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The thymus is the central lymphoid organ for T cell development, a cradle of T cells,
and for central tolerance establishment, an educator of T cells, maintaining homeostatic
cellular immunity. T cell immunity is critical to control cancer occurrence, relapse,
and antitumor immunity. Evidence on how aberrant thymic function influences cancer
remains largely insufficient, however, there has been recent progress. For example,
the involuted thymus results in reduced output of naïve T cells and a restricted T
cell receptor (TCR) repertoire, inducing immunosenescence and potentially dampening
immune surveillance of neoplasia. In addition, the involuted thymus relatively enhances
regulatory T (Treg) cell generation. This coupled with age-related accumulation of Treg
cells in the periphery, potentially provides a supportive microenvironment for tumors
to escape T cell-mediated antitumor responses. Furthermore, acute thymic involution
from chemotherapy can create a tumor reservoir, resulting from an inflammatory
microenvironment in the thymus, which is suitable for disseminated tumor cells to
hide, survive chemotherapy, and become dormant. This may eventually result in cancer
metastatic relapse. On the other hand, if thymic involution is wisely taken advantage
of, it may be potentially beneficial to antitumor immunity, since the involuted thymus
increases output of self-reactive T cells, which may recognize certain tumor-associated
self-antigens and enhance antitumor immunity, as demonstrated through depletion of
autoimmune regulator (AIRE) gene in the thymus. Herein, we briefly review recent
research progression regarding how altered thymic function modifies T cell immunity
against tumors.

Keywords: thymic involution, negative selection and regulatory T (Treg) cell generation, cancer immunity, tumor
microenvironment, tumor reservoir

Abbreviations: AIRE, autoimmune regulator; ERK, extracellular signal-regulated kinases; MAPK, mitogen-activated
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associated antigen; Tcon, conventional T cells; TCR, T cell receptor; TECs, thymic epithelial cells; Teff, T effector cells; Treg,
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INTRODUCTION

T cells are key players in cell-mediated antitumor immunity (1–
4) as they have a diverse TCR repertoire specifically recognizing
tremendous numbers of tumor neo-antigens, termed TSAs
(5, 6), resulting from genomic mutations or viral infection.
They can directly kill malignant cells in cytotoxic manners
(1, 7, 8) and interact with other tumor-infiltrating immune
cells (9) influencing immune surveillance. T cells are thymus-
derived, heterogeneous lymphocytes, mainly including αβ-TCR
CD4+/CD8+ and γδ-TCR T cells (10). As αβ-TCR T cells are
the most abundant and comprehensively studied sub-population
involved in antitumor immunity, we focus on this population.

The thymus mediates T cell development and the signals
received by thymocytes from thymic stromal cells, primarily
TECs, determine thymocyte fate. For example, Notch ligands
expressed by TECs provide continuous Notch signals to
thymocytes to decide each stage of T-lineage development
(11, 12). Interleukin (IL)-7 is a second indispensable factor
produced by TECs for the survival, proliferation and
differentiation in early stages of T cell development (13, 14). After
the completion of TCR rearrangement, the development and
differentiation of T cells depend on the interaction between TCR
and major histocompatibility complex (MHC)/self-antigens.
This interaction leads to establishment of central tolerance via
negative selection and regulatory T (Treg) cell selection (15–17).
Thymic involution induced by primary TEC defects affects
this signaling by impacting lymphostromal interactions. The
process of T cell development in the thymus is complex, but
there are several important checkpoints that decide successful
establishment of immune surveillance and antitumor immunity:
(a) αβ-TCR rearrangement to acquire various specificities of
antigen recognition; (b) positive selection to achieve MHC
restriction; and (c) negative selection/Treg cell generation to
establish central tolerance to self (13, 17).

Thymic involution resulting from primary TEC defects occurs
in the age-related phenotype, and not only reduces output
of naïve T cells (18, 19), but also perturbs the interactions
between MHC-II/self-peptide complexes on mTECs and TCRs
on thymocytes, thereby altering TCR signaling strength, which
impairs thymic negative selection and relatively enhances CD4+
thymic Treg (tTreg) cell generation (20, 21). These changes
could lead to declined tumor immune surveillance, potentially
attributed to a reduced capacity to recognize neo-antigens and
deplete neoplasia. On the other hand, deliberately increasing
release of self-reactive conventional T (Tcon) cells that are able
to recognize tumor-borne self-antigens could enhance antitumor
immunity (22–24). In addition, during aging, the involuted
thymus generates relatively increased polyclonal tTreg cells
(20), which, coupled with accumulated peripheral Treg (pTreg)
cells (25, 26), may infiltrate to tumor mass and establish a
microenvironment that suppresses both CD8+ and CD4+ T cell-
mediated antitumor immunity, facilitating tumor cell survival
(16, 27, 28). This could be related to the higher cancer incidence
observed in the elderly (29).

