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ThurCatD: A tool for analyzing ratings
on an ordinal category scale

MARTIN C. BOSCHMAN
IPO, Center jar User-Sustem Interaction, Eindhoven, The Netherlands

An algorithm for analyzingordinal scaling results is described. Frequency data on ordinal categories
are modeled for unidimensional psychological attributes according to Thurstone's judgment scaling
model. The algorithm applies maximum likelihood estimation of model parameters. The Cramer-Rae
bounds of the standard errors of the estimated parameters are calculated, and a stress measure and a
goodness-of-fit measure are supplied.

THE THURSTONE MODEL

where ns denotes the number ofstimulus conditions. An­
other assumption is that the strengths ofdifferent stimuli
are uncorrelated, or

The basic assumption of the applied Thurstone model
is that the strength of the stimulus attribute is measured
on a psychometric interval scale P (see Figure 1). Owing
to internal noise, the strength x; of stimulus i is stochas­
tic with a Gaussian distribution

X; - N(S;, (1), (1)

where S; and aldenote the position and variance ofstim­
ulus i on the 'II-scale. Under Condition D of Torgerson's
classification, which is equivalent to Case V ofThurstone's
law ofcomparative judgment (Thurstone, 1927), the noise
spread parameter is assumed to be constant for all the
stimuli, or

(2)C1; = a, Vi = 1, ... , ns,

Pij = 0, (3)

where Pij denotes the correlation coefficient between the
perceived attributes of stimulus pair (i,j).

In category scaling experiments, the subject's task is to
rate the perceived attribute on a scale consisting of nc cate­
gories. In the experiment, these categories are labeled with
integer numbers (1, 2, 3, 4, ... , 8, 9, 10) or ordinal adjec­
tives (bad,poor,fair, good, excellent). Categories are as­
sumed to be represented by intervals on the 'II-scale (Fig­
ure 2), of which the boundaries (B2 ..• Bne> are unknown
parameters in principle.

As input, ThurCatD needs frequency distributions per
category for each stimulus that was presented in the ex­
periment. These data are obtained from experiments in
which subjects are repeatedly asked to scale the attribute
under investigation. From the frequency distributions of
ratings over the categories, ThurCatD calculates the stim­
ulus scale values in a-units and, also, the interval borders
that define the intervals on the psychometrical scale.

The author is indebted to Niek Versfeld for the fruitful discussions we
had on this subject, to Jean-Bernard Martens for the useful suggestions he
offered, and to Martijn Willemsen for reviewing my manuscript before sub­
mission. Correspondence concerning this article should be addressed to
M. C. Boschman, IPO, Center for User-System Interaction, P. O. Box 513,
5600 MB Eindhoven, The Netherlands (e-mail: m.c.boschman@tue.nl).

This paper describes the underlying algorithm of the
program ThurCatD (Thurstone categorical judgment, Con­
dition D), which is meant to be used for the analysis ofthe
results of rating experiments in which unidimensional at­
tributes-such as image quality,brightness-contrast, sharp­
ness, loudness, and so forth-are rated on an ordinal cat­
egory scale. It assumes a specific Thurstone model
(Thurstone, 1927): The attribute strength ofeach stimulus
is measured on an internal psychological scale- that is, an
interval scale-with Gaussian noise distribution. In Thur­
CatD, the internal noise spread parameter a is assumed to
be constant for all the rated conditions,and the stimulus val­
ues are assumed to be uncorrelated. This case of the Thur­
stone model is also known as Condition D according to the
classification by Torgerson (1958), which explains the final
letter in the acronym. InThurCatD,a psychometric attribute
scale is constructed with, for each condition, N(S;, ( 2) dis­
tributed strengths. On this continuum-that is, an interval
scale- the categories are represented by intervals that, in
general, may have different widths.

