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Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine originally isolated from 

a murine thymic stromal cell line. TSLP exerts its biological effects by binding to a 

high-af�nity heteromeric complex composed of thymic stromal lymphopoietin recep-

tor chain and IL-7Rα. TSLP is primarily expressed by activated lung and intestinal 

epithelial cells, keratinocytes, and �broblasts. However, dendritic cells (DCs), mast 

cells, and presumably other immune cells can also produce TSLP. Different groups 

of investigators have demonstrated the existence of two variants for TSLP in human 

tissues: the main isoform expressed in steady state is the short form (sf TSLP), which 

plays a homeostatic role, whereas the long form (lfTSLP) is upregulated in in�amma-

tory conditions. In addition, there is evidence that in pathological conditions, TSLP 

can be cleaved by several endogenous proteases. Several cellular targets for TSLP 

have been identi�ed, including immune (DCs, ILC2, T and B  cells, NKT and Treg 

cells, eosinophils, neutrophils, basophils, monocytes, mast cells, and macrophages) 

and non-immune cells (platelets and sensory neurons). TSLP has been originally 

implicated in a variety of allergic diseases (e.g., atopic dermatitis, bronchial asthma, 

eosinophilic esophagitis). Emerging evidence indicates that TSLP is also involved in 

chronic in�ammatory (i.e., chronic obstructive pulmonary disease and celiac disease) 

and autoimmune (e.g., psoriasis, rheumatoid arthritis) disorders and several cancers. 

These emerging observations greatly widen the role of TSLP in different human dis-

eases. Most of these studies have not used tools to analyze the expression of the 

two TSLP isoforms. The broad pathophysiologic pro�le of TSLP has motivated ther-

apeutic targeting of this cytokine. Tezepelumab is a �rst-in-class human monoclonal 

antibody (1) that binds to TSLP inhibiting its interaction with TSLP receptor complex. 

Tezepelumab given as an add-on-therapy to patients with severe uncontrolled asthma 

has shown safety and ef�cacy. Several clinical trials are evaluating the safety and the 

ef�cacy of tezepelumab in different in�ammatory disorders. Monoclonal antibodies 

used to neutralize TSLP should not interact or hamper the homeostatic effects  

of sf TSLP.
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INTRODUCTION

�ymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine 
originally isolated from a murine thymic stromal cell line (2) 
and characterized as a lymphocyte growth factor (3). A human 
homolog was identi�ed using in silico methods (4, 5). �e human 
TSLP gene is located on chromosome 5q22.1 next to the atopic 
cytokine cluster on 5q31 (6), while the murine Tslp is mapped on 
chromosome 18 (3). Human and mouse TSLP exert their biologi-
cal activities by binding to a high-a�nity heteromeric complex 
composed of thymic stromal lymphopoietin receptor (TSLPR) 
chain and interleukin 7 receptor-α (IL-7Rα) (7, 8). �e sequence 
homology between mouse and human TSLP is only about 40%, 
and their biological functions are similar (5), but not identical 
(9). TSLP is expressed predominantly by gut (10–15) and lung 
epithelial cells (16–21), skin keratinocytes (15, 22–25), and by 
dendritic cells (DCs) (26). However, TSLP can be produced also 
by airway smooth muscle cells (27), human DCs (26) and mast 
cells (16, 25, 28, 29), human monocytes (26), macrophages and 
granulocytes (30), synovial (31) and cancer-associated �broblasts 
(CAF) (32), murine basophils (33), and cancer cells (34).

For many years, TSLP has been widely studied in the regula-
tion of in�ammatory processes occurring at the barrier surfaces 
(e.g., skin, lung, and gut). In fact, TSLP activates TSLPR+ DCs 
and plasmacytoid DCs to induce functional �2 and regulatory 
T (Treg) cells (35, 36) and human T follicular helper (T�) cells 
(37). Interestingly, TSLP has now emerged as a cytokine with a 
plethora of pleiotropic properties mediated by the activation of 
a broad range of immune and non-immune cells. Depending 
on the immune cells targeted by TSLP, it is reported not only 
to promote �2 response but also to be associated with autoim-
mune disorders (38–40) and cancer (32, 34, 41). Such a broad 
pathophysiological pro�le has motivated therapeutic targeting of 
TSLP- and TSLPR-mediated signaling (42–45).

TSPL—TSLP Receptor Interaction
�ymic stromal lymphopoietin initiates signaling by establishing 
a ternary complex with its speci�c receptor, TSLPR, and then 
with IL-7Rα (7, 8). �e latter receptor also serves, together with 
the common γ-chain (γc) receptor, in signaling complex driven 
by IL-7 to modulate T cell development (46). First human TSLP, 
positively charged, binds to TSLPR, which is negatively charged, 
with high a�nity and fast kinetics (44). �en, IL-7Rα binds to the 
preformed TSLP:TSLPR binary complex with high a�nity. �e 
formation of the ternary complex, TSLPR:TSLP: IL-7Rα, initiates 

signaling in cells co-expressing TSLPR and IL-7Rα (Figure 1). 
�e variable heavy chain of human monoclonal antibody (mAb) 
anti-TSLP, tezepelumab, binds to TSLP, while the variable light 
chain fragment does not interact with TSLP (44). Tezepelumab 
inhibits in  vitro human blood DC maturation and chemokine 
(CCL17) production induced by TSLP (44).

