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12 ABSTRACT: It is well known that essential oil thymol exhibits antibacterial activity. The 

13 protective effects of thymol on pig intestine during inflammation is yet to be investigated. In this 

14 study, an in vitro lipopolysaccharide (LPS)-induced inflammation model using IPEC-J2 cells was 

15 established. Cells were pre-treated with thymol for 1 h and then exposed to LPS for various assays. 

16 Interleukin 8 (IL-8) secretion, the mRNA abundance of cytokines, reactive oxygen species (ROS), 

17 nutrient transporters, and tight junction proteins was measured. The results showed that LPS 

18 stimulation increased IL-8 secretion, ROS production, and tumor necrosis factor alpha (TNF-α) 

19 mRNA abundance (P < 0.05), but the mRNA abundance of sodium-dependent glucose transporter 

20 1 (SGLT1), excitatory amino acid transporter 1 (EAAC1) and H+/peptide cotransporter 1 (PepT1) 

21 were decreased (P < 0.05). Thymol blocked ROS production (P < 0.05) and tended to decrease the 

22 production of LPS-induced IL-8 secretion (P = 0.0766). The mRNA abundance of IL-8 and TNF-α 

23 was reduced by thymol pre-treatment (P < 0.05), but thymol did not improve the gene expression 

24 of nutrient transporters (P > 0.05). The transepithelial electrical resistance (TEER) was reduced 

25 and cell permeability increased by LPS treatment (P < 0.05), but these effects were attenuated by 

26 thymol (P < 0.05). Moreover, thymol increased zonula occludens-1 (ZO-1) and actin staining in 

27 the cells. However, the mRNA abundance of ZO-1 and occludin-3 was not affected by either LPS 

28 or thymol treatments. These results indicated that thymol enhances barrier function and reduce 

29 ROS production and pro-inflammatory cytokine gene expression in the epithelial cells during 

30 inflammation. The regulation of barrier function by thymol and LPS may be at post-transcriptional 

31 or post-translational levels. 

32 KEYWORDS: barrier function, IPEC-J2 cells, inflammatory responses, lipopolysaccharide 

33 (LPS)-induced inflammation, thymol 
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34 INTRODUCTION

35 Intestinal epithelial cells (IECs) are continuously lined monolayer cells, which play important 

36 roles in the animal’s physical defense. Normally, IECs function as the first line of defense against 

37 the invasion of pathogenic agents in the external environment of gut lumen.1 The maintenance of 

38 the barrier function of IECs contributes to the gut homeostasis and health of animals. Gut disorder 

39 and dysfunction might be harmful to the growth performance of food-producing animals, and may 

40 induce gut diseases such as inflammatory bowel diseases and diarrhea, possibly due to complex 

41 interactions among immunologic, genetic, microbial and environmental factors.2 For instance, 

42 diarrhea is a common gut disorders, which causes almost 5% mortality per year in weaned piglets.3 

43 Therefore, it is necessary to prevent gut disorder and diseases by maintaining proper barrier 

44 function of IECs in animals.

45 In addition to the physical barrier, IECs also function as an extrinsic barrier. Under certain 

46 circumstances, IECs secrete signaling molecules like mucins, cytokines, and chemokines to 

47 prevent the invasion of harmful microorganisms in the gut.4 Also, a series of immune responses 

48 within IECs and the interaction among IECs, leukocytes, and adjacent cells is initiated by the 

49 invasion of pathogenic bacteria. When toll-like receptors (TLRs) of IECs are activated by invading 

50 pathogen-associated molecular patterns (PAMs) like lipopolysaccharide (LPS), a signaling 

51 cascade in TLR-activated pathway leads to the activation of transcription factor nuclear factor 

52 kappa B (NF-κB) and the secretion of pro-inflammatory cytokines,5 such as tumor necrosis factor 

53 α (TNF-α), interleukin 6 and 8 (IL-6 and IL-8). Therefore, it is necessary to improve gut health 

54 through suppressing unnecessary inflammatory responses.

55 Tight junctions are one of the junctional multiprotein complexes which seal the paracellular 

56 space among adjacent epithelial cells. These tight junctions lie at the apical side of the lateral 
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57 membrane of epithelial cells and function as a barrier to keep the diffusion of solutes through the 

58 intercellular space.6 Tight junctions regulate ion transport, water, and solutes via the paracellular 

59 pathway and blockage of immunogenic macromolecules, and only controlled and selective 

60 movements are allowed during the passive permeability process.1 Disruption of tight junctions 

61 would increase the paracellular permeability, which enables harmful substances like pathogens 

62 and endotoxins to translocate, and subsequently resulting in tissue damage and inflammation. 

