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The thymus, a primary lymphoid organ, produces the T cells of the immune system.
Originating from the 3rd pharyngeal pouch during embryogenesis, this organ functions
throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent
on the types of systemic stresses encountered. The thymus also undergoes a functional
decline during aging, resulting in a progressive reduction in naïve T cell output. This
atrophy is evidenced by a deteriorating thymic microenvironment, including, but not
limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration
of cellular changes in the thymus at various stages of life, including mouse models of in-
born errors of immunity and with single cell RNA sequencing, is revealing an expanding
number of distinct cell types influencing thymus functions. The thymus microenvironment,
established through interactions between immature and mature thymocytes with thymus
epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural
crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell
populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current
review, we will explore the contributions of the many stromal cell types participating in the
formation, expansion, and contraction of the thymus under normal and pathophysiological
processes. Such information will better inform approaches for restoring thymus
functionality, including thymus organoid technologies, beneficial when an individuals’
own tissue is congenitally, clinically, or accidentally rendered non-functional.

Keywords: thymus, FOXN1, thymus epithelial cells, mesenchymal cells, endothelial cells, T cell development,
thymus regeneration, thymus organoid technologies
INTRODUCTION

The thymus originates from the 3rd pharyngeal pouches (3rd PP), budding from one of the 5
temporary bilateral evaginations developing along the embryonic gut tube [reviewed in (1, 2)]. At
this early stage, Paired Box 1 (PAX1), a member of the PAX family of transcription factors, is
required for the patterning of these pharyngeal pouches. PAX1 is present in mesenchymal
condensates surrounding the pouches, including the 3rd PP. Mutations in PAX1 cause thymus
hypoplasia/aplasia, a phenotype more penetrant in humans than mice (3–6). The 3rd PP first
patterns into the anterior-dorsal parathyroids at embryonic days 9.5-10 in the mouse, a time frame
org June 2022 | Volume 13 | Article 8647771
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matching weeks 6-7 of gestation in humans. The ventrally
positioned thymus anlage is specified at mouse embryonic days
10.5-11 (week 8 in human) (2). Both the parathyroids and
thymus pattern as neural crest cell derived (NCC)
mesenchymal cells (Mes) condense around a layer of columnar
epithelial cells. Mes release Bone Morphogenic Protein 4
(BMP4), supporting the differentiation of some endothelial
cells into thymus epithelial cells (TECs) (Table 1) (7). Vascular
endothelial growth factor (VEGF), produced by Mes, and to
some extent, by immature TECs and CD4-CD8- thymocytes, aids
in tissue vascularization (8–11). A major change in the thymus
occurs at e11.25 as immature TECs begin expressing the
Forkhead Box N1 (FOXN1) transcription factor (1, 12, 13).
FOXN1 positively regulates the expression of hundreds of
genes, creating an environment suitable for T cell development
(14). Among the up-regulated genes are those encoding
chemokines, such as CCL25, which recruit early thymus
progenitors (ETPs; also referred to as thymus progenitor cells)
into the thymus tissue (15). The ETPs enter prior to tissue
vascularization (16, 17). Thereafter, non-hematopoietic lineage
cells, Mes, TECs and endothelial cells collectively cross-
Frontiers in Immunology | www.frontiersin.org 2
communicate with the hematopoietic cells to create a highly
branched, three-dimensional (3D) epithelial meshwork (9, 18–
21). This contrasts almost all other epithelial tissues in the body
where cuboidal, squamous, or columnar features are retained
(20, 22). As the thymus expands, Mes cells differentiate, forming
the capsule, septae, perivascular cells (pericytes), vascular
smooth muscle cells and fibroblasts. Pericytes envelope the
endothelial vasculature and aid in nascent blood vessel
formation (23). At early embryonic stages of thymopoiesis, T
cell development proceeds in waves, with the earliest cell
populations representing the gd T cell lineage. Step-wise
hematopoietic/non-hematopoietic cell-cell interactions promote
thymus tissue expansion (19). These events are regulated by
chemokine gradients, growth factor- and TNF- signaling
pathways and Notch-notch ligand interactions, enabling
immature TEC differentiation into two major subsets, cortical
(cTECs) and medullary (mTECs) (Table 1). Cortical TECs
secrete IL-7 and produce Delta-Ligand Like 4 (DLL4),
supporting the expansion and differentiation of immature
CD4-CD8- (DN) thymocytes (24–26). DLL4-Notch interactions
induce expression of recombination activating genes (RAG1 and
TABLE 1 | Ligand/Receptor interactions supporting T cell development.

Ligand (Cell sources) Receptor (Cell types) Functional role in the thymus

BMP4 (Mes and TECs) BMPR1/2 (Endothelial cells, TECs and
Mes)

Thymus specification, TEC growth

VEGF (Mes, immature TECs and
thymocytes)

VEGFR (endothelial cells) Vascular and perivascular formation, maturation of thymic epithelium,

FGF7/10 (Mes) FGFR2IIIb (TECs) Growth of TECs
IGF1/2 (Mes) IGFR 1 (TECs, thymocyte progenitor

cells)
TEC expansion, thymus progenitor cell growth

EPH (Mes, TECs) EPHR (Mes/TECs) Descent of thymus lobes into mediastinum
S1P (Mes-pericytes) S1PR (ETPs, mature thymocytes) Entry of EPTs, egress of SP thymocytes
Retinoic Acid (RA) (Mes) RAR (TECs) Supports TEC development
lymphotoxin and LIGHT (SP thymocytes LTbetaR (endothelial cells)

