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ABSTRACT

Thunderstorms inflict death and damage worldwide due to lightning, heavy rains, hail, and strong winds.

While the effect of global warming on future thunderstorm activity is still debatable, this work investigates

how thunderstorm activity over Africa may have changed over the last 70 years. Thunderstorm data were

obtained from the World Wide Lightning Location Network (WWLLN) and processed to produce thun-

derstorm clusters. The number and area of clusters in one year (2013) were compared with several climate

parameters tied to thunderstorm development, taken from the NCEP–NCARReanalysis-1 product (NCEP).

The two parameters that correlated best with thunderstorm number were lifted index and specific humidity,

with correlations of 20.795 and 0.779, respectively. These parameters were used to construct an empirical

model that predicts the number and area of thunderstorm clusters over Africa on a particular day, month, or

year. The empirical model was run from 1948 to 2016, providing a reconstruction of long-term thunderstorm

activity over Africa. The time series was compared to temperature data from NCEP, and showed that the

number of clusters increased with rising surface temperature on annual and decadal time scales, particularly

since themid-1990s. On an annual time scale, the number and area of thunderstorm clusters exhibited a highly

sensitive relationship with surface temperature, with a;40% increase in the number of thunderstorm clusters

for every 1-K rise in temperature over Africa. The correlation coefficients with surface temperature were

0.745 and 0.743 for cluster number and area, respectively, indicating that surface temperature explains;55%

of the variability in interannual thunderstorm clusters over the past 70 years.

1. Introduction

Every hour, around 1000 thunderstorms dominate

the tropical latitudes, where tropical Africa exhibits

the highest flash rates (Christian 2003; Williams 2005)

and the most mesoscale convective systems (MCSs)

(Toracinta and Zipser 2001; Laing et al. 1999) and

hosts 283 of the top 500 lightning hotspots on Earth

(Albrecht et al. 2016). Lightning strikes cause injury,

death, and damage to property, industry, and infra-

structure, as well as forest fires. Rural populations are

often the most vulnerable to the immediate dangers

of direct strikes, and studies in several African countries

have revealed high rates of injury and fatalities (Cooray

et al. 2007; Dlamini 2009; Mary and Gomes 2012). This

work focuses on African thunderstorms due to their

frequency and intensity, as well as their role in the

formation ofAtlantic tropical cyclones (Price et al. 2007,

2015). Despite representing nearly 80% of total global

lightning, relatively little research has focused on the

impact of climate change on tropical and subtropical

thunderstorms (Bond et al. 2002; Finney et al. 2018).

The degree to which lightning regimes are sensitive to

climate change is still debatable. This question has im-

plications in climate forecasting due to lightning’s direct

and indirect effects on radiative forcing and atmospheric

chemistry through NOx production (Forster and Shine

1997; Price et al. 1997; Schumann and Huntrieser 2007;

Myhre et al. 2013; Banerjee et al. 2014) and thunder-

storms’ injection of water vapor into the upper tropo-

sphere (Price 2000; Williams 2005; Price and Asfur

2006a). Several studies suggest that the regions in

which lightning is most sensitive to surface warming

are the tropical landmasses, which are the most active

in terms of lightning in the present climate (Williams

1992, 1994; Finney et al. 2018). Lightning can also be

an important marker in the investigation of changes in

the frequency and severity of extreme weather events

that it accompanies (Brooks et al. 2003; Price et al. 2011;

Brooks 2013).
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The historical record of global lightning activity is

somewhat limited, as monitoring systems are constrained

in space and/or time. In the absence of a complete record,

variables with a direct relationship to lightning may be used

to provide proxies (Brooks et al. 2003). Meteorological re-

analysis datasets, like NCEP–NCAR reanalysis, pro-

duce continuous reconstructions of past atmospheric

states, offering many options for the use of covariates

to simulate past lightning activity. Further back in its

time series, there are fewer observations assimilated

into the reanalysis model. However, there are some

observations, and therefore this dataset provides one

of the best available spatially and temporally complete

representations of the historical climate.

One of the difficulties in predicting changes in future

lightning activity is knowing the parameters in the present

climate that are best related to it. This work investigates

the link between large-scale meteorological parameters

and thunderstorm activity, in the interest of understand-

ing how thunderstorm behavior changes over time.

Thunderstorm charging is widely believed to result

from the noninductive charging mechanism, for which

cloud ice and supercooled water have been shown to

be fundamental components. Cloud electrification gen-

erally requires the presence of a mixed phase region

where supercooled water droplets, ice crystals, and

graupel undergo microphysical processes of riming,

collisions, and other interactions that bring about

charge separation in the cloud particles (Takahashi 1978;

Toracinta and Zipser 2001). Rosenfeld and Woodley

(2000) used in situ measurements in deep convective

clouds, and found very little significant freezing be-

low the 2388C isotherm despite the presence of ice

nuclei. Their findings emphasize the importance of

supercooled liquid water in cloud electrification. This

process is also sensitive to aerosol content. Khain

et al. (2005) employed a cloud model that included

detailed microphysics, cloud condensation nuclei,

and ice nuclei. Their findings suggest that aerosol-rich

clouds exhibit enhanced convection, leading to a

more developed vertical structure and to thunder-

storms. Furthermore, polluted urban centers often ex-

hibit excess lightning (Orville et al. 2001; Pinto et al.