63 Tight junctions consist of over 30 structural or functional proteins.6 Occludin, zonula occludens-1 

64 (ZO-1) and claudin-1 are three crucial proteins to maintain the physiological functions of tight 

65 junctions. Previous studies demonstrated that the upregulation of ZO-1 and occludin could 

66 suppress the increase of intestinal permeability caused by the disruption of tight junctions in 

67 weaned piglets.7-8 Therefore, maintaining a proper expression level of occludin and ZO-1 is widely 

68 considered as an effective target for the therapies of intestinal diseases. 

69 Oxidative stress is also responsible for gut inflammation in animals. Generally, it results from 

70 the excessive accumulation of reactive oxygen species (ROS) and the imbalance between ROS 

71 and antioxidant agents. Oxidative stress could cause biomacromolecule damage, which leads to 

72 inflammation and other diseases.9 Meanwhile, oxidative stress dysregulates the proliferation, 

73 differentiation, and apoptosis of IECs and is detrimental to the maintenance of physiological 

74 functions of intestinal epithelia in animals.10 

75 Many reports have elucidated that essential oils have anti-oxidative and anti-inflammatory 

76 properties11 and they have been successfully applied to animal feeds.12-13 Among them, thymol is 

77 a natural monoterpene phenolic compound, which exhibits antimicrobial,14 anti-oxidative15 and 

78 anti-inflammatory16 properties. It has been certified by the U.S. Food and Drug Administration 

79 (FDA), as having Generally Recognized as Safe (GRAS) status.17 Moreover, thymol has been 
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80 identified as having therapeutic potential of fighting against pathogenic bacteria and boosting the 

81 immune system.18 However, little is known about the protective effect of thymol on porcine 

82 intestinal epithelial cells during inflammation. Understanding the mechanisms underlying the 

83 protective effects of thymol is critical to its effective application in enhancing gut health and 

84 function in swine. 

85 Thus, the objective of this study was to explore how thymol regulates the barrier function and 

86 inflammatory responses in porcine intestinal epithelial cells. We assumed that thymol might 

87 maintain barrier functions by regulating inflammatory signaling pathways and the expression of 

88 crucial proteins of tight junctions, and eventually attenuating LPS-induced inflammatory 

89 responses in the IPEC-J2 cell line. The underlying molecular mechanism needed to be revealed 

90 further. 

91 MATERIALS AND METHODS

92 Materials. Thymol (≥ 98.5%), fluorescein isothiocyanate-dextran (FITC-dextran, 4 kDa), 

93 dimethyl sulfoxide (DMSO) and lipopolysaccharide (LPS) were purchased from Sigma-Aldrich 

94 (Oakville, Ontario, Canada).

95 Cell culture. The non-transformed neonatal jejunal epithelial cell line IPEC-J2 was grown in 

96 DMEM–Ham’s F-12 (1:1) (Invitrogen, Fisher Scientific, Ottawa, ON, Canada) supplemented with 

97 10% fetal bovine serum (FBS) (Hyclone, Canadian Origin; Fisher Scientific, Ottawa, ON, 

98 Canada), penicillin (100 IU/mL), streptomycin (100 μg/mL) and 0.25 μg/mL of amphotericin B 

99 (Fisher Scientific, Ottawa, ON, Canada) and maintained in an atmosphere of 5% CO2 at 37°C for 

100 cultures and assays. Culture medium was replaced every 2-3 d. 

101 Inflammation was induced by LPS that was derived from Salmonella Enterica ser. 

102 Typhimurium (Sigma-Aldrich). IPEC-J2 cells cultured into a 12-well plate or Millicell membrane 
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103 cell inserts (24 wells, Corning Costar, New York City, NY) were first washed with plain medium 

104 and then were treated with 10 μg/mL of LPS4 for different time periods. After treatment, cells 

105 cultured into a 12-well plate (Corning Costar) were used for RNA extraction and gene expression 

106 assays, and cells cultured in Millicell membrane cell inserts (Corning) were used for transepithelial 

107 electrical resistant (TEER) and permeability assays.

108 For thymol treatment, 100 mM stock solution dissolved in DMSO was freshly prepared and 

109 diluted in complete medium at appropriate concentrations (10-100 µM). To eliminate the influence 

110 of DMSO, equal levels of DMSO was added to all the experimental groups. For viability assays, 

111 cells were treated with thymol at different concentrations (10 -100 µM) for 24 h and for rest of 

112 experiments, cells were pre-treated with thymol (50 µM) for 1 h and then continuously treated 

113 with the same concentration during the LPS stimulation.

114 Cytokine measurement by ELISA. The IL-8 and TNF-α concentrations of culture 

115 supernatants were measured by ELISA kits (Invitrogen, Fisher Scientific), following the 

116 manufacturer’s instructions. Briefly, 100 μL of culture supernatant was used for both IL-8 and 

117 TNF-α assays. At the end of the reaction process, the plates were read at 450 nm using a Synergy™ 

118 H4 Hybrid Multi-Mode Microplate Reader (BioTek, Winooski, VT). Cytokine concentrations 

119 were calculated from a standard curve that had been created using seven 2-fold dilutions of porcine 

120 recombinant IL-8 and TNFα. The IL-8 level was expressed as pg/mL. TNF-α level was under the 

121 detection limit.

