
Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24

http://www.journalofcloudcomputing.com/content/2/1/24

RESEARCH Open Access

THUNDER: helping underfunded NPO’s
distribute electronic resources
Gabriel Loewen*, Jeffrey Galloway, Jeffrey Robinson, Xiaoyan Hong and Susan Vrbsky

Abstract

As federal funding in many public non-profit organizations (NPO’s) seems to be dwindling, it is of the utmost
importance that efforts are focused on reducing operating costs of needy organizations, such as public schools. Our
approach for reducing organizational costs is through the combined benefits of a high performance cloud architecture

and low-power, thin-client devices. However, general-purpose private cloud architectures are not easily deployable
by average users, or even those with some computing knowledge. For this reason, we propose a new vertical cloud
architecture, which is focused on ease of deployment and management, as well as providing organizations with

cost-efficient virtualization and storage, and other organization-specific utilities. We postulate that if organizations are
provided with on-demand access to electronic resources in a way that is cost-efficient, then the operating costs may
be reduced, such that the user experience and organizational efficiency may be increased. In this paper we discuss

our private vertical cloud architecture called THUNDER. Additionally, we introduce a number of methodologies that
could enable needy non-profit organizations to decrease costs and also provide many additional benefits for the
users. Specifically, this paper introduces our current implementation of THUNDER, details about the architecture, and

the software system that we have designed to specifically target the needs of underfunded organizations.

Introduction
Within the past several years there has been a lot of

work in the area of cloud computing. Some may see this

as a trend, whereas the term “cloud” is used simply as

a buzzword. However, if viewed as a serious contender

for managing services offered within an organization,

or a specific market, cloud computing is a conglomer-

ate of several very desirable qualities. Cloud computing

is known for being scalable, which means that resource

availability scales up or down based on need. Addition-

ally, cloud computing represents highly available and on-

demand services, which allow users to easily satisfy their

computational needs, as well as access any other required

services, such as storage and even complete software sys-

tems. Although there is no formal definition for cloud

computing, we define cloud computing as a set of service-

oriented architectures, which allow users to access a num-

ber of resources in a way that is elastic, cost-efficient, and

on-demand. General cloud computing can be separated

into three categories: Infrastructure-as-a-Service (IaaS),

*Correspondence: gloewen@crimson.ua.edu
Department of Computer Science, The University of Alabama, Tuscaloosa, AL,
USA

Platform-as-a-Service (PaaS), and Software-as-a-Service

(SaaS). Infrastructure-as-a-Service provides access to vir-

tual hardware and is considered the lowest service layer

in the typical cloud stack. An example of Infrastructure-

as-a-Service is the highly regarded Amazon EC2, which

is subsystem of Amazon Web Services [1]. At the highest

layer is Software-as-a-Service, which provides complete

software solutions. An example software solution, which

exists as a cloud service is Google Docs. Google Docs

is a SaaS which gives users access to document edit-

ing tools, which may be used from a web browser. In

between SaaS and IaaS is Platform-as-a-Service, which

allows users to access programming tools and com-

plete API’s for development. An example of a PaaS is

Google AppEngine, which gives developers access to

robust API’s and tools for software development in a

number of different languages. We are beginning to

see many software services being offered by a number

of public cloud providers, including image editing soft-

ware, email clients, development tools, and even language

translation tools. However, these tools are all offered

by different providers and are not necessarily free for

general use.

© 2013 Loewen et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto:gloewen@crimson.ua.edu
http://creativecommons.org/licenses/by/2.0

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 2 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

Considering that non-profit organizations cannot

always afford to purchase access to software, we propose

that these organizations should simply maintain their own

private cloud, which could decrease the costs associated

with software licensing. There are several freely available

cloud architectures that may be considered. However,

general-purpose cloud architectures are not suitable for

organization that do not have highly trained professionals

to manage such a system. This downfall of most general-

purpose architectures is due to the lack of an easy to

use user interface and somewhat complicated deploy-

ment process. Many architectures, such as Eucalyptus

[2] and OpenStack [3], rely heavily on the command line

for interfacing with the system, which isn’t desirable for

markets that do not have experts readily available for

troubleshooting. A cloud architecture designed for these

specific markets must have the following attributes: ease

of deployment, user friendly interface, energy efficiency,

and cost effectiveness. In consideration of these qualities

we have designed a new IaaS cloud architecture, which we

call THUNDER (THUNDER Helps Underfunded NPO’s

Distribute Electronic Resources). THUNDER utilizes the

notion of simplicity at all levels in order to ensure that all

users, regardless of their technical experience, will be able

to use the system or redeploy the architecture if necessary.

Most IaaS cloud architectures rely upon the general

case model. In the general case, an IaaS cloud architec-

ture supports low-level aspects of the cloud stack, such as

hardware virtualization, load balancing of virtual machine

instances, elastic storage, andmodularity of physical hard-

ware. Vertical clouds, on the other hand, are defined by

a specific market, and therefore, are able to abstract the

general case IaaS cloud model to provide features that

are tailored for a specific set of uses. We see vertical

clouds predominantly in the healthcare sector with the e-

health cloud architecture. The THUNDER architecture is

an abstraction of the general case model by taking care of

the low-level details of hardware virtualization, load bal-

ancing, and storage in a way that is considerate of the tech-

nical maturity of the users, as well as the level of expertise

expected from the administrators. This abstraction is pos-

sible in a vertical cloud designed for the non-profit sector

because we can make an assumption about the maxi-

mum number of virtual machines, the type of software

required, and the expected level of experience of the users.

We assume the number of virtual machine instances is

congruent to the number of client devices in an office or

computer lab. Additionally, the software available on the

cloud is defined by a set of use cases specific to the organi-

zation. For example, THUNDER deployed to a school may

be used in conjunction with a mathematics course, which

would be associated with a virtual machine image con-

taining mathematics software, such as Matlab or Maple.

Additionally, we assume that the technical experience of

administrators and instructors in a school setting is low.