2013), and aerosol content may increase in developing

regions in the coming decades.

Cloud characteristics are commonly used as predictors/

proxies for flash rate. Perhaps themost widely used proxy

is the maximum cloud-top height to the fifth power

times a constant (Williams 1985; Michalon et al. 1999;

Yoshida et al. 2009; Banerjee et al. 2014; Krause et al.

2014; Romps et al. 2014). Cloud-base height (Williams

and Stanfill 2002; Williams et al. 2005), ice mass flux

(Blyth et al. 2001; Deierling et al. 2008; Lynn and Yair

2010; Yair et al. 2010; Finney et al. 2018), and precipi-

tation (Romps et al. 2014) have also been employed.

Predictions of lightning’s sensitivity to climate change

vary widely for different regions and studies. Research

of the past 100 years found upward trends in the number

of thunder days in the western two-thirds of the United

States (Changnon and Changnon 2001), as well as in two

Brazilian cities (Pinto et al. 2013). Williams et al. (2019)

found that during hiatuses in global warming, regional

thunder-day records decreased with time along with

temperature from 1940 to 1972, and monthly lightning

counts from space were statistically flat with time, and

therefore mutually consistent with temperature changes

from 2000 to 2013. Many studies use surface tempera-

ture as a proxy for climate change, with studies of past

(Williams 1992; Williams et al. 1999) and future flash

rates (Price and Rind 1994; Michalon et al. 1999; Trapp

et al. 2007, 2009; Romps et al. 2014; Seeley and Romps

2015) ranging from a 6%–100% increase in response to a

rise of 18C to a 15%decrease by the year 2100 with;58C

of warming (Finney et al. 2018). Romps et al. (2014)

estimated a 12.5% increase in cloud-to-ground (CG)

strikes in the continental United States per 18C rise in

global surface temperature. Under a doubled CO2

scenario, Price and Rind (1994) predicted a global

rise of 5% per 18C of surface warming 35 years in the

future. Under the same scenario, Michalon et al.

(1999) predicted a rise of 10% in global flash rate per

28C of surface warming. Many of these findings are

of the same order as the Clausius–Clapeyron water

vapor sensitivity to temperature (saturation vapor

pressure increases approximately 7% per 18C of

warming). These studies use dynamic approaches, and

do not include modeling of microphysical processes or

ice flux. Finney et al. (2018) used a model that incor-

porated ice physics and featured a decrease in the

depth of the charging zone in storm clouds due to

increased temperatures to compare two parameteri-

zations. Using upward cloud ice flux, their model pro-

duced profoundly different results from those it

produced using the cloud-top-height parameteriza-

tion. In a model run from the present day to the year

2100 under a strong global warming scenario, the

former produced a 28.3% decrease while the latter

gave a 30.3% increase in flash rate over the tropics.

Despite their often highly detailed descriptions, there

is a disadvantage to using cloud and precipitation pa-

rameters as proxies for large-scale predictions. There is

evidence suggesting that climate models overestimate

cloud liquid water content (Jiang et al. 2012). In the con-

text of general circulation models (GCMs), convective

clouds are a subgrid-scale process, and are therefore rep-

resented byparameterizations (Price 2013). The horizontal
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scale of a large thunderstorm is ;25 km (Seeley and

Romps 2015). The grid spacing of high-resolution

global GCMs is 50–100 km (HiRAM, MiROC4H),

but the vast majority of these models use pixel sizes

of hundreds of kilometers (ECHAM5-MPI, UKTR,

HAD-CM3). The current work deals with thunder-

storm clusters, and is less concerned with the intensity

of charge separation and more with the large-scale

drivers leading to thunderstorms, regardless of inten-

sity. Therefore, we focus on large-scale, continuous

parameters that are relevant to coarse-grid models.

Examples of such variables that have been tied to

lightning include vertical temperature gradient (profile)

between two levels (Brooks et al. 2003; Ziv et al. 2009;

Gijben et al. 2017), wet-bulb temperature and wet-bulb

potential temperature (Williams 1992; Williams and

Renno 1993), sensible heat flux (Williams and Stanfill

2002), and updraft speed (Baker et al. 1995, 1999; Del

Genio et al. 2007; Wang et al. 2017).

Two additional variables that measure instability

are lifted index (LI) and convective available poten-

tial energy (CAPE). Both are based on parcel theory,

which is a significant simplification, given thunder-

storms’ turbulent mixing. Parcel theory predicts sig-

nificantly greater updraft speeds than those observed

for all but the largest supercell storms (Williams et al.

