, et al., 2003).  

Successful detonation transmission from the predetonator to the main detonation tube 

could be achieved at predetonator tube diameters less than the critical diameter because 

of the confinement of the transition region and main detonation tube (Santoro et al., 

2003). 
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Other techniques proposed for promptly achieving detonation initiation include 

hot jet initiation, detonation wave focusing, etc.  Hot jet initiation was observed by 

Knystautas et al. (1979) for sensitive fuel-oxygen mixtures.  Lieberman et al. (2002) 

recently demonstrated the possibility of using a hot jet to initiate a detonation in a short 

detonation tube filled with the C3H8/O2/N2 mixture.  The idea of the detonation wave 

focusing is to initiate the detonation in the main detonation tube through the merging of 

the detonation waves from a bunch of small tubes (Jackson and Shepherd, 2002). 

1.4.2  Numerical Studies on PDEs 

In addition to experimental investigations, substantial attempts were made to 

numerically study the single-pulse and multicycle operations of various PDEs consisting 

of single or multiple detonation tubes with or without nozzles and ejectors.  Based on the 

spatial dimensions used, these numerical studies can be classified into one-dimensional or 

quasi-one-dimensional and two-dimensional or axisymmetric simulations, as summarized 

in Tables 1.3 and 1.4, respectively. 

In contrast to experiments in which ethylene (C2H4) is often used as the fuel, most 

numerical studies use hydrogen (H2) as the fuel because of its relatively simpler chemical 

kinetics.  Another significant difference between experiments and simulations is the 

detonation initiation.  In experiments, as discussed in Sec. 1.4.1.3, the detonation is 

usually initiated indirectly through a low-energy deposition along with a DDT process 

since the direct initiation with high-energy deposition is not practical.  In numerical 

simulations, however, a small spark region with high temperature and pressure is 

commonly implemented to directly initiate the detonation.  In addition, because of the 



40 

11/23/2003 

lack of the DDT process and because there is no frequency limitation arising from the 

hardware such as the solenoid valves, the operating frequencies are much higher in 

numerical simulations than those that can be achieved in experiments.  In spite of many 

simplifications used in the numerical simulation, its capabilities in providing the detailed 

unsteady flowfield make it a practical and efficient methodology for PDE performance 

and flow dynamic analyses. 

 

Table 1.3   Survey of one-dimensional numerical simulations of PDEs 

 

reference exit B.C. propellants
chemical 

kinetics 

tube 

length 

spark 

length 
nozzle 

frequency 

(cycles) 

Cambier and 

Adelman (1988) 
N/A H2/air 16-step 7-species 50 cm 2 cm divergent 

667 Hz  

(3 cycles) 

Bussing (1994) N/A 
H2/O2 

H2/air 
18-step 7-species 20 cm 0.2 cm none single pulse

Sterling et al. 

(1995) 

constant 

pressure 
H2/air 

equilibrium 

chemistry 
100 cm 0.5 cm none 

≈220 Hz  

(6 cycles) 

Cambier and 

Tegner (1998) 
N/A H2/air N/A 10 cm 0.4 cm divergent 

1000~2600 

Hz 

Kailasanath et al. 

(1999) 

relaxing 

pressure 
H2/air 48-step 8-species 20 cm 0.2 cm none single pulse

Fong and Nalim 

(2000) 

constant 

pressure 
H2/air N/A 10.2 cm N/A none 30~150Hz 

Mohanraj and 

Merkle (2000) 

constant 

pressure 
H2/O2 1-step 2-species 50 cm 0.12 cm 

divergent 

CD 
≈230 Hz 

Ebrahimi and 

Merkle (2002) 

constant 

pressure 
H2/O2 16-step 8-species 20 cm 0.2 cm none 

≈400 Hz  

(3 cycles) 

Ebrahimi et al. 

(2002) 

varying 

pressure 

with 2D 

correction 

H2/O2 1-step 2-species 10.2 cm 0.1 cm none 
200~1000 

Hz 

Wu, Ma, and 

Yang (2003) 

zero-

gradient 
H2/air 1-step 2-species 60 cm 0.02cm CD 200~400 Hz
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Table 1.4   Survey of two-dimensional numerical simulations of PDEs 

 

reference 

num. 

of 

tubes 

propellants
chemical 

kinetics 

tube 

length 

spark 

length 
nozzle 

cycles/ 

frequency 

Eidelman et al. 

(1990) 
1 C2H4/air 

energy release 

behind detonation 

8cm 

16 cm 
N/A none single pulse

Lynch and 

Edelman (1996) 
1 H2/air 7-step 6-species 

8cm 

16 cm 
1~2 cm none single pulse

Cambier and 

Tegner (1998) 
1 H2/air N/A 10 cm 0.4 cm divergent single pulse

Eidelman and 

Yang (1998) 
1 C2H2/air 1-step 16 cm N/A 

convergent

divergent 
single pulse

Li et al. (2000) 1 C2H4/air 
2-step induction-

parameter 
50 cm 1.25 cm none single pulse

Li and Kailasanath 

(2001) 
1 C2H4/O2 

2-step induction-

parameter 
135 cm 2 cm none single pulse

Allgood et al. 

(2002) 
1 H2/O2/Ar 

2-step induction-

parameter 
50.8 cm N/A ejector single pulse

Ebrahimi et al. 

(2002) 
1 H2/O2 16-step 8-species 10.2 cm 0.1 cm none single pulse

Kawai and 

Fujiwara (2002) 
1 H2/O2/Ar 

2-step induction-

parameter 
10~40 cm N/A none 2 cycles 

Li and Kailasanath 

(2002) 
1 C2H4/O2 

2-step induction-

parameter 

10~500 

cm 
1 cm none single pulse

Yungster and 

Perkins (2002) 
1 H2/O2 19-step 9-species 182.9 cm N/A ejector 

5 cycles 

(≈122 Hz) 

Li and Kailasanath 

(2003) 
1 

C2H4/O2 

C2H4/air 

2-step induction-

parameter 
50 cm 

jet 

initiation 
none single pulse

Povinelli and 

Yungster (2003) 
1 C2H4/air 36-step 20-species 100 cm 0.5~1 cm none single pulse

Tangirala et al. 

(2003) 
1 

H2/air 

C2H4/O2 

23-step 7-species 

38-step 21-species
100 cm 0.5 cm none single pulse

Wu, Ma, and 

Yang (2003) 
1 H2/air 1-step 2-species 60 cm 0.02 cm none 200~400 Hz

Yungster (2003) 1 
H2/O2 

H2/air 
19-step 9-species 100 cm 0.5 cm divergent 

3 cycles 

(≈110Hz) 

Ebrahimi et al. 

(2001) 
2 H2/O2 16-step 8-species 10 cm N/A CD single pulse

Ebrahimi and 

Merkle (2002) 
2 H2/O2 16-step 8-species 10 cm N/A CD single pulse

Ebrahimi et al. 

(2003) 
1~3 H2/O2 16-step 8-species 10~30 cm N/A CD single pulse

Ma et al. (2003) 1; 3 H2/air 1-step 2-species 60 cm 0.02 cm CD 250~333 Hz
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1.4.2.2  One-Dimensional Numerical Simulations 

One of the first numerical studies on PDE reported in the literature was attributed 

to Cambier and Adelman (1988).  Quasi-one dimensional simulations with multi-step 

finite rate chemical kinetics were carried out for a 50-cm-long detonation tube attached to 

a 43-cm-long diverging nozzle with stoichiometric H2/air mixture.  The detonation was 

initiated at the closed end by a 2-cm-long spark region with a temperature of 1500 K.  

The refilling process started when the head-end pressure fell to 3.5 atm.  The fresh 

reactants moved at speeds up to 350 m/s.  The engine reached steady cyclic operation by 

the third cycle with a cycle frequency of about 667 Hz.  Specific impulses up to 6507 s 

were reported.  These very high specific impulses may be due to the facts that their 

calculations were based on the gross thrust from the exit plane and that the contribution 

from the spark region on the impulse was not accounted for. 

Sterling et al. (1995) also conducted one-dimensional simulations with H2/air 

mixture.  The detonation tube is 100 cm long.  The spark region has a length of 0.5 cm 

with a temperature of 3000 K and a pressure of 50 atm.  The refilling process began when 

the head-end pressure decayed to the atmospheric pressure.  They calculated the specific 

impulse for the sixth cycle based on the head-end pressure history and obtained a value of 

5152 s, which is much smaller than that of Cambier and Adelman (1988). 

Cambier and Tegner (1998) examined the effect of the spark region on the 

performance in their quasi-one-dimensional and two-dimensional simulations with H2/air 

mixture for a 10-com-long detonation tube with various divergent nozzles.  The spark 

region spans 0.4 cm, with a temperature of 2500 K and a pressure of 50 atm.  They 

observed that the contribution from the spark region on the single-pulse peak impulse 
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ranges from 17% to 27%.  After subtracting this contribution, they obtained specific 

impulses of 3500 s ~ 4100 s based on the head-end pressure history of their quasi-one-

dimensional multicycle results. 

In addition to the differences in the operation conditions and in the calculation 

methods for the specific impulse, the exit boundary condition plays another important 

factor that cause the differences in the reported specific impulses from one-dimensional 

simulations (Kailasanath et al., 1999).  Choosing appropriate exit boundary conditions 

represents a major challenge in the one-dimensional simulations for PDEs.  In general, if 

the outflow is supersonic, extrapolation of the condition from the inside can be used. 

However, for subsonic outflow, the flow inside the domain near the exit relates to the 

flowfield outside the domain, which is unknown from the one-dimensional simulations.  

The situation is further compounded by the existence of the unsteady detonation waves 

and other associated waves.  Strictly, there are no accurate exit boundary conditions for 

this kind of complex unsteady subsonic outflow. 

Most one-dimensional simulations have relied on a fixed-pressure boundary 

condition for the outflow (Cambier and Adelman, 1988; Starling, 1995).  Ebrahimi et al. 

(2002) used the fixed-boundary condition as well as a varying-pressure condition based 

on corrections from two-dimensional simulations.  They found that with the fixed-

pressure condition, the flow chokes as soon as the detonation wave arrives at the exit, 

whereas the varying-pressure result shows a duration of a subsonic outflow before 

choking.  Kailasanath et al. (1999) utilized a relaxing-pressure boundary condition.  The 

pressure is set to reach the ambient value in a relaxation length from the end of the 

detonation tube.  A larger value of the relaxation length implies a slower relaxation of 
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pressure to ambient.  Based on single-pulse operation, they observed that the specific 

impulse is larger for slower relation cases.  They then concluded that the variations in 

specific impulses reported in the literature could be explained on the basis of exit 

boundary conditions used. 

1.4.2.3  Two-Dimensional Numerical Simulations 

In spite of the computational efficiency of the one-dimensional simulations for 

performance predictions, the difficulty in specifying the exit boundary condition makes 

them less attractive.  Multi-dimensional simulations with computation domain including 

both the detonation tube and the external region are required in order to faithfully 

describe the system dynamics, especially in the near field of the tube exit where the flow 

is intrinsically multi-dimensional, and to provide more accurate performance predictions.  

This subsection will provide a brief review on some of the two-dimensional simulations.  

Issues related to nozzle and multitube will be discussed in other subsections.  

Eidelman et al. (1990) carried out two-dimensional axisymmetric simulations for 

a valveless PDE with C2H4/air mixture.  Both internal and external flowfields were 

included in their computational domain.  The system simulated consisted of a cylindrical 

detonation tube with a length of 8 or 16 cm.  Its operation is a little different from that 

described in Sec. 1.3.1.  The detonation is initiated at the aft open end and travels toward 

the head end where the thrust wall, fuel injector, and air inlet are located, ejecting burned 

gases through both the open end and the air inlet.  Air is entrained into the detonation 

tube when the pressure falls below the atmospheric pressure during part of the cycle.  

Since no valves are required to separate the air inlet and the detonation tube, this kind of 
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PDE is self-aspirating and is called valveless PDE.  From a scaling study based on single-

pulse operation, they concluded that the thrust of the detonation tube increases linearly 

with the detonation tube length when the other parameters are kept constant.  This 

conclusion, however, is incorrect or misleading, since the thrust they calculated was 

based on only a portion of a cycle. 

Lynch and Edelman (1996) conducted two-dimensional axisymmetric simulations 

with multi-step finite rate chemical kinetics for H2/air mixture for a valveless PDE 

similar to that analyzed by Eidelman et al. (1990).  They investigated the flow dynamics 

with two types of air inlet.  In the straight inlet case, a large recirculation zone is formed 

behind the thrust surface upon the inflow of the fresh air.  This recirculation zone may 

cause an increase in the time required to entrain the air and to purge the products.  By 

using a scoop inlet, the recirculation zone is reduced.  They suggested additional inlet 

shaping and viscous entrainment effects to obtain optimizing design. 

Most of the recent two-dimensional studies focused on single-tube PDEs with 

detonation initiated at the closed end.  Ebrahimi et al. (2002) carried out two-dimensional 

simulations with a H2/O2 mixture to provide exit boundary condition corrections for their 

one-dimensional simulations.  Li and Kailasanath (2001) looked at the single-pulse 

flowfield evolution under full or partial fills for a C2H4/O2 mixture.  The two-step 

induction-parameter chemical kinetic model was adopted, in which combustion radicals 

are formed in the first step, which is represented by an induction parameter, and the 

energy is released in the second step.  This model has also been used by other researchers 

for H2/O2 mixtures (Allgood et al., 2002; Kawai and Fujiwara, 2002).  In a later work of 

Li and Kailasanath (2002), they further investigated the effect of partial filling on the 
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propulsive performance and observed that the fuel-based specific impulse increases as the 

partial filling ratio decreases for single-pulse operation.  A scaling relation of the specific 

impulses between the partial and full fillings was then proposed. 

Many of the two-dimensional simulations are limited to single-pulse operations.  

However, significant differences exist between single-pulse and multicycle computations 

and the conclusions from single-pulse studies may not be applied to multicycle cases 

directly (Cambier and Tegner, 1998; Yungster, 2003; Wu, Ma, and Yang, 2003).  To 

date, two- dimensional simulations with multicycle operations are rather sparse.  Kawai 

and Fujiwara (2002) carried out two-dimensional simulations for the first two cycles of a 

straight tube PDE containing an Ar-diluted stoichiometric H2/O2 mixture, with attention 

paid to the injection behavior during the 2nd cycle.  Yungster and Perkins (2002) 

conducted multicycle simulations of various PDE-ejector configurations utilizing H2/O2 

mixture.  The thrust and mass flow rate over five cycles are presented.  They stated that 

more cycles might be required to establish some kind of limit cycle or steady periodic 

cycle.  Up to now, two-dimensional simulations with steady periodic cycle attained have 

been reported only by Ma and colleagues (Wu, Ma, and Yang, 2003; Ma et al., 2003). 

1.4.2.4  Effect of Nozzles 

The detonation products exhausting from the detonation tube carry a large amount 

of internal energy.  A nozzle is thus needed to convert this internal energy to kinetic 

energy to improve the performance.  In conventional steady engines, the nozzle is 

optimized by matching the exit pressure with the ambient pressure.  The nozzle designs 

for PDEs, however, are complicated by the unsteady nature of the PDEs, especially the 
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complex shock waves resulting from the repetitive detonations.  To date, no theory for 

PDE nozzle designs has been developed.  Several numerical and experimental studies 

that focused on the effect of nozzles on the PDE performance are reviewed in the 

following paragraphs. 

Cambier and Adelman (1988) considered a 43-cm-long divergent nozzle attached 

to a 50-cm-long detonation tube in their quasi-one-dimension multicycle simulations with 

a H2/air mixture.  They stated that other designs with a convergent section and throat 

cause the detonation waves to reflect as shock waves from the converging section.  The 

reflected shock waves elevate the head-end pressure, interfere with the refilling process, 

and lower the cycle frequency.  On the other hand, a divergent nozzle causes reflected 

rarefaction waves that propagate back into the tube to allow rapid refilling processes.  A 

cycle frequency of as high as 667 Hz was reported in their studies with a divergent 

nozzle.  However, they didn’t compare the propulsive performance numbers between the 

divergent nozzle and other nozzles.  It is thus unclear which kind of nozzle is better for 

achieving higher propulsive performance. 

Cambier and Tegner (1998) investigated the effects of five different divergent 

nozzles on the performance based on quasi-one-dimensional multicycle simulations and 

two-dimensional single-pulse simulations.  The lengths of the detonation tube and the 

nozzle are 10 cm and 5 cm, respectively.  Both the tube and nozzles were initially filled 

with a H2/air mixture.  Their single-pulse results indicate that the divergent nozzles can 

increase the impulse and that the bell-shaped nozzle produces a higher impulse than those 

with shapes of positive curvatures.  In addition, significant differences were observed 
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between single-pulse and multicycle results, and between quasi-one-dimensional and 

two-dimensional results. 

Eidelman and Yang (1998) also considered different nozzle shapes, i.e. three 

divergent and three convergent nozzles, in their two-dimensional single-pulse 

simulations.  The detonation tube was filled with a C2H2/air mixture, whereas the nozzle 

was filled with air.  Their results showed that both the convergent and divergent nozzles 

drastically increase the PDE performance.  Convergent nozzles lead to significant 

increases in impulse generation time and rapid changes in thrust due to shock wave 

reflections and relative later times in attaining the peak impulses.  Divergent nozzles tend 

to generate impulse rapidly during detonation product expansion due to the increase in 

effective thrust wall area so that the peak impulses are reached earlier.  These peak 

impulses, however, are followed by rapid reductions due to the negative thrust generated 

during the overexpansion of the detonation products.  Among the three divergent nozzles, 

the bell-shaped nozzle produces the highest peak impulse. 

Mohanraj and Merkle (2000) used quasi-one-dimension multicycle simulations to 

study the effects of the divergent and convergent-divergent (CD) nozzles at different back 

pressures.  The injection pressure is fixed at one atmosphere.  They found that both types 

of nozzles provide performance benefit at low back pressures, while the divergent nozzle 

causes performance deterioration at high back pressures.  Their results also showed that 

divergent nozzles lead to higher cycle frequency. 

More recently, Yungster (2003) examined the effect of divergent nozzles on PDE 

performance in his two-dimensional simulations with operations up to 3 cycles.  Both 

H2/O2 and H2/air mixtures were employed.  The detonation tube and nozzles are 100 cm 
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and 40 cm long, respectively.  In the single-pulse operation, the nozzles can utilize some 

of the energy carried by the detonation products to significantly augment the impulse 

obtained from the detonation tube alone.  Impulse augmentation ratios of up to 2.34 and 

1.41 were obtained with the bell-shaped nozzle for H2/O2 and H2/air mixtures, 

respectively.  In multicycle operation, however, the performance augmentation is very 

limited or even negative because of the nozzle flow overexpansion during most of the 

purging and refilling periods.  He stated that in order for the nozzle to remain effective 

after the first cycle, the combustion products must be purged from the nozzle before the 

next cycle is started.  This will, however, reduce the cycle frequency. 

The effect of nozzles was also investigated in several experiments.  Stuessy and 

Wilson (1997) conducted multicycle experiments with and without conical exhaust 

nozzles.  They noted that the inclusion of the nozzle improves the performance.  Daniau 

et al. (2000) investigated the effects of divergent nozzles of different shapes and lengths 

on the performance of a PDE based on single-pulse experiments.  They also observed that 

bell-shaped nozzles are especially efficient.  Cooper et al. (2002) carried out single-pulse 

experiments and investigated the effect of a 30-cm-long divergent nozzles attached to a 

101.6-cm-long detonation tube.  They found that the divergent nozzle had a negligible 

effect, increasing the specific impulse by an average of 1% which is within the 

experimental uncertainty. 

The observations and conclusions reported in these previous numerical and 

experimental studies indicate the nozzle effect on the PDE performance is far from 

mature.  More studies based on multicycle operations need to be conducted. 
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1.4.2.5  Multitube PDEs 

In addition to the nozzle, another way that may improve the PDE performance is 

the use of multiple detonation tubes (Ma et al., 2003).  The concept of multitube designs 

is not new.  In as early as 1950, Goddard considered a valved multiple combustor 

deflagration-based pulse jet engine (Goddard, 1950).  Bussing proposed a rotary valve 

multitube pulse detonation engine concept in 1995 by combining some aspects of the 

Goddard design and the detonation process (Bussing, 1995).  It consists of several 

detonation tubes coupled to an air inlet and fuel source via a rotary valve.  The rotary 

valve isolates the steady operation of the air inlet and fuel system from the unsteady 

operation of the detonation tubes and allows the filling of some of the detonation tubes 

while detonation occurs in other tubes.  A simple performance model, including the 

contributions from the inlet, the mixer, the combustor, and the nozzle, was proposed by 

Bratkovich and Bussing (1995) to examine the aforementioned multitube PDE 

performance characteristics over a wide range of flight regime.  Recently, an in-house 

four-detonation-tube research PDE was built at the US Air Force Research Laboratory, 

serving as a test-bed for detonation initiation concept, high frequency operation, heat 

transfer studies, multitube detonation engine operation, and pulse jet research (Schauer, 

2001).  It used a valve system based on the “Quad-4”, a sixteen-valve, four-cylinder 

automobile engine from General Motors.  A rotary position sensor was adapted to the 

intake camshaft to provide both an index of the valve timing sequence and the relative 

position of the valves.  Each detonation tube can operate at frequencies of up to 100 Hz. 

Numerical investigations on multitube PDEs also commenced recently.  Mohanraj 

et al. (2001) presented an approximate model for a PDE with five detonation tubes.  Time 
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accurate one-dimensional solution of the flowfield was obtained for only one tube.  Time 

delayed versions of this solution were used to model the other tubes.  Their results 

showed that the filling process in a multitube PDE can be markedly different from that in 

a single-tube PDE.  For example, increasing the fill time does not affect the fill fraction in 

the tubes at some conditions.  They also observed that the number of cycles needed to 

attain steady periodic operation in a multitube configuration is typically larger.  Although 

this approach saves computational effort, the resultant error due to the model 

approximation is difficult to estimate and may likely be quite large. 

Ebrahimi et al. (2001) conducted two-dimensional simulations for a dual-tube 

PDE, but with only the first-pulse operation.  They found that the pressure induced by the 

detonation in the neighboring tube is nearly as large as that produced by the detonation 

itself and that the shock wave produced by the detonation is sufficient to initiate 

combustion in the adjacent tube filled with fresh reactants.  In a more recent work 

(Ebrahimi et al., 2003), the effects of the number of tubes and the tube length on the 

flowfield interaction among tubes were investigated based on the first-pulse operation.  

The results indicate that the flowfield interaction among three tubes is approximately a 

factor of three smaller than that between two tubes, but that increased tube length has no 

significant effect.  The first multidimensional numerical study on multitube PDEs 

involving multicycle operations was conducted by Ma et al. (2003). 

1.4.3  Analytical Studies on PDEs 

The intrinsic unsteady nature of the PDE operation process makes the theoretical 

analyses rather difficult or even impossible.  On the other hand, it is desirable to develop 
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simple analytical models that can be used to rapidly and reliably predict the PDE 

performance and to conduct parametric studies.  Several analytical models have been 

proposed in the past and are summarized in Table 1.5.  Based on how the impulse is 

obtained, these models fall into two classes.  One class employs unsteady gasdynamic 

analysis to determine the instantaneous pressures and forces acting on the thrust wall and 

calculate the impulse as the integration of them (Nicholls, et al., 1957; Wintenberger et 

al., 2002; Wintenberger and Shepherd, 2003).  The other class, without the need to 

consider the unsteady wave process within the detonation tube, obtains the impulse or 

specific impulse of the engine by deriving the flow properties at the exit plane (Talley 

and Coy, 2002; Heiser and Pratt, 2002; Wu, Ma, and Yang, 2003).  

 

Table 1.5   Survey of analytical studies on PDEs 

 

classification based on 

impulse calculation 
reference remarks 

Nicholls et al. 

(1957) 

Only constant pressure portion was 

considered. 

Wintenberger et al. 

(2003) 

Decaying pressure portion was modeled 

through dimensional analysis and 

experimental calibration. 

head-end pressure 

Wintenberger and 

Shepherd (2003) 
Filling process was incorporated. 

Talley and Coy 

(2002) 

The cycle consists of a constant-volume 

combustion, a constant-volume blowdown, 

and a constant-pressure filling process. 

Heiser and Pratt 

(2002) 

Classical thermodynamic cycle analysis was 

applied to an ideal PDE cycle to predict the 

upper limit of the PDE performance. 

exit-plane properties 

Wu, Ma, and Yang 

(2002) 

The Heiser and Pratt (2002) approach was 

extended to accommodate property variations 

across the detonation wave front. 
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The most simplified model was reported by Nicholls et al. (1957) in conjunction 

with their straight-tube experiments.  The pressure at the head end remains constant until 

the arrival of the first rarefaction wave generated as the detonation wave emerges from 

the open end.  The head-end pressure then decays due to the continuing arriving of more 

rarefaction waves.  Only the contribution of the constant pressure portion was considered 

and the contribution of the decaying pressure period was neglected.  Consequently, this 

model underpredicted the impulse. 

Recently, Wintenberger et al. (2003) presented a semi-analytical model for a 

single-pulse detonation tube.  Both the constant pressure and decaying pressure portions 

are considered.  The duration and amplitude of the constant pressure portion is 

determined by analyzing the gasdynamics of the self-similar flow behind a steadily 

moving detonation wave within the tube.  The decaying pressure portion is analyzed 

using dimensional analysis, leaving a nondimensional parameter to be obtained through 

experimental calibrations.  Wintenberger and Shepherd (2003) later extended this model 

to multicycle operations by accommodating the refilling process.  These models, 

however, are only useful for predicting the impulse from a simple straight detonation 

tube. 

The constant volume limit model proposed by Talley and Coy (2002) is based on 

a cycle consisting of a constant-volume combustion process, a constant-volume 

blowdown process, and a constant-pressure filling process.  The characteristic wave 

transit times are assumed to be much shorter than the blowdown time.  During the 

blowdown process, the gases in the chamber are modeled as being time varying but 

spatially uniform while venting occurs through an infinitely thin nozzle with quasi-steady 
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flow.  When the chamber pressure reaches the fill pressure, the filling process begins and 

is modeled as a constant-pressure process.  

Heiser and Pratt (2002) applied the classical thermodynamic cycle analysis to an 

ideal PDE thermodynamic cycle.  The detonation wave converts the reactants to the 

products with CJ properties.  These products are then assumed to isentropically expand to 

the atmospheric pressure.  They recognized that no simple device can fulfill this unsteady 

isentropic expansion process but the upper limit of the performance can be established 

through this assumption.  After the thermodynamic cycle efficiency is obtained, the 

specific impulse can be readily determined through the control-volume energy balance.  

This model was later extended by Wu, Ma, and Yang (2003) to accommodate property 

variations across the detonation wave front.  The advantage of this model over that 

proposed by Tally and Coy (2002) is that the detonation combustion is considered.  

However, since all thermodynamic cycle analyses are based on an assumption that all the 

fluid elements experience the same processes at same sequence, the purging and refilling 

processes involved in a PDE can thus not be incorporated.  Moreover, comparisons with 

more accurate numerical simulations should be made in order to judge its accuracy in 

predicting the upper performance limit. 

1.5  Research Objectives 

The primary objective of this research is to evaluate the concept of airbreathing 

PDEs, to investigate their flow dynamics, to determine their performance, to identify the 
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various loss mechanisms, and to examine the effects of the operation timing and system 

geometry. 

Figure 1.13 schematically shows the airbreathing PDE studied herein.  It includes 

a supersonic inlet with mixed compression, an air manifold/acoustic cavity, a rotary 

valve, a combustion chamber containing single or multiple detonation tubes, and a 

convergent-divergent nozzle.  Hydrogen is used as the fuel.  As a specific example, the 

flight condition with a flight altitude of 9.3 km and a flight Mach number of 2.1 is 

considered.  The static pressure and temperature are 0.29 atm and 228 K, respectively, 

corresponding to a total pressure of 2.65 atm and a total temperature of 428 K. 
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 Fig. 1.13   Supersonic airbreathing pulse detonation engine 

 

In Chapter 2, the supersonic inlet dynamics is studied.  The time-dependent 

Favre-averaged Navier-Stokes equations along with a two-equation turbulence model are 

solved by a finite-volume method, with a four-stage Runge-Kutta time integration 

technique for temporal discretization and the Harten-Yee upwind TVD scheme for spatial 
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discretization.  The steady-state inlet flow dynamics and the response of the inlet shock 

system to downstream pressure disturbance are investigated. 

Chapter 3 introduces the recently developed space-time conservation 

element/solution element method and utilizes it to the quasi-one-dimensional study of a 

single-tube PDE.  Chemical kinetics is simulated using a simple one-progress-variable 

model for a stoichiometric hydrogen/air mixture.  The flow dynamics is examined 

through numerically obtained x-t diagrams.  The effects of operating frequency and valve 

close-up time on the propulsive performance are investigated. 