LTbetaR (mTEC subset)
Regulate thymocyte homing
SP thymocyte entry into the medulla

FLT3 (TECs) FLT3 receptor = CD135 (ETPs) Growth of early thymus progenitors
CCL25 (TECs) CCR9 (ETPs, hematopoietic cells) Recruitment of thymus progenitor cells
CXCL12 (cTECs) CXCR4 (ETPs, thymocyte subsets) ETP localization, thymocyte trafficking
CCL19, CCL21, CCL2 (TECs) Various (thymocyte subsets)

CCR7 (SP thymocytes)
Thymocyte trafficking

DLL1 (cTECs and mTECs) Notch1 (ETPs) Human gd T-cell development, ab T-cell specification in mice
DLL4 (Mes, endothelial cells, and TECs) Notch1 (ETPs) T-cell commitment and differentiation of thymus-seeding progenitors
JAG1 (TECs) Notch1 (ETPs) Controls the critical lymphoid versus myeloid developmental choice in the

human thymus
JAG2 (cTECs, CMJ) Notch (ETPs) crucial for human gd T-cell development, but impairs ab T-cell development
IL-7 (TECs) IL7Ra/IL2Rg chain

(DN thymocytes)
Growth and expansion of immature thymocytes

IL-15 (mTECs) IL15R iNKT1 and gdT1 cell development.
CD40 (mTECs, thymic dendritic cells) CD40L (CD4+ SP thymocytes) Required for SP T cell selection and T reg development
VCAM-1 (cTECs at CMJ) VLA4 (Immature DN) Selection of immature DN
MADCAM1 (Neonatal endothelial cells) CD44 (fetal ETPs) Migration of T lymphocyte progenitors
EGF (SP thymocytes) EGFR (mTECs) Modulates fetal thymocyte growth and differentiation
FGF21 (cTECs) bKlotho (TECs; Endo at CMJ) Limits adipogenesis
IL-23 (thymic DC, ILCs type 11) IL12bR-IL-23R (Mature DP thymocytes) Negative selection of CD4hiCD8hi

IL-22 (thymic DCs) IL22R1-IL10R2 (TECs) Cell survival
PDGFa/c (TECs) PDGFR (Mes) Mes proliferation, survival and movement
RANK (ILC3) RANKL mTEC(II)s /lymphatic endothelial

cells
Optimal differentiation of mTECs

CD34 (Mes) SELL (fetal ETPs) Migration of T lymphocyte progenitors and precursors
June 2022 | Volume 13 | Article 864777
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RAG2), initiating V(D)J recombination at the TCR beta locus
(27). Those DN thymocytes successfully expressing the TCR beta
protein signal via the pre-TCR complex, expand, and
differentiate into CD4+CD8+ (DP) cells. At the DP stage, the
TCR alpha locus undergoes RAG-mediated VJ recombination.
DP cells successfully forming a cell surface ab TCR complex
then undergo a maturation/selection process. In this process,
thymocytes expressing the appropriate TCR undergo positive
and negative selection (28, 29). The selection is dictated by the
capacity of the TCR to recognize self-peptide/MHC complexes
expressed on the surface of either cTECs (mainly inducing
positive selection) or mTECs (primarily inducing negative
selection) [reviewed in (29–31)]. Positive selection establishes
TCR self-restriction, which refers to those T cells with TCRs that
have a weak avidity for self-peptide-self-MHC molecules. The
selected thymocytes expand and differentiate into either CD4 or
CD8 single positive (SP) cells. Countering positive selection, T
cells expressing a TCR with too high an affinity for self-peptide/
MHC are purged from the pool of immature thymocytes, a
process termed negative selection. While negative selection can
occur at the both DP and SP stages (29), a more robust clearance
of potentially autoreactive T cells occurs when the SP cells enter
the medullary region of the thymus (32). Therein, autoimmune
regulator (AIRE) expressing mTECs purge autoreactive T cells
[reviewed in (33, 34)]. The negative selection process also relies
on thymus dendritic cells, which present peptide-MHC
complexes stripped from the mTECs (35, 36). Finally, mTECs
support the development of T regulatory cells (Tregs), a subset of
CD4 SP cells that control the autoreactive potential of mature T
cells due to their inherent ability to recognize self-peptide/MHC
(30, 32, 37). Mature SP thymocytes surviving the selection gauntlet
leave the thymus. This again involves chemokine gradients along
with the release of sphingosine 1 phosphate (S1P) by pericytes at
the corticomedullary junction (38, 39). S1P engages the S1P1
receptor on the mature SP thymocytes, facilitating their transit
into the peripheral circulation. The hematopoietic cell seeding of
the thymus and the developmental processes of positive and
negative selection are maintained throughout life. However, the
efficiency of these processes is dramatically curtailed during aging
as adipogenesis, epithelial-to-mesenchymal transitions coupled
with fibrosis disrupts the 3D structure of them meshwork and
antagonizes thymopoiesis.