122 Reactive oxygen species (ROS) assay. Cellular ROS was measured using a fluorescent dye, 

123 2’,7’dichlorofluorescein diacetate (DCFH-DA, Sigma-Aldrich), which is a nonpolar compound 

124 that is readily diffusible into cells. It is hydrolyzed to the non-fluorescent polar derivative DCFH 

125 and thereby trapped within cells. In the presence of oxidants, DCFH is converted into the highly 
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126 fluorescent 2’,7’-dichlorofluorescein (DCF). Briefly, cells were cultured in a 96-well plate. After 

127 different treatments, cells were washed two times with PBS, and DCFDA at 10 µM in PBS was 

128 added to the wells. The cells were then incubated for 30 min and the fluorescence of DCF was 

129 detected by a Synergy™ H4 Hybrid Multi-Mode Microplate Reader (BioTek) with a maximum 

130 excitation and emission spectra of 485 nm and 528 nm.19 

131 Cell viability assay. Cell viability was measured using the water-soluble tetrazolium salts 

132 (WST-1) Cell Proliferation Reagent (Sigma Aldrich) according to the manufacturer's instructions. 

133 Briefly, IPEC-J2 cells were seeded into a 96-well plate (Corning Costar) at a density of 1×104 

134 cells/mL and cultured in a medium for two weeks. After different treatments, the cells were washed 

135 once with PBS, then 100 μL fresh culture medium containing 10% WTS-1 was added. The cells 

136 were then incubated for 1 h. The absorbance at 450 nm was measured using a Synergy™ H4 

137 Hybrid Multi-Mode Microplate Reader (BioTek). Cell viability was presented as a percentage of 

138 untreated control cells.

139 RNA extraction and real-time PCR. Total RNA was extracted from IPEC-J2 cells using 

140 Trizol reagents, (Invitrogen) following the manufacturer’s protocol. RNA concentration, 

141 OD260/OD280, and OD260/OD230 were measured by Nanodrop-2000 spectrophotometer 

142 (Thermo Scientific, Ottawa, ON, Canada). The integrity of RNA was verified by visualization in 

143 an agarose gel. Two μg of total RNA was reverse transcribed into cDNA using the iScriptTM 

144 cDNA Synthesis kit (Bio-Rad, Mississauga, ON, Canada), following the manufacturer’s 

145 instructions. Quantitative RT-PCR was performed using SYBR Green Supermix (Bio-Rad) on a 

146 CFX Connect™ Real-Time PCR Detection System (Bio-Rad). The Primers for real-time PCR 

147 analysis were designed with Primer-Blast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) 

148 based on the published mRNA sequence in the Genbank. All the primers spin at least two exons 
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149 each. Sequences of primers are listed in Table1. The thermal profile for all reactions was three min 

150 at 95 °C, then 40 cycles of 20 s at 95 °C, 30 s at 60 °C and 30 s at 72 °C. At the end of each cycle, 

151 the fluorescence was monitored for 10 s. Each reaction was completed with a melting curve 

152 analysis to ensure the specificity of the reaction. RT-PCR data were analyzed using the 2-ΔΔCT 

153 method20 to calculate the relative fold change of target gene, using hypoxanthine phosphoribosyl 

154 transferase (HPRT) and Cyclophilin-A (CycA) as the reference genes.21 

155 TEER measurement. The TEER of cell monolayers was measured using a Millicell 

156 Electrical Resistance System (ESR-2) (Millipore-Sigma). IPEC-J2 cells were seeded into Millicell 

157 membrane cell inserts (24 wells, Corning Costar) at a density of 7 × 104 cells/cm2. The TEER was 

158 monitored every other day. When a monolayer of cells was completely differentiated, cells were 

159 treated with LPS, and TEER was measured before and after treatments. The data were presented 

160 as a percentage of initial values before treatments.

161 Measurement of cell permeability. To quantify the paracellular permeability of cell 

162 monolayers, 1 mg/mL of 4 kDa FITC-dextran (Sigma-Aldrich) was added to the apical side of the 

163 inserts. The basolateral medium aliquots were taken after 6 h of incubation. The diffused 

164 fluorescent tracer was then measured by fluorometry (excitation, 485 nm; emission, 528 nm) using 

165 a Synergy™ H4 Hybrid Multi-Mode Microplate Reader (BioTek).

166 Immunofluorescent staining. Cells were cultured onto coverslips (Fisher Scientific) and 

167 fixed with 4% paraformaldehyde (PFA) (Sigma). The cells were blocked with 5% goat serum 

168 (Jackson ImmunoResearch Laboratories, West Grove, PA, USA) for 1 hour and then incubated 

169 with an anti-rabbit ZO-1 polyclonal antibody (1:100 dilution, Thermal Scientific) at 4 ̊C overnight. 