Therefore, by deviating from the general case model of

an IaaS cloud architecture, and by considering the spe-

cial needs of the market, we can minimize the complexity

of deployment by removing the necessity of a fine-tuned

configuration.

In the following sections we discuss related background

work in private vertical cloud architectures, our proposed

architecture, future work, and we endwith a summary and

conclusion.

Background andmotivation
There has been much discussion on the topic of cloud

computing for various administrative purposes at educa-

tional institutions. However, cloud computing is a topic

that until recently has not been widely considered for the

high school grade bracket. Due to the nature of cloud

computing, being a service oriented architecture, there is

a lot of potential in adopting a cloud architecture that can

be used in a classroom [4]. Cloud computing in the class-

room could be used to provide valuable educational tools

and resources in a way that is scalable, and supportive

of the ever-changing environment of the classroom. Pro-

duction of knowledgeable students is not a trivial task.

Researchers in education are focused on providing young

students with the tools necessary to be productive mem-

bers of society [4]. The past decade has seen, in some

cases, a dramatic decrease in state and local funding

for public secondary education. This reduction in fund-

ing indicates that a paradigm shift in how technology is

utilized in the classroom is necessary in order to con-

tinue to provide high quality education. The authors of

[4-7] believe that cloud computing may be a viable solu-

tion to recapture students’ interests and improve student

success.

Education

Researchers at North Carolina State University (NCSU)

have developed a cloud architecture, which is designed

to provide young students with tools that help to engage

students in the field of mathematics [4]. This cloud archi-

tecture, known as “Virtual Computing Lab” or “VCL”, has

been provided as a public service to rural North Carolina

9th and 10th grade algebra and geometry classes. The goal

of this study is to broaden the education of STEM related

topics using the VCL in these schools, and two appli-

cations were selected to be used in the course curricu-

lums: Geometer’s Sketchpad 5, and Fathom 2. The authors

describe a set of key challenges that were encountered

during the study, including: diversity of software, software

licensing, security, network availability, life expectancy of

hardware, affordability, as well as technical barriers. Soft-

ware availability is a prime concern when it comes to

provisioning educational tools for academic use.

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 3 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

The specific needs of the classroom, in many cases,

require specific software packages. When deploying soft-

ware to a cloud architecture, it is not always possible

to provide certain software packages as cloud services.

For this reason, it is common to bundle software with

virtual machine images, which are spawned on an IaaS

cloud. A virtual machine image is a single file that con-

tains a filesystem along with a guest operating system and

software packages. Additionally, software packages may

have some conflicts with one another that can create an

issue with the logistics of the system [4]. Another soft-

ware concern is related to software-specific licensing, and

how it affects the cloud. Many software packages require

licensing fees to be paid per user of the system, or as a

volume license, which may or may not impose a max-

imum number of users allowed access to the software.

Therefore, depending on the specific requirements of the

school and course, software licensing fees must be paid for

accordingly. For example, when geometers sketchpad was

deployed to the VCL, the authors made sure that the soft-

ware licensing fees were paid for in accordance with the

software publishers’ license agreement. The necessity for

licensing does affect the cost effectiveness of using a cloud

in this setting, however it is no different than licensing

software for traditional workstations [4].

The authors of [8] have created a private cloud archi-

tecture, called CloudIA, which supports e-Learning ser-

vices at every layer of the cloud stack. At the IaaS layer,

the CloudIA architecture supports an automated virtual

machine image generator, which utilizes a web interface

for creating custom virtual machine images with prede-

fined software packages installed. At the PaaS layer, the

CloudIA architecture supports computer science students

with a robust API for writing software that utilizes cloud

services. At the SaaS layer, the CloudIA architecture sup-

ports collaborative software for students to utilize for

projects and discussion.

The authors of [9] describe the benefits of cloud com-

puting for education. The main point that the authors

make is that cloud computing provides a flexible and cost

effective way to utilize hardware for improving the way

information is presented to students. Additionally, the

authors describe details about the ability of cloud com-

puting to shift the traditional expenses from a distributed

IT infrastructure model to a more pay-as-you-go model,

where services are paid for based on specific needs.

Authors of [5] discuss “Seattle”, which is a cloud appli-

cation framework and architecture, enabling users to

interact with the cloud using a robust API. By using this

platform students can execute experiments for learning

about cloud computing, networking, and other STEM

topics. The authors also describe a complimentary pro-

gramming language built upon Python, which gives stu-

dents easy access to the Seattle platform.

The authors of [10] discuss a newmodel for SaaS, which

they have named ESaaS. ESaaS is defined as a Software-

as-a-Service cloud architecture with a focus on providing

educational resources. The authors discuss the need for a

managed digital library and a global repository for edu-

cational content, which is easily accessible through a web

interface. The proposed architecture is meant to inte-

grate into existing secondary and post-secondary insti-

tutions as a supplementary resource to their existing

programs.

LTSP

One approach is the use of thin client devices, which have

been used in other educational endeavors, such as the

Linux Terminal Server Project (LTSP) [11]. Thin client

solutions, when paired with an IaaS cloud, offer low power

alternatives to traditional computing infrastructures. The

authors of [12] analyze energy savings opportunities in the

thin-client computing paradigm.

Authors of [13] discuss design considerations for a low

power and modular cloud solution. In this study the LTSP

[11] architecture is reviewed and compared to the authors

cloud architecture design. LTSP is a popular low power

thin client solution for accessing free and open source

Linux environments using a cluster of server machines

and thin client devices. The LTSP architecture provides

services, which are very similar to an IaaS cloud archi-

tecture with a few notable limitations. Firstly, LTSP only

offers Linux environments, which differs from an IaaS

cloud in that the cloud can host Linux, Windows, and

in some instances Apple OSX virtual machine instances.

Additionally, LTSP does not utilize virtualization tech-

nology, rather it provides several minimal Linux and

X windows environments on the same host computer.

Interfacing with an LTSP instance also differs from an

IaaS cloud in that an LTSP terminal will boot directly

from the host machine using PXE or NetBoot, which

is a remote booting protocol. A client connected to an

IaaS cloud will typically rely upon the Remote Desktop

Protocol (RDP) for accessing Windows instances, or the

Virtual Network Computing (VNC) protocol for Linux

instances.