2005; Williams 2005) However, both LI and CAPE

are employed by National Oceanic and Atmospheric

Administration (NOAA)’s Storm Prediction Center

as indicators of favorable environments for severe

thunderstorms. LI and CAPE differ in their vertical

structure. LI indicates the instability of a single level,

whereas CAPE is an integration over multiple levels.

Blanchard (1998) showed that CAPE divided by the

level of free convection exhibits a well-correlated

relationship with LI.

CAPE has been used in many studies, particularly

over the continental United States (Rutledge et al. 1992;

Williams et al. 2002; Brooks et al. 2003; Bright et al.

2005; Romps et al. 2014; Seeley and Romps 2015).

However, the dynamics governing these thunder-

storms differ significantly from the tropics, where

CAPE values are similar over land and sea while

lightning over land exceeds lightning over sea by an

order of magnitude (Lucas et al. 1996; Williams and

Stanfill 2002; Christian 2003; Williams et al. 2005).

Romps et al. (2018), found that CAPE3 precipitation

correctly predicts the distribution of flash-rate densi-

ties over land, but it does not predict the pronounced

land–ocean contrast in flash-rate density.

In the current work, several large-scale parameters

were tested against thunderstorm observations over

Africa. All were taken directly from reanalysis and the

twomost successful predictors were used to construct an

empirical model of thunderstorm clusters.

2. Methodology

a. Data

1) NCEP–NCAR REANALYSIS-1

NOAA’sNational Centers for Environmental Prediction

(NCEP) and National Center for Atmospheric Research

(NCAR)Reanalysis-1 system (hereinafter simplyNCEP)

provides a comprehensive coarse-grid model of the

atmosphere from 1948 to the present. The system’s

main module conducts data assimilation from a range

of sources. Data over Africa are extremely sparse,

and include ship and buoy observations. Land station

temperature, wind, and humidity are not assimilated.

Some of the earliest datasets incorporated in the re-

gion are raobs from 27 stations, beginning in 1948 in

Nairobi and North Africa, 1949 in South Africa, and

1953 in the Sahel. Several global datasets also con-

tribute to the African reanalysis, including U.S. Air

Force (USAF) TD13 synoptic observations (beginning

around 1950) and USAF TD54 global rawinsonde

(beginning in 1948) (Jenne 1992; Jenne et al. 1993). By

comparison, the ECMWF interim reanalysis (ERA-

Interim) ingests surface temperature at 6-h intervals;

however, currently the dataset begins in 1979.

The NCEP data are integrated with the NCEP global

spectral model, using spectral statistical interpolation

(SSI) (Parrish and Derber 1992). The output used here

has 17 pressure levels, with a horizontal grid size of 2.58

(; 250 km2) and a time step of 6 h. NCEP calculates the

difference between the station elevation and the eleva-

tion that is consistent with the reported surface pressure,

and the lowest two reported heights, assuming a lapse

rate of 26.58km21. NCEP provides a wide selection of

output fields that are classified according to the relative

influence of observational data on them: A 5 strongly

influenced by observations (highly reliable); B 5 both

observations and the model directly affect the variable;

and C5 no relevant observations, the variable is derived

solely from the model (vulnerable to modeling errors)

(Kalnay et al. 1996). NCEP’s historical output is tem-

porally varying in nature due to the inclusion of different

datasets from different periods. Poccard et al. (2000)

found four abrupt shifts in NCEP’s precipitation data

(class C) over Africa when compared to an observa-

tional dataset, with the most significant shift occurring

in 1967. Prior to 1968 very few datasets were integrated

into the reanalysis over tropical Africa, and rawinsonde

and upper-air data are still scarce in the region (Kalnay

et al. 1996; Poccard et al. 2000), suggesting that NCEP’s
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reanalysis over Africa may be more susceptible to the

GCM’s limitations, particularly aloft.

2) WORLDWIDE LIGHTNING LOCATION NETWORK

The World Wide Lightning Location Network

(WWLLN) is a network of 701 stations unevenly dis-

tributed around the globe, run by the University of

Washington. It began operating in 2004 with 18 stations

and has progressively grown since. WWLLN detects

electromagnetic waves generated by individual CG

strokes in the very-low-frequency (VLF; fVLF5 3–30kHz)

band. Stations measure the time of group arrival of the

radiation, and an optimal position for the discharge is

calculated based on measurements from at least five

stations that surround it (Rodger et al. 2006; Virts et al.

2013). As of 2013, the network’s detection efficiency

was estimated at 30% for CG strokes of 30 kA or greater

(Mezuman et al. 2014; Holzworth 2017) A typical CG

return stroke has a magnitude of approximately 19.5 kA

(Cummins and Murphy 2009). As such, WWLLN like

other lightning location networks, does not capture all

individual strokes. WWLLN detections are strongly biased

toward lightning with higher peak currents (Abarca

et al. 2010). The addition of more stations has improved

the network’s ability to detect weaker strokes (Rodger

et al. 2006; Rodger 2008; Hutchins et al. 2012) and has

improved the quality of data over Africa. WWLLN’s

detection efficiency is approximately 3 times higher

over sea than over land (Rudlosky and Shea 2013).

