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to a 3 �  end alternative splicing that generates three differ-
ent isoforms containing 9 (RET9), 43 (RET43) or 51 
(RET51) amino acids behind the RET G1063 residue  [1, 
2] . RET9 and RET51 are the most represented isoforms 
in vivo. The extracellular segment of RET protein is N-
glycosylated and contains four Ca 2+  dependent cell adhe-
sion (cadherin)-like domains followed by a cysteine-rich 
domain  [3, 4] . N-glycosylation of the extracellular do-
main occurs in the endoplasmic reticulum and Golgi
apparatus and is necessary for transport to the plasma 
membrane. Indeed, only the fully mature glycosylated 
170-kDa isoform of RET is exposed on the cell surface 
while the highly mannose-rich 150-kDa isoform is con-
fined to the Golgi apparatus  [5] . The transmembrane seg-
ment is composed of 22 amino acids. The intracellular 
portion contains the tyrosine kinase domain, divided 
into two subdomains by the insertion of 27 amino acids, 
and a COOH terminal tail.

  RET functions as the receptor of the four members of 
the glial cell line-derived neurotrophic factor (GDNF) 
family ligands (GFLs) which include GDNF itself, neur-
turin, artemin and persephin  [4] . GFLs are presented to 
RET by GPI (glycosylphosphatidylinositol)-anchored co-
receptor molecules, named GFR �  (GDNF family recep-
tor- � ) and comprising four different members sequen-
tially numbered GFR � 1–4, each binding preferentially 
one of the four different GFLs.
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 Abstract 

 Specific thyroid cancer histotypes, such as papillary and 
medullary thyroid carcinoma, display genetic rearrange-
ments or point mutations of the RET gene, resulting in its 
oncogenic conversion. The molecular mechanisms mediat-
ing RET rearrangement with other genes and the role of part-
ner genes in tumorigenesis have been described. In addi-
tion, the RET protein has become a molecular target for med-
ullary thyroid carcinoma treatment. 
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 Introduction 

 The RET (rearranged during transfection) gene is lo-
cated on chromosome 10q11.2 straddling a region of 
around 55,000 bp and is composed of 21 exons. The gene 
codes for a transmembrane protein belonging to the re-
ceptor tyrosine kinases family  [1] .

  The RET protein is composed of three different do-
mains: the extracellular domain, transmembrane do-
main and intracellular domain, and varies in length due 
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  RET binding to any GFL-GFR �  complex induces re-
ceptor dimerization, which in turn triggers transphos-
phorylation of specific tyrosine (Y) residues located in 
the tyrosine kinase domain and in the COOH-terminal 
tail of each RET monomer. Phosphorylation of such ty-
rosines initiates an intracellular signaling cascade that 
culminates in the activation of several cellular programs 
such as motility, survival and proliferation  [6] .

  Several tyrosines have been identified as RET auto-
phosphorylation sites  [7, 8] . In particular, Y900 and Y905 
are located in the activation loop of the kinase and their 
phosphorylation is necessary for stabilization of RET in 
an active conformation, while RET Y1062 is located in the 
COOH-tail and is a multidocking site for many signaling 
molecules containing a phosphotyrosine-binding do-
main such as SHC, N-SHC (RAI), FRS2 and IRS1/2  [9–
15] . Binding of these proteins contributes to activate the 
two main RET signaling pathways, i.e. the RAS/MAPK 
and the PI3K/AKT ones.

  RET is expressed mostly in tissues of neuroectoder-
mal origin, such as the enteric ganglia, the adrenal chro-
maffin cells and thyroid C cells; in sensory and auto-
nomic ganglia of the peripheral nervous system; in a 
subset of central nervous system nuclei; in the kidney 
during embryonic and fetal stage; and in testes germ 
cells  [6, 16] . RET and its ligands play a significant role in 
the development of all these structures as shown by the 
RET-null mice phenotype featuring absence of the su-
perior cervical ganglia and enteric nervous system, kid-
ney agenesia and reduction of thyroid C cells, as well as 
impaired spermatogenesis due to lack of spermatogo-
nial stem cell renewal and differentiation  [6, 16] . In ac-
cordance, individuals with germline loss-of-function 
mutations of RET are affected by congenital megacolon 
or Hirschsprung disease characterized by intestinal 
aganglionosis  [17] .

  Gain-of-function mutations of the RET gene have 
been identified in two different types of thyroid neopla-
sia: medullary thyroid carcinoma (MTC) and papillary 
thyroid carcinoma. 