In Chapter 4, two-dimensional analyses are carried out for single-tube PDEs with 

or without CD nozzles under multicycle operations.  The two-dimensional code is 

efficiently parallelized by implementing the message-passing-interface (MPI) library and 

a domain decomposition technique.  The flow dynamics involved in the PDE operation is 

examined in detail.  A flow-path based performance prediction model is proposed to 

estimate the upper performance limit of the current PDE system.  The various 

performance loss mechanisms are identified.  The effects of operation timing including 

the cycle time or frequency, valve close-up time, and purge time on the propulsive 

performance are comprehensively studied.  Moreover, the effects of nozzle 

configurations in terms of the nozzle length and throat area are examined. 

In Chapter 5, multitube airbreathing PDEs with repetitive operations are studied 

by means of two-dimensional simulations.  The combustor consists of three detonation 

tubes.  The flow evolution and tube interactions are carefully examined and the various 

loss mechanisms are identified.  The effects of operating timing such as the cycle time 

and the valve close-up time were investigated systematically.  Comparisons with the 
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single-tube results are made.  The effect of the system geometry is partially assessed by 

considering a free volume between the detonation tubes and the common nozzle.   

Finally, Chapter 6 summarizes the present work and provides several 

recommendations for the future work. 
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Chapter 2 

Supersonic Inlet Dynamics 

The inlet and its interaction with combustor represent a crucial aspect in the 

development of any airbreathing engine, including PDEs.  The inlet is designed to 

capture and supply stable airflow at a rate demanded by the combustor, and to maintain 

high pressure recovery and stability margin at various engine operating conditions.  The 

overall vehicle performance depends greatly on the energy level and flow quality of the 

incoming air.  A small loss in inlet efficiency may translate to a substantial penalty in 

engine thrust.  Moreover, any change in the inlet flow structure may modify the 

downstream combustion characteristics and subsequently lead to undesirable behaviors, 

such as flame blow-off and flashback.  Thus, matching inlet behavior to engine 

requirements is of fundamental importance to designers (Yang and Cappuccio, 1990). 

In addition to its primary function of supplying air, an inlet has a determining 

influence on the dynamics of the entire system through its intrinsic unsteadiness and 

interactions with the combustion chamber.  Typically, pressure waves are produced in the 

combustion chamber and propagate upstream to interact with the inlet flow through a 

manifold where mixing of air and fuel occurs.  The resultant flow oscillations in the inlet 

diffuser then either propagate downstream in the form of acoustic waves or are convected 

downstream with the mean flow in the form of vorticity and entropy waves, and further 

reinforce the unsteady motions in the combustor.  A feedback loop is thus established 

between the inlet and combustor.  The situation is much more complicated in a 

supersonic airbreathing PDE due to its pulsed operation. 
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2.1  Problem Description 

In this chapter, axisymmetric two-dimensional simulations are conducted for a 

mixed-compression supersonic inlet as shown in Fig 2.1.  The cowl radius is Rc = 3.4 cm. 

This inlet is designed for a flight Mach number of 2.1 and a flight altitude of 9.3 km.  The 

static pressure and temperature of the freestream are 0.29 atm and 228 K, respectively.  

The corresponding total pressure and temperature are 2.65 atm and 428 K, respectively.  

The time-dependent Favre-averaged Navier-Stokes equations are solved by a finite-

volume method, with a four-stage Runge-Kutta time integration technique for temporal 

discretization and the Harten-Yee upwind TVD scheme (Harten, 1983; Yee, 1989) for 

spatial discretization.  The specific objectives of this work are: 1) to understand the 

overall shock and flow structures in a realistic supersonic inlet, 2) to examine the effects 

of downstream disturbances on inlet dynamics, 3) to investigate the influences of the 

viscous boundary layer and flow separations downstream of the terminal shock, and 4) to 

provide entrance information for further combustor simulations. 
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 Fig. 2.1   Configurations of a mixed-compression supersonic inlet 
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2.2  Governing Equations 

The analysis for the supersonic inlet flows is based on the axisymmetric, Favre-

averaged conservation equations of mass, momentum, and energy.  In a vector notation, 

this set of equations becomes 

 ( ) ( )v v
t x r

∂ ∂ ∂
+ − + − =

∂ ∂ ∂
Q

E E F F H  (2.1) 

where x and r stand for the axial and radial coordinates, respectively.  The conserved 

variable vector Q, convective flux vectors E and F, diffusion flux vectors Ev and Fv, and 

source vector H are defined as 

 [ , , , ]T

tr u v eρ ρ ρ ρ=Q  (2.2) 

 2[ , , , ( ) ]T

tr u u p uv e p uρ ρ ρ ρ= + +E  (2.3) 

 2[ , , , ( ) ]T

tr v uv v p e p vρ ρ ρ ρ= + +F  (2.4) 

 [0, , , ]T

v xx xr xx xr xr u v qτ τ τ τ= + −E  (2.5) 

 [0, , , ]T

v xr rr xr rr rr u v qτ τ τ τ= + −F  (2.6) 

 [0,0, ,0]Tr p θθτ= −H  (2.7) 

In the above equations, standard notations in fluid mechanics are used.  The stress tensor 

τ and the heat flux vector q are given by 

 (2 / 2 / 3 )xx u xτ µ= ∂ ∂ − ∇ ⋅u  (2.8) 

 (2 / 2 / 3 )rr v rτ µ= ∂ ∂ − ∇⋅u  (2.9) 

 ( / / )xr v x u rτ µ= ∂ ∂ + ∂ ∂  (2.10) 

 (2 / 2 / 3 )v rθθτ µ= − ∇ ⋅u  (2.11) 
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 /xq T xλ= − ∂ ∂  (2.12) 

 /rq T rλ= − ∂ ∂  (2.13) 

The divergence in cylindrical coordinates is defined as 

 
1 ( )u rv

x r r

∂ ∂
∇ ⋅ = +

∂ ∂
u  (2.14) 

The pressure p and temperature T are obtained through the equation of state for a perfect 

gas as 

 2 21
( 1)[ ( )]

2
tp e u vγ ρ ρ= − − +  (2.15) 

 /( )T p Rρ=  (2.16) 

where γ and R are the specific heat ratio and gas constant, respectively.  These two 

parameters are taken as: 1.4γ =  and 287 J/kg KR = ⋅  for air. 

The viscosity µ and thermal conductivity λ contain both laminar and turbulent 

components, 

 ,    l t l tµ µ µ λ λ λ= + = +  (2.17) 

The laminar component of viscosity lµ  is obtained from the Sutherland law (White, 

1974), 

 

1.5

0

0 0

l T S T

T S T

µ
µ

 +
=  +  

 (2.18) 

where 0µ  is the Sutherland law reference viscosity, T0 the Sutherland law reference 

temperature, and S the Sutherland law temperature.  For the current problem, these 

constants are: 5

0 0300 K,   1.8464 10  kg/m s,   110 KT Sµ −= = × ⋅ = . 
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The turbulent viscosity tµ  is evaluated with a two-layer model of Rodi (1991).  

This model combines the standard high-Reynolds-number -k ε  model in the bulk flow 

region with a one-equation model near the wall.  In the bulk flow region, the distributions 

of the turbulent kinetic energy k  and its dissipation rate ε  are calculated from the 

turbulence transport equations.  In the viscosity-affected near-wall region, the turbulent 

kinetic energy is still determined from the transport equation, but the dissipation rate is 

determined from a prescribed length-scale distribution.  The details of the application of 

this model can be obtained from the thesis of Oh (1994). 

The laminar and turbulent thermal conductivities lλ and tλ are calculated as 

 
t

tp

t

l

lp

l

CC

Pr
   ,

Pr

µ
λ

µ
λ ==  (2.19) 

where pC  is the specific heat at constant pressure.  The laminar Prandtl number lPr  and 

the turbulent Prandtl number tPr  are taken to be 0.73 and 0.9, respectively. 

2.3  Numerical Procedures and Validations 

The governing equations outlined above are solved numerically by means of a 

finite-volume methodology.  Temporal discretization is obtained using a four-stage 

Runge-Kutta integration method.  The spatial discretization employs an upwind total-

variation-diminishing (TVD) scheme developed by Harten (1983) and Yee (1989) in 

generalized coordinates for the convective terms and second-order central-differencing 

method for the diffusion terms.  Specific details of the numerical algorithm can be 

obtained from Oh (1994). 
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The boundaries encountered in the internal and external flowfields of an 

axisymmetric supersonic inlet include inflow, outflow, symmetry, wall, and far-field 

conditions.  Since the inflow is supersonic along the boundary, the flow variables are 

fixed at their corresponding free stream values.  At the exit boundary of the inlet duct, a 

constant back pressure is prescribed with other flow variables deduced from the interior 

points for the steady-state calculations.  For the unsteady calculations, a sinusoidal 

pressure fluctuation is applied at the outflow boundary of the inlet duct, with the 

implementation of the non-reflective boundary conditions proposed by Watson and 

Myers (1991).  For the symmetry boundary, the normal velocity and the normal gradients 

of the axial velocity, pressure, and temperature are set to zero.  A non-slip boundary 

condition is applied along the wall, together with zero normal gradients of pressure and 

temperature.  Finally, the flow variables at the far-field boundary are extrapolated from 

the interior along the characteristic lines based on the solution of a simple wave (Roache, 

1982) to avoid shock reflections. 

In order to assess the accuracy of the aforementioned numerical method, a wide 

variety of flow problems were tested by Oh (1994).  A calculation was carried out for a 

supersonic flow over a cone with a semi-vertex cone angle of 20 degrees.  The free 

stream Mach number and pressure is 2.1 and 0.29 atm, respectively.  Both Mach number 

and pressure distributions agree very well with the exact numerical solution of the 

ordinary differential equation derived by Taylor and Maccoll (1929).  The turbulence 

model is tested for a turbulent boundary layer on a flat plate.  The calculated velocity 

profile at 1410Re =θ  agrees very well with the DNS data (Spapart, 1988).  
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2.4  Steady-State Flow Analysis 

The steady-state flowfields are first studied to understand the overall flow 

structures in a realistic supersonic inlet and to provide a baseline for studying the 

response of the inlet flow to downstream disturbances.  

The computational domain, as shown in Fig. 2.2, comprises the internal flow 

region (inner domain) that contains most of the essential flow structure, and the external 

flow region (outer domain), which becomes important when flow spillage over the cowl 

lip occurs at subcritical operating conditions.  Two sizes of grids are used in order to 

obtain grid independent solution.  The fine grid consists of 601×101 points for the inner 

domain and 201×81 points for the outer domain, while the coarse grid consists of 401×81 

points for the inner domain and 161×81 points for the outer domain.  Both grids are 

stretched toward the walls to provide sufficient resolution of turbulent boundary layer.  

Results from the steady-state calculations using these two grids show that the relative 

difference in terms of the terminal shock position is less than 2%, which demonstrates 

that grid independence is satisfied.  To save CPU time, the coarse grid will be used in the 

later unsteady-flow calculations.  A more strict grid-independent study may be conducted 

based on the Richardson extrapolation (Roache, 1997). 

 

inner domain

outer domain

 
 

 Fig. 2.2   Computational domain for inlet study 
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Figure 2.3 presents the Mach-number, pressure, and vorticity contours at two 

different back pressures (pb = 2.1 and 2.2 atm), which are carefully chosen such that the 

engine operates at a supercritical condition to provide a sufficient shock stability margin.  

Under these conditions, the two leading conical shocks generated by the double-cone 

centerbody compress the airflow externally, merge slightly above the cowl lip, and form 

a strong oblique shock, which extends into the external-flow region.  In addition, a shock 

stemming from the cowl inner surface continues downstream, hitting and reflecting from 

both cowl and centerbody walls, and finally leading to a terminal normal shock.  The 

flow in this region undergoes a compression-expansion cycle, being compressed by 

reflecting shocks and expanded by expansion waves.  The wavy Mach number and 

pressure distributions along the middle line of the inlet duct for the case of pb = 2.1 atm, 

as shown in Fig. 2.4, clearly depict this feature.  The flow finally becomes subsonic after 

passing through the normal shock located in the divergent section of the diffuser.  During 

this process, the inlet recovers a high percentage of the free stream total pressure by 

decelerating the air flow through the shock train.  The total pressure recovery coefficients 

are 84% for the case of pb = 2.1 atm and 88% for the case of pb = 2.2 atm, and the Mach 

number immediately in front of the terminal shock are 1.42 and 1.32, respectively.  At the 

same time, the flow direction, which is originally deflected away by the leading shocks, 

is adjusted back to the axial direction.  

Due to the viscous effect, boundary layers exist on both the cowl and centerbody 

walls.  The growth of the boundary layer and shock-wave/boundary-layer interactions 

play important roles in dictating the inlet flow structure.  The presence of the boundary 

layer prohibits a discontinuous change in pressure across the shock near the wall since the 
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flow in the inner part of the boundary layer is subsonic.  The overall pressure rise across 

the shock is partly transmitted upstream through the boundary layer, causing the 

streamlines in that region to diverge (Green, 1970).  Consequently, the boundary layer 

thickens and may be separated from the wall if the pressure rise across the shock is 

sufficiently large.  Due to its interaction with the boundary layer, the terminal shock is no 

longer a strictly normal shock.  An oblique shock is formed due to the abrupt thickening 

of the boundary layer and runs into the terminal shock.  If the flow deflects away enough 

after the leading oblique shock, a rear oblique shock may be formed from the intersection 

of the leading oblique shock and the main shock to form the lambda-shock (Dyke, 1997). 

On the other hand, the flow passing through the stronger normal shock will be 

slower than that passing through the oblique shock systems.  Thus, vortex sheets emanate 

from the shock bifurcation points, convect downstream, and maybe interact with each 

other.  This phenomenon is clearly depicted in the vorticity contours in Fig. 2.3.  

Furthermore, the vorticity displays more complicated structure due to the different 

compression histories of the flow just upstream of the terminal shock.  However, the 

pressure distribution in the transverse direction behind the terminal shock is quite 

uniform, in order to satisfy the condition of equal static pressure in that direction.  This 

implies a non-uniformity of total pressure in the transverse direction. 

The abrupt thickening of the boundary layer downstream of the normal shock acts 

like a convergent nozzle by reducing the effective duct area, accelerating the subsonic 

flow after the shock with an associated pressure drop.  The sudden decrease in pressure 

(or sudden increase in Mach number) after the terminal shock in the core flow region, as 

shown in Fig. 2.4, is attributed to this effect. 
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Fig. 2.3  Mach-number, pressure, and vorticity contours with different back pressures 

under steady-state condition 
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Fig. 2.4  Mach-number and pressure distributions along midline under steady-state 

condition (pb = 2.1atm) 

2.5  Shock/Acoustic-Wave Interactions 

The steady-state flowfields with back pressure of 2.1 atm are used to initialize the 

unsteady flow calculations, considering that the terminal shock in this case is further 

downstream, which means it has a larger stability margin.  The downstream disturbance 

is simulated by imposing a sinusoidal pressure oscillation at the exit plane: 

 )sin( tApp b ω=′  (2.20) 

where ω  is the angular frequency, fπ2 , with f the frequency.  A wide range of A and f 

are considered with A = 0.05 and f = 500 Hz as the baseline case. 

Figure 2.5 shows the pressure distributions along both cowl and centerbody walls 

and the midline over one cycle of oscillation for the baseline case.  The corresponding 

Mach-number contours near the terminal shock are also presented.  Different time 
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intervals are chosen in order to display more key structures of the unsteady flowfield.  

The oscillation cycle begins when the terminal shock is at its steady-state position.  As 

the terminal shock progresses upstream, the Mach number before the shock decreases.  

However, that does not necessarily mean that the terminal shock weakens.  It is the 

relative Mach number with respect to the terminal shock that determines the strength of 

the shock.  The numerical results indicate that the moving shock has a velocity as large as 

40 m/s as it moves upstream for the baseline case.  With this in consideration, the 

terminal shock may strengthen first and weaken then.  The terminal shock reverses its 

direction after it reaches the farthest upstream position by the time of about πω =t .  

Similarly, as the terminal shock moves downstream, it first strengthens but soon becomes 

weaker, now that it has a larger downstream moving velocity and the relative Mach 

number becomes smaller.  As the velocity of the shock increases, the shock may finally 

turns into a pressure pulse.  On the other hand, a strong adverse pressure gradient wave 

gradually forms farther downstream and eventually steepens into a secondary shock.  

This secondary shock becomes stronger as it moves upstream and finally combines into 

the primary shock (or pressure pulse) to form a stronger shock.  The shape of the terminal 

shock also changes as it moves upstream or downstream.  The ‘S’ in Fig. 2.5 stands for 

the separation point on the centerbody wall. It can be seen that the terminal shock will 

always induce boundary layer separation as long as it reaches certain strength.  It is worth 

mentioning that in the last plot of Fig. 2.5, two separation points can be found, the first 

one is induced by the terminal shock, and the second one is induced by the pressure 

gradient resulting from the acoustic wave and area changing. 
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Fig. 2.5  Pressure distributions along walls and midline of inlet and Mach-number 

contours within one cycle of oscillation (A = 0.05, f = 500 Hz) 
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Figure 2.6 shows the instantaneous terminal shock locations for several cases.  

The shock location is determined by finding a position with Mach number equal to 1.  

The terminal shock begins to respond after the time required for the disturbance to travel 

upstream to it.  It then may oscillate around its mean position and be stabilized after one 

or two cycles, or be disgorged out of the inlet as for the case of A = 0.1 and f = 500 Hz.  It 

is evidently shown that the shock exhibits larger upstream and downstream excursions for 

lower frequency and higher amplitude disturbance.  It can also be seen that the farthest 

upstream excursion of the shock moves gradually from upstream to downstream during 

the initial response stage, which can be rationalized as follows.  When the acoustic 

pressure wave (left-running) hits the normal shock, part of the pressure wave is absorbed 

by the shock and the remainder is reflected as a right-running wave.  This reflected wave 

could either strengthen the left-running wave or weaken it, depending on the phase angle 

difference between the two.  Thus, for the first few cycles in which the reflected wave 

does not fully interact with the left-running wave in the entire subsonic diffuser section, 

the shock responds primarily to the left-running wave at first, and then gradually 

responds to the combined left- and right-running waves.  In the present study, the 

reflecting wave seems to weaken the left-running wave, causing the phenomena 

aforementioned.  The shock oscillation displays a nearly sinusoidal shape for the cases 

with small disturbance, and the mean position of the terminal shock is very close to the 

steady-state position.  However, when the disturbance becomes larger, many nonlinear 

phenomena emerge. The oscillation of the terminal shock is no longer sinusoidal.  The 

shock moves faster downstream than upstream.  A significant characteristic is that a 

secondary shock forms and the primary shock disappears sometime within the cycle.  The 
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discontinuous line sections in Fig. 2.6(b) are due to this phenomenon.  In the extreme 

case, say, for the case of A = 0.1 and f = 500 Hz, the terminal shock is disgorged out of 

the inlet, and engine unstart (Seddon and Goldsmith, 1999) may happen.  

In Fig. 2.7, the position ranges of the terminal shock are given.  For the cases with 

A = 0.05, the upmost point is the farthest downstream position of the secondary shock.  It 

is quite clear that the range decreases as the frequency increases.  The amplitude of the 

shock oscillation has been derived by Culick and Rogers (1983) under one dimensional, 

linear, and inviscid assumption.  In the present study, the flowfield displays multi-

dimensional effects as mentioned before, however, the motion of the terminal shock is 

mainly determined by the pressure wave behind it, which is nearly one dimensional.  

Figure 2.8 displays good agreements of the amplitudes of terminal shock oscillations with 

the analytical results. 

Air flow matching is an important issue for the inlet.  The mass flow rate entering 

the inlet does not change during the supercritical operating conditions, but oscillations of 

mass flow rate do change at the exit of inlet due to shock motion.  Figure 2.9 presents the 

ratio of relative mass flow rate fluctuation to the relative amplitude of pressure 

oscillation.  It is observed that the oscillation of pressure causes larger oscillation of mass 

flow rate.  For an engine with constant fuel injection rate, this implies that the 

equivalence ratio would fluctuate more severely, perhaps enhancing combustion 

instability.  The phase angle differences between the mass and pressure oscillations are 

1.16π, 1.06π, 0.95π, and 0.97 π for the four cases given in Fig. 2.9, respectively. 

Total pressure recovery is another important issue of inlet.  A small loss of inlet 

total pressure may cause considerable loss in engine thrust.  Figure 2.10 presents the mass 
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averaged total pressure at exit over one cycle of oscillation for several cases.  It is found 

that the averaged total pressures appear nearly sinusoidal oscillations.  The main effect on 

the averaged total pressures is from the amplitude of pressure oscillation, while the 

frequency has a minor effect.  The flow distributions at the exit plane of the inlet provide 

the coupling between the inlet and combustor.  Figure 2.11 shows the axial velocity and 

total pressure profile at the exit plane over one cycle of oscillation for the baseline case.  

The steady-state results are also plotted for comparison.  It can be seen that the unsteady 

profiles have similar shapes with the steady ones.  However, the pressure oscillations 

cause very large velocity oscillations, which can reach 60% near the centerbody wall.  

This may exert substantial influence on the combustor environments.  Figure 2.12 

compares the time-averaged axial velocity and stagnation pressure profiles with those of 

steady-state, indicating that they are very close. 
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 Fig. 2.6   Instantaneous shock locations for different cases  
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 Fig. 2.7   Shock position ranges with different frequencies 
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Fig. 2.8   Comparison of the amplitude of terminal shock oscillation with analytical result 

(A = 0.01) 
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 Fig. 2.9   Mass response to the pressure oscillation at exit over one cycle 
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 Fig. 2.10   Mass averaged stagnation pressure at exit over one cycle 
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 (a) Axial velocity 
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 (b) Stagnation pressure 

 

 

 Fig. 2.11   Axial velocity, stagnation pressure profiles at exit plane (A = 0.05, f = 500 Hz) 
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 (b) Stagnation pressure 

 

 

Fig. 2.12   Comparison of time averaged axial velocity and stagnation pressure profiles at 

exit plane 
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2.6  Conclusions 

Interactions between the shock waves and pressure waves were numerically 

investigated for a viscous flowfield in an axisymmetric, mixed-compression supersonic 

inlet diffuser by solving the unsteady Navier-Stokes equations with a two-equation 

turbulence model in cylindrical coordinates.  A 500 Hz sinusoidal pressure disturbance 

with amplitude of 5% of the mean static pressure was applied to the exit plane as a 

baseline case.  A number of notable features observed in this study are given below. 

1) The acoustic response of the inlet flow increases with increasing amplitude of 

the imposed oscillation, but decreases with frequency. 

2) For a relatively large pressure oscillations (such as the case of A=5%), the 

adverse pressure gradient farther downstream of the terminal shock can steepen to form a 

secondary shock, while the primary shock may turn into a pressure pulse.  Under an 

extreme case, the terminal shock may be disgorged out of the inlet to cause engine 

unstart. 

3) Vorticities generated from the intersection points of the terminal shock and 

oblique shocks change their position in both axial and transverse directions as the 

terminal shock moves, resulting in a significant multi-dimensional effect.  

4) Shock-induced flow-separation pockets on both walls form and disappear as 

the terminal shock moves.  

5) The pressure oscillation causes a larger mass flow rate oscillation and severe 

axial velocity oscillation, which may exert strong influence on the combustor flowfield. 
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Chapter 3 

Quasi-One-Dimensional Analyses of PDEs 

It has been pointed out that one-dimensional or quasi-one-dimensional 

simulations are not enough for the PDE analysis since they cannot correctly account for 

the effect of the exit boundary conditions.  However, for a PDE with a convergent-

divergent (CD) nozzle, the exhaust flow may exhibit supersonic behavior during most of 

the cycle period.  Therefore, quasi-one-dimensional simulations are still acceptable and 

are conducted in this chapter as a preliminary step.  Two-dimensional analyses will be 

considered in next chapters. 

The recently developed space-time conservation element/solution element 

(CE/SE) method is implemented because it circumvents the deficiencies of existing 

numerical methods for treating detonation waves and shock discontinuities.  Chemical 

kinetics is modeled by a one-progress-variable scheme which is calibrated with NASA 

CEA code.  The diffusive transport is neglected in the current study because of its minor 

role in determining detonation dynamics and system performance. 

3.1  Space-Time CE/SE Method 

3.1.1  Introduction to Space-Time CE/SE Method 

The space-time conservation element and solution element (CE/SE) method was 

originally developed by S.C. Chang at NASA Glenn Research Center and was first 

published out in 1995 (Chang, 1995).  It is a high-resolution and genuinely 
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multidimensional numerical method for solving conservation laws.  This method differs 

substantially in both concept and methodology from other well-established methods, such 

as finite-difference, finite-volume, finite-element, and spectral methods.  It has many 

nontraditional features, such as a unified treatment of space and time, enforcement of flux 

conservation in the space-time domain, introduction of solution and conservation 

elements to construct simple stencil, treatment of independent variables and their spatial 

derivatives as unknowns to be solved simultaneously, and no interpolation or 

extrapolation required to evaluate fluxes at cell interfaces.   

The development of the CE/SE method was motivated by the fact that physical 

conservation laws are actually a collection of statements of flux conservation in space-

time.  Mathematically, these laws are represented by a set of integral equations, and the 

differential form of these laws is obtained from the integral form by assuming that the 

physical solution is smooth.  For a physical solution in a region with rapid variations, this 

smoothness assumption is difficult to be realized by a numerical approximation that uses 

only a limited number of discrete variables.  The situation becomes even worse in the 

presence of large gradients or discontinuities.  Thus, a method designed to obtain 

numerical solutions to the differential form without enforcing flux conservation is a 

fundamental disadvantage in modeling physical phenomena with steep gradients.  In 

contrast, a numerical solution obtained from a method that enforces flux conservation 

both locally and globally will always retain the basic physical reality of flux conservation 

even in a region involving discontinuities (Chang, 1995). 

With this consideration, the CE/SE method was designed to treat space and time 

as a single entity, and the integral form of the conservation laws are solved to ensure both 



82 

11/23/2003 

local and global flux conservation in space and time.  In comparison, finite-difference, 

finite-element, and spectral methods deal with the differential form of the conservation 

laws.  The traditional finite-volume method attempts to enforce flux conservation in 

space and/or time, but it treats space and time separately in the sense that flux 

conservation cells are defined only in the space domain.  In the finite-volume method, a 

flux must be assigned at any interface separating two neighboring cells, and the flux is 

typically evaluated by extrapolating or interpolating the mesh values at the neighboring 

cells.  This evaluation generally requires ad hoc techniques such as flux limiters or slope 

limiters.  These ad hoc techniques usually involve the calculation of the eigenvector 

matrices of the Jacobian matrices, which may complicate the coding and increase the 

computational time.  

The CE/SE method introduces two types of cells in the space-time domain: 

conservation elements (CEs) and solution elements (SEs).  The union of the CEs covers 

the whole computational domain.  Physical conservation laws are enforced on each CE.  

The SEs are designed to facilitate the evaluation of the fluxes at interfaces separating 

neighboring CEs.  Several unique features are adopted for this purpose. (1) Each SE is 

chosen to cover some interfaces of neighboring CEs. (2) A solution point is defined 

within each SE to hold both the basic independent variables and their spatial derivatives 

as unknowns to be solved simultaneously, while the time derivatives are obtained by 

satisfying the differential form of the governing equations at the solution point. (3) Each 

physical flux vector is approximated in terms of some simple smooth functions within 

each SE.  With the above strategies, the CE/SE method is able to enforce both local and 

global flux conservation in space and time with flux evaluation being an integral part of 
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the solution procedure and requiring no interpolation or extrapolation.  As a result, the 

CE/SE method is more efficient than the traditional finite-volume method in terms of 

coding complexity and computational burden. 

A distinguished feature of the Space-Time CE/SE method is that it can fully 

control numerical dissipation, even down to zero if necessary.  This is important in 

simulating flows involving small disturbances such as sound waves.  Relatively large 

numerical dissipation introduced by numerical schemes can lead to the annihilation of 

small disturbances.  Unexpected numerical dissipation may overwhelm physical 

dissipation, causing a complete distortion of the solution.  Thus, a solver that can fully 

control its numerical dissipation is desirable.  For conventional methods, numerical 

dissipation is adjusted by varying the magnitude of added artificial dissipation terms.  

With a few exceptions, numerical dissipation in almost every traditional scheme cannot 

be reduced to zero even without artificial dissipation terms.  A study of finite-difference 

analogues of a simple convection equation shows that a numerical analogue is free of 

numerical dissipation only if it does not violate certain space-time invariant properties of 

the convection equation (Chang, 1992).  In other words, numerical dissipation may be 

considered as a result of symmetry-breaking by a numerical scheme.  An ideal scheme 

must be able to reserve this symmetry property in order to avoid numerical dissipation.  

Because of the intrinsic nature of space-time unity, the Space-Time CE/SE method is 

perfectly suited to constructing such schemes.  Its ability to accurately simulate both 

small disturbances and strong shock waves has been proven in treating various problems 

involving interactions between shock waves and sound waves (Loh et al., 1996). 
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3.1.2  Space-Time CE/SE Method for One-Dimensional Problems 

This subsection, adopted from Wu (2002) with minor modifications, describes the 

solution procedure of the Space-Time CE/SE method for one-dimensional systems 

governed by 

 
  

  

Q E
H

t x

∂ ∂
+ =

∂ ∂
 (3.1) 

Since the Space-Time CE/SE method treats space and time as a single entity, the 

computational domain for spatially one-dimensional problems becomes a two-

dimensional Euclidean space ),(2 txE = .  Define ( , )E Q=h  as the current vector in E2.  