Several studies have assessed WWLLN’s abilities

through comparisons to local ground-based networks

(Abarca et al. 2010; Abreu et al. 2010) and the TRMM

Lightning Imaging Sensor (LIS) (Rudlosky and Shea

2013) and shown that spatiotemporal distributions of

thunderstorms can be reproduced successfully. VLF

wave attenuation and the minimum detectable energy

(MDE) of a particular region/station depends on iono-

spheric and surface conditions. The relative detection

efficiency and MDE of the network is lower in southeast

Africa compared to most other regions (Hutchins et al.

2012). Clustering was employed to mediate this issue.

b. Thunderstorm clusters and preprocessing

Clustering is commonly used for assessing storm be-

havior and scale from individual strokes/flashes [as

shown by the Optical Transient Detector (OTD) and

LIS]. Mezuman et al.’s (2014) clustering algorithm was

shown to successfully reproduce the spatiotemporal

distribution of global thunderstorm cells. The current

work utilized this algorithm to represent thunderstorm

parameters, with the understanding that not all clusters

are captured. The typical lifetime of a thunderstorm is

30–60min (Latham 1981). To capture smaller storms,

the algorithm translates the raw WWLLN coordinates

and arrival times into clusters on a 0.158 (;15km) grid.

A cluster is defined as a cell in which at least one stroke

has been detected per hour. Adjacent cells (top–bottom,

left–right) in which strokes are detected within the same

hour are combined into larger clusters. GivenWWLLN’s

limited and increasing detection efficiency, the use of

thunderstorm clusters enables the estimation of the

global distribution of thunderstorms, rather than an

accurate quantification of the number of storms.

To create a cluster dataset that matches NCEP’s res-

olution, the NCEP data were interpolated to a 2.48 grid

and hourly clusters were integrated over a whole day

(0000–2300 UTC). Prior to interpolation, there was a

small area without overlap in the east–west direction;

however, the region of interest (ROI) was defined so

that it is covered completely. The clusters were counted for

each NCEP pixel to produce two parameters: cluster

number and cluster area (Fig. 1). The final units for cluster

number are defined as the number of clusters per day in a

standardized 18 3 18 box. Cluster area is defined as a daily

mean percentage of area covered by clusters, per hour.

c. Early model development

The African region is defined as 308N–308S, 19.28W–

52.88E. To estimate the average number and area of

clusters during a given day in the ROI, the daily geo-

graphic means of the cluster parameters and several

NCEP fields were compared for one full year, 2013.

Lightning data were integrated to a daily value, or taken

from late afternoon to evening hours when thunder-

storm activity peaks (Price 1993; Williams et al. 2000),

taking into account that the African region spans five

time zones. Fields tested included LI, temperature

profiles, surface temperature, temperature anomaly

(temperature minus monthly mean temperature), spe-

cific humidity at 1000 hPa, and vertical velocity at

500 hPa (omega) (Table 1). The initial analysis did not

produce good correlations with omega, possibly due

to inaccuracies of NCEP upper-level data over Africa

(Poccard et al. 2000). Despite temperature’s A classi-

fication, temperature profiles had weaker correlations

with cluster variables compared to the top performers.

Several of the tested variables have been shown to

have a significant relationship with CAPE: omega

(Brooks 2013), specific humidity (Trapp et al. 2007, 2009;

Seeley and Romps 2015), and LI (Blanchard 1998).

Two significant large-scale parameters correlated

strongly and consistently with both cluster parameters:

specific humidity (q) (g kg21), with a correlation of

0.779, and LI (K) with a negative correlation of20.795.

We chose to focus solely on these two variables. Both are

classified B in the NCEP reanalysis (Kalnay et al. 1996).
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Lifted index is a measure of buoyancy, defined as

LI5T
env

2T
parcel

,

where Tenv is the ambient temperature at 500 hPa, and

Tparcel is defined by taking a parcel from near-surface

level (NCEP uses 995 sigma levels) and simulating its

rise through the troposphere to 500 hPa (dry adiabatic

until condensation, then moist adiabatic) (Blanchard

1998). LI correlates negatively with lightning, as its

negative values indicate conditions favorable to con-

vection: the parcel will rise as it is warmer and less

dense than its environment. The current work employs

LI due to its consistent correlations with clusters in the

testing phase and its standard two-dimensional defini-

tion.While CAPE is sensitive to the choice of air parcel

(Williams and Renno 1993; Emanuel 1994; Blanchard

1998; Craven et al. 2002), LI is produced directly by

NCEP as an output field, freeing it from the assump-

tions of the researcher. NCEP offers two types of LI:

surface level and best-four-layer LI. Both yielded

similar correlations in the early analysis. Gijben et al.

(2017) tested both ‘‘best LI’’ and surface LI in the

construction of their lightning index, and found that

surface LI was more successful. Surface LI was employed

here, taken as a daily mean.