 RET Mutations in MTC: A New Target for Cancer 

Treatment 

 MTC arises from neural crest-derived calcitonin-pro-
ducing thyroid parafollicular C cells and represents 
5–10% of all thyroid cancers. Although most MTCs are 
sporadic and affect adult patients, around 25% of cases 
are familial and occur in the frame of inherited cancer 

syndromes called multiple endocrine neoplasia type 2 
(MEN2) syndromes (OMIM: No. 171400) and may have 
an early onset  [18] .

  MEN2 syndromes comprise three different kinds: 
MEN2A, MEN2B and familial MTC (FMTC). MEN2A 
and B phenotypes are depicted by a plethora of tumors 
that, with different combinations, arise from tissues of 
neuroectodermal origins. All patients display MTC, as-
sociated in 50% of cases to pheochromocytoma arising 
from chromaffin cells of adrenal medulla. Additional fea-
tures are parathyroid hyperplasia and hereditary local-
ized pruritus in MEN2A, ganglioneuromatosis of the in-
testine, thickening of corneal nerves and marfanoid hab-
itus in MEN2B. FMTC consists in the isolated occurrence 
of MTC and is nowadays regarded as a phenotypic vari-
ant of MEN2A with decreased penetrance and/or delay of 
the other neoplastic manifestation  [19, 20] .

  In over 90% of cases, MEN2 syndromes are due to 
germline missense mutations of the RET gene. There is 
partial overlap between the type of mutation and the kind 
of phenotype displayed by patients. Thus, the majority of 
MEN2A and FMTC carriers bear mutations of one of the 
cysteines in the extracellular cysteine-rich domain of 
RET (most frequently, C634). FMTC is also associated 
with changes in the N-terminal (E768D, L790F, Y791F, 
V804L, V804M) or C-terminal (S891A) lobes of RET
kinase. The vast majority of MEN2B patients display the 
M918T mutation in RET kinase domain, whereas only a 
small fraction harbors the A883F substitution. In addi-
tion, somatic mutations of RET E768, V804 and mainly 
M918 are found in approximately 40% of sporadic MTC 
cases and correlate with a bad prognosis  [20–23] . Over the 
years many new germline RET mutations have been iden-
tified due to the systematic screening of MTC patients; 
however, the pathological meaning of such variants is not 
always clear due to lack of information about mutation 
cosegregation with disease within families and of func-
tional studies. A comprehensive database annotating all 
RET variants has been generated  [24] .

  The mechanism through which MEN2-associated 
mutations switch on RET oncogenic activity is strictly 
dependent on the location of the amino acid change. Ex-
tracellular cysteine mutants display constitutive kinase 
activity consequent to disulfide bond-mediated homodi-
merization ( fig.  1 ). Mutations associated with FMTC, 
which in cases target cysteine residues other than C634, 
are less potently transforming than MEN2A-associated 
mutations, possibly because of their lower activity to
induce RET S-S linked dimers  [25, 26] . Constitutive ac-
tivation as well as a change in substrate specificity has 
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been implicated in the MEN2B-associated substitution 
 [27] . In line with this model, MEN2B mutants differ
from MEN2A mutants in the stoichiometry of phos-
phorylation of RET tyrosines and of various intracellular 
proteins  [28, 29] . Moreover, MEN2B-expressing tumors
have different gene expression profiles as compared
to MEN2A-expressing tumors  [30] . The mechanisms 
through which RET intracellular mutations (other than 
M918T) constitutively activate RET enzymatic function 
has not been clearly elucidated.

  In 2009, the American Thyroid Association created 
specific MTC clinical guidelines consisting of 122 evi-
dence-based recommendations to assist in the clinical 
care of MTC patients  [31] . The guidelines included germ-
line genetic testing in all MTC patients to distinguish 
sporadic from familial cases and to classify patients in 
different disease risk levels ranging from A (most severe) 
to D (less severe) on the basis of RET mutation. The risk 
level classification is relevant for making decisions with 
respect to prophylactic thyroidectomy and intraoperative 
amputation of the parathyroid glands.

  Although identification of RET mutations in MEN2 
carriers has drastically improved clinical management of 
patients for preventive or early surgery, most MTC cases 
come to diagnosis when the disease is already metastatic 
and little can be done because of the resistance that MTC 
displays towards conventional chemotherapy and radio-
therapy  [32] . Therefore, identification of novel treatments 
for MTC patients appears to be mandatory. The past 10 

years have witnessed the advent of new classes of antineo-
plastic drugs whose mechanism of action is based on tar-
geting of tyrosine kinases causally involved in cancer 
 [33] . These drugs include monoclonal antibodies such as 
Herceptin (trastuzumab) or Erbitux (cetuximab) direct-
ed against HER2 and HER1 receptor tyrosine kinases 
and used in breast and colon cancer treatment, respec-
tively. 