Other work

All of the previous work relate to educational resources

and services in the cloud. However, most of the related

work is integrated using public cloud vendors and is spe-

cific towards one particular subject, as is presented in

[4] and [5]. The authors of [14] present their solution,

SQRT-C, which is a light-weight and scalable resource

monitoring and dissemination solution using the pub-

lisher/subscribe model, similar to what is described in this

manuscript. The approach considers three major design

implementations as top priority: Accessing physical

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 4 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

resource usage in a virtualized environment, managing

data distribution service (DDS) entities, and shielding

cloud users from complex DDS QoS configurations.

SQRT-C can be deployed seamlessly in other cloud plat-

forms, such as Eucalyptus and OpenStack, since it relies

on the libvirt library for information on resource manage-

ment in the IaaS cloud.

In [15], the authors propose a middleware for enterprise

cloud computing architectures that can automatically

manage the resource allocation of services, platforms,

and infrastructures. The middleware API set used in

their cloud is built around servicing specific entities

using the cloud resources. For end users, the API

toolkit provides interaction for requesting services. These

requests are submitted through a web interface. Inter-

nal interface APIs communicate between physical and

virtual cloud resources to construct interfaces for users

and determine resource allocation. A service direc-

tory API is provided for users based on user privi-

leges. A monitoring API is used to monitor and cal-

culate the use of cloud system resources. This relates

to the middleware introduced in this manuscript; how-

ever, it addresses architectures more suitable for large

enterprises.

The authors of [16] propose a resource manager that

handles user requests for virtual machines in a cloud envi-

ronment. Their architecture deploys a resource manager

and a policy enforcer module. First, the resource manager

decides if the user has the rights to request a certain vir-

tual machine. If the decision is made to deploy the virtual

machine, the policy enforcer module communicates with

the cloud front-end and executes an RPC procedure for

creating the virtual machine.

Authors of [17] describe how cloud platforms should

provide services on-demand that helps the user com-

plete their job quickly. Also mentioned is the cloud’s

responsibility of hiding low-level technical issues, such as

hardware configuration, networkmanagement, andmain-

tenance of guest and host operating systems. The cloud

should also reduce costs by using dynamic provisioning of

resources, consuming less power to complete jobs (within

the job constraints), and by keeping human interaction to

cloud maintenance to a minimum.

Development of cloud APIs is discussed in [18]. The

author mentions three goals of a good cloud API: Con-

sistency, Performance, and Dependencies. Consistency

implies the guarantees that the cloud API can provide.

Performance is relatively considered in forms of decreas-

ing latency while performing actions. Cloud dependen-

cies are other processes that must be handled, other

than spawning virtual machines and querying cloud

resource and user states. These three issues are consid-

ered in the development process of our own IaaS cloud

architecture.

Proposed architecture
Our focus is to provide underfunded non-profit organi-

zations with the means to facilitate the computing needs

of their users in a cost-effective manner. The THUNDER

architecture is composed of a special purpose private

cloud stack, and an array of low power embedded systems,

such as Raspberry Pi’s [19] or other low-power devices.

The THUNDER stack differs from the general-purpose

private cloud model in a number of ways. General pur-

pose cloud stacks, such as Eucalyptus [2] and OpenStack

[3], are focused on providing users with many different

options as to how the cloud can be configured. These

general-purpose solutions are great for large organiza-

tions because the architecture is flexible enough to be use-

ful for diversemarkets. However, non-profit organizations

do not typically have the resources to construct a general-

purpose cloud architecture. Therefore, a special-purpose

or vertical cloud architecture is desirable because it cir-

cumvents the typical cloud deployment process bymaking

assumptions about the use of the architecture. THUNDER

may be utilized by various NPO’s and for various pur-

poses, but a secondary focus of THUNDER is focused

on the education market. Research in cloud computing

for education has shown that educational services in high

school settings are successful in motivating students to

learn and achieve greater success in the classroom [4].

The THUNDER cloud stack utilizes a number of com-

modity compute nodes, in addition to persistent storage

nodes with a redundant backup, as well as a custom

DHCP, MySQL, and system administration server. Each

compute node is capable of accommodating four Win-

dows virtual machines or twelve Linux virtual machines.

The lab consists of low-power client devices with a key-

board, mouse, and monitor connected to a gigabit net-

work. A custom web-based interface allows users to login,

select their desired virtual machine from a list of pre-

defined images, and then launch the virtual machine

image. For example, students taking a course in Python

programming might be required to use a GNU/Linux

based computer for development. However, a recep-

tionist in an office setting might be required to use a

Microsoft Windows system. Therefore, regardless of the

user requirements, THUNDER will be able to provide

all necessary software components to each user inde-

pendently. Figure 1 illustrates the THUNDER network

topology. The THUNDER network topology resembles a

typical cloud topology, where the compute cluster is con-

nected to a single shared LAN switch, and support nodes

share a separate LAN switch. Additionally, the topology

shows the client devices and how they interface with the

rest of the system. Table 1 shows a power cost comparison

between THUNDER and a typical 20 PC lab, and shows

a possible savings of 50% when compared to a traditional

computer lab.

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 5 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

Figure 1 Networking topology for the THUNDER cloud architecture.

Network topology
The THUNDER network topology in Figure 1 is most

cost efficient when combined with low-power or thi–

client devices, but can also be paired with regular desktop

and laptop computers. One of the common advance-

ments in wired Ethernet technology is the use of switches.

Table 1 Power cost comparison between THUNDER and a

typical lab

Typical lab THUNDER

Hardware Watts # Hardware Watts

20 PC Desktops 6,000 20 Thin client 60

20 Display 2,000 20 Display 2,000

3 Compute node 1,200

2 Storage node 500

1 Admin/Web 250

Total 8,000 Total 4,010

Monthly bill: $152 Monthly bill: $77

Ethernet switches allow for adjacent nodes connected to

the switch to communicate simultaneously without caus-

ing collisions. The network interface cards used in all

of the devices of THUNDER support full duplex opera-

tion, which further allows nodes to send and receive data

over the network at the same time. Ethernet is a Link-

Layer protocol, which determines how physical devices

on the network communicate. The clients communicate

with THUNDER through simple socket commands and

a virtual desktop viewing client, such as VNC or RDP

viewers.