170 The cells were then washed 3 times with PBS and incubated with an Alexa fluor 488 goat anti-

171 rabbit antibody (Thermal Scientific, Cat # A-11034) for 1 h at room temperature. Rinsed cells were 
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172 mounted with Vectashield Mounting Medium with DAPI (Vector Laboratories, Inc. Burlingame, 

173 CA, USA). For actin staining, fixed cells were washed 3 times with PBS, permeabilized with 0.5% 

174 Triton X-100 in PBS for 20 min and incubated with Phalloidin, CFTM488A (1:100 dilution in PBS, 

175 Biotium, Inc, Fremont, CA 94538, USA) at room temperature for 1 h. The cells were then washed 

176 3 time with PBS and mounted with Vectashield Mounting Medium with DAPI (Vector 

177 Laboratories, Inc.). Images were taken by a Zeiss Fluorescence Microscope (Car-Zeiss Ltd, 

178 Toronto ON, Canada).

179 Statistical analysis. Data were presented as means ± standard deviations. The statistical 

180 analyses were performed with the GraphPad Prism 7 (GraphPad Software, La Jolla, USA). 

181 Differences between means were evaluated by one-way ANOVA. Multiple comparisons were 

182 done using Tukey's multiple comparisons test. Level of significance was set at 𝑃 < 0.05.

183 RESULTS 

184 Dose-effect of thymol on the viability of IPEC-J2 cells. As shown in Figure 1, thymol 

185 concentrations less than 100 μM did not significantly affect cell viability (P > 0.05), but the 

186 viability of IPEC-J2 significantly decreased at the concentrations above 100 μM compared with 

187 control (P < 0.05). Therefore, 50 μM was set as the working concentration of thymol for further 

188 experiments. 

189 Effect of thymol on IL-8 secretion, ROS production, and cell viability in IPEC-J2 cells. 

190 As shown in Figure 2A and 2B, the levels of IL-8 and ROS in the LPS treatment were significantly 

191 higher than that in the control (P < 0.05). Although thymol pre-treatment significantly inhibited 

192 LPS-induced production of ROS (P < 0.05), thymol tended to decrease IL-8 secretion (P = 0.0766). 

193 The effect of LPS and thymol treatment on cell viability was shown in Figure 2C. LPS and thymol 

194 treatment had no significant effect on the cell viability (P > 0.05). 
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195 Effect of thymol on cytokine gene expression in IPEC-J2 cells. As shown in Figure 3A, 

196 there was no significant effect on the relative gene expression of IL-8 in the LPS treatment 

197 compared with the control (P > 0.05), whereas thymol treatment before LPS stimulation 

198 significantly down-regulated the gene expression of IL-8 compared with LPS treatment group (P 

199 < 0.05). The relative gene expression of TNF-α was significantly up-regulated in cells stimulated 

200 with LPS compared with the control (P < 0.05), but thymol showed a significant suppressive effect 

201 on gene expression of TNF-α in cells treated with thymol + LPS (P < 0.05) (Figure 3B). The 

202 relative gene expression of IL-6 did not respond to LPS stimulation in IPEC-J2 cells compared 

203 with the control (P > 0.05), and also LPS + Thymol treatment had no effect (P > 0.05) (Figure 

204 3C). 

205 Effect of thymol on transporter gene expression in IPEC-J2 cells. Figure 4A and 4C 

206 showed that LPS significantly downregulated the expression of intestinal Na+/glucose 

207 cotransporter 1 (SGLT-1) (P < 0.05) and excitatory amino-acid carrier 1 (EAAC-1) (P < 0.05) 

208 compared with the control. However, thymol pre-treatment of cells did not significantly (P > 0.05) 

209 upregulate the expression of these two transporter genes compared with only LPS-stimulated cells. 

210 LPS did not show a significant effect on ASC amino-acid transporter 2 (ASCT2) transporter gene 

211 expression (P > 0.05) (Figure 4B). Figure 4D shows that LPS downregulated the expression of 

212 H+/peptide cotransporter 1 (PepT1) significantly compared with the control (P < 0.05), but pre-

213 treatment of cells with thymol had no effects on the expression of this gene (P > 0.05). As shown 

214 in Figure 4E, LPS significantly upregulated the gene expression of B0-type amino acid transporter 

215 1 (B0AT1) in IPEC-J2 cells compared with the control (P < 0.05), but the pre-treatment of cells 

216 with thymol did not show a significantly positive effect on LPS-induced B0AT1 transporter gene 

217 expression (P > 0.05). 
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218 Effect of thymol on relative gene expression of tight junction proteins in IPEC-J2 cells. 