Over the years, many analytical procedures dealing with
categorical judgment have been developed. Most ofthem
apply linear regression techniques (e.g., Gulliksen, 1954;
Tucker, 1952) for the estimation of scale values. Torger­
son (1958) provided a review on the most important an­
alytical procedures. Since the Thurstone model is a prob­
abilistic model, we are able to apply a maximum likelihood
approach to estimate model parameters. Although it de­
mandssome quite laborious processing power, the ad­
vantages are obvious. Even with sparse data matrices, we
are able to construct the Thurstone scale and the corre­
sponding attribute values for each stimulus. Moreover, we
are able to calculate the asymptotic standard errors for
each estimated parameter.
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Figure 1. Gaussian probability distributions ofthe responses offour stimuli on the psychological continuum 'It.

(4)

Pine =P(Bne <Xi <OO)=I-~( Bne;;SiJ (5)

The likelihood function describes the probability of find­
ing results like those that were found in the experiment,
given a particular parameter setting. The probability of
finding a certain frequency distribution for condition i
is described by a multinomial distribution

LIKELIHOOD FUNCTION

For the estimation ofthe parameters, a likelihood func­
tion needs to be derived, using the model assumptions and
the outcomes ofthe scaling experiment: the frequency dis­
tribution of scale valuesJik' When Bk and Bk+! denote the
lower and upper bounds of category k, the probability of
a score in category k equals

Pik = P(Bk < Xi < Bk+!)

=~( Bk+~-Si )_~( Bk~Si).

Vi =1... ns, k =2 ... nc -1,

~ denoting the standard normal distribution function. For
the extreme categories, this is

P'6'

ne p/;kik
~ =ni !I1- - ,

k=! h!
where ni denotes the sample size for condition i, or

(6)

'1'-scale ------:..~ +00

'1' I'2' I '3' I '4' I '5' I '6' I '7' '8' category scale
Figure). Relation between a category scale and the psychological ('It) scale in the case of eight numerical categories. The

shaded area indicates the probability that the subject gives a rating in Category 6.
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CONSTRAINTS AND
ARBITRARY PARAMETERS IN THURCATD

(15)

(18)angle factor = 4.0(cos1jI)30,

ThurCatD applies the method ofgradients to estimate the
parameters. The basic idea is to maximize the log likeli­
hood function by iteratively changing the parameter vec­
tor 0 in the direction of the gradient of InL:

--> --> V'o(ln Lt )

Ot+l == Ot+at II II'V'o(ln L t )

with

where

where ¢denotes the angle between the present and the pre­
vious gradient vector. Accordingly

ns nc hk
V'e(lnL) == ~~1 P;k V'e(Pik) (16)

denotes th~ gradient of the log likelihood function with
respect to O. The denominator of the right term of Equa­
tion 15 denotes the norm of the gradient vector, and at
denotes the step size during iteration t. This step size de­
pends on the progress of the iteration process and is de­
termined according to the method proposed by Kruskal
(1964), who applied the gradient method for the mini­
mization of stress in a nonmetric multidimensional scal­
ing algorithm. The step size is denote~ by

at = at-! . (angle factor) . (relaxation factor)

. (good luck factor), (17)

(7)

(8)

(9)

(10)

(11 )Xi - N(S;, 1).

ns ns{ nc ftk}
L == TIp =TI n.'TI P;k

I I' "
;=1 ;=1 k=l /;k'

nc
». == "I/;k'

k=l

The probability ofthe entire set of results is then denoted
by the likelihood function

which needs to be maximized for optimal parameter set­
ting. For practical reasons, we prefer maximizing the log
likelihood function

This constraint is checked after each iteration step. Ifthe
bound values do not comply with Equation 10, they will
be sorted. The user will be notified if and when this oc­
curred in the history output (see the Appendix). This will,
however, not often happen, since the start configuration is
already compliant with Equation 10 (see the next section).
The 'II-scale unit must be set arbitrarily. In ThurCatD, the
noise parameter (J is used as scale unit and is therefore
arbitrarily set to 1. Equation 1 becomes

In ThurCatD, the interval bounds are subject to the or­
dering constraint

Since it is an interval scale, we also need to define an ar­
bitrary origin for the 'II-scale. A logical choice is to set the
mean stimulus position to zero, or

After each iteration step, the latest set ofS-values will be
translated in order to comply with Equation 12.