Activators of TSLP Production
Several cytokines (e.g., TNF-α, IL-1β) (13, 14, 16, 20), respiratory 
viruses (17–19, 21, 47), bacterial (e.g., Staphylococcus aureus) (23) 
and fungal products (48), mechanical injury (49), allergens (50), 
cigarette smoke extracts (51, 52), and tryptase (53) can induce the 
expression of TSLP from di�erent target cells.

CELLULAR TARGETS AND BIOLOGICAL 

PROPERTIES OF TSLP

Several cellular targets of TSLP have been identi�ed, including 
immune and non-immune cells (Figure 2). DCs have a critical 
role in promoting �2 cytokine responses (54). TSLP-stimulated 
DCs activate CD4+ T  cells. Culture of TSLP-activated DCs 
together with naive syngeneic CD4+ T  cells leads to T  cell 
pro liferation, which suggests a role for TSLP in CD4+ T cell 
homeostasis. However, when TSLP-stimulated DCs prime CD4+ 
T cells in an antigen-speci�c manner, the resulting T cells show 
characteristic features of T helper type 2 (�2)-di�erentiated 
cells (production of IL-4, IL-5, and IL-13) (25). �ese data sug-
gest that TSLP-activated DCs prime for in�ammatory �2 cell  
di�erentiation (32).

In addition to its e�ects on the di�erentiation of CD4+ �2 
cells potentially via DCs and/or basophils (32), TSLP is able to 
directly promote the �2 cell di�erentiation of naive T cells. �e 
combination of TCR stimulation and TSLP treatment can induce 
IL-4 transcription and �2 di�erentiation (64).

Type-2 immune responses that occur in airways of asthmatics 
are accompanied by goblet cell hyperplasia and mucus production 
and are driven by IL-33, TSLP, and IL-25 produced by activated 
lung epithelial cells (16, 82, 83). �ese three cytokines target 
members of group 2 innate lymphoid cells (ILC2s) (61, 84, 85). 
TSLP is a critical mediator acting on ILC2s in allergen-induced 
airway in�ammation (61, 62) and drives the development of 
�2 cells (65, 86) and CD4+ T  cells (87). TSLP also provides 
critical signals for human B cell proliferation (68), Treg expansion  
(36, 70), and T� di�erentiation (37).

Human peripheral blood monocytes can be divided into three 
major subsets, classical, intermediate, and non-classical mono-
cytes based on their expression of CD14 and CD16 [CD14high 
CD16−, CD14+ CD16+, and CD14dim CD16+, respectively (88)]. 
It was originally demonstrated that TSLPR and IL-7Rα mRNAs 
are coexpressed in human monocytes and that TSLP induces the 
production of CCL17 (5). Borriello and co-workers recently dem-
onstrated that freshly isolated monocytes do not express TSLPR 
and IL-7Rα by �ow cytometry, nor they phosphorylate STAT5 in 
response to TSLP (75). However, stimulation of monocytes with 
lipopolysaccharide (LPS) induced the expression of TSLPR com-
plex on a small percentage of human monocytes. TSLP enhanced 

Abbreviations: AD, atopic dermatitis; ALL, acute lymphoblastic leukemia; ASM, 

airway smooth muscle; BAL, bronchoalveolar lavage; CD, celiac disease; COPD, 

chronic obstructive pulmonary disease; CRS, chronic rhinosinusitis; DC, dendritic 

cell; dsRNA, double-stranded RNA; E. coli, Escherichia coli; EoE, eosinophilic 

esophagitis; γc, γ chain; GERD, gastroesophageal re�ux; GWAS, genome-wide 

association studies; ILC, innate lymphoid cell; lfTSLP, long form of TSLP; LN, 

lymph node; LPS, lipopolysaccharide; mAb, monoclonal antibody; PAR2, 

protease- activated receptor 2; Poly I: C, polyinosinic-polycytidylic acid; PGD2, 

prostaglandin D2; RA, rheumatoid arthritis; sfTSLP, short form of TSLP; T�, T fol-

licular helper; �2, T helper type 2; TLR, toll like receptor; Treg, T regulatory; TSLP, 

thymic stromal lymphopoietin; TSLPR, thymic stromal lymphopoietin receptor.
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FIGURE 1 | Schematic representation of the production of thymic stromal lymphopoietin (TSLP) and its signaling complex via a cooperative stepwise mechanism  

on the surface of cellular targets. A plethora of triggers including allergens, cigarette smoke extracts, cytokines, viral, bacterial and fungal products, and tryptase  

can activate lung and gut epithelial cells and keratinocytes to release TSLP. The latter, which is positively charged, binds to thymic stromal lymphopoietin receptor 

(TSLPR), which is negatively charged, with high af�nity and fast kinetics. Then, IL-7Rα associates with performed TSLPR:TSLP binary complex to form the ternary 

TSLPR-TSLP-IL-7Rα complex (44). This receptor complex on cells co-expressing TSLPR and IL-7Rα phosphorylates JAK and STAT5 to initiate proin�ammatory 

signaling.
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CCL17 production by monocytes induced by LPS and IL-4. �e 
in vivo relevance of this original observation is supported by the 
demonstration that monocytes from patients with Gram-negative 
sepsis have a higher expression of TSLPR and IL-7Rα mRNAs 
compared to healthy controls (89). �e elegant study by Borriello 
and collaborators unravels a previously unknown phenotypic and 
functional heterogeneity of human monocytes based on TSLPR 
expression.