219 There were no significant differences in the gene expression of ZO-1 and CLDN3 in both LPS and 

220 LPS + thymol treatment groups compared with the control (P > 0.05) (Figure 5). 

221 Effect of thymol on TEER and permeability of IPEC-J2 cells. As shown in Figure 6A, the 

222 percentage of relative TEER value was the lowest for 1 h LPS stimulation at 0 h, 2h and 3h (P < 

223 0.05), whereas after 1 h LPS stimulation, there was no significant difference (P > 0.05) at 2h and 

224 3 h. This indicated that TEER adapted to LPS stimulation after 1 h, and thus 1 h LPS stimulation 

225 was chosen to test the effect of thymol on TEER values in LPS-induced IPEC-J2 cells. As shown 

226 in Figure 6B, the percentage of relative TEER value of cells stimulated with LPS for 1 h was 

227 significantly lower compared with the control (P < 0.05), whereas pre-treatment of cells with 

228 thymol restored the value to the same level as the control (P > 0.05). The protective effect of 

229 thymol on LPS-induced damage in IPEC-J2 was also apparent in the FITC-dextran flux experiment 

230 (Figure 6C). Pre-treatment with thymol significantly decreased the leakage of FITC-dextran 

231 caused by LPS stimulation compared with the LPS treatment group (P < 0.05), and the 

232 measurements were similar to the control (P > 0.05). 

233 Effect of thymol on LPS-induced morphological changes in tight junction and actin fiber 

234 in IPEC-J2 cells. As shown in Figure 7, the distribution of ZO-1 protein within the tight junction 

235 was broken after LPS stimulation compared with the control, whereas pre-treatment of cells with 

236 thymol promoted the even redistribution of ZO-1 protein within the tight junction. The cytoskeletal 

237 structure of the actin fiber in IPEC-J2 cells was disorganized due to LPS stimulation compared 

238 with the control, whereas the pre-treatment of cells with thymol alleviated the severity.

239 DISCUSSION
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240 Thymol has been known as a functional phytochemical isolated from plant essential oils and 

241 possesses many pharmacological properties.18 Thymol as one of popular essential oil components 

242 derived from thyme has been used in animal feeds for several years due to its antioxidant, 

243 antimicrobial, and anti-inflammatory properties.22 Many studies have shown that thymol has a 

244 positive effect on attenuating LPS-induced inflammation in vitro and in vivo via regulating 

245 immune responses. 23-24 The effectiveness of thymol is mainly attributed to the phenolic hydroxyl 

246 group in its chemical structure.25 Gut inflammation can be caused by infection, diet allergy and 

247 weaning in piglets.26-27 Although gut inflammation may not cause the full-blown clinical 

248 symptoms in weaned piglets, it could lead to increased mucosal permeability and reduced growth 

249 performance. The dietary supplementation of thymol can prevent the intestinal injury by improving 

250 the intestinal integrity and modulating immune responses in the Clostridium perfringens–

251 challenged broiler chickens.28 However, the potential anti-inflammatory effects of thymol on 

252 porcine intestinal cells remain to be elucidated. Therefore, an in vitro inflammation model using 

253 IPEC-J2 cells was established in the present study to evaluate the protective effects of thymol on 

254 LPS-induced inflammatory responses in epithelial cells. 

255 Our results showed that LPS significantly increased IL-8 secretion (Figure 2A) and TNF-α 

256 mRNA abundance (Figure 3B) in cells when compared with control cells without LPS treatment, 

257 indicating inflammation was successfully induced by LPS. The thymol treatment was able to 

258 attenuate the inflammatory responses induced by LPS evidenced by reduced IL-8 and TNF-α 

259 mRNA abundance (Figure 3A and 3B) as well as the tendency to decrease the production of LPS-

260 induced IL-8 secretion (Figure 2A). Interestingly, IL-6 mRNA abundance (Figure 3C) was not 

261 affected by LPS or thymol. The possible explanation was that different LPS sources and different 

262 treatment time might cause different inflammatory responses in the IPEC-J2 cells. It has been 
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263 reported that IPEC-J2 cells treated with 1 μg/mL LPS (E. coli 055:B5) with different treatment 

264 times showed a varied effect on IL-6 secretion.29 Previous studies indicated that oxidative stress 

265 affected IL-8 and TNF-α expression, but IL-6 expression changed insignificantly in IPEC-J2 

266 cells.30 Farkas et al.21 found that modified apigenin did not influence IL-6 expression as apigenin 

267 did in IPEC-J2 cells during LPS-induced inflammation. Many reports have indicated that the 

268 signaling pathways like NF-κB and mitogen-activated protein kinase (MAPK) are involved in the 

269 transcriptional regulation of cytokine genes. Thymol could inhibit LPS-induced inflammation by 

270 suppressing NF-κB and MAPK signaling pathways,24, 31 and activating Nrf2 pathways.32 The 

271 underlying mechanisms might be that the anti-inflammatory effects of thymol are related to the 

272 regulation of these signaling pathways. Therefore, supplementation with thymol might be a 

273 potential approach to reduce inflammatory responses in weaned piglets. 