The Gaussian divergence theorem in E2 leads to the integral form, which is a more 

physically basic form: 

 
 ( )  s V V

d HdV⋅ =∫ ∫h s  (3.2) 

The second step is to construct the CEs and SEs.  The computational domain E2 is 

discretized equally in space and time, and the dimension of each cell is assumed to be ∆x 

by ∆t.  Following the suggestion of Yu and Chang (1997), the conservation element  

CE(j, n) and the solution element SE(j, n) are both defined to cover the rectangular area 

ABCDEFA  with a line segment AG  sticking out on top of the rectangle, as shown in 

Fig. 3.1.  Each CE(j, n) can be divided into two sub-elements: CE_(j, n) and CE+(j, n).  

The boundaries of CE_(j, n) are AB , BC , CD , and DA , while CE+(j, n) is enclosed by 

FA , AD , DE , and EF .  Note that the line segments BC  and CD  belong to the solution 

element SE(j-1/2, n-1/2) and the line segments DE  and EF  to SE(j+1/2, n-1/2). 
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Fig. 3.1   Mesh system and CEs/SEs in Space-Time CE/SE method (adopted from Wu, 

2002). 

 

For any point (x, t) ∈ SE(j, n), the dependent variable vector Q(x, t), flux vector 

E(x, t), and source term vector S(x, t) are approximated by Q
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*
(x, t; j, n), and 

H
*
(x, t; j, n), respectively, whose definitions are given below. 
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where the label n

j) (  denotes the corresponding quantities evaluated at mesh point (j, n) 

whose coordinate is (xj, t
n
).  Q

*
(x, t; j, n), E

*
(x, t; j, n), and H

*
(x, t; j, n) are actually first-

order Taylor's expansions of Q(x, t), E(x, t), and H(x, t) at point (j, n), respectively.  

Moreover, all terms on the right-hand sides in the above approximations are only 

functions of n
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jH  are only functions of 
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t jH  are only functions of n

jQ , n

jxQ )( , and n

jtQ )(  

due to the following relations: 
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 are the Jacobian matrices of the convective flux 

vector E and source term vector H at (xj, t
n
) , respectively. 

The Space-Time CE/SE method further requires the above solution 

approximations to satisfy the following differential form of the governing equations 

within SE(j, n) except the line segment AG  that sticks out on the top of the solution 

element. 
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Substitution of equations (3.3)-(3.5) into the above equation leads to 

 ( ) ( )n n n

t j x j jQ E H+ =  (3.9) 

From which n

jtQ )(  can be expressed as function of n

jQ  and n

jxQ )( . 

Define * * *( , ; , ) ( ( , ; , ), ( , ; , ))x t j n E x t j n Q x t j n≡h  as the approximation of the 

current density vector ( , )E Q=h  within the conservation element CE(j, n).  Then the 

fluxes at AB  and FA  can be evaluated in terms of n

jQ  and n

jxQ )( .  Similarly, the fluxes 

at other boundaries of CE(j, n) (i.e., BC , CD , DE , and EF ) can be obtained by 

applying equations (3.3)-(3.9) to the solution elements SE(j±1/2, n-1/2).  

With the fluxes at all the boundaries of CE(j, n) being evaluated, the integral form 

of the conservation laws, equation (3.2), can be readily enforced on CE(j, n).  
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After n

jQ  are solved from equation (3.10), n

jxQ )(  can be evaluated using the 

following oscillation-suppressing procedure. First, the solutions at point (j±1/2, n) are 

approximated using the first-order Taylor series expansions as shown below. 
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where n
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+  and n
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−  are two numerical analogues of n

jxQ )(  at point (j, n) evaluated 

from the right and left sides, respectively.  Define function W as 
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Then n

jxQ )(  can be calculated using 
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Usually, α is chosen as an integer of 2.  

Before closing this section, there are two points to be emphasized.  First, even 

though numerical dissipation has been introduced into the scheme during the above 

oscillation-suppressing procedure, conservation laws are strictly enforced on CE(j, n).  

Moreover, since the union of all conservation elements covers the entire computational 
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domain, global conservation is also enforced strictly.  Second, although the order of the 

accuracy of the solution approximations, equations (3.3)-(3.5), is second order, the actual 

accuracy of the above scheme is comparable to that of 4-6th order compact difference 

schemes when nonlinear Euler problems are modeled.  This is because second order is its 

nominal order of accuracy, and is only meaningful for linearized equations.  For non-

linear problems, the flux conservation property ensures that the space-time method 

possesses an order of accuracy much higher than its nominal one.  In addition, the space-

time method has surprisingly small dispersive errors in nonlinear calculations, which also 

contributes to the enhancement of its accuracy (Wang, et al., 1994). 

3.2  Governing Equations 

The conservation equations of mass, momentum, energy, and species 

concentration in a quasi-one-dimensional system can be written in the following vector 

form. 
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The conserved variable vector Q, convective flux vector E, and source vector H are 

defined as 
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In the above equations, ρ , u , te , Z  and A represent the density, velocity, specific total 

energy, mass fraction of reactant, and area of cross section, respectively.  The pressure p 

is obtained through the equation of state for a perfect gas as, 

 ]2/[)1( 2 Zquep t −−−= ργ  (3.18) 

with γ  the specific heat ratio, q the heat release per unit mass of reactant.  The mass 

production rate ω  is obtained using the Arrhenius expression, 

 )/exp( RTEZK a−−= ρω  (3.19) 

with K the pre-exponential reaction rate factor, Ea the activation energy per unit mass of 

reactant, R the gas constant, and T the temperature which can be obtained using perfect 

gas state equation:  

 RpT ρ/=  (3.20) 

It is noted that there are five parameters (γ , R, q, Ea and K) associated with the above 

governing equations.  Determination of these parameters is discussed in the following 

section.  The Jacobian matrices of the flux and source vectors are given in Appendix B. 

3.3  Parameter Calibration and Code Validation 

3.3.1  Parameter Calibration 

Among the five parameters γ , R, q, Ea, and K, the first three are thermodynamic 

parameters that determine the detonation wave properties such as the CJ state and wave 

speed.  These three parameters are calibrated with the NASA CEA code (McBride and 

Gordon, 1996) for a stoichiometric H2/air mixture, as described below.  
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Two sets of CJ detonation solutions, one from the CEA code and the other from 

analytical formulation given in Sec. 1.2.1, are first obtained for a series of different 

unburned pressures and temperatures: p1 = 1, 2 atm, T1 = 300, 350, 400, 450, 500 K.  The 

simulated annealing (SA) optimization algorithm (Belegundu and Chandrupatla, 1999) is 

then applied to find the optimum values of γ , R, and q by minimizing the relative 

difference in terms of TCJ/T1, pCJ/p1 and uD between these two sets of solutions.  The 

following values are obtained. 

 γ = 1.290,  R = 368.9 J/(kg⋅K),  q = 2.720×10
6
 J/kg (3.21) 

The analytical CJ detonation velocity and CJ state based on these parameters are 

compared with those from CEA code and shown in Fig. 3.2.  It is observed that both the 

CJ temperature and pressure agree with the CEA results very well, with a maximum 

relative error less than 8%, and have the same trends as T1 increases.  The detonation 

velocity differs in the trend.  For example, the analytical CJ detonation velocity increases 

with T1, while the detonation velocity from CEA code decreases with T1.  Although the 

trend is different, the relative errors for the detonation velocity are still small, e.g., less 

than 3%.  These small relative errors indicate that the current one-progress-variable 

model represents a good approximation in predicting the detonation wave properties. 

The other two parameters, Ea and K, are chemical kinetic parameters.  Their 

primary influence appears in the internal structure of a detonation wave front, and the 

effect on the overall flow evolution and propulsion performance are relatively minor.  

The following values, adopted from Mohanraj and Merkle (2000), are used for these two 

parameters. 

 Ea = 4.794×10
6
 J/kg,  K = 7.5×10

9
 s
−1

 (3.22) 
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 Fig. 3.2   Comparison of detonation velocity and CJ state between ZND model and CEA 
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3.3.2  ZND Detonation in a One-Dimensional Tube 

The code is first validated for a ZND detonation in a one-dimensional tube as 

discussed in Sec. 1.2.3.  Figure 3.3 shows the schematic of the physical problem.  The 20 

cm-long tube is closed at the head end and open at the other.  Initially, it is filled with 

static, premixed stoichiometric hydrogen/air at temperature T1 = 300 K and pressure p1 = 

1 atm.  A small energetic spark region spanning 0.02 cm with temperature Ti = 2000 K 

and pressure pi = 30 atm is placed at the head end to initiate detonation. 

 

stoichiometric hydrogen/air at  

p1 = 1 atm and T1 = 300 K

spark region (pi = 30 atm and Ti = 2000 K)

stoichiometric hydrogen/air at  

p1 = 1 atm and T1 = 300 K

spark region (pi = 30 atm and Ti = 2000 K)

 
 

 Fig. 3.3   Schematic of detonation tube with spark region at closed end 

 

A series of calculations are carried out with five different grid resolutions to 

conduct grid-dependence study as well as validation.  The grid points of these grids are 

1000, 2000, 4000, 8000, 16000, respectively.  Figures 3.4~3.7 show the time evolutions 

of pressure, temperature, mass fraction and velocity, respectively, for the case of grid 

points of 2000.  These figures clearly depict the propagation of a self-sustained and fully-

developed detonation wave.  The leading shock, the rarefaction wave region, and the 

uniform region can also be observed.  The small non-uniform region of temperature near 

the head end is due to the remaining effect of the initial spark.   

Figure 3.8 shows the snapshots of pressure profiles at t = 80 µs with different grid 

resolutions.  These profiles collapse into a single one, demonstrating nearly perfect 
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satisfaction of grid dependence.  The only exception is that the pressure immediately after 

the shock (spike pressure) increases with grid resolution.  This is due to the fact that the 

higher the resoltuion, the less the degree of reaction across the shock front, thus leading 

to a higher spike pressure.  Theoretically, the von Neummann spike pressure can be 

reached by using tremendously high resolution grid.  However, significant round-errors 

appear with high reslolution grid, leaving the spike pressure unreachable in practice.  In a 

worst case, too fine grid may cause unphysical soltutions.  It is found that the detonation 

is not ignited with the finest grid (grid points = 16000).  Similar phenomenon was also 

reported by Ebrahimi et al. (1999). 

Table 3.1 compares the numerical solutions of different grid resolutions in terms 

of detonation velocity, von Neummann spike pressure, CJ state, and head-end pressure.  

The analytical solutions, obtained from the formulation given in Sections 1.2.1~1.2.3, are 

also listed for comparison.  All these values are in perfect agreement with each other 

except for the von Neumann spike pressure.  
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 Fig. 3.4   Time evolution of pressure field for ZND problem (grid points = 2000) 
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 Fig. 3.5   Time evolution of temperature field for ZND problem (grid points = 2000) 
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Fig. 3.6  Time evolution of reactant mass ratio field for ZND problem (grid points = 

2000) 
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 Fig. 3.7   Time evolution of velocity field for ZND problem (grid points = 2000) 
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 Fig. 3.8   Snapshots of pressure field for ZND problem with different grid points 

 

 

 

 

 

Table 3.1 Comparison of numerical results of different grid resolutions with analytical 

solutions for the ZND problem 

 

grid points uD, m/s ps, atm pCJ, atm TCJ, K uCJ, m/s p3, atm 

analytical 1973 30.60 15.80 2746 830.0 5.871 

1000 1975 18.8±0.1 15.80 2746 829.9 5.872 

2000 1974 22.1±0.4 15.78 2745 830.0 5.872 

4000 1974 25.6±0.8 15.79 2745 830.0 5.872 

8000 1973 29.2±1.0 15.79 2745 830.0 5.872 

16000 detonation can not be initiated 
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3.3.3  Flow Through a Convergent-Divergent Nozzle 

A calculation is carried out for a non-reacting flow through a nozzle with a length 

of 1 m and a cross-section area of A(x) = 1 + (2x−1)
2
, as shown in Fig 3.9.  The 

stagnation pressure (P0), stagnation temperature (T0) and back pressure (pb) are 2 atm, 

400 K, and 1.5 atm, respectively. Specific heat ratio γ is taken as 1.4.  The analytical 

solution can be easily obtained from the classical gasdynamics. Figure 3.10 compares the 

pressure distribution with the analytical solution and perfect agreement is observed. 

P
0

= 2 atm

T
0

= 400 K
p

b
= 1.5 atm

A(x) = 1 + ( 2x -1 )
2

γ = 1.4

 
 

 Fig. 3.9   Schematic of convergent-divergent nozzle in the validation case 
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 Fig. 3.10   Comparison of pressure distributuion with analytical results 
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3.4  Flow Dynamics 

The validated quasi-one-dimensional code is then used to study the flow 

dynamics and system performance of an airbreathing PDE with a convergent-divergent 

(CD) nozzle.  The reason for choosing a CD nozzle is that other types of nozzles such as 

convergent, divergent and plug nozzles have been studied by many researchers and 

limited performance improvements on the performance were found.  On the other hand, 

the CD nozzle results in a supersonic exit flow during most of the cycle period, thus 

reducing the error induced by the exit boundary condition. 

The tube has a length of 60 cm and a diameter of 16 cm, with a valve located at 

the head end as shown in Fig. 3.11.  The valve is supposed to be either fully closed or 

fully open.  The nozzle has a length of 20 cm, with a 45° convergent angle and a 15° 

divergent angle.  The diameters of the nozzle throat and exit are 12 cm and 20 cm, 

respectively. 

60 cm

16 cm 20 cm12 cm

20 cm

valve

15°45°

 
 

 Fig. 3.11   Configuration of the single tube and CD nozzle in the current study 

 

As a specific example, the flight condition involving an altitude of 9.3 km and a 

Mach number of 2.1 is considered.  The free stream static pressure and temperature are 

0.29 atm and 228 K, respectively, corresponding to a total pressure of 2.65 atm and a 

total temperature of 428 K.  The supersonic inlet at this flight condition has been studied 
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in Chapter 2.  Based on the inlet analyses, the exit flow of the inlet has a total temperature 

of 428 K and a total pressure of 2.23 atm.  By assuming 5% loss of the total pressure 

within the manifold, the total pressure at the entrance of the combustor becomes 2.12 

atm, where the total temperature is still 428K. 

The cyclic operation of the PDE is controlled by a valve located at the entrance of 

the combustor.  Generally, there are two modes of valve operation (Mohanraj and 

Merkle, 2000).  One is external mode, i.e., the timing of the valve opening and closing is 

specified externally.  The other is internal mode.  In this mode, the opening and closing 

procedures are controlled by the flow condition inside the detonation tube, e.g., using a 

pre-specified threshold pressure for valve open and a chemical sensor in the detonation 

tube for valve close.  In the present study, the first mode is chosen and the valve response 

time is neglected for simplicity, i.e., the valve is either fully closed or fully open.  

Furthermore, the valve open area is equal to that of the detonation tube.  The engine 

operation sequence, as shown schematically in Fig. 3.12, is thus controlled by three time 

periods: the valve close-up period (τclose) during which the valve is closed and the tube 

undergoes detonation initiation and propagation and blowdown processes, the purging 

period (τpurge) during which a small amount of cold air is injected into the tube to prevent 

preignition of fresh reactants, and the refilling period (τrefill) during which the 

combustible mixture is delivered to the tube.  The sum of these three periods equals the 

operation cycle time (τcycle), that is, τcycle = τclose + τpurge + τrefill. 
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detonation initiation and
propagation; blow-down

τpurge

refill

τrefill

purge

τclose

detonation initiation and
propagation; blow-down

τpurge

refill

τrefill

purge

τclose  
 

 Fig. 3.12   Time periods during one cycle of operation  

 

The boundary conditions at the head end of the detonation tube are specified 

according to the engine operation.  During the valve close-up stage, the head end is 

modeled as a rigid wall.  During the purging stage, the total temperature and total 

pressure are specified as 428 K and 2.12 atm, respectively, as mentioned in Section II.  

The axial velocity is obtained with extrapolation, and the reactant mass fraction is set to 

zero.  During the refilling stage, the same conditions are used except that the reactant 

mass fraction is set to unity.  At the exit of the nozzle, the boundary conditions are 

determined from the flow condition at exit. If the flow is supersonic, all flow variables 

are extrapolated from inside.  If the flow is subsonic, the exit pressure is specified as the 

ambient pressure and other flow variables are extrapolated.  

A series of calculations are conducted for various operation parameters.  A 

particular case with τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 ms is first studied in 

detail to investigate the flow dynamics of the airbreathing PDE.  The detonation tube is 

initially filled with a stoichiometric H2/air mixture at ambient pressure and temperature.  

It takes about 6 cycles to reach a stable operation.  Figure 3.13 presents the temporal 

evolution of the pressure field within one cycle of operation.  Detonation is initiated 

immediately after the valve is closed.  The detonation wave moves downstream and 

catches the leading fresh reactant at about x = 36 cm.  It then degenerates to a non-
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reactive shock wave. Expansion waves from the interface reduce the pressures on both 

sides.  When the shock wave reaches the convergent section of the nozzle, a reflected 

shock wave is formed and travels upstream.  This reflected shock is reflected again when 

it reaches the head end of the combustor.  On the other hand, the average chamber 

pressure decreases as the mass flows out of the combustor and nozzle.  As the purging 

stage begins, a shock wave is generated due to the pressure difference across the valve.  It 

is observed that the nozzle throat remains choked during most of the cycle period.  

A more clear and detailed wave pattern is numerically obtained through the 

Eulerian approach as detailed in Appendix C.  Figure 3.14 shows the x-t diagram during 

the first cycle.  The time history of the flow properties at head end is also presented.  The 

detonation wave is ignited in a very short time and propagates at a uniform CJ velocity of 

1935 m/s in the unburned region (region 1), followed by the Taylor expansion waves 

(region 2) to satisfy the stationary condition at head end.  A uniform region (region 3) is 

then formed behind the tail of Taylor waves.  At t = 0.310 ms, the detonation wave 

arrives the reactant-product interface (point A), which is also the nozzle inlet, and transits 

to a non-reactive shock wave continuing to the nozzle exit.  At the same time, expansion 

waves are generated from the interface. However, these expansion waves are soon 

overridden by the later formed compression waves from the convergent section of the 

nozzle.  A shock wave is eventually formed due to the coalescence of the compression 

waves.  This shock wave arrives at the head end at t = 0.949 ms (point B) and reflects 

again, causing an abrupt increase of the head-end pressure, which can be clearly observed 

in the time history of head-end pressure.  This leads to a significant difference in the 

head-end pressure history from that of Wintenberger et al. (2003) which was based on an 
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ideal modeling.  Expansion waves are also emanated from the nozzle throat, result in a 

non-simple wave region when interacting with the Taylor waves, form a simple wave 

region (region 5) after passing through the tail of the Taylor waves, and cause a gradual 

decrease of head-end pressure.  Inside the nozzle, flow chokes shortly after the primary 

shock passing through the throat.  A secondary shock is then generated due to the 

interaction of the supersonic flow later induced by flow expansion from the divergent 

section and the subsonic flow immediately following the primary shock.  The flow within 

the divergent section becomes fully supersonic after this secondary shock moves out of 

the nozzle.  When the purging stage begins at t = 2.1 ms, the head-end pressure increases 

suddenly and two discontinuities appear: a shock wave caused by the pressure difference 

across the valve and a contact surface caused by the temperature difference between the 

hot product and the cold air.  It can be clearly seen that the left-traveling characteristics 

deflect when passing through these two discontinuities.  The refilling stage begins 0.1 ms 

later, causing a third discontinuity, i.e., a contact surface between reactant and air.  This 

contact surface travels to x = 32 cm at the end of the first cycle, representing a partial 

filling for the next cycle.  

Under the effects from the previous cycle, the wave pattern becomes much more 

complicated during later cycles.  Figure 3.15 shows the x-t diagram and time history of 

head-end properties for a stable cycle.  A significant difference from the first cycle is the 

absence of the pressure plateau due to the effects of the shock waves and expansion 

waves from the previous cycle.  However, many phenomena are still similar, such as the 

propagation of detonation wave, Taylor expansion waves, choked throat, contact surfaces 

induced by purging and refilling, and so on. 
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Fig. 3.13   Temporal evolution of pressure field within one cycle of operation (τcycle = 3 

ms, τclose = 2.1 ms, τpurge = 0.1 ms) 
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Fig. 3.14   x-t diagram for the first cycle and time histories of flow properties at head end 

under typical PDE operation with CD nozzle (stoichiometric H2/air mixture, τcycle = 3 ms, 

τclose = 2.1 ms, τpurge = 0.1 ms). 1 = uniform unburned region, 2 = Taylor expansion waves, 

3 = uniform region, 4 = non-simple wave region, 5 = simple wave region. 
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Fig. 3.15   x-t diagram for the eighth cycle and time histories of flow properties at head 

end under typical PDE operation with CD nozzle (stoichiometric H2/air mixture, τcycle = 3 

ms, τclose = 2.1 ms, τpurge = 0.1 ms). 
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3.5  Parametric Study 

3.5.1  Effect of Valve Timing 

A parametric study is conducted to study the timing effect on system performance 

by varying τcycle and τclose.  The purge time τpurge is fixed at 0.1 ms.  Figure 3.16 shows the 

effect of τclose on the specific thrust Fsp, defined as the cycle-averaged thrust per unit of air 

mass flow rate, and the fuel-based specific impulse, Isp, at four different cycle frequencies 

of 200, 250, 333, and 400 Hz.  The corresponding cycle periods are 5, 4, 3, and 2.5 ms, 

respectively. 

The specific thrust increases as τclose decreases for all of the frequencies 

considered herein.  This can be explained as follows.  For a given τcycle and τpurge, a 

smaller τclose translates to a shorter blow-down process.  The resultant higher chamber 

pressure during the refilling stage increases the loading density of fresh reactants.  The 

increased refilling period also enhances the amount of reactants delivered to the chamber.  

Combined, these two factors result in a higher cycle-averaged chamber pressure and 

consequently a higher specific thrust.  It should be noted, however, that the lower bound 

of τclose is subject to three practical constraints.  The first is concerned with inlet over-

pressurization.  The head-end pressure must not exceed the stagnation pressure of the 

inlet air to allow for purging and refilling when the valve is open.  The second is related 

to chamber over-filling.  The fresh reactants should not flow out of the nozzle to the 

external region before being burned completely unless after-burning is considered.  The 

third constraint, although commonly satisfied in practical cases, is that τclose should be 

sufficiently long to cover at least the time required for detonation initiation and 
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propagation throughout the entire chamber.  The upper bound of τclose  (or the lower 

bound of τrefill) is based on the requirement that an appropriate amount of fresh reactants 

be delivered to the chamber to produce thrust. 

The effect of τclose on the fuel-based specific impulse follows the same trend as 

that of the air-based specific thrust, except for a small range of τclose close to its lower 

bound.  The specific impulse and specific thrust satisfy the following relation, 

 
purge refill(1 τ / τ )sp

sp

F
I

f g

+
=  (3.23) 

As τclose decreases, the factor (1 + τpurge/τrefill) decreases and may override the increase of 

Fsp, consequently leading to a decrease in Isp, as shown in Fig. 3.16b. 

For a given cycle period, τclose determines the filling length of fresh reactants.  A 

larger τclose (or smaller τrefill) leads to a smaller filling length in most cases and 

consequently decreases the specific impulse.  This result, however, is in contrast to the 

previous experimental (Cooper and Shepherd, 2002) and numerical (Li and Kailasanath, 

2002) observations for single-pulse operations, which concluded that the specific impulse 

increases as the filling length decreases.  One factor contributing to this discrepancy is 

that in single-pulse studies, the pressure and temperature of reactants are preconditioned 

to ambient values, while in the present multicycle study, the flow conditions of the 

refilled mixture depend on the timing of the engine operation.  The use of a choked CD 

nozzle also exerted a substantial influence on the chamber dynamics.  Significant 

differences thus exist between single-pulse and multicycle operations.  The conclusions 

from single-pulse studies may not be applied to multicycle cases directly. 
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Fig. 3.16   Effect of valve close-up time on (a) specific thrust and (b) specific impulse at 

four different operation frequencies; straight tube with CD nozzle; stoichiometric H2/air 

mixture, h = 9.3 km, M∞ = 2.1. 
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Figure 3.16 also demonstrates the existence of an optimum frequency for 

achieving a maximum performance.  At a low cycle frequency, more reactants can be 

recharged into the detonation tube.  As a consequence, a higher chamber pressure can be 

reached and the engine efficiency improves.  However, a large refilling time associated 

with low-frequency operation may cause chamber over-filling and thus degrade the 

performance.  These two conflicting effects result in an optimum frequency.  In the 

present study, the operating frequency of 250 Hz (τcycle = 4 ms) offers the best 

performance.  The highest specific impulse is 3676 s, slightly lower than its ramjet 

counterpart of 3866 s with optimum nozzle flow expansion (Wu, Ma, and Yang, 2003). 

3.5.2  Effect of Nozzle Throat Area 

The effect of the nozzle throat area was also studied.  Figure 3.17 compares the 

performances between the aforementioned CD nozzle and another CD nozzle with a 

smaller throat diameter of 10 cm.  A smaller throat implies higher chamber pressure, 

therefore, performance gains are observed for those τclose that are larger than their 

corresponding optimums.  A smaller throat also leads to an earlier inlet over-

pressurization.  Apparently, the operating ranges for τclose are narrower with the smaller 

throat under frequencies of 333 Hz and 250 Hz.  For the 200 Hz case, however, the 

operating range becomes wider, since the lower limit is determined by combustor 

overfilling for the larger throat under this frequency while a smaller throat can postpone 

the combustor overfilling.  An even smaller throat with a diameter of 8 cm was also 

tested.  A too small throat is not beneficial because of the inlet over-pressurization. 
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Fig. 3.17   Effects of τclose on (a) specific thrust and (b) specific impulse at three different 

frequencies for two CD nozzles with different throat areas.  The larger one has a diameter 

of 12 cm and the smaller one 10 cm. 
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Chapter 4 

Two-Dimensional Analyses of Single-Tube PDEs 

One-dimensional simulations are computationally efficient.  Nevertheless, they 

cannot provide detailed multidimensional flow dynamics and cannot be applied to a PDE 

involving multiple detonation tubes.  Multidimensional simulations with computation 

domain including both the detonation tube and the external region are required in order to 

faithfully describe the system dynamics, especially in the near field of the tube exit where 

the flow is intrinsically multidimensional, and to provide more accurate performance 

predictions.  However, the difficulties of using very fine grid to resolve the significant 

flow structure and running many time steps to reach steady periodic operation have 

limited previous multidimensional simulations of PDEs.  Two-dimensional multicycle 

simulations, to the knowledge of the author, has not been reported elsewhere in the 

literature.  In the current study, an efficient parallel computing technology coupling to the 

high fidelity Space-Time CE/SE method is implemented to overcome these difficulties. 

4.1  Governing Equations 

The analysis is based on the two-dimensional conservation equations of mass, 

momentum, and energy and takes into account finite-rate chemical kinetics.  Diffusive 

effects are neglected in the current study because of their minor roles in determining the 

overall flow dynamics and propulsive performance of PDEs.  If the chemical reaction rate 
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is expressed with a single progress variable, the resultant governing equations can be 

written in the following vector form: 

 
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
Q E F

H  (4.1) 

where the dependent variable vector, Q, convective flux vectors, E and F, and source 

vector, H, are defined as: 
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In the above equations, ρ, u, v, et, and Z represent the density, axial velocity, vertical 

velocity, specific total energy, and progress variable (i.e., mass fraction of reactant), 

respectively.  The pressure p is obtained through the equation of state, 

 ]2/)([)1( 22 Zqvuep t −+−−= ργ  (4.3) 

where γ is the specific heat ratio and q the heat release per unit mass of reactant.  For a 

one-step, irreversible reaction, the mass production rate of reactant ω  is 

 )/exp( RTEZK a−−= ρω  (4.4) 

where K is the pre-exponential factor, T the temperature, Ea the activation energy per unit 

mass of reactant, and R the gas constant.  The five parameters involved in the above 

equations remain the same as those in Chapter 3.  The Jacobian matrices of the flux and 

source vectors of Eq. (4.1) are given in Appendix B. 
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4.2  Numerical Treatment and Parallel Implementation 

A two-dimensional unstructured triangular mesh non-reacting Euler solver based 

on the space-time CE/SE method has been developed by Wang and Chang (1999).  The 

ideas and solution procedure are identical to the one-dimensional version described in 

Chapter 3.  The details of the space-time CE/SE method for two-dimensional problems 

are given in Appendix D.  In the current study, a two-dimensional code is developed and 

efficiently parallelized by implementing the message-passing-interface (MPI) library and 

the domain decomposition technique.  The parallel code is then executed on an in-house 

Beowulf cluster. 

Beowulf is a multi-computer architecture for parallel computations.  A Beowulf 

system is a cluster of PCs (or workstations) including server nodes and client nodes 

connected through network such as switch (http://www.beowulf.org).  This system has 

only a history of several years.  The first Beowulf Cluster was built by NASA in 1994.  

The current in-house Beowulf cluster was built up in 1997 and has been extended to a 

large parallel system consisting of 350 workstations and several high-speed switches.  