It is shown that we need to estimate two types of pa­
rameters: interval bounds Bz, ... , Bne> and stimulus
scale values (SI, ... ,Sns)' Hence, the total number ofpa­
rameters is equal to

ns
"Is; == O.
i=1

np = ns + nc - 1.

(12)

(13)

The other factors,

relaxation factor = 1.3
1 + (5-step ratio)5.0 '

with

. . ( InLt)5 - step ratio = mm 1.0,--- ,
In Lt- 5

and

good luck factor == min (1.0, In Lt ),
In Lt - 1

depend on the history of the log likelihood value.

(20)

(21)

(22)

ESTIMATION OF PARAMETERS

Iteration With the Method of Gradients
The parameter vector 0is defined by the set of bound

parameters Bk (k = 2 ... nc ) and the stimulus position pa­
rameters S;(i = 1 ... ns ) :

0= [SISZ·SnsBZ·Bnc]T. (14)

Trivial Stimulus Conditions
and Empty Categories

Before ThurCatD starts the iteration process, it checks the
frequency matrix for trivial stimulus conditions and empty
categories. A trivial condition is a condition that always
scores in one of the two extreme categories. Since the cor­
responding intervals on the psychological continuum have
one infinite boundary, the method of gradients will fail to
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converge. Apparently, the information of such a stimulus
condition is insufficient for finding a stable maximum like­
lihood solution. It will be removed from the set before the it­
eration process starts. Similarly, if a category is found
empty-that is, no scores are found there for any condi­
tion-it will be removed before the iteration.Whenever these
operations occur, they will be logged in the history file.

Similarly, the start values for the category boundaries are
calculated with

, 1 ( 1 1 ns - )Bk = - · k--
2--

"'iSm ,Vk=2, ... ,nc. (29)
SDs ns m=l

The internal noise is best represented by the pooled within
standard deviation:

(31)

where«: indicates that the elements are calculated at the
maximum likelihood configuration. The pseudo inverse J+

ofthis Fisher matrix is the asymptotic variance-covariance
matrix for the estimated parameters. The diagonal ele­
ments ofJ+ are the asymptotic parameter variances, and
the off-diagonal elements are the covariances ofparameter
pairs. Hence, the asymptotic standard error of estimate
0i is given by

Stopping Criteria
The iteration process of ThurCatD is equipped with

two stopping criteria. First, iteration is stopped ifthe num­
ber of iteration steps reaches a previously defined max­
imum. This maximum number ofsteps is 5,000 by default
or may be altered in the options settings. The second stop­
ping criterion is defined by the machine precision of the
computations. The iteration is stopped if the difference
between the current and the previous value oflnL is less
than or equal to the machine-dependent precision.

The asymptotic standard error is valid for infinite sample
sizes. The real standard error is larger in general, and the
underestimation depends on the sample size. Figure 3 illus­
trates the effect of increasing the sample size on the under­
estimation of the standard error. This figure is the result of
a number of Monte Carlo simulations. The output model
parameters for the data set ofExample 1 (see the Appendix)
were used to simulate data sets with various sample sizes.
Samples were taken at random from Gaussian distributions
that were determined by the scale values in the ThurCatD
output for the data set of Example 1. These sample scale
values were categorized afterward by applying the category
bounds found in the output of the Example 1 data set. For
each sample size, 200 data sets were generated and ana­
lyzed with ThurCatD. An example of a simulated data set
with a sample size of 100 is given by Example 2 in the Ap­
pendix. The real standard deviations of the estimates were
calculated over the 200 sets ofoutput parameter configura­
tions. These values were compared with the average as-

Cramer-Rae Bounds on Estimation Errors
After estimation of the parameters, ThurCatD calcu­

lates the Cramer-Rae bounds on estimation errors (e.g.,
van Trees, 1968). These measures, which determine the
asymptotic values for the standard error of the estimates,
are derived from the Fisher matrix J. This symmetrical
square (np X np) matrix is also known as the information
matrix, of which the elements are defined by

iij =-E{ 02 1n L } , Vi, j =1,... np, (30)
0000. -

I } 8 mf

(28)