Compute and store resources

THUNDER compute and storage resources will consume

a considerable amount of network bandwidth. The com-

pute nodes are responsible for hosting virtual machines

that are accessed by the clients. These compute nodes will

mount the user’s persistent data as the virtual machine is

booting. Each compute node will communicate with the

THUNDER cloud resources and the client devices using

a 1 Gbps network interface. The client devices should

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 6 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

be equipped with a 10/100/1000 Mbps network adapter,

and considering the limited number of cloud servers, it

is unlikely that the 1 Gbps network switch will become

completely saturated with traffic. Userspace storage nodes

are connected to the same switch as the compute nodes,

which allows for tighter coupling of storage nodes and

compute nodes, decreasing the potential delay for persis-

tent file access. Backup storage nodes are connected to a

separate network switch, and are used to backup the cloud

system in case of a system failure.

Administrative resources

The THUNDER administrative resources include a

MySQL database, Web interface, and Networking ser-

vices. These services are hosted on a single physical

machine, with a backup machine isolated to the same net-

work switch. There will be no need for a high amount

of resources in the administrative node since the num-

bers of compute and storage nodes determine the amount

of clients that can be connected to THUNDER. The

THUNDER cloud, when accessed from devices external

to the organization’s private network, can be routed to a

secondary administrative node, such that the on-site users

will not experience any quality of service issues.

Network provisioning for low latency

Using a top down approach, the amount of bandwidth

(maximum) needed for a twenty node THUNDER lab

can be described. If we assume that each client device

requires a sustained 1 Mbps network throughput, we

would need to accommodate for sustaining 20 Mbps

within the network switch used by the clients. Since the

network switch is isolated to communicating with the

resources of THUNDER, this throughput needs to be sus-

tainable on the uplink port. This is relatively easy, given

the costs of gigabit switches on the market today. The

specification that needs close attention is the total band-

width of the switch backplane. Making the assumption

that this bandwidth is the number of ports multiplied by

the switch speed is not always true. In our case, the band-

width needed, 20Mbps, is much lower than the maximum

throughput of a twenty-four port gigabit switch.

There is little to no communication between THUNDER

compute node resources. These devices are used to host

virtual machines that are interfaced to the clients directly.

Given a THUNDER lab size of twenty clients, the network

bandwidth needed on the isolated network containing the

compute nodes should be above 20 Mbps, assuming each

client consumes 1 Mbps of bandwidth.

The THUNDER storage node resources are also iso-

lated to the same gigabit network switch as the compute

node resources. When the user logs into THUNDER and

requests a virtual machine, their persistent storage is

mounted inside the virtual machine for them to use. The

data created by the users has to be accessed while they are

using a virtual machine.

Middleware design and implementation
One of the core components in building a cloud architec-

ture is the development of amiddleware solution, allowing

for ease in resource management. Additionally, in order

to improve the quality of service (QOS) an emphasis

on minimizing resource utilization and increasing sys-

tem reliability is desirable. Our reasoning for developing

a new cloud middleware API is to address issues that we

have encountered in current cloud middleware solutions,

which are centered upon ease of deployment and ease of

interfacing with the system. Additionally, we have utilized

our API to build a novel cloud middleware solution for

use in THUNDER. Specifically, this middleware solution

is designed formanagement of compute resources, includ-

ing instantiation of virtual machine images, construction

and mounting of storage volumes, metadata aggregation,

and other management tasks. We present the design and

implementation for our cloudmiddleware solution andwe

introduce preliminary results from our study into the con-

struction of THUNDER, which is our lightweight private

vertical IaaS cloud architecture.

Management of resources is a key challenge in the

development of a cloud architecture. Moreover, there

is a necessity for minimizing the complexity and over-

head in management solutions in addition to facilitating

attributes of cloud computing, such as scalability and elas-

ticity. Another desirable quality of a cloud management

solution is modularity. We define modularity as the abil-

ity to painlessly add or remove components on-the-fly

without the necessity to reconfigure any services or sys-

tems. The field of cloud management exists within several

overlapping domains, which include service management,

system deployment, access control management, and oth-

ers. We address the requirements of a cloud management

middleware API, which is intended to support the imple-

mentation of the private cloud architecture currently in

development. Additionally, we compare our cloud man-

agement solution to solutions provided by freely available

private IaaS cloud architectures.

When examining the current state of the art in cloud

management, there are few options. We are confined to

free and open source (FOSS) cloud implementations, such

as Eucalyptus [2] and Openstack [3]. Cloud management

solutions used in closed-source, and often more popular

cloud architectures, such as Amazon EC2, are out of reach

from an academic and research perspective due to their

closed nature. However, there has been an effort to make

Eucalyptus and Openstack compatible with Amazon EC2

by implementing a compatible API and command line

tools, such as eucatools [20] and Nova [21], respectively.

The compatibility of API’s makes it easy to form a basis

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 7 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

of comparison between different architectures. Although,

this compatibility may also serve as a downfall because if

one API suffers from a bug, it may also be present in other

API’s.

Eucalyptus discussion

The methodology for management of resources in Euca-

lyptus is predominantly reliant upon establishing a control

structure between nodes, such that one cluster is man-

aged by one second-tier controller, which is managed by

a centralized cloud controller. In the case of Eucalyptus,

there are five controller types: cloud controller, cluster

controller, block-based storage controller (EBS), bucket-

based storage controller (S3), and node controller. The

cloud controller is responsible for managing attributes of

the cloud, such as the registration of controllers, access

control management, as well as facilitating user inter-

action through command-line and, in some cases, web-

based interfacing. The cluster controller is responsible

for managing a cluster of node controllers, which entails

transmission of control messages for instantiation of vir-

tual machine images and other necessities required for

compute nodes. Block-based storage controllers provide

an abstract interface for creation of storage blocks, which

are dynamically allocated virtual storage devices that can

be utilized as persistent storage. Bucket-based storage

controllers are not allocated as block-level devices, but

instead are treated as containers by which files, namely

virtual machine images, may be stored. Node controllers

are responsible for hosting virtual machine instances and

for facilitating remote access via RDP [22], SSH [23], VNC

[24], and other remote access protocols.