Parallel virtual machine (PVM) and message passing interface (MPI) are software 

systems for writing message-passing parallel programs that run on a cluster.  PVM used 

to be the de facto standard until MPI appeared.  The MPI is standardized by the MPI 

Forum and available on all massively parallel supercomputers. 

To effectively use the Beowulf system, the task should be properly distributed 

among the processors.  A common approach is to decompose the computational domain 

into sub-domains and assign each sub-domain to a different processor.  The objective of 
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domain decomposition is to balance the computational workload and memory occupancy 

of processing nodes while keeping the inter-node communication as small as possible.  In 

the current work, a software package, METIS, which is a family of programs for 

partitioning unstructured graphs and hypergraphs and computing fill-reducing orderings 

of sparse matrices (Karypis and Kumar, 1998), is used for domain decomposition. 

4.3  Model Validation 

As part of the model validation effort, a series of single-pulse calculations were 

conducted for a straight tube of 60 cm in length initially filled with a stoichiometric 

mixture of hydrogen and air at preconditioned pressure p1 and temperature T1.  A spark 

region spanning 0.2 mm near the head end with a temperature of 2,000 K and a pressure 

of 30 atm was employed to directly initiate the detonation wave.  Four different 

numerical grids with the sizes of 0.2, 0.1, 0.05, and 0.025 mm were used to check the 

solution accuracy in terms of grid independence.  All of the calculated pressure profiles 

collapsed onto a single curve, with the CJ properties matching the analytical values 

exactly.  As a result, the 0.2 mm grid was chosen for the entire study to alleviate the 

computational burden.  For a single-pulse operation, the head-end pressure remains at a 

plateau value p3 for certain period soon after the detonation initiation, and then decays 

gradually to a level lower than the ambient state.  The impulse on the thrust wall can be 

determined by integrating temporally the force exerted on the head end from t = 0 to the 

instant when the head-end pressure reaches the ambient value.  The contribution to the 

impulse from the ignition source is estimated to be less than 0.5%.  Figure 4.1 shows the 
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impulse per unit cross-sectional area as a function of the plateau pressure p3 and the 

detonation residence time τD (defined as the tube length L divided by the detonation wave 

velocity uD, i.e., τD ≡ L/uD).  Results can be correlated well in the following form 

 3 1 D/ 4.1( )τI A p p= −  (4.5) 
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Fig. 4.1  Generalized impulse curve for single-pulse detonation in straight tube with 

stoichiometric H2/air mixture. 

 

This expression is quite similar to those obtained from the semi-analytical 

analysis of Wintenberger et al. (2003) and the experimental work of Falempin et al. 

(2001).  The constants of proportionality differ slightly in the various studies, suggesting 

dependence on the details of experimental procedure and operating conditions.  The 

generalized formula proposed by Kailasanath (2003) based on his numerical simulations 

for hydrogen/air, ethylene/oxygen, and propane/oxygen mixtures has a larger constant of 

proportionality of 4.65.  One factor contributing to this disparity may be differences in 
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ignition source.  The width of the detonation initiation region used by Kailasanath (2003) 

is 20 mm, as opposed to 0.2 mm in the present simulations.  Nonetheless, the above 

parametric study demonstrates the capacity and fidelity of the present approach for the 

PDE performance analysis. 

4.4  Calculation of Propulsive Performance 

The propulsive performance of the PDE must be calculated appropriately.  There 

are several ways to experimentally measure the impulse, such as integrating the pressure 

force on the thrust wall, using the ballistic pendulum, load cell, damped thrust stand, and 

spring-damper system, as discussed in Sec. 1.4.1.1.  In numerical simulations, the 

impulse or thrust can be obtained either by integrating the pressure force on the thrust 

wall or through a momentum balance fro the entire system.  The latter is more practical 

for PDEs including both inlet and nozzle and is detailed as below. 

Considering a control volume that contains the fluid within the entire engine, the 

momentum conservation gives: 

 [ ( ) ] 0
CV CS

dV p p dS
t

ρ ρ ∞
∂

+ ⋅ + − =
∂∫ ∫

u
uu n n  (4.6) 

where CV represents the control volume and CS the control surface which can be further 

divided into three parts: the entrance plane Si, the exit plane Se, and the remaining surface 

Sw.  Defining em , eu , and ep as 
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the instantaneous thrust, in a vector form, can thus be derived: 

 { }[ ] [( ) ]e e a e e

CV

m m u p p A dV
t

ρ
∞ ∞

∂
= − − + − −
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u

F u i i  (4.10) 

The second term on the right-hand side is arisen from the unsteady effect.  For a steady 

periodic operation, the cycle average of this term becomes zero, and the cycle-averaged 

thrust becomes 

 ( )e e a e em m u p p A∞ ∞ = − − − −    F u i i  (4.11) 

where the bracket denotes the cycle-averaged quantities.  Because of the symmetric 

property of the system, the vertical component of the cycle-averaged thrust is zero, and 

the axial component is 

 ( )e e a e eF m u m u p p A∞ ∞ = − + −      (4.12) 

This formulation is identical to the conventional one obtained for steady engines, except 

for the averaging symbol.  The two terms on the right-hand side are referred to as 

momentum thrust and pressure thrust, respectively.  The air-based specific thrust and 

fuel-based specific impulse are then calculated as 

 sp

a

F
F

m
=  (4.13) 
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It should be pointed out that, since the valve timing, the total pressure, and the 

total temperature in front of the valve are prespecified, the air mass match between the 

combustor and the inlet is achieved either by adjusting the width of the combustor, which 

is a free parameter in two-dimensional simulations, or by changing the size of the inlet.  

Otherwise, the computational domain should be extended more upstream to cover a 

choked section so that the mass flow rate instead of the total pressure is specified at the 

entrance boundary. 

4.5  Straight-Tube PDE 

As a first approach, a single straight tube is considered to provide direct insight 

into the chamber dynamics without complications arising from the nozzle. 

4.5.1  Problem Setup 

The computational domain is shown schematically in Fig. 4.2.  The detonation 

tube measures 60 cm in length and 16 cm in height, which are similar to the dimensions 

of contemporary ramjet combustors for air defense applications.  An external region is 

included to circumvent the difficulty of specifying boundary conditions at the tube exit.  

The computational domain is discretized into 421590 unstructured triangular grid cells, 

with 320000 for the detonation tube and 101590 for the external region.  This dense grid 

resolves the detailed detonation propagation in the axial direction and was selected after 

performing a grid independence analysis of the computed solution such as pressure 

profile along the axial direction.  The cell size near the head end is about 0.4 mm in the 
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axial direction and 2 mm in the vertical direction.  It increases to about 5 mm at the 

external boundary. 

 
 

 Fig. 4.2   Computational domain for straight-tube PDE 

 

4.5.1.2  Domain Decomposition 

The computational domain is decomposed into 64 sub-domains using the METIS 

software (Karypis and Kumar, 1998) for parallel computing.  This domain decomposition 

technique allows for the balance of the computational workload and memory occupancy 

of processors, while keeping the inter-processor communications as low as possible, and 

thus obtaining a high parallel efficiency.  With METIS, each cell is marked with a 

number to which sub-domain (or sub-grid) it belongs.  A user code is then needed to 

gather this information and write out sub-grid data into different grid files.  Figure 4.3 

schematically shows the computational domain that decomposed into 64 sub-domains. 

The number of cells for each sub-domain is given in Fig. 4.4, demonstrating a quite 

evenly decomposition of grid cells. 
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 Fig. 4.3   Schematic of the computational domain decomposed into 64 sub-domains 

 

 

 

sub-domain

n
u
m

b
er

o
f

ce
ll

s

8 16 24 32 40 48 56 64
0

2000

4000

6000

8000

10000

1

 
 

 Fig. 4.4   Number of cells of sub-domains 
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4.5.1.3  Boundary Conditions 

The boundary conditions at the head end of the detonation tube are specified 

according to the engine operation.  During the valve close-up stage, the head end is 

modeled as a rigid wall.  During the purging stage, the total temperature and total 

pressure are specified as 428 K and 2.12 atm, respectively.  The axial velocity is obtained 

with extrapolation, and the reactant mass fraction is set to zero.  During the refilling 

stage, the same conditions are used except that the reactant mass fraction is set to unity.  

At the open boundary of the external region, a non-reflecting boundary condition is 

implemented (Wang and Chang, 1999).  The slip wall boundary conditions are detailed in 

Appendix E. 

4.5.1.4  Initial Conditions 

The detonation tube is initially filled up with a stoichiometric hydrogen/air 

mixture at the ambient pressure (0.29 atm) and temperature (228 K), whereas the other 

region is filled with the ambient air.  

4.5.1.5  Detonation Initiation 

Detonation initiation is assured by a small driver region near the head end that 

extends across the entire tube cross section.  The temperature and pressure of the driver 

gas are 2,000K and 30 atm, respectively.  Because of the high energy density associated 

with the driver gas, its effect on the propulsive performance could be quite large.  

Cambier and Tegner reported an effect of 17 to 27% on the single-pulse impulse for a 

PDE system with a 10-cm-long detonation tube and a 5-cm-long divergent nozzle 
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(Cambier and Tegner, 1998).  In the present study, several lengths of the driver region 

were tested and the smallest one of 0.2 mm was selected to minimize the effect of the 

initiation source on the propulsive performance.  The thermal energy per unit area of this 

initiation source is approximated as 

 2[ /( 1)] 0.27 /p driv driv driv driv drivc T L p L J cmρ γ γ= − ≈  (4.15) 

Its effect on the propulsive performance can be estimated by comparing the thermal 

energy of the initiation source with the heat that could be released from the detonation of 

the reactant within the tube: 

 
[ /( 1)]

0.5%
[ /( )]
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c T L p L

q L q RT pL

ρ γ γ
ρ

−
= ≈  (4.16) 

The net effect appears to be limited. 

4.5.2  Results 

A series of analyses are conducted over a wide range of operation parameters.  

The CFL number used is 0.5, whereas the corresponding time step is about 5×10
-5

 ms.  

The typical turn-around time for one cycle of calculation is about 10 hours on an in-house 

PC cluster consisting of 64 Pentium II processors. 

The baseline case has τcycle of 3 ms and τclose of 2.4 ms.  It takes about 5 cycles to 

reach steady cyclic operation.  Figure 4.5 shows the x-t diagram for the first cycle of 

operation, obtained by tracing the characteristic lines of the flowfield along the centerline 

of the tube.  The time histories of the flow properties at the head end are also presented.  

Procedures for building the x-t diagram are given in Appendix C.   
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Fig. 4.5  x-t diagram for first cycle and time histories of flow properties at head end under 

typical PDE operation (stoichiometric H2/air mixture, τcycle = 3 ms, τclose = 2.4 ms, τpurge = 

0.1 ms). 1 = unburned region, 2 = Taylor expansion waves, 3 = stationary region, 4 = 

non-simple wave region, 5 = simple wave region. 

 

 

The detonation wave is directly initiated by a hot driver gas and propagates 

downstream at the CJ detonation velocity toward the unburned mixture (region 1).  It 

then induces the Taylor expansion waves (region 2) in order to satisfy the stationary 

condition at the head end, causing a uniform region (region 3) with constant flow 

properties in the upstream.   
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The detonation wave reaches the reactant/air interface at the tube exit at t = 0.305 

ms (point A), which deviates slightly from the following analytical prediction by 0.6% 

due to the effect of the externally imposed ignition source. 

 D

0.6 mτ 0.307 ms
1956 m/sD

L

u
= = =  (4.17) 

The wave then degenerates to a non-reactive shock (i.e., the primary shock wave) 

proceeding further downstream into the external region, followed by a contact surface 

separating the ambient air and combustion products.  A sonic region is gradually formed 

near the tube exit due to the local flow expansion, as evidenced by the clustered 

characteristic lines in the x-t diagram.  Downstream of the sonic region, the flow is 

expanded to become supersonic and finally leads to the formation of a secondary shock to 

match with the subsonic flow behind the primary shock.  This secondary shock wave 

moves further downstream, meeting with expansion waves originating from the primary 

shock wave.  These complicated flow structures can be also observed in Fig. 4.6, which 

shows the instantaneous pressure and density and their gradient fields at t = 0.7 ms.  

Many salient features are clearly examined, including the expansion fans, vortices, and 

the rolled-up slip lines developed as the shock diffracts over the edge of the tube exit. 

As the detonation wave catches the reactant/air interface and the resultant primary 

shock wave travels outside the tube, a series of expansion waves are generated and 

propagate upstream, resulting in a non-simple wave region (region 4) when interacting 

with the incoming Taylor waves.  A simple wave region (region 5) is recovered after 

passing through the Taylor waves.  The first expansion wave reaches the head end at t = 

0.935 ms (point B), which can be determined by considering the interaction between the 
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expansion and the Taylor waves and the sound speed in region 3.  A similarity solution 

has been derived by Wintenberger et al. (2003) and is detailed in Appendix F.  The 

analytical solution gives 
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where α is function of γ and MD and can be calculated as, 

 

1
2 2( 1)

2 2

1 1 2( 1)
(1 ) 2 1

2 ( 1)( 1)

D

D D

M

M M

γ
γγα

γ

+
−

 
 + = + ⋅ −  + +   

 (4.19) 

Application of Eqs. (4.18) and (4.19) gives rise to an analytical value of 0.958 ms.  The 

slight difference between the numerical and the analytical solutions may be attributed to 

the numerical resolution and dissipation near the tube exit.  

On the arrival of the first expansion wave at the head end, the pressure begins to 

decay gradually.  These expansion waves reflect off the head end and form another series 

of expansion waves, further reducing the chamber pressure.  The downstream-traveling 

expansion waves weaken the secondary shock, and eventually cause it to move upstream. 

The head-end pressure decays to 0.23 atm at t = 2.4 ms, at which point the 

purging stage begins.  The head-end temperature is 1258 K at this instant.  Because of the 

pressure difference across the entrance plane, a right-running shock wave is established, 

along with a series of central expansion waves and a contact surface between the burned 

gas and the cold air.  Another contact surface forms between the fresh reactants and 

purging air when the refilling stage commences 0.1 ms later.  The corresponding refilling 

pressure, velocity, and Mach number are about 0.91 atm, 500 m/s, and 1.2, respectively.  
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The time evolution of the pressure distribution along the centerline during the first cycle 

of operation is shown in Fig. 4.7. 

The flow evolution during a steady operation cycle is examined.  Figure 4.8 

shows the x-t diagram and time histories of flow properties at the head end for the fifth 

cycle.  The main flow features remain qualitatively the same as those in the first cycle.  

However, the secondary shock wave disappears, since the flow behind the primary shock 

wave is already supersonic.  In addition, the head-end pressure and temperature begin to 

decay earlier relative to the first cycle, due to the rarefaction waves produced from the 

previous cycle.  It should also be noted that the detonation wave catches the leading fresh 

reactant at x = 51.2 cm instead of at the tube exit. 

 

 
 

 
 

 Fig. 4.6   Snapshots of pressure, density and their gradients fields at t = 0.7 ms. 
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Fig. 4.7  Time evolution of pressure distribution along centerline during first cycle of 

operation (τcycle = 3 ms, τclose = 2.4 ms, τpurge = 0.1 ms). 
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Fig. 4.8  x-t diagram for fifth cycle and time histories of flow properties at head end 

under typical PDE operation (stoichiometric H2/air mixture, τcycle = 3 ms, τclose = 2.4 ms, 

τpurge = 0.1 ms). 

 

The impulse of each cycle is calculated by considering the momentum balance 

over a control volume enclosing the entire engine.  The cycle-averaged specific thrust 

(air-based) and specific impulse (fuel-based) are then obtained by dividing the impulse by 

the air mass and fuel weight for each cycle, respectively.  For the baseline case, the fuel-

based specific impulse is 2328 s.   
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For comparison, the performance parameters and flow conditions of a 

corresponding ramjet engine with perfect nozzle flow expansion are given in Fig. 4.9, 

which has a specific impulse of about 3866 s.  Thus, with the straight-tube configuration, 

the PDE performs even worse than the ramjet engine. 
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 Fig. 4.9   Performance parameters of ramjet engine for stiochiometric H2/air mixture  

 

A parametric study was carried out to examine the effect of various operating 

times on the system performance.  Figure 4.10 shows the result as a function of τclose.  

The highest specific impulse obtained is 2906 s.  This is far lower than its theoretical 

limit of 5263 s (Wu, Ma, and Yang, 2003), which assumes isentropic flow processes in 

the inlet and nozzle.  Although the calculated specific impulse can be improved by 

optimizing the operation frequency and timing, the net gain appears to be limited with the 

current design.  Several fundamental mechanisms responsible for such an unacceptable 

performance have been identified.  First, at high altitudes, the straight-tube design fails to 

preserve the chamber pressure during the refilling stage at a level sufficient to meet the 
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requirements for the mass loading density of fresh reactants.  Second, the low chamber 

pressure in the refilling stages causes a high-speed reactant stream in the tube, and 

subsequently results in a large performance loss.  It is well established that the stagnation 

pressure drop due to energy addition is proportional to the square of the Mach number.  

In the present case, the local Mach number may reach a value of up to 1.2 during the 

refilling process.  The ensuing loss of thermodynamic efficiency becomes exceedingly 

large compared with conventional propulsion systems with subsonic combustions.  Third, 

the lack of an appropriate flow expansion device downstream of the detonation tube gives 

rise to an extremely complicated flow structure near the tube exit.  The internal energy of 

the exhaust flow cannot be effectively converted to the kinetic energy for thrust 

generation, further deteriorating the situation.   
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Fig. 4.10  Effect of valve close-up time on specific impulse (τcycle = 3 ms, τpurge = 0.1 ms); 

straight tube with stoichiometric H2/air mixture, h = 9.3 km, M∞ = 2.1 
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4.6  Single-Tube PDE with CD Nozzle 

In light of the limited performance of the straight-tube design, much effort was 

expended to study the effect of nozzle configuration on the system propulsive 

performance.  The nozzle design for PDEs poses a serious challenge because of the 

intrinsically unsteady nature of the pulse detonation process.  Recent studies on the 

nozzle effect, as been reviewed in Chapter 1, indicate that the nozzle configuration may 

significantly change the thrust delivered by an engine.  In addition to its influence on 

specific impulse through modification of the gas expansion process, the nozzle affects the 

chamber flow dynamics and, consequently, the timing of various phases of the engine 

operation cycle, especially for high-altitude and space applications.  The present work 

focuses on a choked convergent-divergent (CD) nozzle because of its effectiveness in 

preserving the chamber pressure during the blowdown and refilling stages.  In contrast, 

divergent and plug nozzles do not possess such an advantage, especially under high-

altitude conditions, in spite of their superior performance for a single-pulse operation at 

sea level. 

Figure 4.11 shows schematically the computational domain.  The detonation tube 

remains the same as in Sec. 4.5.  The CD nozzle has a length of 20 cm and a throat height 

of 12 cm, with a 45° convergent angle and a 15° divergent angle.  The computational 

domain is discretized into 554228 unstructured triangular grid cells, with 320000 for the 

detonation tube, 88080 for the nozzle, and 146168 for the external region.  Figures 4.12 

and 4.13, respectively, show the decomposed sub-domains and the number of cells of the 

sub-domains. 
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 Fig. 4.11   Computational domain for single-tube PDE 

 

 
 Fig. 4.12   Schematic of the computational domain decomposed into 64 sub-domains 
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 Fig. 4.13   Number of cells of sub-domains 
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4.6.1  Flow Evolution 

A series of analyses are conducted over a wide range of operation parameters.  

The baseline case has an operation cycle period (τcycle) of 3 ms, a valve close-up time 

(τclose) of 2.1 ms, and a purge time (τpurge) of 0.1 ms.  The ambient flow is treated as 

stationary.  Figures 4.14 and 4.15 show the time evolution of the Mach number and 

density-gradient fields during the first cycle of operation, respectively.  The 

corresponding pressure and Mach-number distributions along the centerline of the 

computational domain are displayed in Fig. 4.16.  Figure 4.17 shows the time histories of 

pressure and Mach number at the midpoints of the head end, nozzle throat, and nozzle 

exit. 

Initially, the detonation tube is filled with a stoichiometric hydrogen/air mixture at 

the ambient pressure and temperature.  The cycle begins with the valve closed.  

Detonation is then initiated by the driver gas near the head end and propagates 

downstream toward the unburned mixture.  It is immediately followed by a centered 

rarefaction wave known as the Taylor wave (Taylor, 1950; Fickett and Davis, 2000), 

which decreases the pressure and brings the flow to rest in order to satisfy the stationary 

condition at the head end.  Between the head end and the rear of the Taylor wave is a 

uniform region with constant flow properties.  These wave structures have also been 

presented in detail in Sec. 4.5 by means of a numerically obtained x-t diagram.  The 

detonation wave speed, uD, Mach number, MD, and the flow properties at CJ point can be 

obtained analytically based on the standard CJ theory.  The flow properties of the 

uniform region can be derived through the Riemann invariant relation and the isentropic 
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Fig. 4.14   Time evolution of Mach number field during the first cycle of operation (τcycle 

= 3 ms, τclose = 2.1 ms) 
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Fig. 4.15   Time evolution of density-gradient field during the first cycle of operation 

(τcycle = 3 ms, τclose = 2.1 ms)  
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Fig. 4.16   Time evolution of pressure () and Mach number (---) distributions along 

centerline during first cycle of operation (τcycle = 3 ms, τclose = 2.1 ms) 
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Fig. 4.17   Time histories of (a) pressure and (b) Mach number at midpoints of head end, 

nozzle throat, and nozzle exit during first cycle of operation (τcycle = 3 ms, τclose = 2.1 ms) 
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relation from the CJ point to the uniform region (Fickett and Davis, 2000; Wintenberger 

et al., 2003).  The resultant analytical formulations have been given in Chapter 1 and are 

summarized again as below.  

 1
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 (4.22) 

Equation (4.20) yields a detonation wave Mach number of 5.94 and a detonation wave 

speed of 1956 m/s, which agrees well with the 1950 m/s obtained from the NASA CEA 

code (McBride and Gordon, 1996).  The simulated flow properties at the CJ point and in 

the uniform region coincide with the corresponding analytical predictions (e.g., deviation 

of less than 0.1% for the CJ properties and 0.4% for the uniform region properties), as 

manifested in Table 4.1. 

 

Table 4.1   Flow properties at the CJ point and in the uniform region 

(p1 = 0.29 atm, T1 = 228 K, γ = 1.29, R = 368.9 J/(kg⋅K), q = 2.720×10
6
 J/kg) 

 

 numerical analytical 

p2, atm 5.855 5.888 

T2, K 2663 2665 

M2 0.737 0.737 

P3, atm 2.158 2.154 

T3, K 2133 2126 

C3, m/s 1007 1006 
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At t = 0.15 ms, the detonation wave travels to x = 29.5 cm, and the length of the 

uniform region becomes 15.0 cm.  These two lengths deviate slightly from the following 

analytical predictions by about 0.6% due to the effect of the detonation initiation process. 

 1956 m/s 0.15 ms 29.3 cmD Dx u t= × = × =  (4.23) 

 3 3 1006 m/s 0.15 ms 15.1 cmx c t= × = × =  (4.24) 

where c3 is the sound speed in the uniform region.  Generally, the length of the uniform 

region is about halfway between the detonation wave front and the head end (Fickett and 

Davis, 2000), as demonstrated by the following relation: 

 
2

33

2

1

1 1

2 2

D

D DD

RTc M

u MM RT

γ
γ

+
= = ≈  (4.25) 

The detonation wave continues downstream and reaches the reactant/air interface 

at the tube exit at t = 0.305 ms. It then degenerates to a non-reacting shock wave (i.e., the 

primary shock wave) due to the lack of energy support from chemical reaction.  

Meanwhile, a series of expansion waves are generated and propagate upstream.  The 

primary shock wave proceeds further downstream through the nozzle and reflects off the 

convergent wall.  Its propagation through the nozzle throat resembles the shock 

diffraction over a convex curved wall (Han and Yin, 1993).  At t = 0.40 ms, the primary 

shock wave has reached the divergent section and is curved due to effect of the expansion 

waves generated from the curved wall, and the two reflected shock waves have 

intersected with each other.  Along the curved wall, the flow behind the primary shock is 

locally expanded to supersonic, leading to the formation of two shock waves stemming 

out from the wall, as can be seen clearly in the enlarged pressure field in Fig. 4.18a.  On 
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the other hand, the interaction of the upstream-traveling expansion waves with the 

downstream-traveling Taylor wave causes a small zero-gradient region, as evidenced by 

the blank region located at about x = 53 cm from head end in Fig. 4.15b and by the 

pressure contours in Fig. 4.18a. 

 

 

 
 

 Fig. 4.18   Enlarged views of pressure contours at (a) 0.40 ms and (b) 0.65 ms 

 

 

At t = 0.50 ms, the primary shock wave arrives at the nozzle exit.  The pressure 

and temperature on the centerline immediately behind the shock wave are 2.76 atm and 

527 K, respectively, corresponding to a shock wave Mach number of 2.93, which is much 

(a) 

(b) 
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smaller than the original detonation wave Mach number of 5.94.  Within the detonation 

tube, the upstream-traveling expansion waves have passed through the downstream-

traveling Taylor wave so that the length of the uniform region begins to decrease.  The 

two reflected shock waves intersect with each other, propagate further upstream, and hit 

and reflect off the tube walls, leading to more complicated shock wave structures.  

At t = 0.65 ms, the primary shock wave has moved out of the nozzle.  The shock 

Mach number is 2.53 at the center and reduces to about 1 near the wall due to strong flow 

expansion around the edge of nozzle exit.  This is consistent with Skews’ study (Skews, 

1967) on the shock-wave diffraction over a sharp corner, in which the shock Mach 

number near the wall approaches to 1 for large corner angles.  On the other hand, due to 

the velocity difference between the exhaust and the ambient flow, slip lines (or vortex 

sheets) are formed and roll up, as can be observed more clearly in the snapshots (e) and 

(f) of Fig. 4.15.  At t = 0.65 ms, the center of the upper spiral vortex sheet is positioned at 

x = 0.811 m and y = 0.136 m, at which the flow is stationary and has a pressure of as low 

as 0.18 atm.  More quantitative work on the vorticity production in shock diffraction was 

recently conducted by Sun and Takayama (2003).  In the inner region near the edge, the 

flow accelerates from subsonic to sonic due to expansion waves emanated from the edge, 

and finally a Prandtl-Meyer expansion fan is formed, as evidenced in Fig. 4.18b.  The 

expanded supersonic flow is terminated by a downstream secondary shock attached to the 

vortex sheet.  It should be noted that although the flow structure resembles that of shock 

diffraction over a sharp corner (Sun and Takayama, 2003; Skews, 1967; Korobeinikov 

and Urtiew, 1986; Dyke, 1997), it is complicated by the flow non-uniformity resulting 

from detonation and contact surface.  Within the detonation tube, the downstream shock 
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waves tend to catch up with the upstream shock wave, forming a lambda-shock structure, 

as displayed in Fig. 4.15d.  These shock waves continue upstream and finally lead to a 

nearly normal leading shock wave (see Fig. 4.15e).  

At t = 1.00 ms, part of the primary shock wave has moved out the computational 

domain.  The centers of the spiral vortex sheets move slowly to (0.829 m, ±0.175 m), 

whereas the pressure further decreases to 0.07 atm.  The secondary shocks attached to the 

vortex sheets have jointed together.  The Prandtl-Meyer expansion fans originated from 

the edges still exist, and the pressure at the nozzle exit plane is about 0.48 atm, higher 

than the ambient value of 0.29 atm, demonstrating that the nozzle flow remains 

underexpanded.  In the vicinity of the nozzle throat, the sonic region has just grown from 

near the wall to the entire throat section.  The curved sonic line, as evidenced in Fig. 

4.14f, starts at the wall slightly upstream of the throat and crosses the nozzle centerline 

downstream of the throat (Hodge and Koenig, 1995).  The Mach number at the midpoint 

of the nozzle throat is less than unity (see Fig. 4.17b).  Along the centerline downstream 

of the sonic line, the flow is still slightly below sonic and then accelerated to supersonic 

near the exit plane due to the expansion waves emanated from the edge of the nozzle exit 

(see Fig. 4.16f).  The Mach number at the midpoint of the nozzle exit plane is about 1.05.  

Inside the detonation tube, the upstream-traveling expansion waves and leading shock 

wave have reached the head end and been reflected, terminating the head-end pressure 

plateau that remained for 0.935 ms. The head-end pressure thus decays gradually, 

followed by an abrupt increase, as displayed in Fig. 4.17a.  The zigzag shape of the head-

end pressure history during 1 to 2 ms arises from the reflection of the subsequent 

upstream-traveling expansion waves and shock waves off the head-end. 
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As the blowdown process continues, the pressure within the tube and nozzle 

decays.  At t = 1.45 ms, the nozzle exit pressure decreases to 0.13 atm at the midpoint and 

0.21 atm at the wall, and the nozzle flow has developed to be overexpanded.  Also, the 

Prandtl-Meyer expansion fans disappear and oblique shocks form near the edges.  Within 

the nozzle, the flow downstream of the curved sonic line becomes supersonic, and the 

Mach number at the midpoint of nozzle exit is about 2.2.   