Neural Crest-Derived Mesenchymal Cell
and Endothelial Cell Contributions to the
Thymic Structure and Microenvironment
Neural crest cell (NCC)-derived mesenchymal cells (Mes) and
endothelial cells are two key cell types essential for thymus
formation, establishing the thymus vasculature. The vasculature
serves as the entry site for T lymphocyte precursors or early
thymus progenitors (ETPs), generated in fetal liver and bone
marrow, to the thymic cortex. Endothelial cells form a cushion
around the developing arterioles and veins, with the perivascular
space comprising collagen fibers. Perivascular cells include
pericytes and vascular smooth muscle cells (VSMCs) (40). The
thymus anlage forms as Mes first localize around the 3rd PP (23).
Frontiers in Immunology | www.frontiersin.org 3
Mes release BMP4 and Sonic Hedgehog (SHH) in a spatially and
temporally definedmanner, initiating the patterning of the thymus
and parathyroid regions, respectively (1, 7). Fibroblast growth
factors (FGF7 and FGF10) and insulin growth factors (IGF1 and
IGF2), secreted by Mes, are bound by the corresponding FGF-
(FGFR2IIIb) and IGF- receptors (IGFR1) expressed on immature
TECs, providing growth signals to the latter (41, 42). Multiple
FGFs (FGF3, FGF8, FGF10, FGF15) are differentially expressed in
a regionalized manner (43). Dysregulated activation of the FGF
pathway leads to thymus hypoplasia, revealing the importance of
temporal control of FGF expression levels (42, 43). A key role for
Mes in thymus development has been shown using several distinct
experimental approaches. First, extirpation of the cephalic neural
folds in chick embryos (stage 9), a technique that depletes NCC-
mesenchymal cells, results in thymus hypoplasia/aplasia (44).
Second, mechanical removal of the Mes capsule from murine
e12.5 thymuses causes a stunted expansion of the lobes when
placed in culture (41, 45). Extraction of the capsule also limits
tissue expansion when the thymus is grafted under the adult
kidney capsule, despite adult kidney mesenchyme surrounding the
tissue (41, 46–48). In the capsule stripped thymuses, T cell
development is normal, as only a reduced cell number is noted
relative to controls (41). Epidermal growth factor (EGF) addition
can replace thymic mesenchyme to induce the lobulation of e13
embryonic thymuses, however this can occur in the absence of
thymocytes (49, 50). Third, 22q11.2 deletion syndrome (often
termed DiGeorge syndrome) causes congenital hypoplasia of the
thymus (51, 52). The primary reason is a failure of Mes to support
tissue expansion, established using murine models of the
syndrome. Mesenchymal cells also induce MHC class II
molecules on epithelial cells (49).

As the two thymus lobes expand, theypair anddescendalong the
right and left subclavian arteries. The descent (between e11.0 and
e12.5) involves erythropoietin-producinghepatocellular carcinoma
(EPH) ligand-EPH receptor (EPHR) coupled Mes and TEC
signaling (53). The Mes cells that differentiate into pericytes
during embryogenesis are retained post-birth and into adulthood,
determined by fate mapping neural crest cells with an embryonic
specific Sox10-driven Cre expression (23, 54, 55). Such pericytes
secrete sphingosine 1 phosphate (S1P) at the corticomedullary
junction, which is needed to recruit thymus progenitor cells and
enable the egress of themature thymocytes into the circulation (38).
Most studies have grouped the Mes populations collectively,
principally based on the expression of Pdgfra and/or fate
mapping. More recent deep sequencing technologies, particularly
single cell RNA sequencing is revealing a more complex
heterogeneity among Mes cells (56, 57). Five Mes subtypes are
evident in the developing embryonic thymus (Table 2), among
these are pericytes, vascular smooth muscle cells and fibroblasts.
Recent studies have revealed some heterogeneity between the
capsular and medullary fibroblasts (58). Comparing human
thymuses from fetal stages as well as postnatally by scRNA
sequencing reveal 3 Mes subtypes; Fibroblast type 1 (PDGFRA,
COLEC11, C7, GDF10), Fibroblast type 2 (PDGFRA, PI16, FN1,
FBN1) andVSMCs (ACTA2) (Table 2) (57). Fibroblast types 1 and
2 (Fb1 and Fb2) are localized in peri lobular or interlobular
June 2022 | Volume 13 | Article 864777
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TABLE 2 | Distinct cell types in the thymus identified with single cell RNA sequencing.

Embryonic murine thymus Human thymus stroma Fetal/Adult thymus Human embryonic thymus

Cell designation Key gene
identifiers

Cell
designation

Key gene identifier Cell
designation

Key gene
identifier

Cell
designation

Key gene identifier

M-1
Fibroblasts type 1
(Fb1)

Pdgfra, Gdf10,
Aldh1a2, Col1a2,
Col3a1, Sfrp2,
Ntrk2

Mesenchymal PDGFRA, LUM, LAMA2 Fibroblasts
type 1 (Fb1)

PDGFRA,
COLEC11 C7,
GDF10,
ALDH1A2

Mesenchymal
Supercluster

PDGFRA, PDGFRB COL1A2,
COL1A1, COL3A1, NTRK2,
LUM, MEST, DCN, DLK1,
PTN

M-2 Pdgfra, Mest,
Lum, Gdf10,
Col1a2, Dlk1,
Dcn11

Fibroblasts
type 2
(Fb2)