Further, tumor-bearing individuals could be afflicted with
cancer-related contributors of acute thymic involution, including

(a) increased apoptosis of TECs and thymocytes (30–34) and
obstruction of thymocyte maturation (32, 35, 36); and/or (b)
chemotherapy-induced non-malignant thymic cellular apoptosis
and senescence response (37–39). These will further disrupt
antitumor immunity by disrupting T cell development and
creating a tumor reservoir in the involuted thymus, allowing for
tumor cell dormancy and eventually metastatic relapse (37, 38).

Therefore, thymic conditions impacting T cell immunity
are critical issues underlying the high risk for late-life tumor
development and the effectiveness (or lack thereof) of antitumor
immunotherapy. Revealing the relationship between thymic
conditions and T cell-mediated antitumor immunity may
facilitate further studies in tumor immunology.

THYMIC INVOLUTION IS ASSOCIATED
WITH DECLINED T CELL-MEDIATED
IMMUNE SURVEILLANCE OF TUMORS

Tumor immune surveillance is an interaction between tumor
development and antitumor immunity. The process of tumor
immunoediting has three phases: elimination, equilibrium,
and escape (40, 41). Elimination is an effective process of
immune recognition via antigen-specific identification, and
responsiveness to remove neoplasia. However, if T cells are
senescent and/or tumor cells evolve into less targetable variants
by genetic mutation or epigenetic modifications, the adaptive
immune system might only restrain tumor growth, reaching a
state of equilibrium. As this process continues it results in the
selection of tumor cell variants that are resistant to antitumor
response, ushering in the escape phase (40, 41).

T cell immunosenescence is largely attributed to reduced
output of naïve T cells from the aged, involuted thymus
(18, 42–44), resulting in increased oligoclonal expansion of
peripheral memory T cells (45, 46), thereby, restricting TCR
repertoire diversity (47, 48). This hampers T cell ability to
recognize tumor neo-antigens, resulting from high frequency of
somatic mutations in proto-oncogenes and tumor suppressors
in tumor cells, and/or from viral antigens produced by virus-
induced cancers. These abnormal proteins are called TSAs
(5), which are regarded by T cells as foreign antigens.
Normally, the T effector (Teff) cell population can recognize
tremendous numbers of tumor antigens (5, 6), while the
senescent T cell population, with a reduced TCR repertoire
diversity, might overlook these antigens. Therefore, one of
the potential mechanisms of the reduced cancer immune
surveillance is a compromised TCR repertoire generated
first by the involuted thymus and exacerbated by age-
related peripheral memory cell expansion, which neglects
to recognize certain TSAs and fails to eliminate tumors
(47, 49, 50) (Figure 1A).

Recent studies identified several senescent T cell markers:
PD-1 and CD153 in murine senescence-associated T (SA-T)
cells (51–53). Previously, our knowledge was limited to T cell
secondary signaling molecule CD28, which is reduced or absent
in senescent T cells. CD28−neg “exhausted” peripheral T cells
are accumulated in aged humans (54, 55). These T cells not
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FIGURE 1 | (A) Thymic involution contributes to reduced tumor immune surveillance by participating in immunosenescence and constricting the peripheral TCR
repertoire diversity. Additionally, neo-antigens produced by either genomic mutation and/or viral infection create novel tumor antigens that may not be recognized by
the reduced pool of naïve T cells in the aged periphery. (B) The involuted thymus acts as a pre-metastatic reservoir for disseminating tumor cells and the
inflammatory thymic microenvironment promotes heterogeneous tumor cell dormancy, at both the cellular and population levels.

only lose responsiveness to co-stimulation (56), but also are
involved in chronic inflammation (57). The PD-1+CD153+
senescent T cells in mice also exhibit impaired TCR-mediated
proliferation and defective IL-2 production, and are biased
toward the secretion of pro-inflammatory cytokines, such as IFN-
γ (45). It is not clear, however, whether increased PD-1 is directly
involved in senescent T cell dysfunction. The generation of SA-
T cells is generally attributed to thymic involution and the aged
environment (53).

There are two major immunosuppressive mechanisms
blocking antitumor immunity: the intrinsic PD-1—PD-L1 axis
and the extrinsic Treg—Teff axis (58). A recent finding showed
that senescent T cells express increased PD-1 (51–53, 59).