Several groups have reported that TSLP activates human 
eosinophils through the engagement of TSLPR and IL-7Rα 
expressed on their surface (71, 72, 90, 91). Recently, it has 
been reported that TSLP acts on mouse and human neutro-
phils to enhance S. aureus killing in a complement-dependent  
manner (73).

�e relevance of TSLP–TSLPR axis and basophils has been 
emphasized in several experimental models. Siracusa and col-
laborators reported that TSLP promotes peripheral basophilia 
and that TSLPR-expressing basophils can restore �2-dependent 
immunity in mice (74). �is study was followed by the observa-
tion that a mouse model of eosinophilic esophagitis (EoE)-like 
disease was dependent on TSLP acting on basophils (92). In 
the same study, the authors reported overexpression of TSLP 
and increased basophil responses in esophageal biopsies of 
EoE patients. �e group of Gauvreau found that approximately 
10% human basophils express TSLPR and that TSLP increases 
histamine release from basophils (93). By contrast, a collabora-
tive study demonstrated that basophils from allergic patients do 
not respond to TSLP and do not express IL-7Rα (9). It is well 

established that human basophils di�er from mouse basophils 
(94), and these di�erences might explain, at least in part, the 
di�erent e�ects of TSLP on human and mouse basophils.

�ymic stromal lymphopoietin–TSLPR interactions appear 
essential for immunity to Trichuris (95, 96). �e importance of the 
TSLP pathway and basophils in protective immunity to Trichuris, 
coupled with the demonstration that delivery of recombinant 
TSLP can augment basophil numbers in the periphery (97), 
suggests that coordinated TSLP-mediated regulation of DCs and 
basophils may have an important role in developing �2 cytokine 
responses.

�e expression of both TSLPR and IL-7Rα has been reported 
in CD34+ progenitor mast cells and human lung mast cells at the 
transcript and protein level (16). TSLP, alone or in combination 
with IL-1β or TNF-α, does not induce mast cell degranulation or 
lipid mediator release (16, 55). However, TSLP in combination 
with IL-1β or TNF-α releases several cytokines and chemokines 
(16, 76, 77). TSLP induces prostaglandin D2 (PGD2) produc-
tion by human cord blood-derived cultured mast cells and by 
human peripheral blood-derived mast cells when combined 
with IL-33 (78).

In vivo administration of TSLP modulates the di�erentiation 
of alternatively activated macrophages (79). Interestingly, TSLP 
synergistically potentiated CCL17 production induced by IL-4 
from murine macrophages. �e expression of TSLRP and IL-7Rα 
and the production of TSLP isoforms should be investigated 
in both human primary macrophages and tumor-associated 
macrophages.
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FIGURE 2 | Schematic representation of cellular targets of thymic stromal lymphopoietin (TSLP). Several triggers can activate lung and gut epithelial cells 

and keratinocytes to release TSLP. This cytokine can also be produced by activated mast cells (28, 55–57) and dendritic cells (DCs) (26, 58). Tryptase, 

released by mast cell activates the protease-activated receptor 2 receptor on �broblasts (53, 59) and keratinocytes (53) to release TSLP. TSLP activates  

DCs (37, 44, 60), ILC2 (61–63), CD4+ T and Th2 cells (64, 65), NKT cells (66), CD8+ T cells (67) and B cells (68, 69), Treg (35, 70), eosinophils (71, 72), 

neutrophils (73), murine (74), but not human basophils (9), monocytes (75), mast cells (16, 76–78), macrophages (79), platelets (80, 81), and sensory 

neurons (53).
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Human platelets express both TSLPR and IL-7Rα and their 
activation by TSLP promotes platelet activation (80, 81). Based on 
these �ndings, it has been suggested that TSLP could be involved 
in patients with metabolic syndrome (98) and in atherosclerosis 
(81, 99).

Wilson and collaborators have demonstrated that activation 
of protease-activated receptor 2 receptors by serine proteases on 
keratinocytes can trigger the release of TSLP. �is in turn activates 
TSLP receptor on sensory neurons contributing to itch in patients 
with atopic dermatitis (AD) (53).