OpenStack discussion

Similar to the methodology used by Eucalyptus, Open-

Stack also maintains a control structure based on the

elements present in the Amazon EC2 cloud. Open-

Stack maintains five controllers: compute controller

(Nova), object-level storage (Swift), block-level storage

(Cinder), networking controller (Quantum), and dash-

board (Horizon). There are many parallels between the

controller of OpenStack and the controllers of Eucalyp-

tus. The Nova controller of OpenStack is similar to the

node controller of Eucalyptus. Similarly we see paral-

lels between Swift in OpenStack with the bucket-based

controller in Eucalyptus, and Cinder in Openstack with

the block-based storage of Eucalyptus. There seems to

be a discretion in implementation between the highest-

level controller in each architecture. OpenStack main-

tains different controllers for interfacing and network

management, while Eucalyptus maintains a single cloud

controller combining these functionalities. Additionally,

OpenStack does not maintain a higher-level control

structure for managing compute components, which is a

deviation from the cluster controller mechanism present

in Eucalyptus.

Middleware interfacing, communication, and

authentication

In developing our middleware solution we encountered

challenges regarding the method by which it would inter-

face with the various resources in the cloud. Many differ-

ent methodologies were considered. However, we decided

to use an event-driven mechanism, which is similar to

remote procedure calls (RPC).

One of the prime differences in the way Eucalyptus and

OpenStack perform management tasks is in the means of

communication. Eucalyptus utilizes non-persistent SSH

connections between controllers and nodes in order to

remotely execute tasks. OpenStack, on the other hand uti-

lizes remote procedure call, or RPC’s. In keeping with the

methodology introduced by OpenStack and its current

momentum in the open source cloud computing commu-

nity, we utilize an event driven model, which presents a

very similar mechanism to that of RPC. However, these

two architectures share a common component. They both

utilize the libvirt [25] library, which is the same library that

we utilize in our architecture.

Additionally, authentication was a challenge because in

reducing the complexity of authentication we introduce

new possible security threats. Although, we believe the

security threats posed by our authentication model are

minimal, additional threats could be uncovered during

system testing. We believe that this solution is important

because we address concerns regarding the overall usage

of the cloud architecture, and our initial performance

results in Figure 2 show that our middleware performs

well when compared to Eucalyptus [2].

Node-to-node communication scheme

In contrast to the methodologies used by Eucalyptus,

OpenStack, and presumably Amazon, our cloud middle-

ware API addresses resource management in a simplified

and more direct manner. The hierarchy of controllers

used in Eucalyptus introduces extra complexity that we

have deemed unnecessary. For this reason, our solution

utilizes a simple publisher/subscriber model by which

compute, storage, and image repository nodes may con-

struct a closed network. The publisher/subscriber system

operates in conjunction with event driven programming,

which allows events to be triggered over the private net-

work to groups of nodes subscribed to the controller

node. Figure 3 shows the logical topology and lines of

communication constructed using this model.

In constructing the communication in this manner we

are able to broadcast messages to logical groups in order

to gather metadata about the nodes subscribed to that

group. Message passing is useful for retrieving the status

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 8 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

Figure 2 Performance comparison of NetEvent and SSH authentication protocols.

of nodes, including virtual machine utilization, CPU and

memory utilization, and other details pertaining to each

logical group. Additionally, we are able to transmit mes-

sages to individual nodes in order to facilitate virtual

machine instantiation, storage allocation, image transfer,

and other functions that pertain to individual nodes.

Registration of nodes

Communication between nodes utilizes non-persistent

socket connections, such that the controller node main-

tains a static pre-determined port for receiving messages,

while other nodes may use any available port on the

system. Thus, each node in the cloud, excluding the con-

troller node, automatically selects an available port at boot

time. Initial communication between nodes is done dur-

ing boot time to establish a connection to the controller

node. We utilize a methodology for automatically finding

and connecting to the controller node via linear search

over the fourth octet of the private IP range (xxx.xxx.xxx.0

to xxx.xxx.xxx.255). Our assumption in this case is that

the controller node will exist on a predefined subnet that

allows us to easily establish lines of communication with-

out having to manually register nodes. Additionally, we

can guarantee sequential ordering of IP addresses with

our privately managed DHCP server. Once a communica-

tion link is established between a node and the controller

node, the node will request membership within a spe-

cific logical group, after which communication between

the controller node and that logical group will contain the

node in question.

The registration methodology used in our middleware

solution differs from the methodology used by Eucalyptus

andOpenStack. For example, Eucalyptus relies upon com-

mand line tools to perform RSA keysharing and for

Figure 3 Logical topology - logical groups represent group-wise membership in publisher/subscriber model.

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 9 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

establishing membership with a particular controller. We

do not perform key sharing, and instead rely upon a

pre-shared secret key and generated nonce values. This

approach is commonly known as challenge-response [26],

and it ensures that nodes requesting admission into the

cluster are authentic before communication is allowed.

When a node wishes to be registered as a valid and

authentic node within a cluster, a nonce value is sent

to the originating node. The node will then encrypt the

nonce with the pre-shared key and transmit the value

back to the controller. We validate the message by com-

paring the decrypted nonce produced by the receiver and

the nonce produced by the sender. Thus, we do not rely

uponmanual sharing of RSA keys beforehand, and instead

we eliminate the need for RSA keys altogether and utilize

a more dynamic approach for validation of communica-

tion during the registration process. Figure 4 presents the

registration protocol.