The valve opens at t = 2.10 ms, and the purging process begins.  The head-end 

pressure is about 0.6 atm prior to the valve opening, whereas the total pressure at the 

combustor entrance is 2.12 atm from the inlet analyses in Chapter 1.  As a result of this 

large pressure difference, a right-running shock wave is established along with a contact 

surface between the burned and the purged gases, as shown in Figs. 4.14h and 4.15h.  

The shock wave and the contact surface are located at 0.06 m and 0.02 m from head end 

at this time instant, respectively.  The temperature increases from 370 K to 1916 K across 

the contact surface, and the Mach number decreases from 1.04 to 0.46.  Another contact 

surface forms between the fresh reactants and the purged air when the refilling process 

commences 0.1 ms later.  The corresponding refilling pressure and velocity are 1.16 atm 

and 423 m/s, respectively.  At t = 2.50 ms, the shock wave and the two contact surfaces 

travel to 0.5, 0.18, and 0.13 m, respectively.  The pressure at the nozzle exit decays to 

0.06 atm.  The external flow structures bear a close resemblance to those of an 

overexpanded nozzle flow at steady-state condition (Hodge and Koenig, 1995), e.g., the 

oblique shocks intersect with each other and reflect off the slip lines (or shear layers) to 

generate expansion waves, as displayed in Fig. 4.15i.  A Mach intersection (Hodge and 
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Koenig, 1995) of the two oblique shocks may happen as the intersection point moves 

upstream with a further decay of the nozzle exit pressure.   

At the end of the cycle (t = 3.0 ms), the shock wave resulting from the purging 

process moves out of the nozzle and interacts with the existing waves, further 

complicating the external flowfield.  The fresh reactant fills the tube up to about two-

thirds.  The pressure of the reactant ranges from 1.16 atm at the head end to 0.60 atm at 

the leading point, which is significantly higher than the ambient pressure of 0.29 atm.  

The velocity of the reactant ranges from 430 to 600 m/s, in contrast to the initial 

stationary condition.  

The flow tends to reach steady cyclic condition as the cycle repeats.  Figure 4.19 

shows the time history of the head-end pressure during the first five cycles.  Significant 

differences between the first and later cycles are observed.  Specially, the pressure 

plateau during the first 0.935 ms does not appear in later cycles because of the rarefaction 

of waves from the previous cycle.  On the other hand, because of the higher pressure of 

the refilled reactants, the head-end pressure immediately after detonation is higher in later 

cycles than in the first cycle.  Figure 4.20 shows the specific impulse and the filling 

length of each cycle.  The filling length is defined as the length at which the detonation 

wave catches the leading fresh reactant.  Calculation of the specific impulse is given in 

the next subsection.  The specific impulse of the second cycle is much higher than that of 

the first cycle due to the higher loading density of the reactant during the second cycle.  

The specific impulse and the filling length reach steady values of 3402 s and 47.5 cm, 

respectively.  In this paper, the relative difference of specific impulse between two 
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continuous cycles being less than 0.1% will be used as the quantitative criterion for 

reaching steady cyclic operation.   

 
 

Fig. 4.19   Time history of head-end pressure during first five cycles (τcycle = 3 ms, τclose = 

2.1ms) 
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Fig. 4.20   Specific impulse and filling length of first five cycles (τcycle = 3 ms, τclose = 2.1 

ms) 
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Fig. 4.21   Time evolution of density-gradient field during fifth cycle of operation (τcycle = 

3 ms, τclose = 2.1 ms) 

 

 

Figure 4.21 shows the time evolution of the density-gradient field during the fifth 

cycle, at which the steady cyclic operation is reached.  Although the time sequence is the 

same as that of the first cycle, quite different flow patterns are obtained due to the effect 

of flow non-uniformity arising from the previous cycle.  The reactant has already had a 

speed of about 500 m/s before being burned, the detonation wave thus propagates faster 

to the tube exit, e.g., the detonation wave front travels 36.8 cm at t = 12.15 ms in contrast 

to 29.5 cm in the first cycle.  In the external region, the pressure level is lower because 
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the flow remains overexpanded during a large amount of the cycle period.  From the time 

history of the pressure at the midpoint of the nozzle exit shown in Fig. 4.22, the flow is 

overexpanded from 12.0 through 12.3 ms and from 12.9 through 15.0 ms, in contrast to 

about 1.6 ms of overexpansion during the first cycle.  The Mach number at the midpoint 

of the nozzle exit remains supersonic throughout the whole cycle.   From the time 

evolution of the Mach-number field (not shown), the nozzle is choked during most of the 

cycle period, thus helping preserve the chamber pressure.  The results presented here 

suggest again that the PDE analysis should be based on multicycle operations.  

 

 

 
 

Fig. 4.22   Time histories of pressure and Mach number at midpoint of nozzle exit during 

fifth cycle of operation (τcycle = 3 ms, τclose = 2.1ms) 
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4.6.1.1  Effect of Ambient Flow 

In the above simulation case, the ambient flow is neglected, i.e., the external 

flowfield is initially stationary and a non-reflection boundary condition is used.  In a real 

flight condition, however, the ambient flow is not stationary and will interact with the 

exhaust flow.  To consider its effect, a supersonic inflow with a velocity of 636 m/s is 

applied at the left boundary of the external region (see Fig. 4.11).  Figure 4.23 shows the 

density-gradient field at t = 14.5 ms, which can be compared with Fig. 4.21e for the 

baseline case.  A close-up view of the Mach number contours is shown in Fig. 4.24.  In 

spite of the drastic change of the flow structure in the external region, the flowfield 

within the detonation tube and nozzle remains nearly the same.  This is attributed to the 

fact that the flow at the nozzle exit plane is supersonic during the whole cycle, and thus 

the ambient flow effect cannot propagate into the chamber to affect the geodynamics 

therein.  As a result, the specific thrust and specific impulse are unchanged.  On the other 

hand, since the ambient flow modifies the external flowfield, it thus affects the engine 

drag, which is beyond the scope of this paper.  The ambient flow will be treated as 

stationary for all the other simulation cases. 
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Fig. 4.23   Density-gradient field at t = 14.5 ms, with ambient flow, τcycle = 3 ms, τclose = 

2.1 ms 

 

 

 
 

Fig. 4.24   Close-up view of Mach-number contours at t = 14.50 ms, with ambient flow 
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4.6.2  Propulsive Performance 

Figure 4.25 shows the instantaneous axial thrust calculated with Eq. (4.10) by 

neglecting the last term (i.e., the time-derivative term) during the first five cycles.  

Initially, the thrust is negative, i.e., −636 N, since the fluid at the engine exit plane is 

stationary.  The exit flow starts at t = 0.47 ms when the primary shock wave moves out of 

the nozzle, leading to a sudden jump in thrust.  This kind of peak exists in each cycle.  

During the later part of the blowdown stage, the thrust becomes negative due to the low 

pressure and density at the exit plane.  The thrust changes from negative to positive again 

when the shock resulting from the purging process reaches the exit plane.  During a 

steady periodic cycle, e.g., the fifth cycle, the time duration of negative thrust is about 0.7 

ms, that is, from 14.0 to 14.7 ms. With Eqs. (4.12)-(4.14), the cycle-averaged thrust 

obtained is 862 N, and the specific thrust and specific impulse are 862 m/s and 3402 s, 

respectively.  This specific impulse is much higher than that achieved with only a straight 

tube.  It is noteworthy that the CD nozzle significantly increases the performance because 

of its effectiveness in preserving the chamber pressure during the blowdown and refilling 

stages, rather than by thrust generation on the nozzle wall itself.  The impulse generated 

on the nozzle wall can be obtained either by integrating the overpressure force on the 

wall or by applying momentum balance between the entrance and exit planes of the 

nozzle.  Both are shown in Fig. 4.26.  Although they don’t coincide with each other at 

every time instant, the cumulate impulses generated over the fifth cycle are exactly the 

same, i.e., −0.716 N⋅s, which provides an essential validation check on the present 
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performance calculations.  The negative impulse of nozzle has also been reported by 

Yungster (2003) for divergent nozzles. 

 

 

 
 

Fig. 4.25   Instantaneous thrust and impulse during first five cycles (τcycle = 3 ms, τclose = 

2.1 ms) 
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Fig. 4.26   Instantaneous impulse of nozzle during fifth cycle (τcycle = 3 ms, τclose = 2.1 ms) 

 

4.6.3  Analytical Prediction of Propulsive Performance 

Although the CD nozzle increases the propulsive performance significantly, the 

specific impulse of 3402 s for the baseline case is still below its ramjet counterpart of 

3866 s with perfect nozzle flow expansion.  It is desirable to develop simple analytical 

models that can be used to rapidly and reliably predict the PDE performance and to 

directly compare with the numerical simulation results. 

Several analytical models have been proposed in the past and are summarized in 

Chapter 1.  Based on how the impulse is obtained, these models fall into two classes.  

One employs unsteady gasdynamic analysis to determine the instantaneous pressures and 

forces acting on the thrust wall and calculate the impulse as the integration of them 

(Nicholls et al., 1957; Wintenberger et al., 2003).  The other obtains the engine impulse 
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by deriving the flow properties at the exit plane (Wu, Ma, and Yang, 2003; Heiser and 

Pratt, 2002; Talley and Coy, 2002).  The analytical model presented here follows the 

approach of Heiser and Pratt (2002), but takes into account the effects of the refilling 

velocity and the purging process to provides a more accurate prediction.  Figure 4.27 

schematically shows the flow path for the analysis.  Note that the subscripts ∞, 1, 2, and e 

represent the states of the freestream, unburned gas, CJ point, and exit plane, 

respectively.  The procedure is detailed as below. 

 

inlet combustor nozzle∞ e

T∞, p∞, u∞ Tt1, pt1

M1 T1, p1 T2, p2 Te

ue

CJ isentropic

perfect match

energy balance

inlet combustor nozzle∞ e

T∞, p∞, u∞ Tt1, pt1

M1 T1, p1 T2, p2 Te

ue

CJ isentropic

perfect match

energy balance

 
 

 Fig. 4.27   Schematic of flow-path analysis for PDE performance prediction 

 

 

i. Determine the total temperature Tt1 and total pressure pt1 at the entrance of the 

combustor from the inlet flow analysis. 

ii. Obtain the reactant temperature T1 and pressure p1 by assuming a refilling Mach 

number M1. 

iii. Calculate the CJ temperature T2 and pressure p2 using Eqs. (4.20) and (4.21). 

iv. Calculate the exit temperature by assuming an isentropic flow expansion from the CJ 

state to the exit plane with a perfect pressure match: 

 

1

2 2( / )eT T p p

γ
γ
−

∞=  (4.26) 
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v. Deduce the exit velocity by applying the energy balance from the combustor 

entrance to the engine exit plane: 

 12 ( )e p e tu q c T T = − −   (4.27) 

vi. Obtain the specific thrust and specific impulse: 

 (1 )sp eF f u u∞= + − ,   /( )sp spI F fg=  (4.28) 

If the purging process is further incorporated, the exit temperature can be 

recalculated based on the following average: 

 1 purge 2 refill open( τ τ ) / τe e eT T T= ⋅ + ⋅  (4.29) 

where Te1 and Te2 are the temperatures obtained by assuming isentropic flow expansion 

from the purged-gas state (T1, p1) and the CJ state (T2, p2) to the exit plane with perfect 

pressure match, respectively. 

 

1

1 1 1( / )eT T p p

γ
γ
−

∞= ,  

1

2 2 2( / )eT T p p

γ
γ
−

∞=  (4.30) 

Also, f and q need to be replaced by the overall fuel-to-air mass ratio f  and the heat 

addition per unit mass of the mixture of the reactants and purged gas q , respectively. 

 refill openτ / τ (1 )f f f β= ⋅ = −  (4.31) 

 refill openτ / τ (1 )q q q β= ⋅ = −  (4.32) 

where β is defined as 

 purge openτ / τβ =  (4.33) 

The specific thrust and specific impulse then become 

 (1 )sp eF f u u∞= + − ,   /( )sp spI F fg=  (4.34) 
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Based on the above analysis, the specific thrust and specific impulse are functions 

of γ, R, q, f, p∞, Tt1, pt1, M1, and β.  If the current system is to be considered, the first 

seven parameters are fixed values, that is, γ = 1.290, R = 368.9 J/(kg⋅K), q = 2.720×10
6
 

J/kg, f = 0.0292 (for stoichiometric H2/air reactants), p∞ = 0.29 atm, Tt1 = 428 K, and pt1 

= 2.12 atm, and M1 and β are two free parameters.  The effects of these two parameters 

are then considered.  

Table 4.2 lists the predicted PDE performance under various M1 and β.  The result 

from the baseline numerical simulation case, which has an average refilling Mach 

number of 0.93 and β of 1/9, is also listed for comparison.  The first condition represents 

an ideal one which has zero refilling velocity and no purging process, and has an Isp of 

4360 s.  Both the specific thrust and specific impulse decrease as M1 increases.  This can 

be directly explained from the aforementioned analytical formulas.  As M1 increases, T1 

decreases, leading to an increase in MD, as given by Eq. (4.20).  The combination of Eqs. 

(4.21), (4.26), and (4.27) indicates that Te increases and ue decreases as MD increases.  

Thus, Fsp and Isp decrease.  The decrease in performance with the increase of M1 can also 

be explained from the entropy point of view, since the entropy rise across the detonation 

wave is expressed as 
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 (4.35) 

the increase in M1 leads to increase in MD and ∆s, thus degrading the performance.   
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Table 4.2  Analytically predicted PDE propulsive performance under 

 various refilling Mach numbers and purge-to-open time ratios 

 

Condition (pt1 = 2.12 atm, Tt1 = 428 K) Fsp, m/s Isp, s 

(1)  M1 = 0, β = τpurge/τopen = 0 1246 4360 

(2)  M1 = 0.93, β = 0 1167 4084 

(3)  M1 = 0, β = 1/9 1150 4527 

(4)  M1 = 0.93, β =1/9  1075 4235 

baseline numerical simulation case  862 3402 

 

 

Comparison between the first and third conditions of Table 4.2 indicates that Fsp 

decreases and Isp increases with β.  The effect of β is quite similar to the partial filling 

effect for single-pulse operation (Cooper and Shepherd, 2002; Li and Kailasanath, 2002).  

A larger β translates to a larger air-to-fuel mass ratio.  The heat released from combustion 

thus needs to increase the kinetic energy of more extra air, leading to a decrease in exit 

velocity.  The specific thrust thus decreases.  On the other hand, the overall fuel-to-air 

mass ratio f , defined by Eq. (4.31), decreases faster than the specific thrust, leading to a 

increase in specific thrust.  The effect of β can be seen more clearly through the Taylor 

series expansion of Fsp and Isp with respect to β. 

 0(1 ) (1 )sp e spF f u u F Aβ∞= + − ≈ −  (4.36) 

 0/( ) [1 (1 ) ]sp sp spI F fg I A β= ≈ + −  (4.37) 

where 
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and 0

spF , 0

spI , 0

eT , and 0

eu  denote the specific thrust, specific impulse, exit temperature, 

and exit velocity at zero purge time, respectively.  For the current system, A ≈ 0.7.  

Therefore, Fsp decreases and Isp increases with β, and since (1 )A Aβ β− > , the relative 

increase in Isp is less than the relative decrease in Fsp.  From Table 4.2, when β increases 

from 0 to 1/9, Fsp decreases by 7.7% and Isp increases by 3.8%, which agrees well with 

the predictions from Eqs. (4.36) and (4.37). 

4.6.4  Loss Mechanisms 

In addition to the losses in the inlet and manifold mentioned in Chapter 2, there 

are several losses in the combustor and nozzle of a PDE, including the viscous damping, 

the loss due to heat transfer to the wall, the loss due to refilling velocity, nozzle 

expansion loss, flow divergence loss, and internal flow loss.  The viscous damping and 

heat transfer losses will not be considered in the current study.  The loss due to refilling 

velocity has been discussed in Sec. 4.6.3.  As the refilling Mach number M1 increases 

from 0 to 0.93, the specific impulse decreases by 6.5% from 4527 s to 4235 s, as shown 

in Table 4.2.  The performance discrepancy (about 25%) between the baseline numerical 

simulation case and the fourth condition given in Table 4.2 is attributed to 1) nozzle 

expansion loss or pressure-mismatch loss, 2) flow divergence loss, and 3) internal flow 

loss.  These three loss mechanisms are discussed in the following paragraphs. 

In conventional steady engines, the nozzle configuration is optimized such that 

the exit pressure matches with the ambient pressure.  This condition, however, does not 

exist for PDEs due to their unsteady operations.  The resultant performance loss, referred 
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to as the nozzle expansion loss, can be estimated through a post-processing analysis.  

This post-process allows the recorded exhaust flow to be compressed or expanded 

isentropically to match the ambient pressure and calculates the corresponding ideal 

specific impulse.  For the baseline case, this ideal specific impulse is 3604 s, and the 

nozzle expansion loss is thus about 6.0%.  Figure 4.28 shows the temporal variations of 

momentum impulse and pressure impulse during a steady periodic cycle for the baseline 

case.  Although the pressure impulse is much smaller than the momentum impulse, it is 

not zero.  As mentioned in Sec. 4.6.1, the nozzle is overexpanded from 12.0 through 12.3 

ms and from 12.9 through 15.0 ms, and is underexpanded otherwise.  At the end of the 

cycle, the momentum impulse and pressure impulse are 2.72 and –0.135 N⋅s, 

respectively, demonstrating an overall effect of overexpansion of the nozzle flow.   

 

 
 

 Fig. 4.28   Instantaneous impulse during steady cycle (τcycle = 3 ms, τclose = 2.1 ms) 
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The flow divergence loss results from the exhaust velocity vector angularity 

(Berton, 1991; Mattingly, 1996), and is generally characterized by a nozzle divergence 

coefficient defined as the ratio of actual axial exhaust momentum to that from an ideal 

nozzle where all of the exhaust flow is axial.  For the current PDE system, the nozzle 

divergence coefficient can be expressed by 

 e e

d

e e

m u

m u
η =  (4.39) 

where eu  and eu  are defined as 
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Equation (4.39) gives rise to a value of 98.7% for the baseline case, which is slightly 

lower than the analytical value for a steady two-dimensional nozzle flow with a 

divergence angle of θ =15°: 
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98.9%d

θη
θ

= =   (4.42) 

This means that the flow divergence loss in PDEs is about the same as that in 

conventional steady engines.  The nozzle divergence coefficient directly relates to the 

loss in gross thrust.  The loss in thrust due to flow divergence can be readily obtained 

after taking into account the freestream momentum, 

 1 e e a
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m u m u

m u m u
ε ∞

∞

−
= −

−
 (4.43) 

which leads to a value of 2.0% for the baseline case. 
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The internal flow loss is mainly attributed to the shock waves and their 

interactions within the internal flowfield.  In the analytical performance prediction, the 

flow is assumed to experience an isentropic expansion from the CJ state to the exit plane.  

However, there exist complicated shock waves within the internal flowfield as described 

in Sec. 4.6.1.  The associated entropy increase and total pressure drop lead to a 

performance loss.  It is formidable to estimate the internal flow loss directly from the 

flowfield.  Nevertheless, since the sum of the nozzle expansion loss, the flow divergence 

loss, and the internal flow loss is 24.5%, i.e., the deviation of the simulated performance 

from the analytical prediction (condition 4 in Table 4.2), an internal flow loss of 16.5% 

can thus be obtained for the baseline case.  This large internal flow loss is unique for 

PDEs and is one of the major disadvantages that degrade the PDE performance.  The 

quantitative values of the various losses discussed above are summarized in Table 4.3 for 

the baseline case. 

 

Table 4.3  Loss summary for baseline case 

 

loss mechanism loss in specific impulse 
a
 

loss due to refilling velocity 8.5% 

nozzle expansion loss 6.0% 

flow divergence loss 2.0% 

internal flow loss 16.5% 

total 33% 

 
a
 relative loss based on the baseline numerical result of 3402 s 
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4.6.5  Effect of Valve Timing  

Parametric studies are conducted to investigate the timing effect on the propulsive 

performance by varying the cycle time τcycle, valve close-up time τclose, and purge time 

τpurge.  Figure 4.29 shows the effect of τclose on the specific thrust Fsp and the specific 

impulse Isp for three different τcycle: 2.5, 3 and 4 ms, corresponding to operation 

frequencies of 400, 333, and 250 Hz, respectively.  The purge time τpurge is fixed at 0.1 

ms.  Similar studies have been conducted in Chapter 3 based on quasi-one-dimensional 

simulations.  When the straight-tube design is compared at the same operating condition, 

the present system with a choked CD nozzle can indeed substantially improve the engine 

performance by a margin of 25%. 

For each frequency considered herein, the specific thrust increases as τclose 

decreases.  This can be explained as below.  For a given τcycle and τpurge, a smaller τclose 

brings the following four positive effects.  First, the blowdown process is shorter, and the 

resultant higher chamber pressure during the refilling stage increases the loading density 

of fresh reactant.  Second, the increased refilling period enhances the amount of reactant 

delivered to the chamber, thus increasing the chamber pressure.  Third, the duration of 

negative thrust is shorter.  It has been pointed out in Sec. 4.6.3 that negative thrust may 

appear at the later part of the blowdown process due to the low-energy level of the gases 

in the combustor.  Figure 4.30 shows the instantaneous thrust and impulse during a steady 

cycle for three cases with different τclose.  The solid line represents the baseline case.  

When τclose decreases from 2.4 to 1.8 ms, the time duration of negative thrust decreases 
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Fig. 4.29   Effect of valve closed time on (a) air-based specific thrust and (b) fuel-based 

specific impulse at three different operation frequencies; τpurge = 0.1 ms, stoichiometric 

H2/air mixture, h = 9.3 km, M∞ = 2.1. 

 

(a) 

(b) 
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Fig. 4.30   Instantaneous thrust and impulse during a steady cycle, τcycle = 3 ms, τpurge = 

0.1 ms. 

(a) 

(b) 
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from about 1.5 ms to 0.4 ms. Finally, the internal flow loss decreases.  For a smaller τclose, 

the head-end pressure is higher as the valve opens.  Correspondingly, the shock resulting 

from the pressure difference across the valve is weaker.  In addition, the reactant 

temperature T1 increases, leading to a weaker detonation wave, i.e., the detonation wave 

number MD calculated with Eq. (4.20) is smaller.  Since the internal flow loss is mainly 

associated with the shock interactions within the flowfield, it thus decreases as the shock 

waves weaken.  These combined effects make Fsp decrease rapidly as τclose increases. 

It should be noted, however, the lower bound of τclose is subject to three practical 

constraints, as mentioned in Chapter 3.  The first is concerned with the inlet over-

pressurization.  The head-end pressure must not exceed the total pressure of the inlet air 

to allow for purging and refilling when the valve is open.  Otherwise, reverse flow may 

occur and cause engine unstart.  This kind of lower bound is denoted by the open circles 

on the curves of τcycle = 2.5 and 3 ms.  The second is related to chamber overfilling.  The 

fresh reactant should not flow out of the nozzle to the external region before being burned 

completely unless afterburning is considered.  This kind of lower bound is usually 

reached in low-frequency operations, as denoted by the full circle on the τcycle = 4 ms 

curve.  The third constraint, although commonly satisfied in practical cases, is that τclose 

should be sufficiently long to cover at least the time required for detonation initiation and 

propagation throughout the entire chamber.  The upper bound of τclose  (also the lower 

bound of τrefill) lies in the requirement that an appropriate amount of fresh reactant be 

delivered to the chamber to produce thrust. 
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The effect of τclose on the specific impulse follows the same trend as that of the 

specific thrust, except for a small range of τclose near its lower bound.  The specific 

impulse and specific thrust satisfy the following relation: 

 
purge refill(1 τ / τ )sp

sp

F
I

f g

+
=  (4.44) 

As τclose decreases, the factor (1 + τpurge/τrefill) decreases and may override the increase of 

Fsp, consequently leading to a decrease in Isp, as shown in Fig. 4.29b. 

Also observed in Fig. 4.29 is the existence of an optimum frequency.  For a given 

τclose and τpurge, a lower frequency translates to a longer refilling period.  As a 

consequence, a higher chamber pressure can be reached, and the engine performance 

increases.  However, a large refilling time associated with low-frequency operation may 

cause chamber overfilling and thus degrade the performance.  These two conflicting 

effects result in an optimum frequency.  Among the three frequencies considered herein, 

the 333 Hz (τcycle = 3 ms) operation offers the best performance margin.  The highest 

specific impulse is 3672 s, slightly lower than its ramjet counterpart of 3866 s with 

optimum nozzle flow expansion.  

The effect of τpurge on the propulsive performance is also studied.  Figure 4.31 

shows the specific thrust and specific impulse at different τpurge with τcycle of 3 ms and 

τclose of 2.1 ms.  The full symbols denote the numerical simulation results, and the open 

ones denote the analytical predictions based on the procedures proposed in Sec. 4.6.3.  A 

performance loss of about 20% (or 25% relative to the numerical results) is observed, 

similar to that for the baseline case.  The specific thrust decreases with τpurge, while the 
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specific impulse increases with τpurge, which can be explained as follows.  For given τcycle 

and τclose, a larger τpurge translates to a larger air-to-fuel mass ratio.  The heat released 

from combustion thus needs to increase the kinetic energy of more extra air, leading to a 

decrease in exit velocity.  The decreased τrefill also degrades the specific thrust.  

Combined, the specific thrust decreases.  On the other hand, the factor (1 + τpurge/τrefill) in 

Eq. (4.44) increases and overrides the decrease in specific thrust.  The specific impulse 

thus increases.  Note that since τopen is fixed (0.9 ms), the effect of τpurge is thus equivalent 

to that of β discussed in Sec. 4.6.3 based on analytical predictions.  The increase of 

specific impulse is usually at the price of more decrease in specific thrust.  In the present 

study, when τpurge increases from 0 to 0.4 ms, the specific impulse increases about 14%, 

whereas the specific thrust decreases about 37%.  
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Fig. 4.31  Effect of purging time on (a) air-based specific thrust and (b) fuel-based 

specific impulse, τcycle = 3 ms, τclose = 2.1 ms. 
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4.6.6  Effect of Nozzle Throat and Length 

In addition to the operation timing, the nozzle configuration represents another 

important factor that affects the PDE propulsive performance.  In conventional steady 

engines, the nozzle is optimized by matching the exit pressure to the ambient pressure.  

This simple criterion, however, is not applicable to PDEs because the intrinsically 

unsteady pulse detonation process leads to an unsteady pressure field at the exit plane.  

Both numerical (Cambier and Tegner, 1998; Eidelman and Yang, 1998) and experimental 

(Daniau et al., 2001; Cooper and Shepherd, 2002) studies on the effect of nozzles on the 

PDE performance have been reported recently.  Most of them, however, were limited to 

single-pulse operation, and the question of nozzle optimization is far from resolved.  In 

general, the nozzle affects not only the performance through the modification of the gas 

expansion process, but also the chamber dynamics and is coupled with the operation 

timing, further compounding the problem.  A complete nozzle optimization for PDE thus 

requires tremendous computation resources.  Instead of conducting such an optimization, 

the main purpose of the present nozzle study is to investigate the qualitative effect of the 

nozzle configuration on the PDE propulsive performance.  

It has been demonstrated in the previous subsections that the CD nozzle 

significantly increases the performance that can be obtained with only a straight tube.  In 

this subsection, the effect of the CD nozzle configuration in terms of the nozzle length 

and the throat is further examined.  Figure 4.32 shows the four nozzle configurations 

considered herein.  The baseline configuration, as described earlier, has a length of 20 cm 

and a throat height of 12 cm.  In the second configuration, the nozzle length is reduced to 

15 cm.  The third nozzle has an even smaller length of 12.4 cm, with an exit area equal to 



169 

11/23/2003 

that of the tube.  The fourth one has a throat height of 9 cm, which is 25% smaller than 

that of the baseline nozzle.  

 

 

 

 

 
 

 

Fig. 4.32   Single-tube PDE configurations (tube length = 60 cm, tube height = 16 cm): 

(a) baseline case, nozzle length = 20 cm, throat height = 12 cm, (b) nozzle length = 15 

cm, (c) nozzle length = 12.4 cm, (d) throat height = 9 cm.  

(a) 

(c) 

(b) 

(d) 
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Fig. 4.33   Instantaneous thrust and impulse during steady cycle (τcycle = 3 ms, τclose = 2.1 

ms) 

(a) 

(b) 
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Simulations have been conducted for all the configurations with the same timing: 

τcycle of 3 ms, τclose of 2.1 ms, and τpurge of 0.1 ms. Figure 4.33 shows the instantaneous 

thrust and impulse during a steady cycle.  The corresponding performance parameters are 

listed in Table 4.4.  The effect of the nozzle length can be examined from the results of 

the first three configurations.  Both the thrust and impulse curves for these three 

configurations are very close.  Compared to the baseline configuration, the second and 

third ones have Isp of 0.1% and 1% lower, respectively.  Therefore, the nozzle length has 

a minor effect on the propulsive performance.  The pressure impulse shown in Fig. 4.34 

demonstrates that the overall effect of the second and third nozzles is underexpansion 

instead of overexpansion for the baseline nozzle.  The underexpansion losses are 6% and 

7%, respectively.  The nominal perfect-expansion nozzle, in the sense of zero cycle-

averaged pressure impulse, thus has a length between 15 cm (second nozzle) and 20 cm 

(baseline nozzle).  Figure 4.35 shows the time history of the head-end pressure during a 

steady cycle.  The first three curves coincide, manifesting the fact that the nozzle length 

only affects the gas expansion process within the divergent section of nozzle, but not the 

gasdynamics within the detonation tube.  