PDGFRA
PI16, FN1,
FBN1

M-3 Pdgfra, Col1a2,
Col3a1, Mest,
Lum

M-4 Col1a2, Itm2a,
Mgp, Vim

Lymphatic
endothelial

LYVE1, PROX1, CCL21 Endothelial CDH5
PECAM1,
LYVE1

M-5 Pericytes,
Vascular smooth
muscle,
Fibroblasts 2

Pdgfrb Acta2
Rgs5, Mcam,
Cspg4, Fbn1,
Fn1

Pericyte PDGFRB, MCAM, CSPG4 VSMC ACTA2,
PDGFRB
RGS5

Endothelial-1 Cdh5 Pecam1,
Cav1, Plvap,
Cldn5, Esam

Vascular arterial
endothelial

PECAM1, VEGFC, GJA4 Endothelial CDH5
PECAM1,
LYVE1

Endothelial
Supercluster

CDH5, PECAM1 CAV1/2,
CLDN5, SPP1, PLVAP,
MADCAM1, TMEM88, CRP2,
ESAM

E-1
cTEClo

EpCAM, Krt8,
Psmb11, Prss16
Ccl25

cTEClo EpCAM, KRT8
PSMB11lo, PRSS16lo, CCL2lo

MHClo

cTECs EpCAM,
FOXN1
PSMB11

Epithelial
supercluster

EpCAM, KRT8, KRT19,
KRT17, KRT5, CCL25,
PSMB11, PAX1, SIX1,
S100A14, PRSS16E-2

Immature TECs
Krt8, Pax1, Krt18 Immature TEC EpCAM, KRT8

FOXN1, PAX9, SIX1
E-3
cTEChi

EpCAM, Krt8,
Psmb11, Prss16
Ccl25

cTEChi EpCAM, KRT8
PSMB11, PRSS16, CCL25

E-4
Immature TECS

EpCAM, Krt5,
Krt8, Krt17,
Krt19, Pax1, Six1

E-5 EpCAM, Pth,
Chga, Ccl21a,
Spp1

E-6 EpCAM, Nkx2.1,
Pax8, Hhex

mTEClo EpCAM, KRT8 CLDN4, HLA
class IIlo, CCL21

mTEC (III) EpCAM, KRT1
mTEC (I) EpCAM,

KRT14
mTEChi EpCAM, KRT8

SPIB, AIRE, FEZF2, HLA
class IIhi

mTEC (II) EpCAM,
FOXN1,
KRT14, AIRE

mcTECs EpCAM,
FOXN1
PSMB11,
DLK2, KRT14

Comeo like
mTEC

EpCAM, KRT8, KRT1, IVL mTEC (IV) EpCAM
FOXI1

Neuroendocrine EpCAM, KRT8,
BEX1, NEUROD1

TEC (neuro) EpCAM,
NEUROD1,
CHGA

Myoid EpCAM, MYOD1, KRT8, DES TEC (myoid) EpCAM,
MYOD1
CHRNA1

Myelin+ EpCAM ,KRT8 SOX10, MPZ
mTEC (IV) DCLK1 or

POU2F3

(Continued)
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positions, respectively. Fb1 cells express genes such as Aldehyde
dehydrogenase 1A2 (ALDH1A2), which is needed for retinoic acid
(RA) production, a morphogen that supports TEC development
(47). Fb2 are often associated with large blood vessels lined with
VSMCs. Fb2 express extracellular matrix protein and semaphorins
that aid in vascular development (57). Notably, the fibroblast
composition changes over time, with a Fibroblasts type 1 (Fb1)
population prevalent in early developmental stages, while type 2
(Fb2) dominates in post-natal and adult thymus tissue (57). The
antigens produced by these fibroblast subsets have a key role in
central tolerance (58).

Endothelial cells are a second, critical non-hematopoietic cell
type, needed for effective thymopoiesis. ScRNA sequencing data
suggests the existence of one major endothelial cell type (56, 57,
59). As described in an earlier section, these cells form the
vasculature/blood vessel network in the thymus. Of critical
relevance to the specification of the embryonic thymus, some
endothelial cells differentiate into TECs. The scRNA sequencing
studies coupled with bioinformatics screens for paired ligand-
receptor interactions between endothelial cells and thymocyte
progenitors also reveals important contributions of MADCAM1-
CD44, CFH-SELL, and CD34-SELL in thymopoiesis (Table 1).
In adult tissues, endothelial cells regulate thymocyte homing via
the lymphotoxin b receptor (LTbR) (60). The ligands for LTbR,
lymphotoxin and LIGHT, are produced by mature T cells to
activate endothelial-regulated homing functions. In adult thymus
tissues following radiation-induced damage, the endothelial cells
secrete BMP4 to support tissue regeneration (61). This is partly
due to BMP4 enhancement of FOXN1 expression (61). It is likely
that the embryonic endothelial cells also produce BMP4 in
developing thymuses. In the post-natal thymus, the endothelial
cells in the cortical region express high levels of claudin-5, which
limits cell entry. This contrasts the endothelial cells in the cortical
medullary junction (CMJ) and medulla, where many of the cells
have lost claudin-5 expression, enabling T cell migration and
egress following positive selection (62).