This, coupled with increased PD-L1 on tumor cells (60), could
lead to an enhanced PD-1/PD-L1 signaling (61), in which the
interaction between PD-1/PD-L1 provides a possibility for the
anergy, exhaustion, and apoptosis of tumor-reactive T cells (62),
thereby, reducing cancer immune surveillance associated with
senescent T cells (63). We will discuss the Treg—Teff axis in the
following section.

Taken together, thymic involution, immunosenescence, and
the declined TCR repertoire diversity, coupled with increased
age-related genomic mutations in somatic cells and increased
PD-1 expression on senescent T cells in the elderly, contribute
to compromised immune surveillance of tumors and the higher
late-life tumor incidence.
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RELATIVELY ENHANCED tTreg CELL
GENERATION IN THE INVOLUTED
THYMUS, COUPLED WITH
ACCUMULATION OF pTreg CELLS,
POTENTIALLY SUPPRESS ANTITUMOR
IMMUNITY

Thymic involution not only reduces naïve T cell output, but
also relatively enhances tTreg generation as displayed by an
increased ratio of tTreg versus tTcon in the aged, involuted
thymus (20). The basic mechanism is potentially due to altered
TCR signaling strength, which may skew CD4+ single positive
thymocytes from negative selection to Treg cell generation in the
involuted thymus (43). Strong TCR signaling strength, generated
by interactions between MHC-II/self-peptide complexes and self-
reactive TCRs, induce clonal depletion by negative selection,
while intermediate TCR signaling strength induces thymocyte
differentiation into CD4+FoxP3+ tTreg cells (17, 64, 65). MHC-
II/self-peptide complexes expressed by mTECs are reduced
due to mTEC decline in the involuted thymus, resulting in
weakened interactions (20, 43, 66). Thus, some self-reactive T
clones, which should be negatively selected with strong signaling,
survive and differentiate into tTreg cells due to intermediate
signaling (20). In addition, such skewing of thymocytes from
clonal depletion to Treg generation could modify the TCR
repertoire of Treg cells to include certain self-antigens that are
also expressed by tumors, enabling these Treg cells to suppress
antitumor immunity.

In light of the age-related accumulation of pTreg cells
in the periphery (25) and the aging-related enhancement of
FoxP3 expression (67), the underlying mechanisms may not be
simply due to relatively enhanced tTreg cell generation in the
involuted thymus, but also potentially due to declined activation
of pro-apoptotic BIM gene (Bcl2 homology-3, BH3-only) (68)
via increased methylation (68, 69) during aging. BIM should
be activated after each immune reaction (after infection or
inflammation, etc.) in order to deplete excess immune cells and
return the expanded immune cell numbers to normal levels
(70). However, with age, BIM activation in T cells is declined
and homeostatic immune rebalance is hindered, resulting in an
accumulation of “exhausted” senescent T cells and pTreg cells
(25, 26, 71, 72). In addition, conversion of effector memory cells
into memory Treg cells might occur in aged people (73). These all
increase the pTreg pool (25, 74, 75).

Although Treg cells maintain immunological tolerance by
suppressing excessive or aberrant immune responses mediated
by Teff cells (76–78), they are opponents of antitumor immunity
(79, 80) via their highly immunosuppressive functions against
CD8+ cytotoxic T lymphocytes (CTLs) (27, 81, 82). Our current
understanding is that Treg cells primarily infiltrate the tumor
mass and execute suppressive function (77, 83, 84). Generally, T
cell infiltration into the tumor mass correlates to tumor antigen
expression. If the cancer mass expresses few neo-antigens, then
greater numbers of Treg cells infiltrate to form a Treg-dominant
tumor microenvironment; whereas, if the cancer mass expresses
abundant neo-antigens, fewer Treg cells infiltrate, and more

effector cells including CD8+ T cells can be primed and expand
in the tumor tissues (16, 85, 86). Tumor-infiltrating Treg cells
are thought to be recruited from the preexisting thymus-derived
Treg population, including autoimmune regulator gene (Aire)-
dependent TAA-specific Treg cells (87–89), rather than from
peripherally induced tumor-specific Teff cells. Therefore, central
tolerance is implicated in impaired antitumor responses.