274 Generally, during LPS-induced inflammation, phagocytes might be stimulated to generate 

275 excessive ROS and thereby leading to the imbalance between ROS and antioxidants.33 The 

276 imbalanced redox state could induce oxidative stress, which causes the dysfunction of porcine 

277 IECs by damaging the structure of biomacromolecules like DNA, proteins, and lipids.9 However, 

278 the ROS production induced by LPS was significantly blocked by thymol (Figure 2B). The results 

279 were consistent with a recent study indicating that thymol attenuated the ROS production and 

280 showed myeloperoxidase inhibitory activity in isolated human neutrophils.34 Thymol as a phenolic 

281 compound is an effective antioxidant, which could scavenge ROS and free radicals to maintain the 

282 normal cellular functions and signaling pathways. The decrease of ROS intensity might be that the 

283 barrier functions of IPEC-J2 cells was enhanced. Thymol also has hydrophobicity which allows it 

284 to permeabilize cellular or organelle membranes and can be cytotoxic but the cytotoxicity is dose-

285 dependent.35 Thymol does not alter cell membrane permeabilization up to 50 mg/L (about 300 
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286 μM).36 A study of ultrastructural morphological examination by electron microscopy indicated that 

287 Caco-2 cell death is induced when treated with 250 μM thymol for 24 and 48 h.37 In our study, the 

288 dose of thymol addition (50 μM) did not show any harmful effects on cell viability (Figure 2C). 

289 The minimum inhibitory concentrations of thymol against several pathogens are from 80-640 

290 mg/L.38 So a low dose of thymol addition (50 μM) in the present study unlikely has antimicrobial 

291 activities but can effectively reduce inflammation in the porcine intestinal epithelial cells through 

292 scavenging ROS. Small intestine is the major organ for the digestion and absorption of dietary 

293 carbohydrates and proteins. Hence, nutrient transporters SGLT1, ASCT2, EAAC1, PepT1, and 

294 B0AT1 play important roles in the absorption of carbohydrates, amino acids, and proteins (in the 

295 form of glucose, amino acids, di- and tripeptides).39 Previous studies demonstrated that the dietary 

296 supplementation of essential oils could enhance carbohydrate and protein absorption by improving 

297 the gene expression of nutrient transporters in animals.40-42 In the present study, LPS reduced the 

298 mRNA abundance of these nutrient transporters except ASCT2 and B0AT1 (Figure 4), which 

299 demonstrated that LPS-induced inflammation damaged the structure and barrier functions of 

300 porcine intestinal epithelia and the major nutrient transport through a transcellular pathway. 

301 Meanwhile, oxidative stress might cause mitochondria injury and energy metabolisms disorder, 

302 but because these transporters are energy-dependent, it is possible that this might poses a threat to 

303 the process of energy-dependent active transport. However, they were not totally restored by the 

304 addition of thymol on the level of transporter mRNA abundance. It does not mean that thymol did 

305 not affect the transport activities. Many post-translational modifications (PTMs) could regulate the 

306 activity of transporters, such as glycosylation, phosphorylation, trafficking and ubiquitination.43 

307 We assumed that thymol might mainly regulate the activities of these transporters at the PTMs 

308 level, but further research is needed to confirm this assumption. It is understood that the mRNA 
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309 abundance might not thoroughly reflect the activity of these transporters. Furthermore, many 

310 reports have indicated that nutrient transporters function depends on ions like Na+ and H+.44 We 

311 inferred that thymol might not be able to completely rescue the disruption of ions homeostasis 

312 caused by LPS stimulation, which explains the insignificant changes in the expression of 

313 transporters at the transcription level under the thymol treatment. 

314 A recent study demonstrated that intact epithelial barrier functions are necessary to maintain 

315 the “homeostatic tolerance” in response to physiological host–gut microbiome cross-talks and 

316 therefore the control of epithelial barrier dysfunction is crucial for preventing gut inflammation.45 

317 The results also indicated that when the intestinal epithelium is intact, probiotic bacteria can be of 

318 benefit to gut health and they may be harmful when the gut barrier is already compromised.45 So 

319 it is very crucial to restore proper gut barrier function in order to prevent gut disorder and diseases 

320 in weaned piglets. The TEER reflects variations in the permeability both through transcellular and 

321 paracellular pathways, but it is mainly thought to depend on the status of tight junctions.46 Thus, 

322 TEER is considered as a good indicator of the integrity and tightness of intestinal epithelial barrier 

323 model.6 Similarly, the FITC-dextran flux reflects the permeability of cells. The TEER was reduced 