Epithelial Cell Control of Thymopoiesis
TECs are derived from endothelial cells around e10.5, beginning
with the formation of immature bi-potent thymus epithelial cell
(TEC) precursors (63, 64). These are defined by the expression of
Cytokeratin 8, Cytokeratin 14, beta5t (encoded by Psmb11) and
PLET1 (65). Immature TEC growth is sustained by various growth
factors secreted by Mes, including FGFs and IGFs, as described
above (Table 1). As the thymus and parathyroids coordinately
expand, the immature TECs express high levels of E-cadherin,
which facilitates the separation of the two tissues (53). The first
Frontiers in Immunology | www.frontiersin.org 5
identification of TEC progenitors revealed that mTECs and cTECs
share a common origin (66, 67). Later complementary studies
reported that embryonic TEPs expressing cortical markers can
generate both cTECs and mTECs (68–70). The essential
functional roles of TECs are mediated by FOXN1 (12, 71).
FOXN1 is expressed in TECs following the initial specification of
the thymus (10). The importance of FOXN1 in TECs was best
revealedwith spontaneously arisingmurineFoxn1mutations along
with the identification of humans who had autosomal recessive
FOXN1 mutations, resulting in a Nude/SCID phenotype (12, 72–
77). The Nude designation arises from alopecia universalis and nail
dystrophy (75). In the skin, loss of FOXN1 prevents sufficient
expression and deposition of keratins along the hair shaft, causing
the hair follicle to curl and break instead of extruding through the
epidermal layers (78). SCID arises because of an inability of the
TECs to differentiate and expand without FOXN1, causing a block
in T cell development at the early DN stage of thymopoiesis
[reviewed in (13, 14, 79, 80)]. A key advance in understanding
how FOXN1 controls TEC functions was the identification of its
transcriptional targets by chromatin immunoprecipitation coupled
with DNA sequencing. Using a FLAG-tagged Foxn1 BAC
transgenic mouse line, a consensus nucleotide binding site of
GACGC was identified (14). Among the ~500 or so direct targets
ofmurine Foxn1 are chemokines andNotch ligands,Ccl25,Cxc112
and DLL4, respectively (14, 81). Other important gene targets
include peptidases (e.g., Tasp1), proteases (e.g., Prss16),
proteasome complex components (e.g., Psmb4, Psmb9, Psmb10,
Psmb11, Psmb16, Psma4), peptide transporters required for MHC
class I peptide presentation (e.g., Tap2), many keratins and Cd83
(14, 78, 81). Psmb11 encodes beta5t, a catalytic subunit of the
thymus-specific proteasome (thymoproteome), generating
peptides that are bound by MHC class I to support the positive
selection of CD8+ T cells (81, 82). CD83 is required for the
development of most CD4+ T cells (83). FOXN1 positively
regulates itself, binding to the GACGC sequence present in its
own promoter (78, 84, 85). In the skin, the Hoxc13 transcription
factor positively regulates Foxn1 expression (78). Mutations in
human HOXC13 diminish FOXN1 levels in the skin, causing
ectodermal dysplasia, characterized by atrichia and nail dystrophy
(86). Several Wnt glycoproteins also positively regulate Foxn1
expression (87). An analysis of conserved nucleotide sequences
close to the Foxn1 target sequence reveals enrichment of TAp63
(one of two p63 gene transcription isoforms) and CREB binding
sites. Notably, TAp63 participates in TEC homeostasis (88–90).

As immature TECs expand, they develop into two major
subsets, designated as cortical or medullary TECs based on their
location within the thymus. Cortical TECs are defined by the
TABLE 2 | Continued

Embryonic murine thymus Human thymus stroma Fetal/Adult thymus Human embryonic thymus

Cell designation Key gene
identifiers

Cell
designation

Key gene identifier Cell
designation

Key gene
identifier

Cell
designation

Key gene identifier

Hematopoietic Ptprc, CD7, Lck,
CD3d, CD52

Immune cells PTPRC, CD3D, CD7 Immune
cells

PTPRC,
NKG7, IFNG,
TBX21

Hematopoietic
Supercluster

PTPRC, CD7, LCK, CD1B,
CD3D, TRBC2, CD3G,
PTCRA, CD52

Red blood cells Hba, Hbb Red blood cells GYPA, HBA1, HBG1
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expression of Cathepsin L, TSPP and PSMB11 [reviewed in (91)].
These cells support the recruitment of early thymus progenitors
from the blood via selected chemokines (CCL21, CCL25) as well
as the progression of thymocytes from the DN to DP stages of
thymopoiesis (CCL19, CCL25, CXCL12). CCL9, CCL21, CCL25,
CCL12, positively regulated by FOXN1, provide directional cues
for developing thymocytes (39, 92). DLL4 levels, which are much
higher on cTECs than mTECs, signal immature thymocytes via
Notch to progress from the DN to DP subset (25, 93). The
conditional targeting of DLL4 in TECs leads to a severe failure
of T cell development at the DN1 stage of early DN thymocyte
progression. Likewise, the elimination of the receptor (Notch 1)
for DLL4 on hematopoietic progenitor cells prevents T cell
development (94). Cortical TECs also secrete IL7, a cytokine
that stimulates DN thymocyte growth via the IL7Ra/IL2Rg
receptor (24, 26).

The medullary regions of the thymus form during
embryogenesis as small pockets that expand and coalesce into the
larger clusters present post-natally. These mTECs differentiate/
proliferate following interactions with mature SP thymocytes. In
the embryonic period, Notch signaling is needed for the formation
ofmTECs, with RANK-mediated signalingmore important for the
mTECs post-natally (95, 96). The differentiation involves CD4 SP
thymocyte expression ofNotch and/or RANK in combinationwith
CD40L and EGFR (95–101). Once formed, mTECs are defined by
the expressionofCathepsinS,CD40,CCR7 ligand (CCL19/CCL21)
and AIRE [reviewed in (91)]. Medullary TECs mediate negative
selection of SP T cells along with the positive selection of T
regulatory cell subsets (102, 103) [reviewed in (30, 32)]. One of
the mTEC subsets produces the chemokines CCL19 and CCL25 to
attract positively selected, CCR7 expressing thymocytes into the
medullary region (104).Mice lacking the lymphotoxinbeta receptor
fail to develop these mTECs (105). As the SP thymocytes traffic
through the medullary region, they interact with a second subset of
mTECs, defined by the expression of the autoimmune regulator
(AIRE) gene. AIRE enforces the expression of “tissue-restricted”
proteins that eliminate autoreactive T cells (33, 106). AIRE
facilitates this by releasing RNA polymerase II from promoter
regions where this enzyme is stalled, a mechanism normally used
to prevents widespread gene expression (107). Mesenchymal
epithelial transition factor (c-Met) is expressed by TECs along
with early T progenitors. The specific targeting of c-Met in TECs
results in age-dependent progressive reduction in TECs number
coupled with lower regulatory T cells (108). Similarly, the targeted
loss of Shh in TECs reduces both cTEC andmTEC numbers (109).
While most studies have detailed the development of cTEC and
mTEC from embryonic TEC progenitors, thymus epithelial
progenitors have also been identified in adult tissues (110, 111).
These adultprogenitorpopulations cangive rise tobothcortical and
medullary TEC subsets (110, 111).