(27)

(23)vk=k, Vk= 1, ... ,nc.

do have unit pooled standard deviation. The start values
for the attributes are obtained by translating the scale val­
ues in order to comply with Equation 12:

- 1 ( - 1 ns -) .Si=-"-. Si-- "'iSm ,V/=1, ... ,ns.
SDs ns m=l

The unnormalized bound values are assumed to be the
average scale value of the two categories it separates, or

~ 1 1
Bk= 2(Vk-l+ Vk)=k- 2' (24)

Then, the unnormalized expected stimulus values are cal­
culated by

- 1 nc .
S, =- "'ik· fib VI =1, ... , ns. (25)

ni k=l

Start Configuration
The iteration process requires some start configura­

tion, which in principle, could be any set ofparameter val­
ues that complies with the constraints mentioned above.
However, in order to prevent ending up with an estima­
tion vector at a local log likelihood maximum, it is im­
portant to start with a parameter vector that presumably
lies close to the wanted configuration. In ThurCatD, first
order estimates ofthe set ofparameters are calculated be­
fore the iteration starts. As an option, the user may apply
hislher own start configuration. In that case, it will be read
from an additional input file.

Calculation of start configuration. Ifno start config­
uration file is present, the initial parameter setting is auto­
matically calculated by ThurCatD. First, arbitrary scale
values vk are assigned to each category with
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Figure 3. Underestimation of the asymptotic standard error as
a function of the sample size. The underestimation is expressed
as a percentage of the real standard deviation of estimated scale
values as obtained over 200 Monte Carlo simulations.

s..""\\

\ \ ',

'0--------------0------------------ -0

(33)

ns nc I II I fC;k <n,: pC;k

ps= ;=lk=1

In ThurCatD, two types of measures are calculated
that give an indication about the quality of the model fit.
The first measure, which equals the weighted average ab­
solute discrepancy between observed cumulative pro­
portions and model cumulative probabilities, is called
the probability stress. It is defined by

The user is warned about such conditions and is advised
to remove them from the input and rerun the analysis.

The aforementioned trivial conditions are special cases
ofdisconnected conditions that are excluded from analy­
sis before the iteration starts. Disconnected conditions
are only discovered afterward by checking the statistics
of the parameter estimates.

PROBABILITY STRESS
AND GOODNESS OF FIT

1000100

Sample size
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9,....,..---~~~......,.---~~~.......,
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2

one may conclude that the model fits properly.
Mosteller (1951) introduced a x2-test for the deviation

of the observed proportion and model probability matri­
ces for paired comparison data. He used an inverse-sine
transformation of probabilities and proportions in order
to obtain a proper x2-test variable. Freeman and Tukey
(1950) proposed a slightly different arcsin transformation
for small samples. In ThurCatD, Mosteller's test vari­
able, using the alternative transformation method, is ap­
plied to the individual cell probabilities of the scale cat­
egories. A working hypothesis is that these probabilities

where fCi) denotes the observed cumulative frequencies
and PC;k denotes the model cumulative probabilities
for cell (i,k)- The contribution of each condition is
weighted by its sample size n;. In cases in which the sam­
ple size is equal for all conditions (n; = n, Vi = I ... ns),
the stress measure of Equation 33 resembles the discrep­
ancy measure proposed by Edwards and Thurstone (1952).
If PS is small, it is concluded that the model predicts the
experimental data properly. It is hard to define a general­
ized criterion for this stress measure that indicates the
quality of the fit. However, from a number ofmodel sim­
ulations, we found an empirical rule of thumb for the
probability stress criterion. It depends on the average
sample size

ymptotic standard errors, which resulted in Figure 3. It
shows that in the case of a sample size of Io--as in Exam­
ple l-i-the real standard errors on the estimated scale val­
ues are about 7% larger than the asymptotic values.