 

Table 4.4  Performance comparison among different nozzles 

 

Nozzle Fsp, m/s Isp, s 
imperfect nozzle 

expansion loss 

flow     

divergence loss 

Baseline 862 3402 6%, overexpansion 2.0% 

nozzle length = 15 cm 860 3393 6%, underexpansion 2.5% 

nozzle length = 12.4 cm 852 3365 7%, underexpansion 2.6% 

throat height = 9 cm 917 3597 4%, overexpansion 2.0% 
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Fig. 4.34   Instantaneous pressure impulse during steady cycle (τcycle = 3 ms, τclose = 2.1 

ms) 

 

 
 

Fig. 4.35   Time history of head-end pressure during steady cycle (τcycle = 3 ms, τclose = 2.1 

ms) 
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The nozzle throat area, on the other hand, affects both the nozzle expansion 

process and the flow dynamics within the detonation tube, and thus has a much more 

significant effect on the performance.  The impulse at the end of the cycle for the fourth 

configuration is apparently higher than the others.  The corresponding Isp of 3597 s is 6% 

higher than that of the baseline configuration, attributed to the following factors.  The 

smaller throat helps preserve the chamber pressure, as evidenced in Fig. 4.35.  The 

refilling pressure for the fourth configuration is about 1.49 atm, higher than the 1.24 atm 

for the baseline configuration.  Consequently, the refilling Mach number of 0.76 is 

smaller than the 0.93 for the baseline configuration.  In addition, the imperfect nozzle 

expansion loss is reduced, as listed in Table 4.4.  All these factors lead to a higher 

propulsive performance for a smaller throat.  Nevertheless, the relation of the propulsive 

performance and the nozzle throat area is not monotonic.  As the nozzle throat becomes 

exceedingly small, the internal flow loss associated with the shock interactions increases 

since the shocks reflected off the nozzle convergent wall become stronger.  Furthermore, 

a longer blowdown process may be required to avoid inlet over-pressurization, thus 

degrading the performance.  These two negative effects and the aforementioned positive 

effects result in the existence of an optimum nozzle throat area.  

To find the optimum nozzle throat area requires conducting a large number of 

simulations because of the coupling between the effects of the nozzle throat and 

operation timing.  A presumptive estimation is that the optimum nozzle may improve the 

best performance of the baseline nozzle by 6%, that is, the highest Isp of about 3892 s, 

which is only slightly higher than its ramjet counterpart of 3866 s with perfect nozzle 

flow expansion.  Further improvement of the system design and optimization thus need to 
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be conducted to make the PDEs competitive with other conventional engines.  One such 

improvement is to use multiple detonation tubes, which will be presented in the next 

Chapter. 

Finally, it is noteworthy that the analyses based on single-pulse operation may 

lead to totally different trends for the nozzle effect.  For example, during the first cycle, 

the overall effect of all four nozzles is underexpansion, and the impulse at the end of the 

first cycle for the baseline configuration is higher than that for the fourth configuration.  

A realistic analysis of nozzle effect on PDE performance should thus be based on 

multicycle instead of single-pulse operations.  

4.7  Summary and Conclusions 

The thrust chamber dynamics in single-tube airbreathing PDEs with multicycle 

operations has been studied by means of two-dimensional simulations.  The system under 

consideration includes a supersonic inlet, an air manifold, a rotary valve, a single-tube 

combustor, and a convergent-divergent nozzle, which is designed for the flight condition 

at an altitude of 9.3 km and a flight Mach number of 2.1.  The combustion and 

gasdynamics involved in the detonation initiation and propagation, blowdown, purging, 

and refilling processes are examined in detail.  A flow-path based performance prediction 

model is proposed to estimate the upper performance limit of the current PDE system.  

The various performance loss mechanisms, such as the imperfect nozzle expansion loss, 

flow divergence loss, and internal flow loss, are identified.  The effects of operation 

timing, including the cycle time, valve close-up time, and purge time, and nozzle 
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configurations in terms of nozzle length and throat area on the propulsive performance 

are investigated systematically.  The analyses presented in this paper can be effectively 

utilized to provide guidelines for the PDE design and to identify the various loss 

mechanisms limiting the PDE performance.  A number of important conclusions drawn 

from the present studies are given as below. 

(1) The imperfect nozzle expansion loss resulted from the mismatch between the 

exit and ambient pressures is unavoidable in PDEs because the intrinsically unsteady 

pulse detonation process leads to an unsteady pressure field at the exit plane.  The 

internal flow loss is mainly attributed to the shock waves and their interactions within the 

internal flowfield.  These two losses reach 6% and 16.5% for the baseline case, 

respectively, composing the major factors that degrade the propulsive performance and 

render the PDE less attractive.   

(2) There exists an optimum operation frequency for achieving the best 

performance margin.  At a given frequency and purge time, a smaller valve close-up time 

increases the performance in most cases.  On the other hand, for a given frequency and 

valve close-up time, a larger purge time decreases the specific thrust and increases the 

specific impulse.   

(3) The nozzle length has a minor effect on the propulsive performance since it 

only modifies the gas expansion process within the divergent section.  The throat area, in 

contrast, affects both the gas expansion process and the gasdynamics within the chamber, 

thus exerting a much more significant effect.  Among the four nozzle configurations 

studied herein, the smaller throat improves the performance up to 6%, whereas the nozzle 

length affects the performance by only 1%.  A smaller throat tends to increase the 
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performance by raising the chamber pressure.  However, an exceedingly small throat 

renders negative effects due to the related longer blowdown process and larger internal 

flow loss.  An optimum throat thus exists. 

(4) Significant differences exist between single-pulse and multicycle operations.  

A realistic analysis of PDE performance should be based on multicycle instead of single-

pulse operations. 

The best specific impulses obtained for the current PDE system with a 

stoichiometric hydrogen/air mixture, e.g., 3672 s for the baseline configuration and 3892 

s for an optimum nozzle, are only close to or slightly higher than its ramjet counterpart of 

3866 s.  Further improvement of the design philosophy and optimization of the system 

configuration and operation timing thus need to be conducted to make the PDEs 

competitive with conventional engines.   
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Chapter 5 

Two-Dimensional Analyses of Multitube PDEs 

Chapter 4 has focused on the thrust chamber dynamics and propulsive 

performance of single-tube airbreathing PDEs.  At a flight altitude of 9.3 km and Mach 

number of 2.1, the best specific impulse for a baseline configuration with a stoichiometric 

hydrogen/air system is 3672 s, which is slightly lower than its ramjet counterpart of 3866 

s.  Further improvements of the system design are thus required to make the PDE 

competitive with other conventional engines.  One of the improvements is to use a 

combustor consisting of multiple detonation tubes operating sequentially.  In principle, 

this multitube design offers the following advantages:  

(1) Delivering air from inlet to multiple detonation tubes reduces the inlet loss 

associated with the airflow stagnation during the period when none of the tubes are being 

filled.  In a single-tube PDE, this time period takes up a large part of the cycle time and 

may cause inlet unstart.  

(2) Exhaust from multiple detonation tubes discharging into a common nozzle 

provides a more stable nozzle flow and helps to increase the nozzle exit pressure which 

would be quite low in a single-tube PDE during the later part of the blowdown process 

and the purging and refilling processes, and thus improves the nozzle performance.  

(3) The detonation wave from one tube can precompress the reactants in other 

tubes.  

(4) The purging and refilling processes are less coupled with the blowdown 

process, thus leading to a wider range of operation timing. 
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(5) The overall engine operation frequency is increased, usually by a factor equal 

to the number of detonation tubes used.  Meanwhile, the degree of unsteadiness is 

reduced. 

(6) It provides the potential of fluidic thrust vectoring.  

This chapter attempts to develop a comprehensive numerical analysis dealing with 

the thrust chamber dynamics in multitube PDEs with repetitive operations, to examine 

the flow interaction among the detonation tubes, and to investigate the effects of 

operation timing and system geometry on the propulsive performance. 

5.1  System Configuration 

The system under consideration is shown schematically in Fig. 5.1.  It includes a 

co-axial supersonic inlet with mixed compression, an air manifold, a rotary valve, a 

combustor consisting of multiple detonation tubes, and a common convergent-divergent 

(CD) nozzle.  This PDE was designed for a flight altitude of 9.3 km and a flight Mach 

number of 2.1, corresponding to the flight condition of advanced missiles.  The static 

pressure, static temperature, total pressure, and total temperature of the freestream are 

0.29 atm, 228 K, 2.65 atm, and 428 K, respectively.  The total pressure at the entrance of 

the combustor is set to 2.12 atm according to the study of the inlet aerodynamics. 

The cyclic operation of the PDE is controlled by a valve system located at the 

entrance of the combustor.  The detonation tubes operate sequentially with a fixed time 

lag between each, as shown schematically in Fig. 5.2 for three detonation tubes.  The left 

ends (head ends) of the tubes are assumed to be fully open or fully closed for simplicity.  
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The operation sequence of each tube is the same as that for a single-tube PDE, which is 

controlled by three time periods: the valve close-up period (τclose), the purging period 

(τpurge), and the refilling period (τrefill).  The cycle period of each tube is the sum of the 

above three periods.  It may, however, be different from that for the engine.  For clarity, 

the parameter τcycle is used to represent the cycle period based on each tube, that is, τcycle 

= τclose + τpurge + τrefill. 
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 Fig. 5.1   Supersonic airbreathing pulse detonation engine 
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 Fig. 5.2   Operation sequence of a triple-tube PDE 
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(a) without free volume 

 
(b) with free volume 

 

 Fig. 5.3   Computational domains for multitube PDEs 

 

Practical multitube PDE configurations are three-dimensional.  Nevertheless, 

conducting full three-dimensional simulation of these systems requires tremendous 

computational resources.  The present work thus considers only planar systems to 

conduct two-dimensional simulations.  The resultant flow phenomena and the 

performance trend are believed to be qualitatively the same as those from the three-

dimensional analysis.  In addition, the two-dimensional analysis presented here provides 

direct comparisons with that on single-tube PDEs in Chapter 4. 
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Figure 5.3 shows the computational domains for the two configurations 

considered herein.  The combustor contains three detonation tubes, each with a height of 

5 cm.  The tubes are spaced 0.5 cm apart.  The nozzle adopts the baseline shape used in 

Chapter 4, which has a length of 20 cm and a throat height of 12 cm, with a 45° 

convergent angle and a 15° divergent angle.  In the first configuration, the length of the 

detonation tubes is 60 cm, and the tubes extend to the nozzle entrance.  In the second 

configuration, the length of the detonation tubes decreases to 45 cm, leaving a free 

volume of 15 cm long between the detonation tubes and the nozzle.  The same external 

region is included in the computational domains for both configurations.  The numbers of 

unstructured grid cells for these two cases are 623254 and 664362, respectively. 

5.2  Results and Discussion 

A series of simulations are conducted over a wide range of operation parameters 

for both configurations.  The flow evolution, as well as the interactions among the 

multiple detonation tubes, is first presented in detail for a baseline case, serving as a basis 

for the further performance analysis and parametric studies.  The engine propulsive 

performance is then obtained, and the various loss mechanisms are identified.  Finally, 

the effects of the valve timing and the system geometry on the propulsive performance 

are discussed.  
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5.2.1  Flow Evolution 

The baseline case for the first configuration has an operation cycle period (τcycle) 

of 3 ms, leading to a 1 ms time lag between tubes.  The valve close-up time (τclose), 

purging time (τpurge), and refilling time (τrefill) are 2.1 ms, 0.1 ms, and 0.8 ms, 

respectively.  The ambient flow is treated as stationary because of its minor effect on the 

propulsive performance.  Figure 5.4 shows the time evolution of the density-gradient 

field during the first cycle of operation. The corresponding pressure distribution along the 

centerline of each tube is given in Fig. 5.5, and the time histories of pressure at the 

midpoint of the head end of each tube in Fig. 5.6. 

Initially, the bottom tube is partially (75%) filled with a quiescent stoichiometric 

hydrogen/air mixture at the ambient pressure (0.29 atm) and temperature (228 K), 

whereas the other region is filled with the ambient air.  Detonation is directly initiated in 

the bottom tube by a driver gas region spanning 0.2 mm near the head end with a 

temperature of 2000 K and a pressure of 30 atm.  This small amount of driver gas has 

been demonstrated to have neglectable contribution to the engine impulse in Chapter 4.  

The detonation wave then propagates downstream at a Chapman-Jouguet (CJ) speed of 

1956 m/s, followed by the Taylor wave and a uniform region as have been discussed in 

Chapter 4.  The CJ pressure and temperature are 5.855 atm and 2663 K, respectively, 

whereas the pressure and temperature of the uniform region are 2.158 atm and 2133 K, 

respectively.  At t = 0.15 ms, the detonation wave has traveled approximately one half of 

the tube length, and the uniform region spreads about halfway between the detonation 

wave front and the head end, as also demonstrated in Chapter 4.  The middle tube is in 
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Fig. 5.4   Time evolution of density-gradient field during the first cycle of operation (τcycle 

= 3 ms, τclose = 2.1 ms, and τpurge = 0.1 ms)  
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Fig. 5.5   Time evolution of pressure distribution along centerline of each tube during the 

first cycle of operation (τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 ms) 
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Fig. 5.6   Time histories of pressure at midpoints of head ends of the bottom, middle, and 

top tubes during the first cycle of operation (τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 

ms) 

 

the purging stage.  The two vertical lines represent the shock wave and the contact 

surface induced by the pressure difference across the valve as the purging process begins.  

The pressure and velocity behind the shock wave are 1.20 atm and 411 m/s, respectively. 

The detonation wave in the bottom tube reaches the reactant/air interface located 

at 40 cm from head end at t = 0.20 ms.  It then degenerates to a non-reacting shock wave, 

the primary shock wave.  Meanwhile, a series of expansion waves are generated at the 

interface.  The expansion waves propagate both downstream along with the Taylor wave 

to the tube exit and upstream to the head end.  The upstream-traveling expansion waves 

interact and pass through the Taylor wave and thus reduce the length of the uniform 

region, as displayed in Fig. 5.5b.  The first expansion wave arrives at the head end at t = 

0.625 ms, and consequently, the head-end pressure begins to decay gradually.  As the 
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expansion waves reflect off the head end, another series of expansion waves form and 

propagate downstream toward the tube exit, further reducing the pressure in the bottom 

tube. 

The primary shock wave reaches the bottom tube exit at t = 0.380 ms.  It then 

diffracts at the tube exit and reflects from the nozzle walls, causing complex waves 

propagating upstream into all the three tubes and downstream into the nozzle, as 

displayed in the snapshot of t = 0.60 ms in Fig. 5.4.  A close-up view of these flow 

developments and the flow interactions among the tubes and nozzle are given in Fig. 5.7.  

The primary shock wave has been significantly weakened by the expansion waves from 

the interface before emerging from the bottom tube, e.g., the pressure behind the shock 

decays to 3.05 atm.  Its possibility to initiate detonations in the neighbor tubes is thus 

avoided.   The flow structures related to the diffraction of the shock wave around the 

upper edge of the bottom tube, such as the Prandtl-Meyer expansion fan, the vortex, and 

the secondary shock, and the shock reflected from the nozzle wall are all clearly seen in 

Fig. 5.7b.  In Fig. 5.7c, the diffracted and reflected shock waves have propagated into the 

middle and bottom tubes, respectively, and the pressures behind them are 0.32 and 2.40 

atm.  On the other hand, the upper part of the leading shock hits the edge connecting the 

middle and top tubes, whereas the right part propagates in the divergent section of the 

nozzle.  Along the curved wall, the flow behind the leading shock is locally expanded to 

supersonic, leading to the formation of a shock wave stemming out from the wall, as 

evidenced in Fig. 5.7c.  The upper part of the leading shock then hits (Fig. 5.7d) and 

reflects off (Fig. 5.7e) the upper wall of the nozzle.  In the top tube, the first shock relates 

to the diffracted part and the second one to the reflected shock from the lower wall of the 



187 

11/23/2003 

nozzle.  The pressures behind these two shocks are 0.37 and 0.53 atm, respectively.  The 

shock waves established in all the three tubes propagate upstream and elevate the 

pressure therein (see Figs. 5.5b and 5.5c).  In addition, because of the relative low 

strength, they will not initiate detonations if encountering fresh reactant. 

 

 

 

 
 

Fig. 5.7   Snapshots of pressure field showing flow interactions among tubes and nozzle 

during the first cycle (τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 ms) 

 

At t = 0.80 ms, the primary shock wave has emerged from the nozzle into the 

external region.  Vortices are formed near the edges of the nozzle exit.  Except for the 

asymmetrical pattern, the external flowfield exhibits quite similar structures to that of the 
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single-tube case.  Within the combustor, the reflected shock in the bottom tube 

propagates toward the head end faster than those in the middle and top tubes, due to the 

larger sound speed related to the high temperature of the products in the bottom tube.  

The middle tube is in the refilling stage.  The shock wave induced in the purging process 

travels to the location of 45 cm and is going to meet the upstream-traveling waves 

induced by the detonation of the bottom tube. 

The middle tube ends the refilling process and ignites at t = 1 ms.  At this time 

instant, the purge-induced contact surface locates at x = 37 cm and the leading fresh 

reactant at x = 32 cm.  The purge-induced shock has interacted with the upstream-

traveling waves induced by the detonation of the bottom tube.  At t = 1.15 ms, the 

detonation wave in the middle tube reaches x = 37 cm.  It is faster than the detonation 

wave in the bottom tube since the reactant in the middle tube has already had a velocity 

of about 411 m/s prior to detonation.  The top tube undergoes the purging process.  At a 

slightly later time, the detonation wave in the middle tube catches the leading fresh 

reactant at x = 39 cm and degenerates to a non-reacting shock wave.  The resultant shock 

wave proceeds further downstream and interacts with the waves induced previously by 

the detonation wave of the bottom tube, causing very complicated flow structures in the 

nozzle and the external regions, as displayed in Fig. 5.4f.  Two Prandtl-Meyer expansion 

fans are seen at the exit of the middle tube.  The top tube is now in the refilling process, 

with a refilling pressure of 1.20 atm and a refilling velocity of 411 m/s.  The interaction 

of the downstream- and upstream-traveling shock waves leads to a high pressure region 

with pressure up to 2.2 atm in the top tube, as shown in Fig. 5.5f.  This pressure is not 

high enough to initiate a detonation in the top tube, but may interfere with the refilling 
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process.  The refilling process should thus be finished before the upstream-traveling 

shock wave arrives at the head end.  Otherwise, inlet over-pressurization may happen.  

For the current case, the shock wave propagates toward the head end at a speed of as low 

as about 126 m/s, and thus permits enough time for the refilling process.  It reaches x = 

11 cm as the refilling process finishes. 

Ignition occurs in the top tube at t = 2 ms while the middle and bottom tubes 

undergo blowdown process.  The aforementioned upstream-traveling shock wave 

interacts with the detonation wave and Taylor wave and reflects off the head end at about 

t = 2.15 ms, causing an abrupt raise in head-end pressure, as evidenced in Fig. 5.6.  In 

Fig. 5.4h, the detonation wave has passed through the leading fresh reactant at x = 31.2 

cm and degenerated to a non-reacting shock wave.  At t = 2.5 ms, the shock wave has 

moved out of the nozzle to further interact with the local flowfield in the external region.  

Reflected shock waves can be seen in all the three tubes near their exits.  The pressures 

behind these shocks, from bottom to top, are 0.8, 1.8, and 4.0 atm. The bottom tube is in 

the refilling stage.  The refilling pressure and velocity are 1.30 atm and 380 m/s, 

respectively. 

The bottom tube finishes the refilling process at t = 3.0 ms, the end of the first 

cycle, whereas the middle and top tubes are in the blowdown process.  The leading fresh 

reactant in the bottom tube reaches x = 35.5 cm.  The upstream-traveling shock wave 

induced by the detonation of the top tube has interacted with the purge-induced shock 

wave and contact surface and propagated into the fresh reactant, denoted by the pressure 

jump at about x = 32 cm in Fig. 5.5j. 
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Comparing with the flow evolution described in Chapter 4 for a single-tube PDE, 

the current one bears the following characteristics.  First, the flowfield exhibits 

asymmetry and is much more complicated.  Second, the expansion pattern of the nozzle 

is not as apparent as that in the single-tube case, in which the Prandtl-Meyer expansion 

fan, representing an underexpanded nozzle flow, or the oblique shock wave, representing 

an overexpanded nozzle flow, can be clearly observed near the nozzle exit during certain 

periods of the blowdown process.  Third, the pressure in a tube is raised not only by the 

shock waves induced by the detonation wave of this tube but also by the shock waves 

induced by the detonation waves from other tubes.  

The flow tends to attain a steady periodic condition as the cycle repeats.  Figure 

5.8 shows the specific impulse and the middle tube filling length of each cycle.  The 

specific impulse is calculated based on the momentum balance over a control volume 

enclosing the entire engine, as detailed in Chapter 4.  The filling length is defined as the 

length at which the detonation wave catches the leading fresh reactant.  By using the 

quantitative criterion proposed in Chapter 4, i.e., the relative deviation in cycle-averaged 

specific impulses of two continuous cycles being less than 0.1%, the current baseline case 

reaches steady periodic operation at the fifth cycle.  The time evolution of the density-

gradient field during this cycle is shown in Fig. 5.9, and the corresponding pressure 

distribution along the centerline of each tube is given in Fig. 5.10.  Quite different flow 

patterns are obtained due to the effect of flow non-uniformity arising from the previous 

cycle.  The flowfield at t = 15.00 ms is almost the same as that at t = 12.00 ms, verifying 

again that the steady periodic operation has been reached.  The averaged refilling 

pressures of the bottom, middle, and top tubes are 1.36, 1.16, and 1.24 atm, respectively.  



191 

11/23/2003 

The corresponding refilling Mach numbers are 0.85, 1.0, and 0.94, and the refilling 

velocities are 361, 440, and 392 m/s, respectively.  The filling lengths of the bottom, 

middle, and top tubes are 39.0, 38.8, and 40.5 cm, respectively, slightly smaller than the 

47.5 cm for the single-tube case. 
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Fig. 5.8   Specific impulse and filling length of the middle tube of the first five cycles 

(τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 ms) 
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Fig. 5.9   Time evolution of density-gradient field during the fifth cycle of operation 

(τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 ms)  
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Fig. 5.10   Time evolution of pressure distribution along centerline of each tube during 

the fifth cycle of operation (τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 ms) 
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Fig. 5.11   Time histories of pressure at midpoints of (a) head ends and (b) exit of the 

bottom, middle, and top tubes during the fifth cycle of operation (τcycle = 3 ms, τclose = 2.1 

ms, and τpurge = 0.1 ms) 

 

Figure 5.11 shows the time histories of the pressure at the midpoints of the head 

end and the exit of each tube, to provide more quantitative inspection on the tube 

interactions.  In Fig. 5.11a, the highest peak on each trace corresponds to the initiation of 
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detonation at the head end.  The second peak on the bottom tube trace, point A, indicates 

the shock wave induced by the detonation of the top tube arriving at the head end.  The 

second peak on the middle tube trace, point B, relates to the arrival of the shock wave 

induced by the detonation of the bottom tube.  This detonation wave also induces a shock 

wave that propagates into the top tube, interferes with the refilling process, and causes a 

small jump in the head-end pressure of the top tube, as evidenced by point E.  The raised 

pressure is still less than the total pressure of the incoming gas so that the refilling 

process continues.  The second peak on the top tube trace, point C, results from the 

detonation wave of the middle tube.  Similarly, this detonation wave induces a shock 

wave in the bottom tube that leads to a small jump in the head-end pressure (point F).  

The third peak, point D, corresponds to the arrival of the shock wave resulting from the 

purge-induced shock in the middle tube.  This purge-induced shock, however, exhibits 

little effect on the bottom tube head-end pressure.  The reason is that the bottom tube has 

a supersonic exhaust flow when the purge-induced shock emerges from the middle tube.  

It is noted that all the aforementioned peak pressures exceed the total pressure of the gas 

immediately in front of the tubes.  They should be thus within the period with valve 

closed.  Otherwise, reverse flow may occur at the entrance of the detonation tubes and 

engine unstart happens.  

In Fig. 5.11b, the first peaks on the three traces, points A, B, and C, correspond to 

the arrival of the detonation-degenerated shock wave at the tube exit.  The second peaks 

on the traces of the bottom and top tubes, points D and E, correspond to the arrival of the 

reflected shocks from the nozzle wall.  The middle tube, nevertheless, doesn’t have this 

kind of peak because the middle tube exit is farther from the nozzle wall, and a 
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supersonic exhaust flow is developed soon after the detonation-degenerated shock wave 

emerges from the middle tube. 

The flowfield within the common nozzle, as can be seen in Fig. 5.9, is quite 

different from that of the single-tube PDE.  Multiple asymmetrical transverse waves exist 

within the common nozzle and disorganize the choke pattern which appears in the nozzle 

of the single-tube PDE during most of the cycle period.  The nozzle throat in the 

multitube PDE seems to play a role less important to the performance than in the single-

tube PDE.  The complexity of the nozzle flow is also evidenced in Fig. 5.12, in which the 

time histories of the Mach number at the midpoints of the nozzle throat and exit planes 

are displayed.  In the single-tube PDE, the nozzle is choked during the entire cycle except 

for a small period during which the detonation-degenerated shock wave sweeps the throat 

region.  The typical choke pattern is represented by a curved sonic line that starts at the 

wall slightly upstream of the throat and crosses the nozzle centerline downstream of the 

throat.  As a result, the Mach number at the midpoint of the throat is less than unity and 

remains quite smooth during most time of the cycle as demonstrated in Fig. 5.12a.  

However, in the multitube PDE, the Mach number at the midpoint of the throat exhibits 

significant variation and is either larger than or far below unity during a large portion of 

the cycle.  The choke effect of the nozzle throat is thus quite weak.  In Fig. 5.12b, the 

Mach numbers at the midpoint of the nozzle exit plane also display significant difference, 

such as the three large peaks appearing in the triple-tube trace.  Both Mach numbers, 

however, are larger than unity during the entire cycle.  

 



197 

11/23/2003 

 

 
 

Fig. 5.12   Time histories of Mach number at midpoints of (a) nozzle throat and (b) 

nozzle exit during the fifth cycle of operation (τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 

ms) 
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5.2.2  Propulsive Performance and Loss Mechanisms 

Because of the intrinsic unsteady nature of PDEs, their propulsive performance 

must be calculated appropriately.  A detailed description of the performance calculation 

based on the momentum balance over a control volume enclosing the entire engine has 

been given in Chapter 4.  Figure 5.13 shows the instantaneous thrust in both axial and 

vertical directions, obtained from Eq. (4.10) by negelecting the last term.  The single-tube 

PDE results are also included for comparison.  In Fig. 5.13a, a very high peak up to 

15000 N exists for the single-tube PDE, corresponding to the arrival of the primary shock 

wave at the nozzle exit plane.  The deviation of the peak value from the cycle-averaged 

value represents a quantitative measure of the degree of unsteadiness of the engine thrust.  

For the triple-tube PDE, the number of peaks increases to three in each cycle, but the 

peak magnitudes are significantly reduced, e.g., by a factor of about three, rendering a 

substantial improvement in engine steadiness.  The three peaks represent the arrival of the 

detonation-degenerataed shock waves of the bottom, middle, and top tubes at the nozzle 

exit plane, respectively.  The second peak related to the middle tube is higher because the 

shock wave from the middle tube experiences less diffraction and reflection than those 

from the other two tubes.  The same reason also leads to a much lower peak related to the 

middle tube in the lateral thrust (Fig. 5.13b).  The increase of the peak number modifies 

the spectral property of the thrust.  Figure 5.14 represents the spectra of the instantaneous 

axial thrusts.  Clearly, the dominant frequency of the single-tube PDE is equal to the tube 

operation frequency, i.e., 333 Hz.  However, that of the triple-tube PDE is increased by 

three times to 1000 Hz.  
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Fig. 5.13   Instantaneous thrust in (a) axial and (b) vertical directions during the fourth 

and fifth cycles (τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 ms) 

 

Also observed in Fig. 5.13a is that the time duration of negative thrust of triple-

tube PDE is significantly decreased to nearly zero, whereas that of the single-tube PDE is 

about 0.7 ms, e.g., from 14.0 to 14.7 ms during the fifth cycle.  This is due to the fact that 

the exhaust flow of low energy level during the later part of the blowdown stage and the 
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refilling stage of a single-tube PDE is avoided in multitube PDE by the sequential 

operations of the tubes.  For exapmle, when one tube is in the later part of the blowdown 

stage, the other tubes may be in the earlier part of the blowdown stage.  

Figure 5.13b demonstrates the existance of a considerable lateral thrust up to 1000 

N in the current triple-tube PDE, thereby causing unnecessary vibration of the vehicle.  