While initial characterizations of TECs relied on cell surface
protein expression and fate mapping to define subsets, scRNA
sequencing is revealing many additional epithelial and TEC
subsets. For example, an analysis of embryonic day 13-13.5
fetal thymuses, when 80% of the cells are stromal (Mes, TEC,
endothelial), reveal 6 distinct epithelial subsets (Table 2).
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Multiple other studies have revealed different TEC populations
at different developmental stages (112–116). Among these are 2
subsets of immature TECs along with cTEClo and cTEChi

subsets, with the lo and hi referring to MHC class II levels. At
e13.-13.5 stage, no mTECs are evident. A 5th epithelial subset
expresses parathyroid hormone (PTH), suggesting either the
presence of some parathyroid TECs or the existence of a bi-
functional TEC. The 6th epithelial subset (E-6) expresses Nkx2.1,
which may be a thyroid or parathyroid precursor cell type.
ScRNA sequencing of human thymuses obtained at gestational
weeks 19 and 23 (e14.5-e16.5 in murine embryos) and postnatal
samples from 6-day old newborn (e20) and an infant (10
months) reveals 3 major epithelial groups broken down into 9
subclusters (57). Two clusters are categorized as cTECs based on
the characteristic genes (PSMB11, PRSS16, CCL25). One cluster
is the cTEClo, which is rapidly proliferating based on Ki67+

expression. The second cluster is the cTEChi. mTECs are also
evident in the embryonic tissues at this developmental stage, and
split into 3 distinct subgroups partly defined by the levels of HLA
class II. These are mTEClo (CLDN4 and lower levels of HLA class
II), mTEChi (SPIB, AIRE, FEZF2, higher levels of HLA class II),
and corneocyte-like mTECs (KRT1, IVL) (56). Cells in the
mTEClo cluster express high levels of the chemokine CCL21,
similar to the CCL21-expressing post-natal mTEClo population
described in mice (105). Another epithelial cluster, marked by
FOXN1, PAX9, and SIX1, represents immature TECs, and is
evident in early developmental stages and remains in postnatal
and adult periods. PAX9, and SIX1 are not present in cTECs or
mTECs, implicating this cluster as a potential progenitor cell not
yet committed to a specific lineage. The additional epithelial
clusters identified in human thymuses include neuroendocrine
(BEX1, NEUROD1), muscle-like myoid (MYOD1, DES), and
myelin+ epithelial cell markers (SOX10, MPZ) (56, 57). A
mixed medullary/cortical TEC subset (mcTECs), marked by
expression of DLK2, is present in late fetal and post-natal
human thymuses. Finally, a rare population of tuft-like mTECs
is present in human and mouse thymuses, although the genes
DCLK1 and POU2F3 used to define this population are not
specific to TECs in humans (57).

The various TEC subsets constitute the basic thymic
microenvironment. They provide cytokines, chemokines,
multiple molecular signals, and cell-to-cell interactions to
control thymocyte proliferation, differentiation, and selection.
This process leads thymocytes from immature to mature, and in
turn, TECs themselves also get maturation from bi-potent
epithelial progenitors to functional cTECs and mTECs. The
added complexity of many different subsets suggests distinct
roles for each in the formation and regeneration of the thymus at
different stages.

The Changing Cellular Landscape in an
Aging Thymus
Post-adolescence, the thymus begins a slow and continuous
atrophy (117, 118). Tissue changes include TEC loses,
increasing epithelial-to-mesenchymal transitions (EMT)
coupled with their differentiation into fibroblasts, adipogenesis,
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loss of cortical-medullary boundaries, and increases in
perivascular spaces (118, 119). Although recruitment of
thymus progenitors from the bone marrow is not critically
impacted, alternations in T cell development, defects in T cell
selection, a contracted TCR repertoire diversity, and reduced
egress of naive SP T cells are apparent with aging (120). TEC
loses by both EMT and cell death, coupled with the tapered
expression of FOXN1 contribute to diminished thymopoiesis (91,
121, 122). In fact, enforced expression of Foxn1 in an aged
thymus can restore thymus size and functionality, comparable to
that seen with a young thymus (123–125). As the thymus ages,
TEC production of IL-7 and FGF21 tapers. FGF21 losses increase
intra-thymic adipogenesis and decrease peri-thymic brown
adipose tissue (126). The obligate co-receptor for FGF21 is
beta-Klotho (KLB), present on the endothelial cells at the
corticomedullary junction (126). Reduced signaling via FGF21/
KLB comprises endothelial functions. However, KLB-deficient
mice have a pronounced thymus hypoplasia not intrinsic to
TECs or bone marrow cells, revealing a systemic effect (127).
Notably, the KLB-deficient mice have high levels of vitamin D,
and thymus hypoplasia is rectified by nutritional restriction of
Vitamin D (127).