Middleware API

As stated in the introduction, our methodology for

constructing a middleware API for cloud resource man-

agement centers around the decreasing overhead when

compared to general-purpose solutions. In order to facil-

itate a simple middleware solution, our API was designed

to provide a powerful interface for cloud management

while not introducing excessive code overhead. We have

titled our API “NetEvent”, which is indicative of its

intended purpose as an API for triggering events over a

network. This API is utilized within our private IaaS cloud

architecture as a means for communication, management

of resources, and interaction with our cloud interface.

Figures 5 and 6 illustrate the manner in which the API

is accessed. Although, the code examples presented here

are incomplete, they illustrate the simplicity of creating

events to be triggered by the system for management of

resources.

In Figure 5 we present sample code for the creation of

a controller node, which is responsible for relaying com-

mands from the web interface to the cloud servers. In

Figure 6 we present a skeleton for the creation of a com-

pute node with events written for instantiation of virtual

machine images and for retrieving the status of the node.

Although, we do not present code for the implementation

of storage or image repository nodes, the implementations

are similar to that of the compute node. In addition, the

code examples presented in this paper show only a sub-

set of the functionality contained within the production

code.

The API presented here provides a powerful interface

for implementing private cloud architectures. By means

of event triggering over a private network we are able

to instantiate virtual machine images, mount storage vol-

umes, retrieve node status data, transfer virtual machine

images, monitor activity, and more. The implementa-

tion of the system is completely dependent upon the

developer’s needs and may even be used in distributed

systems, which may or may not be implemented as a

Figure 4 Node registration protocol.

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 10 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

Figure 5 Example controller node service written in pseudocode.

cloud architecture. This approach is different than the

more traditional approach of remote execution of tasks by

means of SSH tunneling.

User interfacing

In the previous section we introduced our middleware

API for managing cloud resources. However, another

important component is a reasonable way to interface

with the middelware solution. Although, the middle-

ware API solution is completely independent from the

interface, we have chosen to use a message passing

approach that is different from that of general-purpose

architectures. In this approach our web interface, which

is written in PHP, connects to the controller node in

order to trigger the “INVOKE” event. By interfacing

with the controller node we are able to pass messages

to groups or individual nodes in order to manage the

resources of that node and receive responses. The abil-

ity to interface in this manner allows our interface to

remain decoupled from the logical implementation, while

allowing for flexibility in the interface and user experi-

ence. Figure 7 shows an example PHP script for interfac-

ing with the resources in the manner described in this

section.

Figure 6 Skeleton for compute node service written in pseudocode.

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 11 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

Figure 7 Example communication interface in PHP.

The PHP interface presented in Figure 7 illustrates the

methodology behind how we may capture and display

data about the nodes, as well as provide a means for

user interaction in resource allocation and management.

Although, we do not present the full source code in this

paper, additional functions could be written. For exam-

ple, a function could be written that instructs compute

nodes to instantiate a particular virtual machine image.

One important aspect of this system is that the mode of

communication remains consistent at every level of the

cloud stack. Every message sent is implemented via non-

persistent socket connections. This allows for greater data

consistency without modifying the semantics of messages

between the different systems. Figure 8 shows an example

interface for metadata aggregation of a logical compute

group. Figure 9 presents a sequence diagram for the VM

selection interface.

Supporting storage services

Pinnacle to the development of a complete cloud archi-

tecture, and a pre-requisite to supporting compute ser-

vices is the ability for a cloud middleware to support the

mounting and construction of persistent storage volumes.

Storage service support is a pre-requisite of compute ser-

vices because it is common for virtual machine images to

reside on a separate image repository or network attached

storage device. Therefore, before compute services can

be fully realized it is necessary to be able to mount the

image repository, such that the local hypervisor may have

access to the virtual machine images. We can support

storage services using the storage driver provided by lib-

virt. Figure 10 shows the XML specification provided to

libvirt, which is required by the storage driver.

Once the storage pool has been mounted, then the user

of the cloudmay be provided access to storage space, if it is

persistent userspace. Alternatively, if the share is a image

repository, then the compute node will be given access to

the virtual machine images provided by the storage pool.

Supporting compute services

The NetEvent API allows for services to be written and

distributed to nodes within a private cluster. These ser-

vices utilize the NetEvent API as a means for triggering

events remotely. Within cloud architectures there are a

few important events that must be supported. Firstly, the

instantiation of virtual machine imagesmust be supported

by all cloud architectures. Compute services may be sup-

ported by combining the flexibility of the NetEvent API

and a hypervisor, such as KVM. A proper compute ser-

vice should maintain an image instantiation event which

invokes the hypervisor and instructs it to instantiate a

specific virtual machine image.

The steps involved in supporting compute services start

with mounting the storage share containing the virtual

machine images. This is made possible with the function,

mountVMPool, which constructs a storage pool located in

the directory “/var/lib/iibvirt/images”, and is the default

location by which libvirt may locate the available domains

or virtual machine images available to the system. Once

the virtual machine pool is mounted then a specific vir-

tual machine may be instantiated, which is made possible

with the function, instantiateVM. This function looks up

the virtual machine, and if it exists in the storage pool, it

will be instantiated. Once the VM is instantiated, a domain

object will be returned to the node, which provides the

methods for managing the virtual machine instantiation.

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 12 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

Figure 8 Example interface for metadata aggregation with two nodes being polled for data.

Figure 9 Sequence diagram for virtual machine image selection process.

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 13 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

Figure 10 Storage pool XML specification required by libvirt.

Supporting metadata aggregation

Metadata aggregation refers to the ability to retrieve data

about each node within a specific group. This data may

be used for informative purposes, or for more complex

management tasks. Example metadata includes the nodes

IP address, operating system, and kernel. Additionally,

dynamic data may be aggregated as well, including

RAM availability and CPU load. We can support meta-

data aggregation in each service by introducing events

that retrieve the data and transmit it to the controller

node.