Specific humidity q is the water content of an air

parcel expressed in terms of grams of water vapor per

1-kg air parcel. The field was taken as a daily mean at

1000 hPa and correlated positively with cluster pa-

rameters. Examples of NCEP output of LI and q, and

raw cluster density from WWLLN, can be seen in

Fig. 2. It is worth noting that LI and q are not inde-

pendent; they correlate negatively with each other in

the ROI, with r 5 20.856 51. However, they represent

substantially different ‘‘ingredients’’ necessary for thun-

derstorm formation, as deep moist convection requires

a conditionally unstable environmental lapse rate, and

sufficient moisture in the rising parcel, enabling it to

reach a level of free convection (Doswell et al. 1996).

Geographic means do not address the spatial distri-

bution of storms, and comparisons between the NCEP

TABLE 1. Correlation coefficients for daily geographicmeans over theROI. The p value, the probability of finding these, or more extreme,

results when the null hypothesis is true, was calculated and found to be p # 0.000 01 for all tests.

Cluster number at 2000 UTC Cluster area at 2000 UTC Classification

Lifted index: T500 2 Tparcel 20.795 06 20.8121 B

DTemperature: T1000 2 T850 0.6937 0.651 36 A (temperature)

DTemperature: T850 2 T500 0.562 37 0.653 86 A (temperature)

Specific humidity 0.779 53 0.7218 B

Omega, 500 hPa 20.561 74 20.432 12 B

FIG. 1. Illustrated comparison of the grid size of the datasets, with the WWLLN receivers in

the region (stars). NCEP’s 2.58 grid is interpolated to a 2.48 grid to accommodate the clusters’

0.158 grid (shown at right). Cluster number and area are calculated for the 2.48 grid.
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variables and the cluster parameters on a pixel-by-pixel

basis revealed nonlinear associations, which can be seen in

Fig. 3. When three variables were compared together, the

distribution functions ofLI,q, and cluster number and area

showed a clear shape with a concentrated region of high

cluster values over minimum values of LI and maximum

values of q, and very few outliers. This distribution (Fig. 3)

from 2013 was used to construct an empirical model to

predict the number and area of thunderstorm clusters.

d. The empirical model

The empirical model (EM) is based on 1 year of daily

mean LI and q, as well as WWLLN-derived clusters in

the ROI. This distribution comprises 26 3 31 pixels 3

365 days 5 294190 data points. The EM receives input of

daily LI and q for the desired year. It then produces a

prediction of cluster number and area on any given day,

based on the data in Fig. 3. The EM includes two separate

predictive schemes. Both treat land and sea separately, so

that pixels over land are predicted based on the distribution

of continental pixels, and likewise for pixels over sea. Daily

predictions are used to calculatemonthlymean predictions.

The observations of cluster number and area from the

reference year (2013) are binned according to their LI

and q values. For any given combination of LI and q,

there are two matching arrays of cluster observations:

Znumber{���} and Zarea{���}. These are used to construct

two prediction schemes.

1) THE MEAN PREDICTION SCHEME

The mean scheme (MS) calculates a mean daily value

of the cluster observations hZnumberi and hZareai for each

particular LI and q set in the reference year. Figure 4

shows the mean values of the data in Fig. 3. These values

FIG. 2. Example of daily data from 4 Jul 2014: (left) raw cluster density fromWWLLN, (center) daily mean specific humidity at 1000 hPa

from NCEP, and (right) daily mean surface LI with reversed color scale from NCEP.

FIG. 3. Distribution functions of cluster number and area, LI, and q for 2013. Each dot is a daily value of one 2.48 pixel. The x axes are LI,

and the y axes are specific humidity. The z axes are (left) cluster number and (right) cluster area. All data are for continental pixels that

contain at least one cluster per day.
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are used as the reference for the prediction (see the

online supplemental material). Missing values are in-

terpolated from surrounding locations. The algorithm

runs on the NCEP data in the prediction year, checks

each pixel’s LI and q values, and inserts the mean daily

cluster values from the reference. Thunderstorms are

not a continuous phenomenon. In contrast, the MS is

continuous in its design. When predicting daily clusters,

the maps exhibit low variability between pixels, unlike

real storm data. TheMS improves significantly when it is

aggregated to a monthly mean, as the clusters reduce in

spatial variability when aggregated, enabling the MS to

better represent thunderstorm distributions on a monthly

time scale (Fig. 5). Maximum values of cluster area cor-

respond to LI values of ;24 K, and q values of 20–

23gkg21. These values are substantially greater than the

climatology for specific humidity for Africa, which has

contours of 18gkg21with values going to 19gkg21within

it (Newell et al. 1974). When q rises above 23gkg21 we

see a slight reduction in mean cluster area. Studies by

McCaul and Cohen (2002) and Williams et al. (2005)

suggest that convective bubbles with broader diameters

develop with less surface moisture, and produce higher

flash rates and less precipitation. This relationship requires

further investigation; however, in the current work the dip

in cluster area (Fig. 4, right) occurs for very large clusters,

where q . 23gkg21. In comparison, the cluster number

relationship (Fig. 4, left) is slightly more linear with values

rising continuously along the q axis, and maximum cluster

number values corresponding to maximum q values.