  Another important class of targeted therapies is repre-
sented by small molecule tyrosine kinase inhibitors, 
which compete with ATP, thereby obstructing autophos-
phorylation and signal transduction downstream from 
the targeted kinase. Prominent examples are STI571 
[Gleevec (imatinib)] against BCR-ABL in chronic my-
eloid leukemia and against c-KIT and PDGFR in gastro-
intestinal stromal tumors  [33] , and ZD1839 [Iressa (gefi-
tinib)] against epithelial growth factor receptor (EGFR) 
in non-small cell lung carcinoma  [34] . RET is a critical 
target for medullary thyroid cancer treatment  [32] . Sev-
eral small molecules are known to exert RET inhibition. 
Virtually all of them are believed to block the kinase by 
competing with ATP. 

  Two pyrazolopyrimidines (PP1 and PP2) showed half-
maximal RET inhibitory concentrations in the n M  range 
( ̂  100 n M ) and were able to block RET’s oncogenic effects 
in cell cultures  [35, 36] . PP1 also induced RET protein 
destruction through proteosomal degradation  [37] . The 
2-indolinone RPI-1 was effective against RET, but only at 
high doses (IC 50  = 3.6  �  M  for cell proliferation) and ex-

a b c

  Fig. 1.  Schematic representation of the 
different mechanisms of wild-type RET 
and RET-derived oncoproteins activation. 
 a  Wild-type RET activation is mediated 
by ligand-induced dimerization.  b  RET/
MEN2A-FMTC activation is mediated 
by disulfide bond-mediated dimerization. 
 c  RET/PTC activation is mediated by 
coiled-coil-induced dimerization.   
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erted in vivo antitumor effects  [38] . Two indolocarbazole 
derivatives, CEP-701 and CEP-751, inhibited RET-MEN 
2A oncoproteins at n M  concentrations. Importantly, 
these compounds also inhibited tumor growth in MTC 
cell xenografts  [39] . Nevertheless, none of these com-
pounds has been evaluated in clinical studies due to their 
toxicity or limited bioavailability. 

  Another group of anti-RET compounds that had 
been tested in phase I clinical trials has been described. 
Such molecules comprise vandetanib, sorafenib, suni-
tinib, cabozantinib and lenvatinib  [40–43] . All these 
compounds have been evaluated in clinical trials for ef-
ficacy in MTC treatment. The anilinoquinazoline van-
detanib, also known as ZD6474, inhibits RET with an 
IC 50  of 100 n M  and has been the first anti-RET agent to 
be FDA approved for MTC treatment on the basis of the 
results exerted in clinical trials for MTC treatment  [44] . 
ZD6474 is also a potent inhibitor of KDR, the vascular 
endothelial growth factor receptor and EGFR. Inhibi-
tion of KDR potentiates the antineoplastic activity 
through an antiangiogenic effect, whereas EGFR inhibi-
tion might be important to impede the complementa-
tion of RET inhibition via EGFR hyperactivation  [40, 
45] . Mutations in codons 804 and 806 in the ATP-bind-
ing pocket have been shown to confer resistance to van-
detanib, which may be a concern for secondary resis-
tance to the drug  [46, 47] . In a phase III clinical trial, 
vandetanib was able to increase progression-free sur-
vival, inducing a partial response in around 20% of pa-
tients and a stabilization of disease in 50% of treated 
cases compared to control  [44] .

  RET in Papillary Thyroid Carcinoma: A New Role for 

Partner Genes 

 Papillary thyroid carcinoma (PTC) is the most fre-
quent thyroid cancer and consists in a well-differentiated 
carcinoma, originating from thyroid follicular cells and 
associated to exposure to ionizing radiation  [48, 49] . 
Consistently, typical molecular features of PTCs are 
chromosomal aberrations generated as a consequence of 
ionizing radiation-induced double-strand breaks and 
unfaithful repair. In particular, PTCs display chromo-
somal rearrangements of chr. 10q, causing the rupture of 
the RET gene and its fusion to heterologous genes due to 
unfaithful repair  [50] . The partner genes encode hetero-
geneous proteins all containing protein-protein interac-
tion domains such as coiled-coil motifs  [51] . RET/PTC1 
and RET/PTC3 represent over 90% of all RET/PTC rear-
rangements identified so far. In both cases, the chromo-
somal aberration consists in a paracentric inversion of the 
long arm of chromosome 10 where, together with RET 
the corresponding fusion partner of RET/PTC1, CCDC6 
(H4) and of RET/PTC3, NCOA4 (RFG, ELE1, ARA70) 
map  [50, 52] . RET/PTC3 is mainly associated with radia-
tion-induced carcinomas and is frequently found in more 
aggressive PTC variants such as the solid-follicular or the 
tall cell histotypes. The other 11 RET/PTC isoforms are 
very rare and have been found only in few cases of radia-
tion-induced PTCs ( table 1 ).