Performance results

One of the many reasons for not using SSH, which seems

to be the industry standard approach for inter-node com-

munication in general-purpose cloud architectures, is that

SSH produces excessive overhead. The communication

approach used by NetEvent is very simplified and does

not introduce data encryption or a lengthy handshake

protocol. The downfall of simplifying the communication

structure is that the system becomes at risk for loss of

sensitive data being transmitted between nodes. However,

in the case of this system no sensitive data is ever trans-

mitted, and instead only simple commands are ever sent

between nodes. For this reason encryption is unneces-

sary. However, authentication is still required in order to

determine if nodes are legitimate. In testing the perfor-

mance of NetEvent we compared the elapsed time for

authenticating a node with the controller and establishing

a connectionwith the elapsed time for SSH to authenticate

and establish a connection. We gathered data over five tri-

als, which is presented in Table 2. Additionally, Figure 2

presents the average latencies between SSH andNetEvent.

From the performance comparison we draw the conclu-

sion that general-purpose cloud architectures that utilize

SSH connections, such as Eucalyptus, sacrifice up to a

99% loss in performance when compared to traditional

sockets. However, this comparison is being made at opti-

mal conditions, because the servers are under minimal

load. More data needs to be gathered to determine how

much the performance is affected when the servers are

overloaded.

Supporting software services
The preceding sections discussed our implementation of

the software system necessary for supporting IaaS cloud

services, namely hardware virtualization and persistent

storage. Building upon virtualization of hardware, we

are able to provide software services as custom virtual

machine instances. The approach that THUNDER takes

is instantiation of server virtual machine images, which

deploy web services for user collaboration, research,

and other tools and utilities. By implementing services

in this fashion, no modifications are required to the

infrastructure of the cloud, and administrators may eas-

ily start services by allocating hardware resources and

stop services by deallocating resources. This approach

differs from typical SaaS architectures in that no addi-

tional configuration is necessary outside of what is

required for regular instantiation of virtual machines.

The only difference is that regular users do not have

access to connecting to service instances directly using

VNC.

Future work and conclusion
We would like to introduce this architecture in a select

number of organizations in order to determine the effec-

tiveness and usability of the architecture from both the

user’s and administrator’s perspectives. Based on the

results of the study, we will alleviate any possible con-

cerns from users or administrators. We plan to form

an incremental process, such that various aspects of the

system are studied in different organizational environ-

ments, then small changes will be made to the system

Table 2 Performance results comparing NetEvent to

traditional SSH-based authentication

Trial # SSH (ms) NetEvent (ms)

1 298 3.1

2 301 3.2

3 302 9.2

4 298 3.1

5 299 3.0

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 14 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

before running another study. In this fashion, we will

have more control over which features are beneficial to

organizations, and which features are least significant.

Currently, the THUNDER cloud is comprised of a set of

standalone servers which are not organized in a shared

structure, such as a rack-style chassis. We would like to

build a complete prototype that is presentable and able

to be easily taken to organizations for demonstration pur-

poses. One of the key challenges in building a cloud

infrastructure is the development of a middleware solu-

tion, which allows for ease in resource management. The

work presented in this paper demonstrates that a middle-

ware solution does not have to be as complex as those

found in the popular cloud architectures, Eucalyptus and

Openstack. We also introduced the model by which our

middleware API offers communication between nodes,

namely utilizing event driven programming and socket

communication. We have developed our API to be effi-

cient, light weight, and easily adaptable for the devel-

opment of vertical cloud architectures. Additionally, we

showed the manner in which a web interface may interact

with the middleware API in order to send messages and

receive responses from nodes within the cloud. For future

work we would like to investigate approaches for fault tol-

erance in this architecture. Additionally, we would like to

perform an overall system performance benchmark and

make comparisons between other cloud architectures. We

would also like to implement a method for obfuscation of

management traffic such that the system may not be as

susceptible to malicious users.

We have presented our work in designing and

implementing a new private cloud architecture, called

THUNDER. This architecture is implemented as a vertical

cloud, which is designed for use in non-profit organi-

zations, such as publicly funded schools. We leverage a

number of technologies, such as Apache2 web server, and

MySQL for implementation of the architecture. Addition-

ally, we introduce socket programming and RPC as a

viable alternative to the more common SSH based solu-

tion for inter-node communication. We have established

that the primary goal of THUNDER is not to replace tradi-

tional private cloud architectures, but to serve as an alter-

native, which is custom tailored for reducing complexity,

costs, and overhead in underprivileged and underfunded

markets.We also demonstrate that if an organization were

to adopt the THUNDER architecture they could benefit

by reducing up to 50% of their power bill due to the low

power usage when compared to a traditional computer

lab. We believe that the power and cost savings, when

combined with the features and qualities of THUNDER

as presented in this paper, make THUNDER a desirable

architecture for school computer labs and other orga-

nizations. Further studies and analysis will validate the

effectiveness of the architecture.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

GL performed the research, design, and development of the THUNDER
architecture. JG and JR revised the manuscript and contributed to the
background work. XH provided insight and guidance in developing the
networking model for THUNDER. SV edited and revised the final manuscript.
All authors read and approved the final manuscript.

Received: 11 August 2013 Accepted: 14 December 2013

Published: 21 December 2013

References

1. Amazon Web Services. [http://aws.amazon.com/]. Accessed: 12/18/2012

2. Eucalyptus Enterprise Cloud. [http://eucalyptus.com/]

3. OpenStack. [http://openstack.org/]

4. Stein S, Ware J, Laboy J, Schaffer HE (2012) Improving K-12 pedagogy via
a Cloud designed for education. Int J Informat Manage.
[http://linkinghub.elsevier.com/retrieve/pii/S0268401212000977]

5. Cappos J, Beschastnikh I (2009) Seattle: a platform for educational cloud
computing. ACM SIGCSE 111–115. [http://dl.acm.org/citation.cfm?id=
1508905]

6. Donathan K, Ericson B (2011) Successful K-12 outreach strategies.
In: Proceedings of the 42nd ACM technical symposium on Computer
science education, pp 159–160. [http://dl.acm.org/citation.cfm?id=
1953211]