SHORT AND LONG ISOFORMS OF TSLP

Harada and collaborators �rst identi�ed two variants for TSLP 
in human bronchial epithelial cells (10). �e authors demon-
strated that a poly I:C, a toll-like receptor 3 (TLR3) ligand, 
known to upregulate TSLP (16, 18), induced the upregulation 
of a long isoform of TSLP. A shorter isoform, composed of 63 
amino acids, was constitutively expressed in all normal tissues 
examined, including human lung �broblasts, and its expression 
did not change a�er challenge with LPS or poly I:C. �ese two 
isoforms were initially considered the result of alternative splic-
ing (10). Subsequently, the same group identi�ed two distinct 
50-untranslated regions resulting in two di�erent open reading 
frames for TSLP in the human genome (100). �e sequence 
of the 63 amino acids of short TSLP is homologous to the 
C-terminus of the long form and speci�c antibodies anti-sf 
TSLP are not commercially available. Primer pairs speci�cally 
targeting one or the other transcript variant should be used 

to study the two isoforms of TSLP at the mRNA level. It is 
important to emphasize that none of all previous studies had 
used tools to analyze the expression or functions of the two 
TSLP isoforms. Harada and collaborators also identi�ed two 
polymorphisms upstream the long isoform untranslated region 
that increase transcription factor binding and, consequently, 
long TSLP expression. �ese two polymorphisms correlate 
positively with asthma susceptibility, whereas this is not true for 
the polymorphism found in the second intron of the long form 
(100). �e authors suggested that TSLP could be a therapeutic 
target in asthma.

Xie et al. studied the di�erential expression and modulation 
of the two isoforms in primary human keratinocytes (47). �ey 
con�rmed that TLR3, TLR2, and TLR6 ligands induced long 
TSLP in the presence of an atopic cytokine milieu (IL-4, IL-13, 
and TNF-α). �ey also reported that the constitutive expression 
of the short isoform by human keratinocytes is greater than 
the long form. Cultrone et al. showed that activation of human 
intestinal epithelial cell lines with cytokines (i.e., IL-1, TNF-α) 
upregulates long TSLP (14). Another group con�rmed that TNF-
α activation of primary human lung �broblasts upregulates the 
long isoforms (101).

Rescigno and collaborators extensively examined the di�eren-
tial expression and biologic activity of the two isoforms in vitro 
and in vivo (15). �ey con�rmed that the two isoforms are not the 
result of alternative splicing of the same transcript but are rather 
controlled by two di�erent promoter regions. �ey also found 
that in healthy barrier surfaces, such as human intestinal and skin 
tissue, short TSLP is the main transcript variant. sf TSLP inhibits 
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in vitro the production of several cytokines (i.e., TNF-α, IL-1β, 
IL-6), whereas lf TSLP increases the release of IFN-γ. Importantly, 
they reported that lf TSLP activates a canonical TSLPR on human 
immune cells, whereas sf TSLP induces or inhibits signaling 
through an unknown receptor (15). �e authors also found that 
highly immunogenic strains such as Salmonella typhimurium and 
invasive Escherichia coli (E. coli) upregulate the long isoform and 
downregulate the short isoform, whereas the opposite is true a�er 
challenge with a commensal E. coli strain. �e latter observation 
suggests that the dysbiosis observed in barrier surfaces could 
impact the expression of TSLP. More recently, Dong et al. reported 
that in�ammatory stimuli upregulate lf TSLP mRNA but not sf 
TSLP in human bronchial epithelial cells (102). Importantly, 
administration of sf TSLP decreased airway hyperreactivity and 
in�ammation in a mouse model of asthma. Finally, Kuroda and 
collaborators found that the constitutive expression of lf TSLP in 
unstimulated primary human keratinocytes is markeally lower 
than sf TSLP and that lf TSLP was strongly induced by several 
allergens (50).

Short TSLP Functions
Despite increasing evidence of a dichotomy for the two isoforms 
of TSLP in humans, the physiological role of the short isoform 
was largely unknown. Bjerkan et  al. examined the expression 
and biologic activity of short TSLP on barrier surfaces such as 
the oral mucosa and the skin (22). �e authors found that TSLP 
on healthy barriers is limited to the short isoform, whereas the 
long TSLP is upregulated in mucosal lesions a�er challenge. 
Recombinant human long TSLP had previously been found to 
exert antimicrobial activities (103). Using synthetic overlapping 
peptides, the authors demonstrated that the antimicrobial e�ect 
was primarily mediated by the C-terminal region of TSLP. Bjerkan 
and collaborators assessed the antimicrobial activity of short 
TSLP and found that the growth of all bacterial strains tested 
was markedly inhibited (22). �ey also addressed the biologic 
activity of the short isoform in vitro by conditioning with short 
TSLP monocyte-derived DCs, which do not express TSLPR if not 
activated (104). �ey found that the anti-in�ammatory e�ect of 
short TSLP on human monocyte-derived DCs is mediated via 
an as yet unknown mechanism involving p38 phosphorylation 
(105) rather than STAT5 phosphorylation through which the 
long isoform signals (15). �e latter �ndings support the hypoth-
esis that sf TSLP activates an unknown receptor di�erent from 
TSLPR (15).

TSLP Isoforms in Human Diseases
Rescigno and collaborators have demonstrated the upregulation 
of long but not short TSLP in patients with AD and ulcerative 
colitis (15). �ey also observed a downregulation of the short 
TSLP transcript in patients with celiac disease (11, 12).