Disconnected Conditions
Occasionally, the frequency data for a subset of con­

ditions do not have sufficient overlapping categories with
the remaining conditions. In those cases, a range of cat­
egories (e.g., at the low or high end of the scale) are used
exclusively by this subset ofconditions, which are there­
fore indicated to be disconnected from the remaining set
of conditions. The algorithm will fail to converge prop­
erly, and the output of ThurCatD will show high asymp­
totic standard errors, the standard error ofthe disconnected
conditions being substantially larger than the others. The
output will also show large negative correlations between
the disconnected condition and the other conditions. The
positions ofthe disconnected conditions on the 'P-scale
with respect to those ofthe remaining set can, therefore,
not be determined with sufficient accuracy.

Following an arbitrary criterion, the asymptotic stan­
dard error as}ofan estimated scale value Sj is considered
to be an outlier if it deviates from the average more than
three times the standard deviation ofas;-values, or

Iif o-~ - ~s (fO-s, )2
0- -~~ 0- ~ 3 \' ;=1 ;=1 (32)

Sj ns s: s) I ns-I
1=1

Conditions with an outlying asymptotic standard error are
considered to be suspicious and probably disconnected.

I ns
nav =- In;.

ns ;=1

It states that whenever

PS< 0.15
~'

(34)
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are independent. For a sufficient number ofcategories, this
is a reasonable assumption. The test variable is denoted by

ns nC-l[ ~Ck fCk +1
X2

= I,n; I, arcsin -.-'- +arcsin ~
i=l k=l n, +1 ,

-2arcsin~pc;kr-X2[df], (35)

where the angles are expressed in radians. The number of
degrees of freedom,

df= ns(nc - 1) - (np - 1) = (ns - 1)(nc - 2), (36)

is determined by the number of assumed independent
probability cells [= ns(nc - 1)] minus the number of
free parameters. The latter equals (np - 1) as the.s~m of
scale values is arbitrarily set to O. The model fit IS as­
sumed to be adequate ifthe upper tail x2-probability > .05.
In that case, the set ofpredicted probabilities do not sig­
nificantly differ from the set of observed proportions.

SAMPLE RUNS OF ThurCatD

Example 1
In a numerical category scaling experiment performed

by Boschman and Roufs (1997), subjects assessed the vi­
sual comfort of 19 visual display conditions presented to
them. The subjects used a 1O-point numerical scale, with
Categories 1-10 to express their judgments. The resu~ts

of one of the subjects are saved in the frequency file
rncbtot.tcin, which is listed in Example 1 ofthe Appendix.
This file, which was used as input for ThurCatD, shows
for each condition the distribution of 10 ratings over the
categories. The history information that ThurCatDyro­
duced during the run is also listed in the Appendix. It
shows that the first three categories were ignored, since
neither of the conditions were rated in these categories.
It further shows that two ofthe conditions (Stimulus 5 and
Stimulus 18) were left out from the analysis because they
were trivial-that is, they always scored in one ofthe ex­
treme categories. After removal of these stimuli, Cate­
gory 10 became an unused category and was consequently
also left out from the analysis. The estimated parameters
and their asymptotic standard errors are printed to the
ThurCatD output file mcbtot.tcout, which is also listed
in the Appendix. The probability stress value indicates
that the model cell probability deviates on average about
3% from the experimental cell proportions. The Mos­
teller X2 statistic shows that the fit is sufficient.

An alternative and simpler model for interpreting nu­
merical category scaling results is to assume that numer­
ical category labels (in the example, numbers from 1 to
10) can be interpreted as interval data. If this model was
adequate, the ThurCatD results should be linearly related
to the average scale values. Figure 4 shows a typical rela­
tion between average numerical category ratings and Thur-

4
subject: mcb

/?/J/
3 dataset: mcbtot.tcin

OJ 2
::J

/1?1s}'(ij
>
OJ

/"1??(ij
o

0rJl

0
/10 -1 $/~ /

::J
//'s:

-2~

/1kV
-3

/

-:/

-4
4 5 6 7 8 9

average numerical scale value

.Figure 4. ThurCatD scale values versus average numerical ~cale
values for the 17 remaining conditions ofthe sample data set listed
in the Appendix. In two occasions, symbols (nearly) coincide with
those of other conditions. The dotted line is the regression line.