324 by LPS stimulation for 1 h. After LPS stimulation, the structure of IECs, as well as tight junctions 

325 were disrupted (Figure 7). Thus, the relative TEER value significantly decreased and FD-4 

326 significantly increased (Figure 6A and 6B). However, these effects were prevented by thymol, and 

327 the TEER value was normalized by using thymol as a pre-treatment. Also, pre-treatment of the 

328 monolayers with thymol significantly decreased the leakage of FITC-dextran and increased ZO-1 

329 and actin staining in the cells (Figure 7). These results indicate that thymol could enhance barrier 

330 functions in the IPEC-J2 cells, which were consistent with recent studies with cinnamaldehyde in 

331 porcine epithelial cells 47 and with oregano essential oil in pigs.48 Moreover, thymol increased tight 
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332 junction integrity by 5 mg/L and by max. 61.7 ± 5.4% at 100 mg/L in Caco-2 cells, which indicates 

333 that thymol might have protective functions in intestinal epithelial cells.36 Therefore, 

334 supplementation with a low dose of thymol might be a potential nutritional approach to improve 

335 intestinal barrier functions in weaned piglets. 

336 Various dietary components are known to regulate epithelial permeability by modifying 

337 expression and localization of tight junction proteins.49-50 Although thymol improved the protein 

338 level of ZO-1 in the IPEC-J2 cells, the mRNA abundance of ZO-1 was not affected by either LPS 

339 or thymol (Figure 5A). Similarly, as a crucial protein of tight junctions, the mRNA abundance of 

340 CLND-3 was not significantly upregulated (Figure 5B). The results were consistent with the 

341 findings that a carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected 

342 microbes without changing the mRNA levels of tight junction proteins in the jejunal mucosa of 

343 weaning piglets.51 This discrepancy between ZO-1 mRNA and ZO-1 protein levels suggested that 

344 thymol may regulate ZO-1 expression by the post-transcriptional or post-translational mechanisms 

345 in the present study, although tight junction proteins have been reported to be regulated at both the 

346 transcriptional and post-transcriptional levels.52 However, the molecular basis for thymol actions 

347 on the barrier functions requires further investigations, especially thymol’s molecular target (e.g. 

348 odorant receptor or protein kinase).53 For instance, thymol might be an agonist of transient receptor 

349 potential cation channel subfamily M member 8 channel (TRPM8) to inhibit downstream 

350 inflammatory responses, and it has been reported for eucalyptol, a plant essential oil.54 Therefore, 

351 we suggested that the sensing and responding to thymol in the gut may also play a role in 

352 maintaining intestinal homeostasis.

353 In conclusion, thymol is derived from cymene and recognized as a bioactive compound of 

354 essential oils, which effectively enhanced gut barrier structure and functions under inflammatory 

Page 16 of 36

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



17

355 status by reducing ROS production and pro-inflammatory cytokine gene expression in the IPEC-

356 J2 cells. Supplementation with a low dose of thymol might be a potential nutritional or therapeutic 

357 strategy to improve the intestinal mucosal barrier function and reducing inflammatory responses 

358 in weaned piglets. In vivo studies with experimentally infected pigs are still needed to validate the 

359 beneficial effects of thymol on intestinal barrier functions observed in the present study.
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538 Table 1. Primers used in this study.

539 Note: TNFα: Tumor necrosis factor α; IL-8: Interleukin 8; IL-6: Interleukin 6; SGLT1: 

540 Sodium/glucose cotransporter 1; ASCT2: glutamine transporter; EAAC1: excitatory amino acid 

541 transporter 1; B0AT1: neutral amino acid transporter; PepT1: peptide transporter 1; ZO-1: Zonula 

542 occludens-1; LDN3: Claudin 3; CycA: Cyclophilin-A; HPRT: hypoxanthine phosphoribosyl 

543 transferase. 