  RET/PTCs behave as oncogenes and are able to induce 
thyroid cell transformation in cell culture and in trans-
genic mice, strongly supporting their oncogenic function 

Table 1.  RET/PTC rearrangements

Fusion name RET partner Function Chromosome rearrangement

RET/PTC1 H4/D10S170 apoptotic factor inv10(q11.2;q21)
RET/PTC2 PKA RI� regulatory subunit of protein kinase A t(10;17)(q11.2;q23)
RET/PTC3 RFG/ELE1/NcoA4 coactivator of nuclear receptor inv10(q11.2;q10)
RET/PTC4 RFG/ELE1/NcoA4 coactivator of nuclear receptor inv10(q11.2;q10)
RET/PTC5 RFG5/Golgin 84 Golgi structure maintenance t(14;10)(q11.2;q32)
RET/PTC6 HTIF1 coactivator of nuclear receptor t(7;10)(q32–34;q11.2) 
RET/PTC7 RFG7/HTIF�/TRIMM33 coactivator of androgen receptor and SMAD4-E3 ligase t(1;10)(p13;q11.2)
RET/PTC8 KNT1/kinectin regulator of intracellular motility t(1;10)(q11.2;q22.1)
RET/PTC9 RFG9 unknown t(10;18)(q11.2;q21–22)
RET/ELKS ELKS NF-�B regulatory protein t(10;12)(q11.2;p13.3)
RET/PCM1 PCM1 centrosome assembly protein t(8;10)(p21–22;q11.2)
RET/RFP RFP/TRIMM27 PML interactor and RB modulator t(6;10)(p21;q11.2)
RET/HOOK3 HOOK3 microtubule-binding protein t(8;10)(p11.21;q11.2)
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and causal contribution to PTC development  [53–56] . 
The best described mechanism for RET/PTC oncogenic 
conversion resides in the ligand-independent activation 
of RET kinase as a consequence of its fusion to heterolo-
gous proteins, such as CCDC6 and NCOA4. The inde-
pendence from ligand binding is achieved through re-
moval of negatively regulating sequence from wild-type 
RET proteins such as the extracellular and juxtamem-
brane domains as well as its joining to protein homodi-
merization motives contained in the fusion partners, 
namely coiled-coil domains. Constitutive dimerization 
and transphosphorylation of RET mediates the continu-
ous activation of downstream signaling pathways. More-
over, as a consequence of gene fusion, the RET tyrosine 
kinase domain comes under the control of the new gene 
promoters. Differently from RET, which is normally ex-
pressed in a restricted subset of neuronal and neuroecto-
derm-derived cells, such partner gene promoters are 
ubiquitously active and drive RET expression in thyroid 
follicular cells  [16, 57]  ( fig. 1 ).

  RET oncogenic signaling sustains the acquisition of 
several hallmarks of cancer cells including cell autonomy 
and independence from growth factors (like thyroid 
stimulating hormone), resistance to proapoptotic stimuli 
and motility  [53, 55] . Such programs are principally 
switched on by the activation of the RAS/MAPK and 
PI3K/AKT signaling pathways through RET Y1062 auto-
phosphorylation  [55, 58] . Nevertheless, the low pene-
trance of the disease in transgenic animals, as well as the 
presence of such rearrangements in papillary microcar-
cinomas that do not progress to invasive cancer, suggests 
that additional oncogenic events should occur to generate 
a clinically relevant disease  [59] . In line with these obser-
vations, RET/PTC1 and RET/PTC3 oncogenes are unable 
to induce a fully transformed phenotype in normal rat 
thyroid cells in vitro  [53, 55] . Notably, the acute expres-
sion of RET/PTC1 and RET/PTC3 in thyroid cells in vitro 
has been shown to activate a proapoptotic response due 
to unscheduled activation of the RAS/MAPK pathway 
 [60, 61] . It is conceivable that RET/PTC rearrangements 
are not sufficient to induce a symptomatically evident 
cancer, unless cells activate antiapoptotic or antisenes-
cence programs, through further mutational events or 
epigenetic modifications.