CatD scale values. It shows a moderate deviation from
linearity at the upper and lower ends of the scale.

Example 2 ..
The sample data set of Example 2 in the Appendix IS

a simulated set with a sample size of 100, using the model
parameters of Example 1. The output of the ThurCatD
analysis shows that the estimated scale values very much
resemble those of Example 1, which is of course not sur­
prising, since the data set ofExample 2 assumes the sa~e

set of values for the model parameters. The asymptotic
standard errors, however, are considerably smaller. This
is due to the larger sample size.

AVAILABILITY

ThurCatD is an in-house program developed by the
author. The Windows 95/98 version ofThurCatD is avail­
able for noncommercial use. It can be downloaded (from
http://www.ipo.tue.nl/homepages/mboschma/tools.htm).
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APPENDIX
Input and Output of ThurCatD

In this appendix, the ThurCatD analysis of a realistic experimental data set (Example I) and a simulated data set (Example 2) will
be demonstrated, and their input and output will be listed.

Example 1
The frequency input file. This file describes the observed data to be analyzed. It consists of a matrix with frequency data in­

dicating how often a condition was rated on a certain category. The file is arranged as follows:

first line: ns nc
ns = the number of stimulus conditions
nc = the number of scale categories

following ns lines: frequencies (separated by spaces) for each of the nc categories.

In this example for 19 display conditions, the visual comfort was rated on a IO-category scale (I, 2, 3, 4, 5, 6, 7, 8, 9, 10). The
frequency input file mcbtot.tcin is listed below:

19 10
000 1 3 2 4 0 0 0
000 0 1 1 2 6 0 0
000 2 7 1 0 0 0 0
000 0 0 0 1 4 5 0
000 0 0 0 0 0 0 0
000 0 0 1 6 3 0 0
000 0 0 1 0 8 1 0
000 0 0 0 7 2 1 0
000 0 4 4 2 0 0 0
000 0 0 0 4 4 2 0
000 0 0 1 1 8 0 0
000 1 2 5 2 0 0 0
000 4 5 1 0 0 0 0
000 1 6 3 0 0 0 0
000 0 0 0 1 4 5 0
000 0 0 1 1 4 4 0
000 1 0 7 2 0 0 0
000 0 0 0 0 0 0 10
000 0 0 0 0 3 7 0

History output. The following history information was displayed in a separate window during the run of the ThurCatD analy­
sis of mcbtot.tcin:

History for C:\WINDOWS\Desktop\thurcatd\mcbtot.tcin generated by ThurCatD 2.2 on 4/17/00 at 14:44:27.
ThurCatD 2.2 will analyse C:\WINDOWS\Desktop\thurcatd\mcbtot.tcin using up to 5000 iterations.
aO~0.0100, pmin=0.0000010000, extended output~disabled, simple output=disabled
ThurCatD read preference file C:\WINDOWS\Desktop\thurcatd\mcbtot.tcin
Interval1 is empty and will be ignored.
Interva12 is empty and will be ignored.
Interva13 is empty and will be ignored.
Warning: Insufficient statistics in data of stimulus 5

It will therefore be left out from the analysis'
Warning: Insufficient statistics in data of stimulus 18

It will therefore be left out from the analysis'
Interval10 is empty and will be ignored.
Likelihood kernel=-1.842804397432E+0002 after nit~100

Stop criterion reached (likelihood step <= precision) after 168 iterations
Likelihood kernel=-1.84280439719198E+0002
ThurCatD created results file C:\WINDOWS\Desktop\thurcatd\mcbtot.tcout
ThurCatD finished successfully"
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APPENDIX (Continued)

ThurCatD output. The generated main output file mcbtot.tcout is listed below. The first three intervals (Categories 1,2, and
3) are found empty and are therefore automatically removed from the analysis. Furthermore, Conditions 5 and 18 are automati­
cally removed from the analysis, since they have trivial frequency distributions. As a result of removing Conditions 5 and 18, Cat­
egory 10 became empty also and was therefore automatically discarded by ThurCatD. The output shows the estimated parameters
and their asymptotic standard errors. It further summarizes the goodness-of-fit analysis by listing the PS value and the Mosteller
X2 test results.