�ere is compelling evidence that, in human pathologic con-
ditions, TSLP can also be modulated by endogenous proteases. 
Bianchieri et al. demonstrated that the protease furin, which was 
upregulated in biopsies from celiac disease patients, can cleave 
the long isoform producing fragments of 10 and 4  kDa that 
show di�erent activity on human peripheral blood mononuclear 
cells compared with the mature TSLP (106). Schleimer and 

collaborators reported that TSLP is truncated in two fragments 
(aa 29-124 and aa 131-159) by furin-like and carboxypeptidase N 
proteases in in�amed tissue. �ese fragments showed enhanced 
pro-�2 activity on mast cells and ILC2 compared with the long 
TSLP (63, 106).

It would be of great interest to examine the di�erential expres-
sion of the two isoforms in in�ammed tissues and peripheral 
blood from patients with asthma, chronic obstructive pulmo-
nary disease (COPD), EoE, allergic rhinitis, etc. Because of the 
pathophysiological relevance of long TSLP expression in all 
these diseases, the cytokine has been repeatedly suggested as a 
valid target for therapy with antibodies that would target TSLP 
and/or prevent its binding to TSLPR (42–45). Since the short 
isoform of TSLP has homeostatic and anti-in�ammatory e�ects, 
this should be taken into account when designing targeted 
therapeutic strategies. mAbs used to neutralize TSLP should 
ideally not interact or hamper the homeostatic functions of  
short TSLP.

TSLP AND ALLERGIC INFLAMMATION

Genetic analysis has shown an association of polymorphisms in 
TSLP with several allergic diseases, including asthma and airway 
hyperresponsiveness, IgE concentrations, and eosinophilia (10, 100,  
107, 108). Additional evidence for the relevance of TSLP in 
airway in�ammation has been provided by genetic studies of 
mice. TSLPR-de�cient mice are resistant to the development 
of ovalbumin-induced in�ammation in mice (109, 110). Mice 
overexpressing TSLP in the airway epithelium develop an in�am-
matory disease with characteristics of asthma (110). Intranasal 
delivery of TSLP and antigen leads to the onset of severe disease 
(111). Asthmatic patients have higher concentrations of TSLP in 
their lungs (30, 56) and in peripheral blood (112).

Asthma and Chronic Rhinosinusitis (CRS)
Genetic variants located in or near TSLP have been detected 
in genome wide studies for asthma, rhinitis, and atopy (100, 
113–118). Polymorphisms of the TSLP gene appear to contribute 
to �2-polarized immunity through greater TSLP production by 
bronchial epithelial cells in response to viral respiratory infec-
tions (10, 100, 116). Moreover, TSLP polymorphisms appear to be 
associated with a higher risk of allergic rhinitis (117).

In a mouse model of asthma microRNA-19b (miR-19b) reduces  
airway in�ammation and remodeling by inhibiting Stat3 signal-
ing through TSLP downregulation (45). Interestingly, anti-TSLP 
alleviates airway in�ammation in a dust mite-induced mouse 
model of asthma (119). Together, these results suggest that TSLP 
pathway is a promising target for immunotherapy of bronchial 
asthma. TSLP mRNA is increased in the airways of severe 
asthmatic patients (57) and correlates with disease severity 
(56). TSLP is also increased in bronchoalveolar lavage (BAL) 
(Liu JACI141:257, 2018), in induced sputum (120), in exhaled 
breath condensate (121), and in plasma of asthmatic patients 
(112). Recent evidence suggests that elevated expression of TSLP 
in the airways is a biomarker of severe refractory asthma (122). 
Unfortunately, in the above studies, the di�erential expression of 
the two isoforms of TSLP was not examined.
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FIGURE 3 | Thymic stromal lymphopoietin (TSLP) produced mainly by gut and epithelial cells and keratinocytes but also by dendritic cells, mast cells, and 

�broblasts initiates signaling by establishing a ternary complex with thymic stromal lymphopoietin receptor (TSLPR) and IL-7Rα. Tezepelumab, a human mAb 

anti-TSLP, binds with high af�nity to TSLP and blocks the formation of TSLPR:TSLP: IL-7Rα ternary complex on effector cells. In particular, the variable heavy  

chain of tezepelumab binds to TSLP, while the variable light chain fragment does not interact with TSLP (44). Tezepelumab inhibits in vitro human DC maturation  

and chemokine production induced by TSLP (44) and reduced exacerbations and improved quality of life in patients with severe uncontrolled asthma (124).
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Tezepelumab, a human IgG2 mAb (1) anti-TSLP (700 mg i.v.  
on days 1, 29, and 57) inhibited early and late asthmatic responses, 
blood and sputum eosinophils, and exhaled nitric oxide in 
patients with mild, atopic asthma (123). Corren and collaborators 
reported that tezepelumab (70, 210, or 280 mg s.c. every 4 weeks) 
reduced asthma exacerbations, blood eosinophils, and Feno 
and improved FEV1 and ACQ-6 score in patients with di�erent 
asthma phenotypes (124). �ese two studies indicate that TSLP 
is an attractive therapeutic target in asthma (Figure 3). Several 
studies are evaluating the e�cacy and safety of tezepelumab alone 
(NCT 03347279, NCT 03406078, NCT 02698501) or in combina-
tion with allergen immunotherapy (NCT 02037196) in asthmatic 
patients.