2) THE RANDOM SELECTOR PREDICTION SCHEME

The random selector (RS) uses NCEP data for any

predicted year, and the distributions of observed values

Znumber and Zarea from the matching LI and q combi-

nation in the reference year. The scheme randomly

selects one observation from Znumber and Zarea for the

daily prediction. For example, for a particular LI and q

set we have n observations in the reference year. An

index between 1 and n is randomly generated using

MATLAB’s datasample function, and the correspond-

ing number and area values are selected (see codes in

the supplemental material). Furthermore, the cluster

number and area are coupled. The selected set of cluster

values is inserted into the prediction. If a particular LI

and q set has no observations in the reference year, pre-

dicted cluster values are set to zero:

Znumber 5 {0, 2, 0, 0, 0, 1, 0, 1}

Zarea 5 {0, 5, 0, 0, 0, 3, 0, 1}

In the example, units for Znumber are the number of in-

dividual clusters in one 2.48 pixel. Units for Zarea are the

number of cluster pixels within one 2.48 pixel.

Unlike the MS, where two pixels with the same set

of LI and q values will be assigned the same prediction,

the random selection process occurs for every pixel

daily. Therefore, the RS captures more variability and

extreme values than the MS. The RS is quite erratic and

does not reflect a realistic synoptic weather pattern in

daily predictions. It too benefits from aggregation to a

monthly mean as it becomes more consistent.

To observe the EM’s abilities across both hemi-

spheres, monthly predictions from January and July

2014 are displayed in Fig. 5 and compared with cluster

observations derived from WWLLN. The monthly

predictions showed similar results to the observations

in terms of the boundaries of the active thunderstorm

region over land.

FIG. 4. Reference grids of mean prediction scheme for (left) cluster number and (right) area over land based on the distributions in

Fig. 3: mean values are calculated from the distributions of observed cluster values for every existing combination of lifted index and

specific humidity in 2013. Similar grids are produced for pixels over sea.
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FIG. 5. Comparison of the predictions of monthly mean number of clusters for (a) January 2014 and

(b) July 2014, and their errors (prediction minus observations). In (a) and (b), the individual panels show

(top left) the results of the mean scheme, (top center) the results of the random selector, (top right) the

observed number of clusters from WWLLN, (bottom left) the errors of the mean scheme, and (bottom

right) the errors of the random selector.

2748 JOURNAL OF CL IMATE VOLUME 33

Unauthenticated | Downloaded 08/20/22 06:28 AM UTC



Both schemes’ January predictions (Fig. 5a) shifted

the boundary of the active thunderstorm area slightly

northward, causing a thin strip of positive errors above

the equator. Despite good spatial agreement with

observations, the majority of the maximum region

experienced a much higher number of clusters than

either of the schemes predicted. On a daily scale,

neither of the schemes is able to insert values that are

more extreme than those observed in the reference year.

Aggregation to a monthly time scale is beneficial, but

not without limitations. It is worth noting that the RS

does not provide a basis for extrapolation, whereas the

MS could be expanded upon in this way.

Another area with significant errors was around

Liberia on the western coast, where both schemes

underestimated the number of clusters. Over sea,

around the Gulf of Guinea, both schemes slightly

overestimated the number of clusters, with two com-

pounding factors contributing to this bias. The first is

that WWLLN’s detection efficiency is higher over sea

(Rudlosky and Shea 2013), while most thunderstorms

occur over land. Second, there is a significant hemispheric

asymmetry in the ROI in the proportion of land versus

sea. Most of the Southern Hemisphere (SH) portion is

over sea, which makes the prediction more vulnerable to

errors, particularly in SH summer (January).

The July predictions proved more accurate than those

of January for both schemes, with minimal overestima-

tions over sea. However, the Northern Hemisphere

(NH) portion is almost entirely continental. The most

significant error was the slight westward shift of the

southern boundary of the active thunderstorm region,

leading to an overestimation in the number of clusters

around the Republic of the Congo.

To test the skill of the EM, the monthly predictions of

both schemes for 2014 were compared with WWLLN’s

observations using the normalized root-mean-square

error (NRMSE) to determine the relative success of

the predictions (Table 2):

RMSE5
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The random selector was found to be more successful

than the mean scheme in predicting both cluster param-

eters. The best scheme was the RS’s prediction of cluster

number (RS-CN) with a mean error of 13.5%. The worst

was the MS’s prediction of cluster area with 20.6%.