By mid-age, ectopic adipocytes make up 50% of the thymus
(119). Although the adipocytes come from a variety of tissues,
mesenchymal transitions via EMT are one proposed source
(126). The adipocytes fill the perivascular space and impede
entry of thymus progenitor cells (128, 129). Intra-thymically
distributed adipocytes also release cytokines, steroids, and
hormones that negatively impact thymopoiesis (130–133).
Among these are leukemia inhibitory factor (LIF), oncostatin
M and IL-6. In mouse models of aging, caloric restriction or
systemic administration of Ghrelin improves T cell output by
reducing adipogenesis and delaying age-dependent thymic
involution (134, 135). EMT further generates an expanding
number of fibroblasts within the thymus, increasing fibroblast/
TEC ratios (136). Whether these fibroblasts directly contribute to
reduced thymus functions, as seen with pulmonary fibrosis,
remains to be established (137).
Thymus Regeneration Technologies for
the Young and the Old
The thymus is extremely stress sensitive, with transient cell losses
reaching 90% evident following infections, glucocorticoid
treatments, chemotherapy, and radiation exposure (138, 139).
Dependent on the severity of the stress and/or the age of the
thymus, the damage can be transient (if the damage is only in
hematopoietic lineage cells) or permanent (the damage mostly
happens in non-hematopoietic lineage cells). Because of this,
many clinical interventions are being considered to improve/
rejuvenate thymus functions. Among these are cytokines and
growth factors that support the non-hematopoietic lineage
stromal cell populations and/or developing thymocytes. For
example, TEC differentiation/expansion can be improved with
IL-22, Keratin growth factor (KGF), EGF, BMP4, RANKL and 2
microRNAs, miR-205 or miR-29a (61, 97, 99, 140–144). Group 3
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innate lymphoid (ILC3s) cells in the thymus are one important
cell population that facilitate thymus recovery following stress
(145). In response to whole body radiation exposure, CD103+

thymus dendritic cells release IL-23, which signals the ILC3s to
secrete IL-22. The IL-22 receptor (IL-22Ra/IL-10Rb) is
principally expressed on cTECs and mTECs, with ligand
mediated signaling supporting TEC survival and functionality
(141). BMP4, produced by endothelial cells, similarly enhances
TEC functions, including an upregulation of FOXN1 along with
its downstream targets (61). Additional cytokines, ligands and
chemokines that improve T cell development include IL-7, Fms-
Like Tyrosine Kinase 3 Ligand (FLT3L), DLL4 and the
chemokines CXCL12, CCL19, CCL21, and CCL25 (91, 146–
150). In a clinical setting, enhanced thymopoiesis is
accomplished by administration of FLT3L, and this is done for
patients receiving a bone marrow transplant (151–153). FLT3L
increases progenitor cell uptake into the thymus (152). The
potential use of the many of the other proteins that support
thymopoiesis for clinical treatments requires further validation
as many will impact cell populations outside the thymus. Two
possible solutions to overcome the pleotropic effects of these
various cytokines/chemokines or ligands include direct
intrathymic injections, or administration of encapsulated
nanoparticles with selectively for the thymus (154, 155). For
example, intrathymic injections of Foxn1, consisting of an
COOH-terminal TAT transduction domain linked to full-
length Foxn1, transiently improves TEC numbers and
thymopoiesis in mouse models of hematopoietic stem cell
transplantation (155). However, recombinant Foxn1 protein
injections into a thymus also result in the protein entering
hematopoietic cells, and this can have potentially harmful
outcomes (156). Therefore, direct intrathymic injections of
post-natally derived TECs or with Foxn1-reprogrammed
fibroblasts are alternate strategies with good rejuvenation
effects (157, 158). Furthermore, direct intrathymic injections of
encapsulated cytokines and/or growth factors and even
reprogrammed cells into the thymus may be of therapeutic value.

For individuals with in-born errors of immunity, the clinical
treatment options for restoring thymopoiesis are not
straightforward. First, an assessment of whether hematopoietic
or stromal cell populations are causal to thymus hypoplasia is
needed. If genetic mutations are inherent to the hematopoietic
cells, bone marrow transplants are an effective clinical treatment
(159). However, individuals wherein the non-hematopoietic
stromal/epithelial cells of the thymus are impacted, allogeneic
thymus tissue transplants remain the only FDA approved
therapy (Enzyvant, Inc.) (160–162). For such tissue transplants,
the donor thymus is depleted of most hematopoietic cells, leaving
a residual mixture of pericytes, endothelial cells, TECs, and some
mature CD4+ T cells (160). These transplant strategies work for
those with a severe T cell lymphopenia. Among the patients who
will benefit from such transplants include those with 22q11.2
deletion syndrome (DiGeorge), autosomal recessive FOXN1
mutations, PAX1 mutations, CHARGE (Coloboma, heart
defects, anal atresia, growth retardation, genital abnormalities,
ear abnormalities) syndrome, or those who had diabetic
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embryopathies (6, 80, 160). However, the allogeneic transplant
approach is not suitable for individuals who retain some thymus
functionality, since they will have sufficient peripheral T cell
numbers to cause transplant rejection. Among these are patients
undergoing chemo ablative therapies. An equally important
group to consider are those who had partial or complete
thymectomies, often done during restorative cardiothoracic
surgeries since the thymus affects surgical access to the heart
(163–165). In individuals who were thymectomized at a young
age, low naïve peripheral T cell numbers and a reduced TCR
repertoire is evident later in life (166, 167). Noteworthy, complete
thymectomies are also done for patients with thymomas or the
autoimmune disorder Myasthenia gravis (168). Sadly, radiation-
mediated thymus ablation was a common standard-of-care
treatment for infants during the years 1910-1960 (169, 170). The
prevailingmedicalnotionat the timewas thata large thymus (which
is actually normal) was causing lung compression and/or asthma,
leading to sudden infant death syndrome and status
thymicolymphaticus (171). Regardless of reasons for why a
thymus is “removed”, there are currently no effective strategies for
restoring thymopoiesis. Putative solutions emerge from recent
advances in thymus regeneration technologies, supported with
two lines of evidence. First, it is clear thymus transplants work for
patientswith a thymus aplasia, aswell aswith theNude/SCIDmice,
where the transplanted tissue supports T cell development (161,
162, 172, 173). This indicates that artificial thymic organoid (ATO)
technologies may become an effective clinical approach for tissue
regeneration. Second, organoid technologies are rapidly advancing
formany types of tissues, although regenerating an effective thymus
remains a significant challenge (91).