One way to mitigate this problem is to implement tube-pairs.  Each tube-pair includes 

two detonation tubes which are located at symmertic positions and operate synchronously 

to ensure symmetric operation and consequently eliminates the lateral thrust.  In some 

cases, however, the lateral thrust can also be appropriately utilized for thrust vectoring.  

 

 
 

Fig. 5.14   Spectra of periodic instantaneous axial thrusts of single-tube and triple-tube 

PDEs with operation timing of τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 ms 

 

The cycle-averaged specific impulse and specific thrust during a steady periodic 

cycle, e.g., the fifth cycle, are 3540 s and 895 m/s, respectively.  These performance 
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numbers are about 4% higher than those of the baseline single-tube PDE given in Chapter 

4.  The multitube design thus slightly improves the propulsive performance.  To identify 

the various loss mechanisms, the flow-path based analytical performance prediction 

model proposed in Chapter 4 is used to predict the upper performance limit.  This model 

requires specifying the refilling Mach number.  As mentioned in Sec. III.A, the refilling 

Mach numbers of the bottom, middle, and top tubes are 0.85, 1.0, and 0.94, respectively.  

The average is 0.93.  Interestingly, it is just the same as that for the baseline single-tube 

PDE.  The corresponding upper limit of the specific impulse is thus 4235 s.  Comparing 

the simulated specific impulse to this upper limit, a performance loss of about 19.6% is 

obtained.  This performance loss includes the imperfect nozzle expansion loss, the flow 

divergence loss, and the internal flow loss.  Based on the calculation methods provided in 

Chapter 4, the three losses for the current baseline triple-tube PDE are 3%, 2.3%, and 

14.3%, respectively.  Compared to the baseline single-tube PDE, the nozzle expansion 

loss is significantly reduced, the internal flow loss is slightly reduced, and the flow 

divergence loss remains about the same.  The 4% increase in propulsive performance of 

the triple-tube PDE thus comes from the reduction of the imperfect nozzle expansion loss 

and the internal flow loss.  

Figure 5.15 shows the instantaneous pressure thrust and impulse during a steady 

periodic cycle.  The single-tube results are also included for comparison.  In conventional 

steady engines with optimized nozzle, the exit pressure is equal to the ambient pressure, 

and the pressure thrust is thus zero.  For unsteady engines such as PDE, the closer the 

pressure thrust to zero, the less the imperfect nozzle expansion loss.  It is clear in Fig. 

5.15a that the pressure thrust of the triple-tube PDE remains closer to zero than that of the 
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single-tube PDE, demonstrating a reduction in the imperfect nozzle expansion loss.  The 

cumulative pressure impulse over the cycle is less than zero, as can be seen in Fig. 5.15b, 

indicating the overall effect of the nozzle flow is overexpansion. 

 

 

 
 

Fig. 5.15   Instantaneous pressure thrust and impulse during the fifth cycle (τcycle = 3 ms, 

τclose = 2.1 ms, and τpurge = 0.1 ms) 

 

 

(a) 

(b) 
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The flow divergence loss results from the exhaust velocity vector angularity.  

Figure 5.16 compares the velocity profiles at the nozzle exit plane during a steady 

periodic cycle between the triple- and single-tube PDEs.  The asymmetric pattern of the 

triple-tube results are clearly observed.  However, the velocities from both cases are very 

close, leading to almost the same flow divergence losses.  

 
t1 = 12.15 ms      t2 = 12.50 ms      t3 = 13.15 ms     t4 = 13.50 ms      t5 = 14.15 ms     t6 = 14.50 ms 

 

 
 

Fig. 5.16   Axial and vertical velocity profiles at nozzle exit plane during the fifth cycle of 

operation (τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 ms) 

 

The internal flow loss is mainly attributed to the shock waves and their 

interactions within the internal flowfield.  In spite of the much more complicated shock 

interactions within the multitube PDE flowfield, the strengths of the shock waves related 

to the diffraction around the tube exit and the reflection from the nozzle wall are 

single tube 

triple tube 
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relatively smaller than the strength of the shock wave related to the reflection from the 

nozzle wall in the single-tube PDE, leading to a slightly smaller internal flow loss.  

5.2.3  Effect of Valve Timing 

A parametric study is conducted to investigate the timing effect on the propulsive 

performance by varying the cycle time τcycle and the valve close-up time τclose. The purge 

time τpurge is fixed at 0.1 ms.  Figure 5.17 shows the effects of τclose on the specific thrust 

Fsp and the specific impulse Isp for two τcycle: 3 ms and 4 ms.  The single-tube results are 

also included for comparison.  Clearly, the multitube design helps improve the propulsive 

performance.   

The specific thrust increases as τclose decreases for each frequency considered 

herein.  The explanation of this trend for single-tube PDEs presented in Chapter 4 also 

applies here.  Briefly, for a given τcycle and τpurge, a smaller τclose leads to higher loading 

density of fresh reactant, a larger amount of reactant delivered to the chamber, a shorter 

period of negative thrust, and less internal flow loss, and thus results in a higher specific 

thrust.  The lower bound of τclose is subjected to three practical constraints as mentioned 

in Chapter 4. 

For single-tube PDEs, it has been demonstrated in Chapter 4 that there exists an 

optimum frequency for a given configuration, which is attributed to the following two 

conflicting effects: 1) more reactants can be recharged into the detonation tube at a lower 

cycle frequency  and 2) an exceedingly large refilling time associated with a low-

frequency operation may cause chamber overfilling and thus degrade the performance.  A 
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similar conclusion is found for multitube PDEs.  Figure 5.17b indicates that the lower 

frequency of 250 Hz (τcycle = 4 ms) offers not only a wide operating range but also higher 

performance than the higher frequency of 333 Hz (τcycle = 3 ms).  The optimum frequency 

is thus less than 333 Hz.  However, further parametric studies are needed to determine 

this.  

A comparison between the triple-tube and single-tube results demonstrates the 

superiority of the multitube design.  For the 333 Hz operation, the triple-tube PDE has 

performances of about 4% to 5% higher than those of single-tube PDEs.  For the 250 Hz 

operation, the triple-tube PDE possesses both a wider operation range and higher 

performance.  The lower bound of τclose related to the combustor overfilling in the single-

tube PDE doesn’t appear in the triple-tube PDE.  Instead, the performance increases as 

τclose decreases until the lower bound related to the inlet over-pressurization is reached.  

This is attributed to the fact that in the multitube PDE, the pressure in a detonation tube 

within the refilling process can be raised by the detonation-degenerated shock waves 

from other tubes, as discussed in Sec. 5.2.1.  In contrast, the chamber pressure during the 

refilling process of the single-tube PDE may be quite low, especially for cases with very 

long blowdown process, thus resulting in high refilling velocity and chamber overfilling.  

The highest specific impulse obtained for the current design is 3870 s, at an operation 

timing with τcycle of 4 ms and τclose of 1.8 ms.  This performance number slightly exceeds 

its ramjet counterpart of 3866 s with optimum nozzle flow expansion and can be further 

improved by optimizing the operation timing. 
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Fig. 5.17   Effect of valve close-up time on (a) air-based specific thrust and (b) fuel-based 

specific impulse; τpurge = 0.1 ms, stoichiometric H2/air mixture, h = 9.3 km, M∞ = 2.1. 

 

(a) 
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5.2.4  Effect of System Geometry 

In addition to the operation timing, the system geometry represents another 

important factor that affects both the flow dynamics and the propulsive performance of a 

multitube PDE.  The system geometry includes many independent variables, such as tube 

length, nozzle length, nozzle throat and exit areas, and so on.  Generally, the study of the 

geometrical effect requires much effort due to the need to regenerate the computational 

grid.  In Chapter 4 for single-tube PDEs, the effect of the CD nozzle configuration has 

been investigated by varying the nozzle length and throat area.  In this chapter, the effect 

of a free volume located between the multiple tubes and the common nozzle, as depicted 

in Fig. 5.3, is considered.  The purpose of adding such a free volume is to provide a 

buffer region to smooth the flowfield and improve the operation steadiness. 

Figure 5.18 shows the time evolution of the density-gradient field during the fifth 

cycle.  The operation timing remains identical to that for the baseline case.  The refilling 

lengths for the bottom, middle, and top tubes are 33.6, 44.3, and 34.8 cm, respectively.  

The averaged refilling Mach numbers are 0.88, 1.0, and 0.99, respectively.  The flowfield 

characteristics within the detonation tubes and the external region are quite similar in 

nature to those without free volume.  Within the free volume, however, the flow exhibits 

very complicated structures.  In addition to the diffraction and reflection of the shock 

waves from the three detonation tubes, the interactions of the supersonic exhaust flow 

from the detonation tubes with the subsonic flow within the corner regions near the 

conjunction of the combustor and the convergent nozzle wall lead to the formation of 

standing-like shock waves.  These shock waves may be quite strong.  For example, the 

shock wave located at the middle of the free volume has a pressure ratio of as high as 5.
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Fig. 5.18   Time evolution of density-gradient field during the fifth cycle of operation 

(τcycle = 3 ms, τclose = 2.1 ms, and τpurge = 0.1 ms), with free volume 

 

 

These shock waves represent certain internal flow loss and have no contribution to raise 

the detonation tube pressure.  Only those shock waves that propagate back into the tubes 

have such contribution.  The interactions of the exhaust flows and the corner zones also 

result in the formation of recirculation zones, as evidenced in Fig. 5.19, in which two 

large and one small recirculation zones between the bottom tube exit, and the upper 

corner and one large recirculation zone between the bottom tube exit and lower corner 

(a) 

(b) 

(c) 

(d)

(e)
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zone can be clearly seen.  This kind of flow structure further increases the internal flow 

loss and is thus detrimental to the propulsive performance.  A plug nozzle may be a better 

candidate for multitube PDE since it permits certain tube interactions through moving 

shock waves within the detonation tubes while keeping away the standing-like shock 

waves from the internal flowfield.   

 

 
 

 

Fig. 5.19   Pressure contours and streamlines at t = 13.50 ms (τcycle = 3 ms, τclose = 2.1 ms, 

and τpurge = 0.1 ms), with free volume 

 

 

Fig. 5.20 shows the instantaneous axial thrust during a steady periodic cycle for 

both configurations.  The second peak related to the middle tube detonation is slightly 

reduced with the addition of the free volume, while the first and third peaks related to the 

other two tubes remain the same.  Therefore, the improvement in operation steadiness by 

the free volume is very limited.   

The specific impulse and specific thrust are 3372 s and 855 m/s, respectively.  

These values are lower than those without free volume and are even lower than those of 

the single-tube PDE, demonstrating a negative effect of the free volume on the propulsive 
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performance.  The performance losses are identified similarly as in Sec. III.B.  The 

average refilling Mach number is 0.96, slightly larger than that without free volume.  The 

imperfect nozzle expansion loss, flow divergence loss, and internal flow loss are 2.2%, 

2.3%, and 15.5%, respectively.  The free volume thus reduces the imperfect nozzle 

expansion loss.  However, it leads to a significant increase in the internal flow loss, 

mainly due to the complicated shock waves and the recirculation zones within the free 

volume as aforementioned.  

 

 
 

Fig. 5.20   Instantaneous axial thrust during the fifth cycle (τcycle = 3 ms, τclose = 2.1 ms, 

and τpurge = 0.1 ms) 

5.3  Summary and Conclusions 

The thrust chamber dynamics and propulsive performance of multitube 

airbreathing PDEs with repetitive operations were studied by means of two-dimensional 

numerical simulations.  The system under consideration includes a supersonic inlet, an air 
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manifold, a rotary valve, a triple-tube combustor, and a convergent-divergent nozzle, 

which is designed for a flight altitude of 9.3 km and a flight Mach number of 2.1.  The 

flow evolution and tube interactions were studied in detail and the various loss 

mechanisms were identified.  The effects of operating timing such as the cycle time and 

the valve close-up time were investigated systematically.  Similar trends as those for 

single-tube PDEs were found.  There exists an optimum frequency, and at a given 

frequency, a smaller valve close-up time increases the performance in most cases.  

Comparison with the single-tube results also demonstrates that the multitube design 

improves the engine performance in terms of specific impulse, operation steadiness, and 

timing range.  The effect of the system geometry was partially assessed by considering a 

free volume between the detonation tubes and the common nozzle.  Results indicate that 

the free volume helps to reduce the imperfect nozzle expansion loss and improve the 

engine steadiness.  However, it also induces more complicated shock waves and increases 

the internal flow loss.  The overall effect is a decrease in the propulsive performance.   

The highest specific impulse obtained for the current triple-tube PDE is 3870 s at 

an operation frequency of 250 Hz.  It exceeds its ramjet counterpart of 3866 s with 

perfect nozzle flow expansion and can be further improved by optimizing the operation 

timing and the system geometry.  However, it should be also noted that some loss 

mechanisms not considered in the present analysis, such as the energy required for 

detonation initiation and the flow losses associated with the inlet isolator, rotary valve, 

and air distributor, may render the PDE less attractive.  These losses should be counted in 

the future to provide more accurate comparison between PDEs and conventional engines. 
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The flow evolution and the system geometry effect analyses suggest that the 

benefit of the convergent-divergent nozzle for a multitube PDE is not as apparent as that 

for a single-tube PDE.  A plug nozzle may be a better candidate for multitube PDE than 

the internal flow nozzles since it permits certain tube interactions through the moving 

shock waves induced by the detonations in the neighboring tubes to raise the chamber 

pressure while avoiding the standing-like shock waves within the internal flowfield that 

are detrimental to performance.   
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Chapter 6 

Summary and Future Work 

6.1  Summary 

The present work studied the flow dynamics and system performance of 

airbreathing pulse detonation engines (PDEs) with a stoichiometric hydrogen/air mixture.  

The system under consideration includes a supersonic inlet, an air manifold, a rotary 

valve, a single-tube or multitube combustor, and a convergent-divergent (CD) nozzle, 

which is designed for the flight condition with a flight altitude of 9.3 km and a flight 

Mach number of 2.1. 

Axisymmetric two-dimensional simulations are first conducted for a mixed-

compression supersonic inlet to investigate the steady-state inlet flow dynamics and the 

response of the inlet shock system to downstream disturbances.  Two different back 

pressures (2.1 atm and 2.2 atm) are carefully chosen such that the inlet operates at a 

supercritical condition to provide a sufficient shock stability margin.  The response of the 

inlet shock system to downstream disturbances is studied by imposing periodic pressure 

oscillations at the exit plane.  A wide range of fluctuation frequency and amplitude are 

investigated.  Important phenomena of concern include oscillations of mass flow rate, 

pressure recovery, flow distribution, and terminal shock displacement.  In general, the 

acoustic response of the inlet flow increases with increasing amplitude of the imposed 

oscillation, but decreases with the frequency. 
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A quasi-one-dimensional Euler code is then established based on the recently 

developed Space-Time CE/SE method, which circumvents the deficiencies of existing 

numerical methods for treating detonation waves and shock discontinuities, to study the 

flow dynamics and propulsive performance of an airbreathing PDE with a CD nozzle.  

The chemical kinetics is simulated using a simple one-progress variable model calibrated 

with the NASA CEA code.  The flow dynamics is clearly depicted through numerically 

obtained x-t diagrams for both the first and the steady periodic cycles.  Parametric studies 

are conducted by varying the cycle time (or frequency) and valve close-up time.  Four 

operation frequencies (200 Hz, 250 Hz, 333 Hz, and 400 Hz) are considered.  At a given 

frequency and purge time, a smaller valve close-up time (or a longer refilling time) 

increases the performance in most cases.  The lower bound of the valve close-up time is 

subject to the constraints associated with inlet over-pressurization and combustion 

overfilling.  The results also demonstrate the existence of an optimum frequency for a 

given engine configuration and flight condition. 

Two-dimensional analyses are carried out for single-tube PDEs with or without 

CD nozzles under multicycle operation in order to provide more detailed flow dynamics 

and more accurate performance predictions.  The two-dimensional code is efficiently 

parallelized by implementing the message-passing-interface (MPI) library and a domain 

decomposition technique.  The resultant code is executed on an in-house cluster using 64 

CPUs.  A flow-path based performance prediction model is proposed to estimate the 

upper performance limit of the current PDE system.  The various performance loss 

mechanisms, such as the imperfect nozzle expansion loss, flow divergence loss, and 

internal flow loss, are identified.  The internal flow loss, which is mainly associated with 
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the shock interactions within the chamber, is one of the major factors that degrade the 

performance of the current PDE system.  The effects of operation timing including the 

cycle time or frequency, valve close-up time, and purge time on the propulsive 

performance are comprehensively studied.  Results manifest the existence of an optimum 

operation frequency for achieving the best performance margin.  At a given frequency 

and purge time, a smaller valve close-up time increases the performance in most cases.  

On the other hand, for a given frequency and valve close-up time, a larger purge time 

decreases the specific thrust and increases the specific impulse.  The effects of nozzle 

configurations in terms of nozzle length and throat area on the propulsive performance 

are also examined.  The throat area affects both the nozzle expansion process and the 

flow dynamics within the chamber, thus exerting a much more significant effect than the 

nozzle length.  A smaller throat tends to increase the performance by raising the chamber 

pressure.  However, an exceedingly small throat renders negative effects due to the 

related longer blowdown process and larger internal flow loss. 

Finally, multitube airbreathing PDEs with repetitive operations are studied by 

means of two-dimensional simulations.  The combustor consists of three detonation 

tubes.  The flow evolution and tube interactions are carefully examined and the various 

loss mechanisms are identified.  The effects of operating timing such as the cycle time 

and the valve close-up time were investigated systematically.  Similar trends as those for 

single-tube PDEs were found.  Comparison with the single-tube results demonstrates that 

the multitube design improves the engine performance in terms of specific impulse, 

operation steadiness, and timing range.  The effect of the system geometry is partially 

assessed by considering a free volume between the detonation tubes and the common 
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nozzle.  Results indicate that the free volume helps to reduce the imperfect nozzle 

expansion loss and improve the engine steadiness.  However, it also induces more 

complicated shock waves and increases the internal flow loss.  The overall effect is a 

decrease in the propulsive performance.   

6.2  Major Contributions and Conclusions 

(1) A two-dimensional, reacting, unstructured-grid-based code is developed based 

on the Space-Time CE/SE method and is efficiently parallelized with the implementation 

of the MPI library and the domain decomposition technique. 

(2) The acoustic response of the inlet flow increases with increasing amplitude of 

the imposed oscillation, but decreases with the frequency. 

(3) For a given PDE configuration and flight condition, an optimum cycle 

frequency exists for achieving the best performance. 

(4) For a given frequency and purge time, a longer refilling period increases the 

specific thrust of PDEs considered herein. 

(5) A convergent-divergent (CD) nozzle can increase the propulsive performance 

that can be obtained with only a straight tube by up to 25%. 

(6) The length of the CD nozzle has a minor effect on the performance whereas 

the throat area may modify the performance by up to 6%. 

(7) A performance prediction model is proposed.  The propulsive performances of 

PDEs are about 20% lower than the predictions from this model, which is attributed to 
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three losses: the divergence loss, the imperfect nozzle expansion loss, and the internal 

flow loss. 

(8) The internal flow loss, which is mainly associated with the shock waves and 

their interactions within the internal flowfield, is the major factor that degrades the PDE 

propulsive performance. 

(9) The multitube design slightly improves the propulsive performance of a 

single-tube PDE. 

(10) The highest specific impulse obtained for the current triple-tube PDE is 3870 

s at an operation frequency of 250 Hz, which slightly exceeds its ramjet counterpart of 

3866 s with perfect nozzle flow expansion. 

6.3  Recommendation for Future Work 

The present inlet analysis relies on imposing periodic sinusoid pressure 

oscillations at the exit plane to investigate the response of the inlet shock system to 

downstream disturbances.  Other types of oscillations may be considered to more 

accurately represent the disturbance from the pulsed detonation process.  On the other 

hand, the current study didn’t consider the flow dynamics within the acoustic cavity that 

connects the inlet and the combustor.  The interaction between the inlet, acoustic cavity, 

and combustor should also be addressed. 

In the current numerical simulations, the detonation is initiated directly by a small 

spark region which has neglectable effect on the performance.  However, in most 

experiments, the detonation is initiated through a deflagration-to-detonation-transition 
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(DDT) process.  It might be useful to incorporate this DDT process into numerical 

simulations so that more detailed comparisons with experiments could be made. 

The present nozzle studies indicate that the convergent-divergent (CD) nozzle can 

significantly increase the propulsive performance of single-tube PDEs.  The effect of the 

length and throat area of the CD nozzle is investigated.  Other shape parameters such as 

the convergent and divergent angles could be studied in the future to aid the PDE nozzle 

design. 

The multitube design is found to be able to improve the propulsive performance 

of a single-tube PDE.  Further research can be conducted to investigate the effect of the 

number of detonation tubes and their relative positions on the flow dynamics and system 

performance. 

The multitube PDE studies also reveal that the benefit of the CD nozzle for a 

multitube PDE is not as significant as that for a single-tube PDE.  A plug nozzle may be a 

better candidate for multitube PDEs than the internal flow nozzles since it permits certain 

tube interactions through the moving shock waves induced by the detonations in the 

neighboring tubes to raise the chamber pressure while avoiding the standing-like shock 

waves within the internal flowfield that are detrimental to performance.  This conjecture 

needs to be approved through further studies on plug nozzles for multitube PDEs. 



219 

11/23/2003 

Appendix A 

Thermodynamic Cycle Efficiencies of  

Brayton, Humphrey, and Ideal PDE Cycles 

Figure A.1 shows the temperature-entropy diagram for the Brayton, Humphrey, 

and ideal PDE cycles. 
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 Fig. A.1   Temperature-entropy diagram 

 

 

The Brayton cycle consists of an isotropic compression process (0-1), a constant-

pressure heat addition process (1-2), an isotropic expansion process (2-3), and a constant-

pressure cooling process (3-0).  The Humphrey cycle is similar to the Brayton cycle 

except that the constant-pressure heat addition process (1-2) in the Brayton cycle is 

replaced by a constant-volume heat addition process.  In the ideal PDE cycle (Heiser and 

Pratt, 2002), the heat addition process is modeled by a detonation process (1-1a-2), in 

which state 2 is the CJ state.  The thermodynamic cycle efficiency η is defined as the 
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ratio of the external work done by the cycle to the amount of thermal energy added by the 

heat addition process, that is, 

 1
rejq

q
η = −  (A.1) 

where q is the heat added during the heat addition process, and qrej is the heat released to 

the surroundings during the cooling process.  The expressions of η for the Brayton, 

Humphrey, and ideal PDE cycles are derived in the following subsections with the 

assumption of constant gas properties. 

A.1  Brayton cycle 

For a Brayton cycle, 
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A.2  Humphrey cycle 

For a Humphrey cycle, 
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Therefore, 
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On the other hand, since 
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then η can also be expressed as: 
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A.3  Ideal PDE cycle 

For an ideal PDE cycle, 
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The temperature ratio T3/T0 can be derived as follows: 
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The property variations across the detonation wave have been derived in Chapter 1: 

 
γ

γ
+

+
=

1

1
2

1

2 DM

p

p
,   

2
2

2

1

1

(1 )

D

D

T M

T M

γ
γ

 +
=  + 

 (A.14) 

where the detonation wave Mach number MD is determined from: 
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Substitution of Eqs. (A.13) and (A.14) into Eq. (A.12) leads to 
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Therefore, the ideal PDE thermodynamic cycle efficiency is 
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Appendix B 

Jacobian Matrices for Quasi-One- and Two-Dimensional Systems 

B.1  Quasi-One-Dimensional System 

The Jacobian matrices A
∂

≡
∂

E

Q
 and D

∂
≡
∂
H

Q
 are 

 

2

3 2

0 1 0 0

1
[( 3) ] ( 3) 1 ( 1)

2

( / ) /
( 1)

( 1) / 2 ( 1)

0

t t

u u q

A
u e p e p

u qu
u u

uZ Z u

γ γ γ γ

ρ ρ
γ γ

γ γ

 
 
 − − − − − −
 

=  − + +
 − −
+ − − − 
 − 

 (B.1) 

 

2

31 32 33 34

41 42 43 44

0 0 0 00 1 0 0

0 0 0 02 0 01

0 0 0 0

0

u udA
D

A A A AA dx

d d d duZ Z u

  
  −   = − +
  
  −   

 (B.2) 

where A in Eq. (B.2) represents the area, and 

 

2

41 43

42 43

2

43 4

44 43

/

[ ]

( 1)

exp( / )

t

a

a

d d e u qZ

d d u

d h E p

d d q K E p

ρ

ρ

γ

= − − −
= −

= −
= − − −

 (B.3) 
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B.2  Two-Dimensional System 

Jacobian matrices A
∂

≡
∂

E

Q
, B

∂
≡
∂

F

Q
, and D

∂
≡
∂
H

Q
 are 

 

2 2

2 2 2

0 1 0 0 0

1
[( 3) ( 1) ] ( 3) ( 1) 1 ( 1)

2

0 0

( / ) /
( 1) ( 1)

( 1) ( ) / 2 ( 1)

0 0

t t

u v u v q

A uv v u

u e p e p
uv u qu

u u v u

uZ Z u

γ γ γ γ γ γ

ρ ρ
γ γ γ

γ γ

 
 
 
 

− + − − − − − − − − 
 
 
 = −
 
 
− + + − − − − + − + − −

 
 

− 
  

 (B.4) 

 2 2

2 2 2

0 0 1 0 0

0 0

1
[( 3) ( 1) ] ( 1) ( 3) 1 ( 1)

2

( / ) /
( 1) ( 1)

( 1) ( ) / 2 ( 1)

0 0

t t

uv v u

B v u u v q

v e p e p
uv v qv

v u v v

vZ Z v

γ γ γ γ γ γ

ρ ρ
γ γ γ

γ γ

 
 
 
 

− 
 
 
 = − + − − − − − − − −
 
 
− + + − − − − + − + − −

 
 

− 
  

 (B.5) 
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





















=

5554535251

00000

00000

00000

00000

ddddd

D  (B.6) 

where 

 

2 2

51 54

52 54

53 54

2

54 5

55 54

[ ( ) ]

( 1) /

exp( / )

t

a

a

d d e u v qZ

d d u

d d v

d h E p

d d q K E p

ρ

ρ

γ

= − − + −
= −
= −

= −
= − − −

 (B.7)
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Appendix C 

Procedures of Building x-t Diagram 

The common way to obtain the x-t diagram is the Lagrangian approach, in which 

a number of points are placed in the flowfield and move at characteristic velocities u, 

u+c, and u−c.  A major drawback of this approach is the large cumulative error during the 

tracing process.  In addition, special handling is needed when the points move out of the 

computational domain.  

In this thesis, an Euler approach was proposed.  The basic idea of this approach is 

that the characteristic lines are equivalent to the streamlines in the (x, t) plane with a 

characteristic velocity in the x direction and a unit velocity in the t direction.  For 

example, since  

 /dx dt u= ,  / 1dt dt =   (C.1) 

the characteristic lines of /dx dt u=  are equivalent to the streamlines in the (x, t) plane 

with velocity (u, 1).  The x-t diagram is constructed based on the following procedures: 

1) At each time step, output the following information to a file at every iskip (for 

example, iskip = 10) grid points: x, t, u, u+c, u−c, 1.d0.  

2) Use Tecplot to draw streamlines in the (x, t) plane with velocities of (u, 1), (u+c, 

1), and (u−c, 1).  Several trials may be needed in placing the streamlines to 

determine the Taylor wave, the contact surfaces, the detonation wave front, and so 

forth. 
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Appendix D 

Space-Time CE/SE Method for Two-Dimensional Problems 

A two-dimensional, unstructured triangular mesh Euler solver for non-reacting 

flows based on the space-time conservation element and solution element (CE/SE) 

method has been developed by Wang and Chang (1999).  The ideas and solution 

procedure are similar to those for one-dimensional problems described in Sec. 3.1.2.  For 

the purpose of completeness, this appendix describes the space-time CE/SE method, 

including the basic solution procedure, the extended scheme, and source term handling 

for two-dimensional problems. 

D.1  Governing Equations and Their Integral Form 

For clarity, the two-dimensional governing equations without source term is first 

considered, which is expressed in a vector form as below:  

 
   

0
   

Q E F

t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (D.1) 

where Q is the dependent variable vector, E and F are convective flux vectors.  The 

governing equations with source term will be considered in Sec. D.5. 

Let x1 = x, x2 = y, x3 = t be the coordinates of a three-dimensional Euclidean space 

E3.  Then the integral form of Eq. (D.1) in space-time E3 is 

 
 ( )

0
S V

d⋅ =∫ h s  (D.2) 
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where h  = (E, F, Q) is the flux vector in E3, S(V) the boundary of an arbitrary space-time 

region V in E3, and ds the surface vector of an infinitesimal surface in E3. 

D.2  Triangular Mesh, Conservation Element, and Solution Element 

The present 2-D CE/SE solver is constructed for an unstructured triangular mesh.  

Figure D.1 shows an arbitrary triangular cell (∆V1V2V3) and its three neighbor cells.  

Points C, C1, C2, and C3, as marked by the circles in Fig. D.1, are the centroids of the 

center cell and the three neighbor cells, respectively.  The centroids of the neighbor cells 

and the vertices of the center cell form a hexagon (C1V3C2V1C3V2).  The centroid of this 

hexagon, point S, is referred to as the solution point of the center cell.  Each cell is 

associated with a unique solution point (marked by cross in Fig. D.1) at which the 

dependent variable vector and its spatial derivatives are defined and solved.  In general 

the solution points don’t coincide with the cell centroids except for the uniform mesh.  