Output for C:\WINDOWS\Desktop\thurcatd\mcbtot.tcin generated by ThurCatD 2.2 on 4/17/00 at 14:44:27.

arbitrary set to 1):

0.3439
0.3400
0.3809
0.3856
0.3382
0.3553
0.3417
0.3456
0.3519
0.3485
0.3460
0.3973
0.3646
0.3856
0.3652
0.3419
0.4314

S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:

-1.3761;
0.4445;

-2.6858;
2.1582;
0.2862;
1.3110;
0.5743;

-1.4764;
1.1623;
0.9952;

-1.4940;
-3.0145;
-2.2590;
2.1582;
1.6610;

-1.2438;
2.7989;

Configuration after 168 iterations:
Estimated parameters (Noise spread parameter
Scale value parameters:

stimulus: 1 scale value:
stimulus: 2 scale value:
stimulus: 3 scale value:
stimulus: 4 scale value:
stimulus: 6 scale value:
stimulus: 7 scale value:
stimulus: 8 scale value:
stimulus: 9 scale value:
stimulus: 10 scale value:
stimulus: 11 scale value:
stimulus: 12 scale value:
stimulus: 13 scale value:
stimulus: 14 scale value:
stimulus: 15 scale value:
stimulus: 16 scale value:
stimulus: 17 scale value:
stimulus: 19 scale value:

Interval bound parameters:
Lower bound of interval 5: -3.2187; S estimate: 0.2573
Lower bound of interval 6: -1.8084; S estimate: 0.1828
Lower bound of interval 7: -0.6285; S estimate: 0.1482
Lower bound of interval 8: 0.6406; S_estimate: 0.1491
Lower bound of interval 9: 2.2349; S estimate: 0.1963

Intervals:
interval 4:
interval 5:
interval 6:
interval 7:
interval 8:
interval 9:

-infinity ... -3.2187
-3.2187 -1.8084
-1.8084 -0.6285
-0.6285 0.6406

0.6406 2.2349
2.2349 +infinity

log likelihood kernel=-1.84280439719198E+0002

Model fit:
Probability stress=0.033996 -> stress<0.047434

Model fit is OK according to rule of thumb for probability stress.

Mosteller Chi-square= 53.0227, 64 Degrees of freedom.
Upper tail P-value=0.8345 Model fit is OK: (P>0.05).

Example 2
In this example the output model parameters from Example I were used to simulate scaling data with a sample size of 100 for

the remaining 17 conditions in the output of Example 1. The samples were taken from the Gaussian distributions that were de­
termined by the scale values for the data of Example I and a standard deviation equal to 1. The samples were categorized after­
ward by applying the interval bounds ofExample I. Inorder to enable comparison with the previous example, the two trivial stim­
uli and the three empty categories were added.

The input me. The resulting frequency input file mc.tcin is listed below.

19 10
000
000
000

1 32 41 24 2
o 4 16 39 38

30 53 15 2 0

o
3
o

o
o
o
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0 0 0 0 0 0 7 48 45 0
0 0 0 0 0 0 0 0 0 100
0 0 0 1 2 17 47 29 4 0
0 0 0 0 0 5 29 54 12 0
0 0 0 0 0 11 34 45 10 0
0 0 0 6 36 30 25 3 0 0
0 0 0 0 0 2 22 61 15 0
0 0 0 0 0 6 22 56 16 0
0 0 0 2 35 45 16 2 0 0
0 0 0 43 47 10 0 0 0 0
0 0 0 19 48 30 3 0 0 0
0 0 0 0 0 0 5 50 45 0
0 0 0 0 0 0 13 55 32 0
0 0 0 4 28 43 23 2 0 0
0 0 0 0 0 0 0 0 0 100
0 0 0 0 0 0 2 28 70 0

History output. The following history file was generated during the run of the ThurCatDanalysis ofmc.tcin.