A quintessential breakthrough for ATOs was the initial
development of stromal cell lines (OP9) expressing the Notch
ligands Delta-like ligand 1 (DLL1) or DLL4, with both supporting
T cell development to the SP stage by engaging Notch on
immature thymocytes (174, 175). DLL4 functions better than
DLL1 due to the lack of a proline rich domain at the Module at
the N-terminus of Notch Ligand (MNNL) (176). This is consistent
with the non-redundant role for DLL4 in vivo. An important
modification to the OP9 monolayer system was the use a unique
murine stromal cell line that re-establishes a 3-d epithelial
meshwork upon co-culture with hematopoietic stem and
progenitor cells (HSPC) (177). HSPCs can be from either cord-
or peripheral- blood or bone marrow (177). While the stromal cell
lines were first developed to express human DLL1 (MS5-hDLL1),
human DLL4 is now used (177–179). Grown in serum-free culture
conditions to eliminate variations caused by serum, human T cell
differentiation proceeds to the SP stage in the ATOs (177–179).
While the ATO technology is a definite improvement, the
organoids are not designed for transplant purposes. Limitations
include the low overall numbers of T cells that are generated (1 to
3 x 106 cells), an abnormal CD4/CD8 ratio < 1 and the use of
murine cell lines. ATOs can, however, reveal whether a patient
with probable in-born error of immunity would need a bone
marrow or thymus transplant. For example, patients with
mutations in genes affecting stromal cell subsets (mesenchymal,
TECs, endothelial) will retain HSPCs capable of thymus
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development (178, 179). Those with mutations affecting either
hematopoietic cell differentiation and or T cell functions (IL2Rg
chain, RAG, Artemis, T cell components) will not support T cell
development, confirming that a patient will likely need a bone
marrow transplants. Notably, the current ATOs now use DLL4
expressing stromal cells (MS5-hDLL4) cultured with patient
derived CD34+ cells (178, 179).

A third strategic advance for improving thymus organoid
technologies is the addition of decellularized thymus scaffolds.
Comprising the extracellular matrix from thymuses, these
support TEC recolonization and bone marrow cell
reconstitution. The reconstituted scaffolds are grafted under
the kidney capsule of nude/SCID mice TEC and support T cell
development (180–183). Disadvantages of such scaffold
approaches include the need for primary human thymus
tissues, complex experimental manipulation, and low cell
yields. However, recent research has revealed techniques to
expand TECs and interstitial cells from human thymuses in
large numbers, potentially suitable for clinical approaches (184).
Another strategy to generate many functional TECs is to use
embryonic fibroblasts, which are reprogrammed with Foxn1
over-expression systems, and are termed inducible TECs.
These cells can be reaggregated to generate an ectopic de novo
thymus under the kidney capsule in the mouse models (48). Host
T cell progenitors seed the de novo thymus-like organ generated
by the transplant, and normal thymocyte distributions are
observed after 4 weeks. Additionally, typical thymus
microstructures are evident in the de novo thymus engrafted
tissue (48). Combining the various techniques holds promise for
personalized thymus regeneration approaches.
DISCUSSION

The key to effective thymus regeneration requires knowledge
of how particular cell subsets contribute to thymopoiesis
(Tables 1, 2). Thus, ad-mixing various cell subsets from
different tissues, isolated at distinct development stages, will
likely be ineffective. A multi-omics profiling of key stromal cell
populations; endothelium, epithelium and fibroblasts, performed
with 12 distinct mouse organs including the thymus, reveals
global transcriptome patterns that are quite divergent when
comparing similar cell types obtained from different tissues
(185). In fact, the 3 major stromal populations are more related
transcriptionally when obtained from the same tissue source, such
as the thymus. This suggests that individual tissue environments
create transcriptional similarities among the stromal cell
populations (185). Such a finding argues that selection of the
“correct” stromal tissue from a “thymus” programmed
environment is essential for developing effective thymus
organoids. Notably, thymus organogenesis involves strategic
cellular interactions among different cell clusters using selected
receptor-ligand pairs (186). By integrating scRNA sequencing
with known receptor-ligand pair interactions, the connectivity
among TECs, mesenchymal cells, and endothelial cells is
emerging (59). Combing this information with the HLA
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haplotype of the cells needed for the host and considerations
about the patient, thymectomized versus one with an in-born
error of immunity, will better inform thymus regenerative
technologies. The 4 key cell types to consider for thymus
regeneration are mesenchymal cells, endothelial cells,
endothelial-derived TECs and hematopoietic stem cells with
adequate thymopoietic potential. The last two decades of
thymus research suggest that personalized thymus regeneration
techniques incorporating these 4 cell types are nearing realization.
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