7. Ercan T (2010) Effective use of cloud computing in educational
institutions. Procedia - Social and Behavioral Sci 2(2):938–942.
[http://linkinghub.elsevier.com/retrieve/pii/S1877042810001709]

8. Doelitzscher F, Sulistio A, Reich C, Kuijs H, Wolf D (2010) Private cloud for
collaboration and e-Learning services: from IaaS to SaaS. Comput 91:
23–42. [http://www.springerlink.com/index/10.1007/s00607-010-0106-z]

9. Sultan N (2010) Cloud computing for education: A new dawn? Int J
Inform Manage 30(2):109–116. [http://linkinghub.elsevier.com/retrieve/
pii/S0268401209001170]

10. Masud M, Huang X (2011) ESaaS: A new education software model in
E-learning systems. Inform Manage Eng 468–475. [http://www.
springerlink.com/index/H5547506220H73K1.pdf]

11. Linux Terminal Server Project. http://ltsp.org/. [Accessed: 12/23/2012]

12. Willem Vereecken LD (2010) Energy efficiency in thin client solutions.
GridNets 25:109–116

13. Cardellini V, Iannucci S (2012) Designing a flexible and modular
architecture for a private cloud: a case study. In: Proceedings of the 6th
international workshop on Virtualization Technologies in Distributed
Computing Date, VTDC ’12. ACM, New York, NY, USA, pp 37–44.
[http://doi.acm.org/10.1145/2287056.2287067]

14. An K, Pradhan S, Caglar F (2012) Gokhale AA publish/subscribe
middleware for dependable and real-time resource monitoring in the
cloud. In: Proceedings of the Workshop on Secure and Dependable
Middleware for Cloud Monitoring and Management, SDMCMM ’12. ACM,
New York, NY, USA, pp 1–3:6. [http://doi.acm.org/10.1145/2405186.
2405189]

15. Lee SY, Tang D, Chen T, Chu WC (2012) A QoS Assurance middleware
model for enterprise cloud computing. In: IEEE 36th Annual Computer
Software and Applications Conference Workshops (COMPSACW), 2012,
pp 322–327

16. Apostol E, Baluta I, Gorgoi A, Cristea V (2011) Efficient manager for
virtualized resource provisioning in cloud systems. In: IEEE International
Conference on Intelligent Computer Communication and Processing
(ICCP), 2011, pp 511–517

17. Khalidi Y (2011) Building a cloud computing platform for new
possibilities. Computer 44(3):29–34

18. Pallis G (2010) Cloud computing: the new frontier of internet computing.
IEEE Int Comput 14(5):70–74

19. Raspberry Pi Foundation (2013). http://www.raspberrypi.org/
[Accessed: 11/15/2012]

20. EC2 Tools (2013). [http://www.eucalyptus.com/eucalyptus-cloud/tools/
ec2]

21. OpenStack Nova (2013). [http://nova.openstack.org/]

http://aws.amazon.com/
http://eucalyptus.com/
http://openstack.org/
http://linkinghub.elsevier.com/retrieve/pii/S0268401212000977
http://dl.acm.org/citation.cfm?id=1508905
http://dl.acm.org/citation.cfm?id=1508905
http://dl.acm.org/citation.cfm?id=1953211
http://dl.acm.org/citation.cfm?id=1953211
http://linkinghub.elsevier.com/retrieve/pii/S1877042810001709
http://www.springerlink.com/index/10.1007/s00607-010-0106-z
http://linkinghub.elsevier.com/retrieve/pii/S0268401209001170
http://linkinghub.elsevier.com/retrieve/pii/S0268401209001170
http://www.springerlink.com/index/H5547506220H73K1.pdf
http://www.springerlink.com/index/H5547506220H73K1.pdf
http://ltsp.org/
http://doi.acm.org/10.1145/2287056.2287067
http://doi.acm.org/10.1145/2405186.2405189
http://doi.acm.org/10.1145/2405186.2405189
http://www.raspberrypi.org/
http://www.eucalyptus.com/eucalyptus-cloud/tools/ec2
http://www.eucalyptus.com/eucalyptus-cloud/tools/ec2
http://nova.openstack.org/

Loewen et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:24 Page 15 of 15

http://www.journalofcloudcomputing.com/content/2/1/24

22. Surhone L, Timpledon M, Marseken S (2010) Remote desktop protocol.
VDM Verlag Dr. Mueller AG & Company Kg, Saarbruecken, Germany

23. Barrett DJ, Silverman RE, Byrnes RG (2005) SSH, The secure shell: the
definitive guide. O’Reilly Media, Sebastopol, CA, USA

24. VNC - Virtual network computing (2013). [http://www.hep.phy.cam.ac.uk/
vnc_docs/index.html]. [Accessed: 12/18/2012]

25. libvirt - The virtualization API (2013). http://libvirt.org/.
[Accessed: 7/21/2013]

26. M’Raihi D, Rydell J, Bajaj S, Machani S, Naccache D “OCRA: OATH
Challenge-Response Algorithm”, RFC 6287. June 2011

doi:10.1186/2192-113X-2-24

Cite this article as: Loewen et al.: THUNDER: helping underfunded NPO’s
distribute electronic resources. Journal of Cloud Computing: Advances, Sys-
tems and Applications 2013 2:24.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.hep.phy.cam.ac.uk/vnc_docs/index.html
http://www.hep.phy.cam.ac.uk/vnc_docs/index.html
http://libvirt.org/

	Abstract
	Introduction
	Background and motivation
	Education
	LTSP
	Other work

	Proposed architecture
	Network topology
	Compute and store resources
	Administrative resources

	Network provisioning for low latency

	Middleware design and implementation
	Eucalyptus discussion
	OpenStack discussion
	Middleware interfacing, communication, and authentication
	Node-to-node communication scheme
	Registration of nodes

	Middleware API
	User interfacing
	Supporting storage services
	Supporting compute services
	Supporting metadata aggregation
	Performance results

	Supporting software services
	Future work and conclusion
	Competing interests
	Authors' contributions
	References