3. Long-term trends

The empirical model’s most successful scheme (RS-

CN) was run from NCEP’s earliest reanalysis in 1948–

2016 to create a simulation of thunderstorm activity over

Africa in the past 68 years. This period marks the be-

ginning of a large and steady increase in carbon emis-

sions, both in Africa (Boden et al. 2015a) and worldwide

(Boden et al. 2015b). The predictions were aggregated

to produce annual geographic means, and were com-

pared with surface temperature in the ROI from NCEP–

NCAR Reanalysis-1. Animations of annual and decadal

means from the model can be viewed in the supplemen-

tal material. Annual-mean African surface temperature

did not appear to rise significantly between the

1950s and 1980s, consistent with findings from the

Intergovernmental Panel on Climate Change (IPCC

2014). The time series, shown in Fig. 6, exhibits a small

local maximum in cluster number in 1962–63, with the

upward trend to that peak beginning in 1957, and

trending downward to a local minimum in 1975, with no

corresponding rise in surface temperature. The local

maximum in the early 1960s corresponds to increased

elevation in Lake Victoria (Yin and Nicholson 1998) in

the same period, and positive anomalies in Congo River

discharge and precipitation from NCEP, although it

was shown that the NCEP anomaly was overestimated

(Poccard et al. 2000). Price and Asfur (2006b) re-

constructed lightning activity over Africa from 1950 to

2000, using NCEP values of upper-atmospheric water

vapor and their connection to Schumann resonance

magnetic field measurements. The trends in the cur-

rent work are mostly in keeping with their findings,

with a discrepancy in the 1970s, where Price and

Asfur found a significant minimum. In comparison,

the current time series shows a fairly broad and flat

minimum from 1975 to 1994, with a transient 1-yr spike

in 1979. Another somewhat broader spike in cluster

number occurs in 1997–99 before again falling almost

back to the broad minimum that begins in 1975. This

peak appears to be positively correlated to a similar

spike in temperature. There also appears to be a slow

rise in thunderstorm number beginning around 1995 and

slowly trending upward until 2005, correlating with a

similar upward trend in surface temperature. Finally,

TABLE 2. Normalized root-mean-square error of the prediction

schemes in predicting monthly values of cluster number and area

for 2014.

Cluster number Cluster area

Random selector 0.135 04 0.148 13

Mean scheme 0.162 64 0.206 29
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there is a sharp rise in the number of clusters in 2006 to

an unprecedented higher level, and reaching a peak in

both cluster number and temperature in 2010.

To investigate the sensitivity of tropical thunderstorm

clusters to warmer environments, a direct comparison

was made between annual-mean surface temperature

and simulated cluster number and area derived from the

RS scheme. In Fig. 7, each data point is a geographic

annual mean over the entire ROI. The correlation co-

efficients were 0.745 51, and 0.743 72 for cluster number

and area respectively, indicating that a warmer envi-

ronment explains;55% of the interannual variability in

simulated thunderstorm clusters. The relationship is

highly sensitive, showing a 40% increase in the number

of thunderstorms in response to a rise of 18K. This result

reflects the enhanced evaporation resulting from higher

surface temperatures, which in turn supplies more latent

heat for the development of storms.

To compare the spatial distribution of thunderstorms

and see how they have changed from the 1950s to the

2000s, decadal monthly means of cluster number were

calculated and mapped (see animations in the supple-

mental material). January and July were taken as sam-

ples and are shown in Fig. 8. In January of the 1950s

there were far fewer clusters over the sea in the Gulf

of Guinea, compared with the 2000s. In the 2000s

the maximum zone in the center of the continent

(Congo, Tanzania, Zambia, Mozambique) had sig-

nificantly higher values, and its area had nearly tri-

pled in the latitudinal direction. In the northeast, over

Ethiopia and Sudan, values of cluster number were

higher in the 1950s. The northern boundary of thun-

derstorm activity along western Africa was farther

south in the 2000s, consistent with the many droughts

that afflicted the Sahel in that decade (Herrmann

et al. 2005).

The decadal means in July were fairly similar. The

most obvious difference was in the 2000s, when the

southern boundary of the area of active thunderstorms

over central Africa was farther south than in the 1950s,

with storms crossing the equator, reaching ;78 farther

into the SH over the Congo River basin. This region is

known to exhibit a strong semiannual cycle of precipi-

tation and lightning (Williams and Sátori 2004). While

the spatial pattern was similar, the number of clusters

over much of West Africa, particularly the western

Sahel, in July was higher in the 2000s than the 1950s,

FIG. 6. Annual means for 1948–2016 in the African region: cluster number as calculated by

the random selector (solid black), surface temperature (dotted black), LI (gray), and specific

humidity (gray dashed). A 2-yr smoothing filter (moving average) was applied.

FIG. 7. Sensitivity of simulated thunderstorm clusters to surface

temperature. Each dot represents the annual-mean cluster number

(black dot) and area (gray diamond) from 1948 to 2016, calculated

by the RS scheme.
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indicating that wet seasons in the 2000s may have been

characterized by more intense thunderstorms than the

1950s. This may reflect Taylor et al.’s (2017) finding that

the frequency of severe MCSs in the Sahel has tripled

over the past 35 years (see April and October maps in

the supplemental material). Several regions showed

slightly lower cluster values in the Julymaps of the 2000s

compared to the 1950s. These findings are in keeping

with broad trends in precipitation in several regions:

in Libya and Saudi Arabia Donat et al. (2014) found

decreases in the total amount of precipitation and the

number of heavy precipitation days between 1960 and

2010. In southern Africa, Nicholson (2000) found posi-

tive annual rainfall anomalies in most of the 1950s. In

the Sudan, Rowell et al. (1995) found a rainfall anomaly

of ;21.5% from July to September beginning in the

mid-1960s and continuing through the 1990s, on a de-

cadal (low frequency) time scale.