Chronic rhinosinusitis is a heterogeneous disease character-
ized by local in�ammation of the upper airways and sinuses (125, 
126). Genetic analysis has shown an association of TSLP polymor-
phism with a higher risk for allergic rhinitis (117). TSLP mRNA 
levels were upregulated in CRS with nasal polyps compared to 
control subjects and positively correlated with eosinophils and 
type 2 cytokines (106). �e same group of Kato elegantly dem-
onstrated that rh TSLP can be truncated by endogenous serine 
proteases present in CRS to generate two major peptides which 
potently activated DCs and ILC2s (63). �ese results highlight 
the relevance of posttranslational modi�cations that control the 
functional activity of TSLP in human in�ammatory disorders. 
Recent evidence suggests that TSLP controls PGD2 production by 
human mast cells in patients with aspirin-exacerbated respiratory 
disease (78).

Eosinophilic Esophagitis
Eosinophilic esophagitis is an emerging disorder distinct from 
gastroesophageal re�ux disease (127, 128). Multiple genome-
wide association studies and candidate gene studies have 
implicated genetic variants of TSLP in genetic susceptibility to 
EoE (129–132). TSLP is increased in the esophageal tissue of 
patients with EoE (129, 130). In a mouse model, EoE-like disease 
developed independently of IgE, but was dependent on TSLP 
activation of basophils (92). Interestingly, TSLPR and IL-7Rα 
are not constitutively expressed by human peripheral blood 
basophils and TSLP does not activate these cells (9). �e latter 
data apparently contrast with the increased density of basophils 
in esophageal biopsy of pediatric patients with EoE (92).

Atopic Dermatitis
Atopic dermatitis is a chronic, in�ammatory skin disease a�ect-
ing up to 15% of children and 2–10% of adults in industrialized 
countries (133, 134). Genetic variants in TSLP are associated with 
AD (118, 135, 136). TSLP is highly expressed in the lesional skin 
of patients with AD (25, 40, 95, 137) and TSLP-activated DCs 
prime naïve T cells to di�erentiate into �2 cells (25). Serum levels 
of TSLP are elevated in AD patients compared to controls (138). 
However, the relationships between the degree of TSLP expres-
sion in the skin and the severity, the phenotypes (i.e., extrinsic 
vs intrinsic), and epidermal barrier function of AD remain to be 
elucidated (139). Recent evidence indicates that keratinocyte-
derived TSLP stimulates pruritus in AD, and perhaps some 
other dermatologic disorders, by activating TSLP receptor 
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complex on a�erent sensory neurons (53). Several clinical trials 
(NCT02525094, NCT01732510) are evaluating the safety and 
e�cacy of tezepelumab in patients with moderate-to-severe AD.

Basophils are found in skin biopsies of AD patients (134, 140, 
141). It has been reported that TSLP elicits basophilia in mice 
and skin recruitment could be blocked by anti-TSLP antibody 
suggesting that TSLP promotes skin in�ammation through the 
activation of basophils (74, 141). In a recent study, Voehringer 
and collaborators have demonstrated in a murine model of AD 
that skin recruitment of basophils occurred without direct TSLP 
recognition by basophils (142). Furthermore, basophils did not 
promote but rather ameliorated skin in�ammation, and this 
e�ect was dependent on TSLPR expression on murine basophils. 
Interestingly, human basophils do not express constitutively TSLP 
and IL-7Rα (9). Together, these results emphasize some of the 
striking di�erences between human ad mouse basophils (93, 94).

TSLP AND CHRONIC INFLAMMATORY 

DISEASES

COPD and Idiopathic Pulmonary  

Fibrosis (IPF)
Chronic obstructive pulmonary disease and asthma are conven-
tionally considered TH1/macrophage/neutrophils and TH/eosino-
phil/mast cell mediated, respectively (143, 144). TSLP mRNA and 
protein are overexpressed in the bronchial epithelium of COPD 
patients compared to controls (30). Several activators of airway 
epithelial cells such as respiratory viruses (19), double-stranded 
RNA (17, 18), cigarette smoke extracts (51, 52), and proin�am-
matory cytokines (16, 20) can stimulate the production of TSLP 
in COPD patients. TSLP and TSLPR are overexpressed in lung 
biopsy of patients with IPF (101) and BAL TSLP is increased 
compared to controls (145).

Celiac Disease
Celiac disease (CD) is a heterogeneous enteropathy caused in 
genetically susceptible individuals by the ingestion of gluten 
(146). TSLPR and IL-7Rα are expressed in CD mucosa and 
both lf TSLP and sf TSLP mRNAs are reduced in CD compared 
to control subjects (11). Interestingly, the serin protease furin, 
which is overexpressed in CD mucosa, degrades lf TSLP. �e lat-
ter intriguing �ndings extend the observation that proteases can 
cleave and modulate the functions of TSLP (63, 106). Collectively, 
these results indicate that in pathological conditions endogenous 
proteases can regulate TSLP activities. �e role of sf and lf TSLP 
in experimental in�ammatory bowel disease is hampered by the 
absence of sf TSLP in the mouse (147).