History for C:\WINDOWS\Desktop\thurcatd\mc.tcin generated by ThurCatD 2.2 on 4/17/00 at 14:39:15.
ThurCatD 2.2 will analyse C:\WINDOWS\Desktop\thurcatd\mc.tcin using up to 5000 iterations.
aO=0.0100, pmin~0.0000010000, extended output=disabled, simple output=disabled
ThurCatD read preference file C:\WINDOWS\Desktop\thurcatd\mc.tcin
Interval1 is empty and will be ignored.
Interva12 is empty and will be ignored.
Interva13 is empty and will be ignored.
Warning: Insufficient statistics in data of stimulus 5

It will therefore be left out from the analysis!
Warning: Insufficient statistics in data of stimulus 18

It will therefore be left out from the analysis'
Interval10 is empty and will be ignored.
Likelihood kernel=-1.865060957657E+0003 after nit=100
Stop criterion reached (likelihood step <= precision) after 162 iterations
Likelihood kernel=-1.86506095758860E+0003
ThurCatD created results file C:\WINDOWS\Desktop\thurcatd\mc.tcout
ThurCatD finished successfully' !

ThurCatD output. The generated main output file mc.tcout is listed below.

Output for C:\WINDOWS\Desktop\thurcatd\mc.tcin generated by ThurCatD 2.2 on 4/17/00 at 14:39:15.

arbitrary set to 1):

0.1077
0.1065
0.1202
0.1207
0.1062
0.1099
0.1084
0.1084
0.1116
0.1109
0.1085
0.1259
0.1151
0.1212
0.1161
0.1079
0.1344

S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:
S estimate:

-1.2550;
0.2902;

-2.6503;
2.0668;
0.1968;
1. 0152;
0.7516;

-1.4021;
1.2493;
1.1545;

-1.4114;
-2.9977;
-2.2469;
2.1017;
1.7320;

-1.2978;
2.7031;

Configuration after 162 iterations:
Estimated parameters (Noise spread parameter
Scale value parameters:

stimulus: 1 scale value:
stimulus: 2 scale value:
stimulus: 3 scale value:
stimulus: 4 scale value:
stimulus: 6 scale value:
stimulus: 7 scale value:
stimulus: 8 scale value:
stimulus: 9 scale value:
stimulus: 10 scale value:
stimulus: 11 scale value:
stimulus: 12 scale value:
stimulus: 13 scale value:
stimulus: 14 scale value:
stimulus: 15 scale value:
stimulus: 16 scale value:
stimulus: 17 scale value:
stimulus: 19 scale value:

Interval bound parameters:
Lower bound of interval 5 : -3.1555; S estimate: 0.0803-
Lower bound of interval 6 : -1.7212; S

-
estimate: 0.0560

Lower bound of interval 7 : -0.6107; S estimate: 0.0460
~

Lower bound of interval 8 : 0.5943; S estimate: 0.0460-
Lower bound of interval 9 : 2.1841; S estimate: 0.0607
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Intervals:
interval 4:
interval 5:
interval 6:
interval 7:
interval 8:
interval 9:

-infinity ... -3.1555
-3.1555 -1.7212
-1.7212 -0.6107
-0.6107 0.5943
0.5943 2.1841
2.1841 +infinity

log likelihood kernel=-1.86506095758860E+0003

Model fit:
Probability stress=0.007139 -> stress<0.015000

Model fit is OK according to rule of thumb for probability stress.

Mosteller Chi-square= 40.8381, 64 Degrees of freedom.
Upper tail P-value=O. 9894 Model fit is OK: (P>O. 05) .

(Manuscript received August 17, 1999;
revision accepted for publication May 23,2000.)