Between the 1950s and the 2000s, EM results in the

Horn of Africa (Somalia) exhibit a difference in the in-

tensity of its seasonal cycle. In the 1950s the region

showed a strong seasonal cycle with intense thunderstorm

activity in July and minimal activity in January. By

comparison, in the 2000s, the area experienced more

thunderstorm clusters in January, and less in July. This is

likely due to the strong influence of El Niño–Southern

Oscillation (ENSO) on the interannual variability of

precipitation in East Africa, causing intense rains from

October to January and reduced precipitation in the

Congo (Anyah and Semazzi 2006) (results for April

and October can be viewed in the online supplemental

material). In the 1950s there was only one El Niño

event, compared with three in the 2000s (NOAA 2017).

4. Discussion and conclusions

The presented empirical model of thunderstorm num-

ber and area uses large-scale parameters to construct a

reanalysis-based prediction tool. This tool is not depen-

dent on cloud parameterizations that are often used to

construct lightning proxies. This approach can be ap-

plied to coarse-grid models and reanalyses without the

use of a second parameterization. The random selector

scheme was the most successful predictor of thunderstorm

FIG. 8. Decadal-mean number of simulated thunderstorm clusters in the (left) 1950s and (right)

2000s for (top) January and (bottom) July.
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activity, and was able to predict cluster number and area

with considerable skill on a monthly scale. LI and q are

both indirectly related to surface temperature, and the

results of the empirical model exhibited pronounced

sensitivity to surface temperature in the ROI. A direct

comparison between annual mean surface tempera-

ture and simulated cluster number and area revealed a

40% increase in the number of thunderstorm clusters

in response to a rise of 1 K, and correlation coefficients

of 0.745 51 and 0.743 72 for cluster number and area,

respectively. The long-term time series, shown in

Fig. 6, exhibited local spikes in the number of clusters

with no corresponding rise in surface temperature

until the 1990s. Between 1995 and 2005 there was an

upward trend in both cluster number and surface

temperature, which then transitioned to a sharp rise

from 2006 on, reaching an unprecedented higher level,

and peaking in 2010.

The sensitivity presented in the current work refers to

the number and area of thunderstorm clusters rather

than to flash density. Although clearly related, these

variables cannot be compared to each other directly.

Cluster number indicates the frequency of storms, but

says little about each storm’s severity or flash rate. The

cluster-area parameter may be a better indicator for

storm severity, though this requires further investiga-

tion. Louf et al. (2019) found that low values of CAPE

correspond to large numbers of small convective cells

while high values correspond to small numbers of large

convective cells with high updraft speeds. Williams et al.

(2005) found that larger convective bubbles lead to

larger thunderstorms with higher flash-rate density.

Under a doubled-CO2 scenario, Price and Rind (1994)

predicted an increase of;100% in flash rate over Africa

and a ;48C increase in surface temperature. If we were

to assume that the flash rate and the number/area of

storms are closely related, then the sensitivity found in

the current work is more extreme than these findings.

However, this comparison is somewhat vague, as it is

based on an assumption that these variables scale con-

sistently with each other. Furthermore, the sensitivity

to surface temperature as a proxy for climate change

does not account for other possible important coinci-

dent changes, such as increasing aerosol, that might

result in this relationship occurring, even if tempera-

ture had no impact on lightning. A significant example

of this is climate change leading to an adjustment of the

entire vertical temperature profile of the tropical at-

mosphere, substantially impacting lightning regimes.

Looking forward, effort should be made to improve

upon the modeling of aerosols and cloud microphys-

ics in GCMs, as the tension between these mecha-

nisms and the dynamic approach used here cause subtle

but important changes, which make predictions more

challenging.

The primary goal of this study is to present an em-

pirical approach to thunderstormmodeling that can be

applied on a regional scale. Constructing a more

complete estimation of past thunderstorm activity can

be helpful in understanding the long-term behavior of

lightning regimes. Future work testing the proposed

empirical model using inputs from alternative rean-

alyses will help determine this method’s robustness.

On a more general note, the empirical model pre-

sented here is a coarse method that may be applicable

for rare-event prediction in other fields/scenarios. The

majority of pixels in the analysis exhibit zero clusters

per day, and this is the scale at which predictions are

made prior to aggregation. This approach may be rele-

vant to research problems where data are lacking in

resolution and/or available variables. In addition, the

random-selector method has the potential to employ

variables whose correlation is not necessarily linear,

as it takes values directly from observations, and does

not require a functional representation of the rela-

tionship between variables. This method could be

applied to other events that occur sporadically, such

as floods, and may merit further investigation into its

use in other fields.
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