TSLP AND AUTOIMMUNE DISORDERS

�e role of TSLP in autoimmune diseases is largerly unknown, 
and only very few studies have started to explore the role of 
this pleiotropic cytokine in �1- or �17-driven autoimmune 
disorders. It has been demonstrated that TSLP induced poly-
clonal B-cell activation in vitro and development of autoimmune 
hemolytic anemia in  vivo (148). TSLPR-de�cient mice showed 

less severe arthritis in collagen-induced autoimmune arthritis 
(149). In a model of experimental autoimmune encephalomy-
elitis (EAE), TSLP-knock-out mice displayed a delayed outset of 
disease and an attenuated form of EAE (150). �ese studies sug-
gest that TSLP–TSLPR axis might contribute to the pathogenesis 
of autoimmune disorders.

Rheumatoid Arthritis (RA)
Rheumatoid arthritis is a systemic autoimmune disease char-
acterized by chronic synovitis (151). TSLP has been implicated 
as a possible exacerbating mediator in RA (38). Synovial �uid 
concentrations of TSLP are increased in RA patients compared 
to osteoarthritis (39). Fibroblasts from RA patients can produce 
TSLP when activated by several immunologic stimuli (e.g., IL-1β, 
TNF-α) (152). In addition, mast cells and macrophages, present in 
RA synovium (151, 153), may contribute to TSLP levels in the RA 
joint (28, 56, 154). Supportive role of TSLP in arthritis derives also 
from several mouse models (38, 149). Blockade of TSLP/TSLPR 
axis warrants further experimental and clinical studies in RA.

Psoriasis
Psoriasis is a common, chronic in�ammatory disease that mani fests 
predominantly in the skin (155). Although psoriasis is classi�ed as 
an organ-speci�c autoimmune disease (156–158), there is increas-
ing understanding of psoriasis as a systemic in�ammatory disease 
that extends beyond the skin (159, 160). �e pathophysiology of 
psoriasis is characterized by skin DC activation and pathogenetic 
IL-23 production by blood and skin DCs (155). Volpe and collabo-
rators found that TSLP is overexpressed in human psoriatic skin 
(40). Moreover, they reported that TSLP induces DC maturation 
and primes for subsequent CD40L-induced IL-23 production by 
DCs. �ese original �ndings extend the role of TSLP from allergic 
disorders to IL-23-driven autoimmunity, with possible implica-
tion in other forms of autoimmune disorders (e.g., RA).

TSLP AND CANCER

Initially shown to promote the growth and activation of B cells 
and DCs (3, 25), TSLP is now known to have wide-ranging e�ects 
on cells of innate and adaptive immune system (Figure 2). �ese 
include DCs, ILC2, T and B cells, NKT and Treg cells, eosinophils, 
neutrophils, basophils, mast cells, and macrophages. All these 
cells are implicated in tumor initiation and growth, angiogenesis, 
and lymphangiogenesis (161–163). �erefore, it is not surprising 
that TSLP plays a direct and/or indirect role in the control of a 
variety of experimental and human cancers (34).

A pro-tumorigenic role of TSLP is supported by a study using 
an orthotopic model of breast cancer in the mouse (164). Using a 
variety of methods, several groups found that genetic rearrange-
ments and mutations in the TSLP gene are present in pediatric 
acute lymphoblastic leukemia (165–167). TSLP is overexpressed 
in plasma and lymph nodes from Hodgkin patients (41). Moreover, 
TSLP acts through the production of �2 cytokines (e.g., IL-4 and 
IL-13) to induce cutaneous T-cell lymphoma (168). De Monte 
and collaborators elegantly demonstrated that human pancreatic 
CAF release TSLP which activates TSLPR+ DCs to drive �2 dif-
ferentiation mediated by the release of IL-4 from basophils (32). 
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It has been reported that human cervical carcinoma cells release 
TSLP acting on TSLPR+ endothelial cells to promote angiogenesis 
and cancer growth (169). In another study, it was reported that 
breast cancer cells can produce TSLP (170). Kuan and Ziegler 
extended the previous observation demonstrating that TSLP pro-
motes the survival of breast cancer cells through the expression of 
the antiapoptotic molecule Bcl-2 (171).

In contrast to these studies, two groups have demonstrated a 
tumor-suppressing role for TSLP in murine models of skin car-
cinoma (172, 173). Yue and collaborators found decreased TSLP 
expression in human colon cancer and TSLP levels negatively cor-
related with the clinical staging score of cancer (174). Moreover, 
TSLP enhanced apoptosis of colon cancer cells through the 
engagement of TSLPR. Finally, using a xenogra� mouse model, 
the authors found that peritumoral administration of TSLP 
reduced tumor growth. In mouse models of breast and pancreatic 
carcinogenesis, it was found that early administration of TSLP 
blocked cancer development. �e antitumor e�ect of TSLP was 
mediated by activation of CD4+ �2 cells around tumors and in 
draining LNs (175). Finally, Soumelis and collaborators reported 
that TSLP was undetectable or expressed at low levels in breast 
cancer and in several human breast cancer cell lines (176).