Removal of Treg cells (with monoclonal antibodies, such as
anti-CD25 (90), or other means) enhances T cell antitumor
responses (15, 16, 91). However, anti-CD25 antibodies potentially
eliminate activated Teff cells, expressing CD25 (92). Targeted
functional inactivation of Treg cells based on constitutively
expressed molecules including CTLA-4, GITR, TLR8 and OX40
(93–97) is a better means to nullify Treg cell function without
decreasing Treg cell numbers from surrounding Teff cells (15),
nor effecting Teff cell numbers. That is why anti-CTLA-4 (98) can
serve as another immune checkpoint inhibitor to reduce Treg cell
activation and be used for tumor immunotherapy (99).

Although direct evidence is still lacking about whether
increased tTreg cells play a role in suppressing antitumor
immunity, 80 – 95% of pTreg cells are derived from
thymic generated tTreg cells bearing a thymic imprint (17,
64). Therefore, relative enhancement of tTreg cell generation
resulting from thymic involution is a risk factor for suppressing
antitumor immunity that ought not be overlooked.

THE INVOLUTED THYMUS PLAYS A
ROLE AS A TUMOR RESERVOIR BY
INDUCING TUMOR DORMANCY AND
INCREASING THE RISK FOR EVENTUAL
METASTATIC RELAPSE

Metastatic relapse occurs when the same type of cancer recurs at
a distant location (100) several years after removal of the primary
tumor and adjuvant chemotherapy (101, 102), and this results
mainly from chemo-resistance obtained by cancer cells in an
inflammatory microenvironment (37, 38). Relapse, an immense
clinical challenge, is responsible for 90% of cancer-associated
mortality (103, 104). It means that cancer cells may still exist for a
silent period after the primary treatment. Tumor pre-metastatic
niches or reservoirs permit these silent cancer cells to hide and
acquire chemo-resistance. Recently, several organs, such as the
perivascular space of blood vessels in the lung and liver (105,
106) and bone marrow (107, 108), have been determined to be
such reservoirs. We (37) and others (38) found that the involuted
thymus is another tumor reservoir that allows for silent primary
tumor cells to find safe-harbor.

Cancer cells circulating in the blood stream (109, 110) enter
the thymus creating a heterogeneous environment, including
malignant cancer cells and non-malignant thymic cells (TECs
and thymocytes). Since the thymus contains mostly immature
T cells and possesses semi-immune privilege, the cancer cells
cannot be thoroughly eradicated by immune surveillance (37).
In addition, the thymus is sensitive to many insults that cause
involution. One of strongest insults is chemotherapy. In addition
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to killing cancer cells, systemic chemotherapy also results in non-
malignant cell death and/or senescence due to DNA damage
(111, 112), which produces an inflammatory microenvironment.
This induces chemo-resistant dormancy in the sojourning cancer
cells (38, 105, 113, 114) (Figure 1B). Dormancy occurs at two
levels (101, 108): (a) at the single-cell level, in which the dormant
cancer cells exist in a quiescent state of G0 – G1 arrest (101),
with increased MAPK p38 and decreased ERK, (conventional
dormancy); and (b) at the population level, in which cancer
cell proliferation is balanced by apoptosis (dynamic dormancy)
resulting in an overall unchanged total cancer cell number (115),
i.e., immune equilibrium (116, 117).

Our research found that thymic-sojourning disseminated
solid tumor cells show a heterogeneous dormancy phenotype,
some being quiescent with features of conventional dormancy,
such as increased ratio of p38/ERK (activation of p38 and
inhibition of ERK), inducing tumor growth arrest (113, 118,
119), while some either propagate or undergo apoptosis with
features of dynamic dormancy (37). Together, chemotherapy-
induced acute thymic involution provides a chemo-resistant
microenvironment for tumor dormancy, creating a pre-
metastatic reservoir. Although the distinct dormancy mechanism
underlying the heterogeneity of dormant tumor cells (being
quiescent and dynamic) needs further investigation, these
observations provide a new therapeutic target for preventing
cancer relapse and metastasis.

POTENTIAL THERAPEUTIC STRATEGIES
BY MODIFYING THYMIC FUNCTIONS

Since cancer is derived from self-tissues, pathogenic tumor cells
are oftentimes carrying “self ”-antigens, i.e., TAAs, and can be
recognized by most self-reactive Teff cells that are deleted by
negative selection in the thymus. Thus, this has led several groups
to posit that disruption of central tolerance might further the
ability of the T cell compartment to combat cancers (87, 120–
122). In this regard, most of the recent studies focus on targeting
Aire-expressing mTECs in the thymus.