Genes Primer sequences Product size (bp) References

5’-ATGGATGGGTGGATGAGAAA-3’  
TNF-α

5’-TGGAAACTGTTGGGGAGAAG-3’
151

5’-CACCTGTCTGTCCACGTTGT-3’
IL-8

5’-AGAGGTCTGCCTGGACCCCA-3’
126

5’-AAGGTGATGCCACCTCAGAC-3’
IL-6

5’-TCTGCCAGTACCTCCTTGCT-3’
151

5’-GGCTGGACGAAGTATGGTGT-3’
SGLT1

5’-GAGCTGGATGAGGTTCCAAA-3’
153 Yang et al., 2010 55

5’-GCCAGCAAGATTGTGGAGAT-3’
ASCT2

5’-GAGCTGGATGAGGTTCCAAA-3’
206 Yang et al., 2016 56

5’-CCAAGGTCCAGGTTTTGGGT-3’
EAAC1

5’-GGGCAGCAACACCTGTAATC-3’
168

5’-AAGGCCCAGTACATGCTCAC-3’
B0AT1

5’-CATAAATGCCCCTCCACCGT-3’
102 Yang et al., 2016 57

5’-CATCGCCATACCCTTCTG-3’
PepT1

5’-TTCCCATCCATCGTGACATT-3’
143

5’-GATCCTGACCCGGTGTCTGA-3’
ZO-1

5’-TTGGTGGGTTTGGTGGGTT-3’
200

5’-CTACGACCGCAAGGACTACG-3’
CLDN3

5’-TAGCATCTGGGTGGACTGGT-3’
123

5’-GCGTCTCCTTCGAGCTGTT-3’
CycA

5’-CCATTATGGCGTGTGAAGTC-3’
160 Farkas et.al., 2015 21

5’-GGACTTGAATCATGTTTGTG-3’
HPRT

5’-CAGATGTTTCCAAACTCAAC-3’
91 Farkas et.al., 2015 21 
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544 Figure captions

545 Figure 1. Dose-effect of thymol on the viability of IPEC-J2 cells. IPEC-J2 cells were seeded into 

546 a 96 well plate and cultured for 10 d. Cells were then treated with thymol at the indicated 

547 concentrations for 24 h. Cell viability was measured using WST-1 as described in the Materials 

548 and Methods and expressed as a percentage of control. The data were presented as mean ± SD, n 

549 = 5. 

550 Figure 2. Effect of thymol on LPS-induced IL-8 secretion, ROS production, and cell viability. 

551 IPEC-J2 cells were seeded into 12-well plates (for IL-8) or 96 well plates (for ROS production and 

552 viability) and cultured for 10 d. Cells were pre-treated with thymol (50 μM) for 1 h and then 

553 stimulated with LPS (10 μg/mL) for 1 h (for ROS production and viability) and 4 h (for IL-8). IL-8 

554 in medium (A), intracellular ROS production (B) and viability (C) were measured as described in 

555 the Materials and Methods The data were presented as mean ± SD, n = 4. Different letters represent 

556 a significant difference (P < 0.05). 

557 Figure 3. Effect of thymol on LPS-induced cytokine gene expression. IPEC-J2 cells were seeded 

558 into 12-well plate and cultured for 10 d. Cells were pre-treated with thymol (50 μM) for 1 h and 

559 then stimulated with LPS (10 μg/mL) for 4 h. Total RNA was extracted from cells and the mRNA 

560 abundance of IL-8 (A), TNF-α (B) and IL-6 (C) was detected by RT-PCR. The data were presented 

561 as mean ± SD, n = 4. Different letters represent a significant difference (P < 0.05). 

562 Figure 4. Effect of thymol on LPS-induced nutrient transporter gene expression. IPEC-J2 cells 

563 were cultured and treated using the same condition as Fig. 3. Total RNA was extracted from cells 

564 and the mRNA abundance of SGLT1 (A), ASCT2 (B), EAAC1 (C), PepT1 (D) and B0AT1 (E) 
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565 was detected by RT-PCR. Data were presented as mean ± SD, n = 4. Different letters represents a 

566 significant difference (P < 0.05). 

567 Figure 5. Effect of thymol on LPS-induced tight junction protein gene expression. IPEC-J2 cells 

568 were cultured and treated using the same condition as Fig. 3. Total RNA was extracted from cells 

569 and mRNA abundance of ZO-1 (A) and claudin3 (CLDN3) was detected by RT-PCR. Data were 

570 presented as mean ± SD, n = 4. Different letters represent a significant difference (P < 0.05).

571 Figure 6. Effect of thymol on LPS-induced trans-epithelial electrical resistance (TEER) and 

572 permeability. IPEC-J2 cells were seeded into millicell membrane cell inserts (24-well) with a 

573 density of 1×105/well and cultured for 2 weeks. TEER was monitored every other day. LPS (10 

574 μg/mL) induced time course change of TEER was measured (A). To test the effect of thymol (50 

575 μM) on LPS-induced TEER, cells were pre-treated with thymol (50 μM) for 2 h and then 

576 stimulated with LPS for 1 h. TEEER was measured before and after LPS-stimulation (B). 

577 Permeability was tested by FD4 (C). Data were presented as a percentage of initial TEER value 

578 and given as means ± SD, n = 4. Bars with different letters are significantly different (P < 0.05). 

579 Figure 7. Effect of thymol on the LPS-induced morphological changes of tight junction and actin 

580 fiber. IPEC-J2 cells were seeded into coverslips at a density of 1×105/well and cultured for 2 

581 weeks. Cells were pre-treated with thymol (50 μM) for 2 h and then stimulated with LPS for 1 h. 

582 Cells then were the fixed for ZO-1 and actin staining as described in the MATERIALS AND 

583 METHODS.

584

585

586
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590 Figure 2
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