The hexagon C1V3C2V1C3V2 is composed of three quadrilaterals: C1V3CV2, C2V1CV3, 

and C3V2CV1.  The centroids of these three quadrilaterals are E1, E2, and E3, respectively. 

The conservation element and solution element associated with cell j at the nth 

time level are shown schematically in Fig. D.2.  The superscripts (') and (") are used to 

denote the n−1 and n+1th time levels, respectively.  The conservation element CE(j, n) is 

defined by the hexagonal cylinder C1V3C2V1C3V2C1'V3'C2'V1'C3'V2'.  It is composed of 

three sub-CEs: CEr(j, n), r = 1,2,3.  Each sub-CE is a quadrilateral cylinder in the E3-

space.  The solution element SE(j, n) is the union of three vertical plane segments and a 

horizontal plane segment. 
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 Fig. D.1   A triangular cell and its three neighbours 
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(a) conservation element CE(j, n)                (b) solution element SE(j, n) 
 

 

 Fig. D.2   Schematic of CE and SE associated with solution point (j, n) 
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D.3  Basic Solution Procedure 

For any point (x, y, t) ∈ SE(j, n), let Q(x, y, t), E(x, y, t), and F(x, y, t), 

respectively, be approximated by Q
*
(x, y, t; j, n), E

*
(x, y, t; j, n), and F

*
(x, y, t; j, n) 

through the following first-order Taylor’s expansions, 

 *( , , ; , ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n

j x j j y j j t jQ x y t j n Q Q x x Q y y Q t t= + − + − + −  (D.3) 

 *( , , ; , ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n

j x j j y j j t jE x y t j n E E x x E y y E t t= + − + − + −  (D.4) 

 *( , , ; , ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n

j x j j y j j t jF x y t j n F F x x F y y F t t= + − + − + −  (D.5) 

where the label n

j) (  denotes the corresponding quantities evaluated at solution point (j, n) 

whose coordinate is (xj, yj, t
n
).  Also note that n

jE  and n

jF  are functions only of n

jQ , and 

that n

jxE )( , ( )n

y jE , ( )n

t jE , ( )n

x jF , ( )n

y jF , and ( )n

t jF  are functions of n

jQ , n

jxQ )( , ( )n

y jQ , 

and n

jtQ )( : 

 ,    ( ) ( ) ,    ( ) ( ) ,    ( ) ( )n n n n n n n n n n n n

j j j x j j x j y j j y j t j j t jE A Q E A Q E A Q E A Q= = = =  (D.6) 

 ,    ( ) ( ) ,    ( ) ( ) ,    ( ) ( )n n n n n n n n n n n n

j j j x j j x j y j j y j t j j t jF B Q F B Q F B Q F B Q= = = =  (D.7) 

where 
E

A
Q

∂
≡
∂

 and 
F

B
Q

∂
≡
∂

 are the Jacobian matrices of the convective flux vectors E 

and F, respectively. 

Moreover, let Q
*
, E

*
, and F

*
 satisfy the differential governing equation at the 

solution point (j, n), 

 
* * *   

0
   

Q E F

t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (D.8) 

The following relation can be obtained, 
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 ( ) ( ) ( ) ( )n n n n

t j x j y j x y jQ E F AQ BQ= − − = − +  (D.9) 

which means that n

jtQ )(  is a function of n

jQ , n

jxQ )( , and ( )n

y jQ .  Therefore, there are 

three sets of unknown variables at solution point (j, n), i.e., n

jQ , n

jxQ )( , and ( )n

y jQ .  

These unknowns can be solved from the following three flux conservation equations: 

 *

 ( ( , ))
0,    1,2,3

rS CE j n
d r⋅ = =∫ h s  (D.10) 

where h
*
 = (E

*
, F

*
, Q

*
).  Details of the solving procedure are given below. 

For each CEr(j, n) there are six faces, as indicated in Fig. D.2.  Let ( )r

jS  and ( , )r b

jS , 

respectively, denote the surface vectors of the top and bottom faces, and ( , )r i

jS , i = 1,2,3,4, 

denote the surface vectors of the four lateral faces, with i = 1 and 2 for the two lateral 

faces associated with point Cr, and i = 3 and 4 for the two lateral faces associated with 

point C.  All these surface vectors are knowns defined by the geometires.  For example, 

the six surface vectors for CE1(j, n) are: 

 (1) (1) (0,  0,  1)j jS=S  (D.11) 

 (1, ) (1) (0,  0,  1)b

j jS= −S  (D.12) 

 2 1 2 1(1,1) (1,1) (1,1)( ,  ,  0)  ( ,  ,  0)V C V C

j jx jy j j j jS S t y y x x= = ∆ − + −S  (D.13) 

 3 31 1(1,2) (1,2) (1,2)( ,  ,  0)  ( ,  ,  0)
V VC C

j jx jy j j j jS S t y y x x= = ∆ − − +S  (D.14) 

 2 2(1,3) (1,3) (1,3)( ,  ,  0)  ( ,  ,  0)V VC C

j jx jy j j j jS S t y y x x= = ∆ − − +S  (D.15) 

 3 3(1,4) (1,4) (1,4)( ,  ,  0)  ( ,  ,  0)
V VC C

j jx jy j j j jS S t y y x x= = ∆ − + −S  (D.16) 

On the other hand, because h
*
 is linear in x, y, and t within each SE, the flux of h

*
 

leaving CEr(j, n) through any one of the six faces is equal to the product of the vector h
*
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evaluated at the centroid of the face and the surface vector of that face.  Let point Fri (i = 

1,2,3,4) denotes the centroid of the ith lateral face of CEr(j, n).  Then the flux 

conservation equation (D.10) can be expressed out as 

 
'

4
* ** *( ) ( ) ( , ) ( , )

1

( ) 0,    1,2,3ri rir r F FE Er r r i r i

j j jx jx

i

Q S Q S E S F S r
=

− + + = =∑  (D.17) 

where 

 * ( ) ( ) ( ) ( )r r rE E En n n

j x j j j y j j jQ Q Q x x Q y y= + − + −  (D.18) 

 
'* 1 1 1( ) ( ) ( ) ( )r r r

r r r r r

E E En n n

j x j j j y j j jQ Q Q x x Q y y− − −= + − + −  (D.19) 

 *
( ) ( ) ( ) ( ) ( ) / 2,    3,4ri ri riF F Fn n n n

j x j j j y j j j t jE E E x x E y y E t i= + − + − − ∆ =  (D.20) 

 *
( ) ( ) ( ) ( ) ( ) / 2,    3,4ri ri riF F Fn n n n

j x j j j y j j j t jF F F x x F y y F t i= + − + − − ∆ =  (D.21) 

 * 1 1 1 1( ) ( ) ( ) ( ) ( ) / 2,    1,2ri ri ri

r r r r rr

F F Fn n n n

j x j j j y j j j t jE E E x x E y y E t i− − − −= + − + − + ∆ =  (D.22) 

 * 1 1 1 1( ) ( ) ( ) ( ) ( ) / 2,    1,2ri ri ri

r r r r rr

F F Fn n n n

j x j j j y j j j t jF F F x x F y y F t i− − − −= + − + − + ∆ =  (D.23) 

Here the index jr represents cell j’s rth neighbor with point Cr as its centroid.  Using Eqs. 

(D.6) and (D.7), Eq. (D.17) can be further expressed in terms of Q , xQ , and yQ  as  

 1( ) ( ) ,    1,2,3
r

x y n x y n

r r x r y j r r x r y jL Q L Q L Q R Q R Q R Q r−⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ =  (D.24) 

where 

 ( ) ( ,3) ( ,4)( )r r r

r jL S I K K= ⋅ + +  (D.25) 

 
4

( ) ( , ) ( ,3) ( ,4)

3

( ) ( ) ( )
2

rir FEx r r i r r

r j j j j j

i

t
L x x S I x x K K K A

=

∆
= − ⋅ + − + + ⋅∑  (D.26) 

 
4

( ) ( , ) ( ,3) ( ,4)

3

( ) ( ) ( )
2

rir FEy r r i r r

r j j j j j

i

t
L y y S I y y K K K B

=

∆
= − ⋅ + − + + ⋅∑  (D.27) 
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 ( ) ( ,1) ( ,2)( )r r r

r jR S I K K= ⋅ − +  (D.28) 

 
2

( ) ( , ) ( ,1) ( ,2)

1

( ) ( ) ( )
2

rir

r r

FEx r r i r r

r j j j j j

i

t
R x x S I x x K K K A

=

∆
= − ⋅ − − + + ⋅∑  (D.29) 

 
2

( ) ( , ) ( ,1) ( ,2)

1

( ) ( ) ( )
2

rir

r r

FEy r r i r r

r j j j j j

i

t
R y y S I y y K K K B

=

∆
= − ⋅ − − + + ⋅∑  (D.30) 

and ( , )r iK  is defined as: 

 ( , ) 1 ( , ) 1 ( , ) ,    1,2
r r

r i n r i n r i

j jx j jyK A S B S i− −= + =  (D.31) 

 ( , ) ( , ) ( , ) ,    3,4r i n r i n r i

j jx j jyK A S B S i= + =  (D.32) 

It is easy to prove that, 

 
3

(1) (2) (3) ( ,3) ( ,4)

1 2 3

1

( ) ( )r r

j j j j

r

L L L S S S I K K S I
=

+ + = + + ⋅ + + = ⋅∑  (D.33) 

 1 2 3 0x x xL L L+ + =  (D.34) 

 1 2 3 0y y yL L L+ + =  (D.35) 

The dependent variable vector n

jQ  can be solved by summing Eq. (D.24) over r = 1,2,3, 

 
3

1

1

1
( )

r

n x y n

j r r x r y j

rj

Q R Q R Q R Q
S

−

=

= ⋅ + ⋅ + ⋅∑  (D.36) 

And the spatial derivatives n

jxQ )(  and ( )n

y jQ  can then be obtained as:   

 

1

1 11 1

2 22 2

( )

( )

n nx y
x j j

n nx y
y j j

Q RHS L QL L

Q RHS L QL L

−
   − ⋅ 

= ⋅       − ⋅    
 (D.37) 

where 

 1( )
r

x y n

r r r x r y jRHS R Q R Q R Q −= ⋅ + ⋅ + ⋅  (D.38) 
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D.4  The Extended Scheme 

The basic solution procedure is usually referred to as the Euler a scheme (Wang 

and Chang, 1999) which needs no free parameter and has nearly no numerical 

dissipation.  This a scheme, however, is not equipped to suppress numerical wiggles that 

generally appear within the region with large gradient or discontinuity.  Moreover, it is 

not computationally efficient since a large part of the computation time is spent on 

calculating the derivatives of the mesh variable ( xQ  and yQ ) as indicated by Eq. (D.37).  

As remedies for these deficiencies, several extended schemes, such as the Euler a-ε and 

a-ε-α-β schemes were then proposed (Chang, 1995; Wang and Chang, 1999).  In this 

thesis, only one parameter, α, was introduced to control the numerical dissipation.  This 

scheme, as described in the following paragraphs, is a special case of the a-ε-α-β scheme 

with 1/ 2ε =  and 1β =  (Wang and Chang, 1999).  Several remarks on the parameters ε, 

α, and β were given by Chang et al. (1999). 

To proceed, some geometry-related preliminaries are first introduced.  Let φ be a 

linear function of x and y in a spatial plane P1P2P3, and φ1, φ2, and φ3 be the function 

values at point P1, P2, and P3, respectively, then 

 1 3 1 3 1 3( ) ( )x yx x y yφ φ φ φ− = − + −  (D.39) 

 2 3 2 3 2 3( ) ( )x yx x y yφ φ φ φ− = − + −  (D.40) 

The partial derivatives φx and φy can thus be solved as: 

 /x xφ = ∆ ∆  (D.41) 

 /y yφ = ∆ ∆  (D.42) 
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where 

 
3232

3131

yyxx

yyxx

−−
−−

=∆  (D.43) 

 
1 3 1 3

2 3 2 3

x

y y

y y

φ φ
φ φ
− −

∆ =
− −

 (D.44) 

 
1 3 1 3

2 3 2 3

y

x x

x x

φ φ
φ φ

− −
∆ =

− −
 (D.45) 

With the above preliminaries, construct plane P1P2P3 so that the solution point S is 

its centroid.  The spatial coordinates of point Pr are 

 r

3
P

1

1
( )

3r rj j j

r

x x x x
=

= + − ∑  (D.46) 

 r

3
P

1

1
( )

3r rj j j

r

y y y y
=

= + − ∑  (D.47) 

The variable Q at point Pr is evaluated as 

 

r r r

r r

P P P*

P P1 1 1 1

( , , ; , 1)

1
     ( ) ( ) ( ) ( ) ( )

2r r r r r r

n

r

n n n n

j x j j y j j t j

Q Q x y t j n

Q Q x x Q y y Q t− − − −

= −

= + − + − + ⋅ ∆
 (D.48) 

Let planes #1, 2 and 3, respectively, be the planes containing SP2P3, SP3P1 and SP1P2, 

then Qx, and Qy on plane #r can be evaluated as 

 ( ) ( ) ( )( )r n r r

x j xQ = ∆ ∆  (D.49) 

 ( ) ( ) ( )( )r n r r

y j yQ = ∆ ∆  (D.50) 

where  

 
2 2

3 3

P

(1)

P

P

j j

P

j j

x x y y

x x y y

− −
∆ =

− −
 (D.51) 
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2 2

32

P

(1)

P

Pn

j j

x Pn

j j

Q Q y y

Q Q y y

− −
∆ =

− −
 (D.52) 

 
2 2

3 3

P P

(1)

P P

n

j j

y n

j j

x x Q Q

x x Q Q

− −
∆ =

− −
 (D.53) 

and ( )r∆ , ( )r

x∆ , and ( )r

y∆ (r = 2,3) are defined by replacing the points P2 and P3 in the above 

equations with P3 and P1, and P1 and P2, respectively. 

With these ( )r

xQ  and ( )r

yQ  available, xQ and yQ  can be obtained through a simple 

arrange, 

 
3

( )

1

1
( ) ( )

3

n r n

x j x j

r

Q Q
=

= ∑  (D.54) 

 
3

( )

1

1
( ) ( )

3

n r n

y j y j

r

Q Q
=

= ∑  (D.55) 

Alternatively, this simple average can be further improved by the following weighted 

average: 

 
(1) (2) (3)

2 3 3 1 1 2

2 3 3 1 1 2

( ) ( ) ( )
( )

( ) ( ) ( )

n

n x x x
x j

j

Q Q Q
Q

α α α

α α α

θ θ θ θ θ θ
θ θ θ θ θ θ

+ +
=

+ +
 (D.56) 

 

(1) (2) (3)

2 3 3 1 1 2

2 3 3 1 1 2

( ) ( ) ( )
( )

( ) ( ) ( )

n

y y yn

y j

j

Q Q Q
Q

α α α

α α α

θ θ θ θ θ θ
θ θ θ θ θ θ

+ +
=

+ +
 (D.57) 

where 

 ( ) 2 ( ) 2( ) [( ) ] [( ) ]n r n r n

r j x j y jQ Qθ = +  (D.58) 
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and  ( 0)α α ≥  is an adjustable constant to control the numerical dissipation and usually 

chosen to be 1 or 2.  Note that to avoid dividing by zero in Eqs. (D.56) and (D.57), a 

small positive number such as 10
-60

 may be added to the denominators. 

The a-ε-α-β scheme proposed by Wang and Chang (1999) solves the spatial 

derivatives as follows: 

 2 ( ) ( )a c a w c

x x x x x xQ Q Q Q Q Qε β= + − + −  (D.59) 

 2 ( ) ( )a c a w c

y y y y y yQ Q Q Q Q Qε β= + − + −  (D.60) 

where the superscript a, c and w, respectively, denote the spatial derivatives obtained by 

the basic solution procedure with Eq. (D.37), the simple average with Eqs. (D.54) and 

(D.55), and the weighted average with Eqs (D.56) and (D.57).  The stability condition for 

the a-ε-α-β scheme is 

 0 1,    0,    0,    and   1CFLε β α≤ ≤ ≥ ≥ ≤  (D.61) 

D.5  Source Term Treatment 

The two-dimensional governing equations with source term is expressed as: 

 
   

   

Q E F
H

t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (D.62) 

where Q is the dependent variable vector, E and F are convective flux vectors, and H the 

source term vector.  The integral form in space-time E3 is 

 
 ( )S V V

d HdV⋅ =∫ ∫h s  (D.63) 

where dV is an infinitesimal volume in E3. 
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The solution procedure is similar to that without source term. Only a few 

equations need to be updated.  Let Q
*
, E

*
, F

*
, and H satisfy the differential governing 

equation at the solution point (j, n), 

 
* * *   

   

n

j

Q E F
H

t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (D.64) 

get a updated version of Eq. (D.9), 

 ( ) ( ) ( ) ( )n n n n n

t j j x j y j x y jQ H E F AQ BQ DQ= − − = − + −  (D.65) 

In addition, the flux conservation equation, Eq. (D.10), is updated by 

 *

 ( ( , )) ( ( , ))
,    1,2,3

r rS CE j n V CE j n
d HdV r⋅ = =∫ ∫h s  (D.66) 

The basic solution procedure for the dependent variable Q slightly differs depends on 

whether the source term is treated explicitly of implicitly.  In general, the explicit 

treatment is used for non-stiff source term while the implicit treatment is used for stiff 

source term. 

D.5.1  Explicit Treatment of Source Term 

If the source term is treated explicitly such that,  

 1 ( )

( ( , ))
,    1,2,3

r
r

n r

j j
V CE j n

HdV H S t r−= ∆ =∫  (D.67) 

then the dependent variable Q is solved as 

 
3

1

1

1
( )

r

n x y n

j r r x r y j

rj

Q R Q R Q R Q
S

−

=

= ⋅ + ⋅ + ⋅∑  (D.68) 

where x

rR  and y

rR , respectively, take the same formulations given by Eqs. (D.29) and 

(D.30), and rR  is updated from Eq. (D.28) as 
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 ( ) ( ,1) ( ,2) ( ) ( ,1) ( ,2) 1( ) ( ) / 2
r

r r r r r r n

r j j jR S I K K t S I K K D −  = ⋅ − + + ∆ ⋅ − +     (D.69) 

D.5.2  Implicit Treatment of Source Term 

If the source term is treated implicitly such that,  

 ( )

( ( , ))
,    1,2,3

r

n r

j j
V CE j n

HdV H S t r= ∆ =∫  (D.70) 

then the dependent variable Q is solved from 

 
3

1

1

1
( )

r

n x y n n n

j r r x r y j j j

rj

Q R Q R Q R Q tD Q
S

−

=

= ⋅ + ⋅ + ⋅ + ∆∑  (D.71) 

Here x

rR  and y

rR , respectively, take the same formulations given by Eqs. (D.29) and 

(D.30), and rR  is defined as 

 ( ) ( ,1) ( ,2) ( ,1) ( ,2) 1( ) ( ) / 2
r

r r r r r n

r j jR S I K K t K K D −  = ⋅ − + − ∆ +     (D.72) 

Equation (D.71) can be solved either with fully implicit approach, such as the Newton-

Raphson iteration technique, or with linearized implicit approach which solves the 

following linearized equation: 

 1( )n n

j jI tD Q RHS−− ∆ =  (D.73) 

where 

 
3

1

1

1
( )

r

x y n

r r x r y j

rj

RHS R Q R Q R Q
S

−

=

= ⋅ + ⋅ + ⋅∑  (D.74) 

For extremely stiff source term such as those arising from chemical reactions, the 

conventional fractional-step technique (Oran and Boris, 2001) may be employed.  This 
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technique has been incorporated into the CE/SE scheme recently by Wu et al. (2000) and 

Im et al. (2002) for detonation problems.  In this technique, Eq. (D.71) is modified as 

 ( )

1

( )
N

n m

j j

m

t
Q RHS DQ

N =

∆
= + ∑  (D.75) 

where N is the number of sub-time steps within ∆t.  The above equation can be solved 

using the following procedure. 

 

(1) (1)

(2) (1) (2)

( 1) ( 2) ( 1)

( 1)

( )

( )

( )

( )

j j

j j j

N N N

j j j

n N n

j j j

t
Q RHS DQ

N

t
Q Q DQ

N

t
Q Q DQ

N

t
Q Q DQ

N

− − −

−

∆
= +

∆
= +

∆
= +

∆
= +

 (D.76) 

The Newton-Raphson iteration technique may be employed in each sub-time step.
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Appendix E 

Reflecting Boundary Conditions on an Inviscid Solid Wall 

This appendix describes the numerical reflecting boundary conditions on an 

inviscid solid wall for the CE/SE method.  The followings are adopted from Wang and 

Chang (1999) with minor modifications. 

Consider a boundary cell ∆ABC that has an edge located on the solid wall, as 

shown in Fig. E.1.  The solid wall is aligned with an angle of θ from the x-axis.  The 

ghost cell ∆ABD is a mirror image of the boundary cell ∆ABC with respect to the wall.  

The solution points of both cells are marked by cross.  Assuming that the index of the 

boundary cell ∆ABC is j, the index of the ghost cell will be set as –j. 

x

y

A
θ

× (j)

× (-j)

•

•

•

•

x′
y′

B

D

C
wall

(x0, y0)

 

 Fig. E.1  A boundary cell and its mirror image with respect to the solid wall 

 

To proceed, a new spatial coordinate system -x y′ ′  is introduced.  Let the origin of 

the -x y′ ′  coordinate system, point A, be the point (x0, y0) in the x-y coordinate system.  

These two coordinate systems then satisfy: 

 0 cos sinx x x yθ θ′ ′− = −  (E.1) 
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 0 sin cosy y x yθ θ′ ′− = +  (E.2) 

which can be written in a matrix form: 

 
0

0

x x x
T

y y y

′−   
=   ′−   

 (E.3) 

where 

 
cos sin

sin cos
T

θ θ
θ θ

− 
=  
 

 (E.4) 

The inverse of matrix T is 

 1
cos sin

sin cos
T

θ θ
θ θ

−  
=  − 

 (E.5) 

Let Q′  denotes the dependant variable in the -x y′ ′  coordinate system for the two-

dimensional Euler equations with one species equation, 

 [ ]1 2 3 4 5= , , , , 
T

Q q q q q q′ ′ ′ ′ ′ ′  (E.6) 

The slip solid wall boundary conditions are then constructed by assuming that, at any 

time, the flowfields within the boundary cell (∆ABC) and the ghost cell (∆ABD) are 

mirror images of each other in the -x y′ ′  coordinate system.  That is, 

for the dependant variables, 

 ( ) ( ) ,    ,2,4,5i j i jq q i−′ ′= = 1  (E.7) 

 ( ) ( ) ,    3i j i jq q i−′ ′= − =  (E.8) 

for the spatial derivatives, 

 ,    ,    1,2,4,5i i i i

j j j j

q q q q
i

x x y y− −

′ ′ ′ ′   ∂ ∂ ∂ ∂   = = − =       ′ ′ ′ ′∂ ∂ ∂ ∂       
 (E.9) 
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 ,    ,    3i i i i

j j j j

q q q q
i

x x y y− −

′ ′ ′ ′   ∂ ∂ ∂ ∂   = − = =       ′ ′ ′ ′∂ ∂ ∂ ∂       
 (E.10) 

In order to obtain the expressions in the x-y coordinate system, the relation 

between Q and Q′ and between their spatial derivatives need to be derived first.  It can be 

proved that,  

 ,    1,4,5i iq q i′ = =  (E.11) 

 
2 21

3 3

q q
T

q q

−′   
=   ′   

 (E.12) 

and 

 1 ,     1,4,5

i i

i i

q q

x x
T i

q q

y y

−

′  ∂ ∂ 
  ′∂ ∂ = = ′∂ ∂  
  ′∂ ∂   

 (E.13) 

 

2 3 2 3

1

2 3 2 3

q q q q

x x x x
T

q q q q

y y y y

−

′ ′∂ ∂ ∂ ∂   
   ′ ′∂ ∂ ∂ ∂

=   ′ ′∂ ∂ ∂ ∂   
   ′ ′∂ ∂ ∂ ∂   

 (E.14) 

With these relations available, the slip wall boundary conditions can then be 

expressed as: 

for Q, 

 ( ) ( ) ,    ,4,5i j i jq q i− = =1  (E.15) 

 
2 2

3 3j j

q q
M

q q
−

   
=   

   
 (E.16) 

for Qx and Qy, 
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 ,    1,4,5

i i

i i

j j

q q

x x
M i

q q

y y−

 ∂ ∂ 
  ∂ ∂ = = 

∂ ∂  
  ∂ ∂   

 (E.17) 

 

2 3 2 3

2 3 2 3

j j

q q q q

x x x x
M M

q q q q

y y y y−

∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂

=   
∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂   

 (E.18) 

where 

 1
1 0 cos2 sin 2

0 1 sin 2 cos2
M T T

θ θ
θ θ

−   
≡ =   − −   

 (E.19) 
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Appendix F 

Determination of the Time Instant of the Arrival of the First 

Rarefaction Wave on the Head End 

Figure F.1 schematically shows the x-t diagram for detonation wave propagation 

through a constant-area tube.  The detonation wave is initiated at the head end (x = 0) and 

propagates downstream, followed by the Taylor wave and a uniform region.  As the 

detonation wave arrives at the tube exit (x = L), a series of rarefaction waves are 

generated and propagate upstream.  The first rarefaction wave arrives at the head end at 

time tB, which can be obtained analytically.  The analysis detailed below basically 

follows that given by Wintenberger et al. (2003). 
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 Fig. F.1   Space-time diagram for detonation wave propagation  
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Within the Taylor wave region (region OAE), the Riemann invariant relation 

along the characteristic line from state 3 to the point (x, t) gives 

 3

2 2
0

1 1
c u c

γ γ
− = −

− −
 (F.1) 

where u and c are the velocity and sound speed at point (x, t), respectively.  Since the 

forward characteristic lines are straight, the relationship between x and t can be 

represented by 

 cu
t

x
+=  (F.2) 

Combination of the above two equations leads to the following solutions of u and c: 

 
3 3

2 2

1 1

u x

c c tγ γ
= ⋅ −

+ +
 (F.3) 

 
3 3

1 2

1 1

c x

c c t

γ
γ γ
−

= ⋅ +
+ +

 (F.4) 

And as given in Eq. (1.27), c3 can be related to uD as 

 
2

3 2

1

2

D
D

D

M
c u

M

+
= ⋅  (F.5) 

On the other hand, portion AE of the first reflected rarefaction wave can be 

described by 

 
dx

u c
dt

= −  (F.6) 

Substituting Eqs. (F.3), (F.4), and (F.5) into the above equation leads to the following 

ordinary differential equation: 

 
2

2

3 2( 1)
0

1 ( 1)

D
D

D

dx x M
u

dt t M

γ
γ γ
− +

+ ⋅ + ⋅ =
+ +

 (F.7) 
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With the initial condition: 

    at   Dx L t L u= =  (F.8) 

the solution to Eq. (F.7) can be obtained: 

 

2( 1)
2 2 1

2 2

1 1
( )

( 1) ( 1)

D D
D

D D D

M M L
x t u t

M M u t

γ
γγ

γ γ

−
+

 
 + + = ⋅ − + ⋅   − −    

 (F.9) 

Considering that point E is the intersection of OE and AE, thus, 

 

2( 1)
2 2 1

3 2 2

1 1
( )

( 1) ( 1)

D D
E E D E

D D D E

M M L
c t x t u t

M M u t

γ
γγ

γ γ

−
+

 
 + + = = ⋅ − + ⋅   − −    

 (F.10) 

Solving for Et , 

 

1
2 2( 1)

2

2( 1)

( 1)( 1)

D
E

D D

L M
t

u M

γ
γγ

γ

+
− +

= ⋅  + + 
 (F.11) 

Since the characteristic line OE and EB have the same wave speed magnitude c3, Bt  and 

Et  satisfy the following relation: 

 2B Et t=  (F.12) 

Therefore, 

 

1
2 2( 1)

2

2 2( 1)

( 1)( 1)

D
B

D D

L M
t

u M

γ
γγ

γ

+
− +

= ⋅  + + 
 (F.13) 

In addition, to obtain the α used in Wintenberger et al. (2003), let 

 
3

B

D

L L
t

u c
α= + ⋅  (F.14) 

then it can be derived that, 
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1
2 2( 1)

2 2

1 1 2( 1)
(1 ) 2 1

2 ( 1)( 1)

D

D D

M

M M

γ
γγα

γ

+
−

 
 + = + ⋅ −  + +   

 (F.15) 

which is equivalent to but simpler than Eq. (20) in Wintenberger et al. (2003). 

Considering that 2 1DM , Eqs. (F.13) and (F.15) can be further simplified with 

the following approximation: 

 

1

2( 1)2 2

1
B

D

L
t

u

γ
γγ

γ

+
− 
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 (F.16) 

 

1

2( 1)1 2
2( ) 1

2 1

r

rr

r
α

+
−

 
≈ − 

+  
 (F.17) 

Note that Eq. (F.16) was also given by Zitoun and Desbordes (1999). 
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