Medullary TECs highly express Aire, allowing them to
promiscuously present self-antigens to self-reactive T clones
during negative selection for central tolerance establishment (13,
21, 123). Though the full scope of this process remains to be
elucidated, it is readily accepted that Aire deficiency facilitates
increased self-reactive T cell release enhancing immunity to
certain cancers. One recent technique targets mTECs specifically
via anti-RANK-Ligand treatments, which transiently deplete
Aire-expressing mTECs (22, 121, 124). Because the anti-RANK-
Ligand reagent is already FDA-approved, albeit for osteoporosis
(125), it has potential to be easily translated to cancer patients.
This strategy is also promising because the depletion is brief,
with mTECs normally replenished within 2 weeks (126, 127) and
full recovery observed 10 weeks after cessation of anti-RANK-
Ligand treatment (22). This tactic was tested in animal models
of melanoma, since several of the melanoma antigens, including
gp100 and TRP-1, are controlled by Aire (23, 122) and up-
regulated in melanoma cells (122). Importantly, many of these

studies used anti-RANK-Ligand in combination with peripheral
therapies, such as checkpoint inhibitors, demonstrating greatly
improved outcome in comparison to peripheral treatment alone.
However, it is obvious that central therapy alone is not sufficient
for tumor immunotherapy (121).

One caveat to this type of strategy is the recent finding that
other transcriptional regulators are implicated in promiscuous
self-antigen expression in the thymus, for example, forebrain
embryonic zinc fingerlike protein 2 (Fezf2) (128). There are
not many reports on what Fezf2 disruption would accomplish
in regards to heightened TAA targeting as observed with the
above Aire-targeting studies. There is evidence that Fezf2 is
independent of the RANK/CD40/Aire axis which implies that an
anti-RANK-Ligand therapy may not be as effective for disrupting
Fezf2-dependent self-antigen expression (129).

The obvious risk for disruption of central tolerance is
increased incidence of autoimmunity (130, 131), which is one of
the underlying players in inflammaging in the elderly (66). This
is clearly seen in patients who have mutations in AIRE (132) and
has been recently demonstrated in mice who lack Fezf2 (128).
Another challenge to strategies that manipulate central tolerance
is that some TAAs are not under the control of Aire, such as TRP-
2 (122), and some may be under the regulation of factors that have
yet to be identified.

Additionally, we know that tumor antigens not only include
TAAs (“self ”-antigens), but also TSAs (“foreign”/neo-antigens),
which are recognized by T cells as foreign antigens (133, 134).
Therefore, deletion of Aire expression cannot induce antitumor
immunity to non-Aire-controlled TAA-bearing tumors nor for
TSA-bearing tumors. This limits the scope of cancers that
would benefit from such a strategy, and also supports studies
that use combinative central and peripheral immunotherapies.
Finally, it is important to also take age-related peripheral changes
into account, as many other age-related changes may offset
the potential benefits of such central tolerance manipulation
therapies. Therefore, several potential avenues of research remain
for this type of cancer immunotherapy.

CONCLUSION AND OUTSTANDING
QUESTIONS

We have briefly reviewed some of the potential impacts of thymic
involution (chronic age-related or acute chemotherapy-induced)
on cancer and attempt to pave the way for further studies in
tumor immunology. Since cancer and thymic atrophy are both
associated with age, there is potential for a deeper connection. For
instance, it is interesting to consider that most cancers develop in
older adults, long after thymic involution has progressed. Since
thymic involution is associated with declined mTEC cellularity
and Aire expression in mTECs (66, 135), it raises the question
of why there is not a natural increase in antitumor immunity
in the elderly due to the defects in negative selection in the
aged thymus. In addition, chemotherapy also induces TEC-
impaired thymic involution (37) and declined Aire expression in
tumor-bearing mice treated with doxorubicin (our unpublished
observation). Why, then, do we not see enhanced antitumor T cell
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generation? Further, estrogen has recently been identified as a
repressor of Aire (136, 137), possibly explaining the sex-related
tendencies for higher autoimmune disease incidence in women.
Does this correlate with a lower incidence for development
of certain TAA-expressing cancers in post-menopausal women?
In addition, whether we can manipulate thymic function to
better target tumor-infiltrating Treg cells by weakening tTreg
generation or harness newly generated Teff cells to home
to the tumor is in need of further study. Finally, since the
tumor microenvironment exerts such strong immunosuppressive
signals, how can immunotherapies be tailored to overcome those

signals in a tumor-specific manner without breaking peripheral
tolerance completely. Moreover, many important questions
remain in our understanding of the crosstalk of aging, cancer, and
the impacts of thymic involution on late-life cancers.
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