In conclusion, the role of TSLP–TSLPR axis in experimental 
and human cancer is still controversial (34). In certain neoplasias, 
TSLP plays a pro-tumorigenic role, whereas in others, a protec-
tive role. It is obvious that there are many important questions 
that should be urgently addressed before we understand whether 
TSLP isoforms and TSLPR+ immune cells are an ally or an 
adversary in different types of human cancer. This is another 
fundamental question that should be seriously considered when 
designing TSLP-targeted therapeutic strategies. Finally, studies 
are urgently needed to examine the di�erential expression and 
functions of sf TSLP and lf TSLP on patients with cancer.

CONCLUSION AND PERSPECTIVES

�ymic stromal lymphopoietin is a cytokine originally character-
ized by its ability to promote DC and B cell activation (177). �ere 
is increasing evidence that TSLP can directly and/or indirectly 
activate a plethora of immune and non-immune cells involved in 
a wide spectrum of in�ammatory disorders and cancer (161–163). 
�ese emerging observations greatly widen the role of TSLP in 
di�erent human diseases.

It is important to emphasize that several groups have dem-
onstrated the existence of two variants (sf and lf TSLP) of TSLP 
in humans (10, 14, 15, 22, 47, 100, 101). sf TSLP is constitutively 
expressed in steady state in di�erent human tissues and plays 
a homeostatic role (15). By contrast, lf TSLP is induced at sites 
of in�ammation and plays a proin�ammatory role (14, 15, 47, 
50, 100, 102). lf TSLP has a sequence of 159 amino acids, which 
corresponds to the commercially available recombinant TSLP 
produced by prokaryotic cells. Moreover, sf TSLP overlaps the 
lf TSLP in the terminal region and available anti-TSLP antibod-
ies do not distinguish between the two isoforms. �erefore, at 
present, the use of speci�c primers is the only way to distinguish 
the two TSLP variants at the molecular level. Unfortunately, only 
few studies have examined the expression and functions of the 

two TSLP variants in di�erent human disorders. �e studies 
examining the two isoforms have already revealed interesting 
dichotomies in the expression and function of two TSLP variants 
in di�erent in�ammatory diseases (11, 14, 15, 22, 100). Additional 
studies are urgently needed to evaluate the presence and function 
of the two isoforms of TSLP in di�erent pathological conditions.

An additional level of complexity derives from the observation 
that, in pathological conditions, TSLP can be cleaved by several 
endogenous proteases (11, 63, 106). �e latter observation is not 
unexpected because another epithelial-derived cytokine such as 
IL-33 can be cleaved by several endogenous (i.e., tryptase) (178) 
and exogenous proteases (179).

�e role of TSLP in di�erent types of cancer is controversial 
(34, 171, 174). �e role of the two TSLP isoforms has not been 
investigated in most of these studies. In addition, the commercial 
TSLP assay used in some studies (41) does not distinguish the two 
TSLP isoforms. �e role of the two isoforms of TSLP in human 
cancers should be taken into account in future studies.

Given the role of TSLP in experimental and clinical asthma 
(45, 56, 57, 119, 180) and in AD (25, 40, 95, 137), this cytokine 
soon appeared an attractive therapeutic target (100). Tezepelumab 
is a �rst-in-class human mAb that binds to TSLP inhibiting 
its interaction with TSLP receptor complex (44). Tezepelumab 
given as an add-on therapy to patients with severe uncontrolled 
reduced asthma exacerbations and improved quality of life (124). 
It is unknown whether tezepelumab administration in humans 
a�ects plasma levels or the bronchial expression of the two TSLP 
variants. Several undergoing clinical trials are investigating the 
e�cacy of tezepelumab in AD. Because the short form of TSLP 
has important homeostatic (15) and antibacterial activities (22), 
the long-term safety should be taken into account when design-
ing anti-TSLP targeted therapeutic strategies.

�ymic stromal lymphopoietin was initially considered a 
key cytokine that initiates and promotes type 2 immunity (177). 
Increasing evidence suggests that TSLP could mediate immune 
in�ammation also in patients with autoimmune disorders such 
as RA (38, 39) and psoriasis (40). �e latter �ndings add to the 
complexity of TSLP interactions with several immune cells. We 
would like to suggest that TSLP and/or perhaps TSLP isoforms 
might have di�erent immunomodulatory roles, depending on the 
type of immune environment.

Given the complexity of the interactions of di�erent isoforms 
and cleavage products of TSLP with a plethora of immune cells 
in various organs and in di�erent diseases, several fundamental 
questions remain to be elucidated. A better understanding of the 
impact of TSLP isoforms and cleavage products on immune cells 
will be critical for the development of safe and e�ective TSLP 
targeted therapies in in�ammatory disorders and cancer.
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