  RET/PTC rearrangements are confined to the papil-
lary histotype of thyroid carcinoma and have never been 
described in other tumor types  [51] . The thyroid gland is 
exposed to ionizing radiation more than other tissues 
due to its ability to concentrate iodide radioactive iso-
topes. On the other hand, a large set of data have shown 

that nuclear chromatin architecture in thyroid cells 
bring in close proximity the CCDC6, NCOA4 and RET 
genetic loci, facilitating the assembly of RET/PTC1 
(CCDC6-RET) and RET/PTC3 (NCOA4-RET) fusions 
 [62–64] . Importantly, in other cancers, also displaying 
chromosomal rearrangements such as prostate carcino-
ma, the spatial organization of chromatin has been 
shown to be dictated by the action of transcriptional fac-
tors that somehow guide the relevant genes in the same 
nuclear neighborhood, promoting their fusion  [65] . Not 
all RET/PTC rearrangements seem to be linked to radia-
tion exposure, especially those displaying RET/PTC1 re-
arrangement  [48] . In these cases, the presence of the 
fragile sites FRA10C and FRA10G located on chromo-
some 10 next to CCDC6 and RET genes, respectively, 
might provide an alternative mechanism for the genera-
tion of RET/PTC fusion  [66] . Thus, under specific insults 
such as ethanol, caffeine and hypoxia, fragile sites are 
hotspots of spontaneous chromosome breakage and 
translocation  [67] . In addition, H 2 O 2 , a potent DNA 
damaging agent produced in large amounts by the thy-
roid gland during the process of thyroid hormone syn-
thesis, is able to induce RET/PTC1 rearrangement as 
well, suggesting that oxidative stress might be an addi-
tional mechanism through which RET/PTC1 rearrange-
ment might occur  [68] .

  Many types of cancers, such as hepatocarcinoma and 
gastric and colon cancers, are promoted by inflamma-
tion. Hashimoto’s thyroiditis, the most common organ-
specific autoimmune disease in humans, is often associ-
ated to papillary thyroid cancer  [69] . Several reports have 
shown that RET/PTC signaling via the RAS/MAPK cas-
cade in thyroid follicular cells endorses an inflammato-
ry-like response through the production of several cyto-
kines and chemokines that act in an autocrine as well as 
paracrine fashion, recruiting macrophages, lymphocytes 
and mast cells within the tumor mass and promoting cell 
survival, invasion and angiogenesis  [55, 58, 70, 71] . More 
studies need to be done to clarify whether the oncogene-
mediated proinflammatory response supports the devel-
opment of a chronic inflammation or whether the latter 
facilitates the process of neoplastic transformation.

  Several studies suggest that the genes most frequently 
rearranged to RET, CCDC6 and NCOA4 might display a 
tumor suppressor-like activity and their loss of function 
could be involved in tumorigenesis. CCDC6 (coiled-coil 
domain containing sequence 6, also known as H4/
D10S170) gene product is a ubiquitously expressed 65-
kDa nuclear and cytosolic protein that has been shown 
to display proapoptotic activity and to be involved in the 
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ATM-mediated cellular response to DNA damage  [72, 
73] . More recently, a direct role of CCDC6 in the repres-
sion of CREB1, a transcriptional factor essential for thy-
roid cell growth and differentiation, has been described 
 [74] . The CCDC6 gene has been found fused to the 
 PDGFR �  gene in atypical chronic myeloid leukemia and 
to PTEN tumor suppressor phosphatase in PTCs, indi-
cating its high susceptibility to gene fusion  [75, 76] . The 
NCOA4 (nuclear receptor coactivator 4 ,  also known as 
RFG/ELE1/ARA70) gene encodes a 70-kDa protein 
functioning as a coactivator of androgen receptor and 
PPAR �  (peroxisome-proliferator activated receptor- � ) 
 [77] . PPAR � -PAX8 gene fusion has been found in around 
30% of follicular thyroid carcinoma  [78] . Functional 
studies have demonstrated that the PAX8-PPAR �  chi-
meric protein functions as a dominant negative inhibitor 
of the parental wild-type PPAR �  protein which physio-
logically exerts antineoplastic signaling in thyroid fol-
licular cells. NCOA4 is a PPAR �  and might help this
tumor suppressor function  [78] . In addition, ectopic 
overexpression of NCOA4 in the prostate cancer cell line 
LNCAP reduces cell proliferation, and NCOA4 protein 
expression has been shown to be reduced in aggressive 
prostate and breast cancers with respect to normal tissue 
or well-differentiated carcinomas  [79–81] . Finally, the 
chromosomal region containing the NCOA4 gene has 
been identified as a prostate cancer risk locus  [82, 83] . A 
RET partner with a well-known tumor suppressor func-
tion is PRKARIA, encoding the regulatory subunit of 
protein kinase A, RI �  and fused to RET in RET/PTC2 
rearrangement. Germline inactivating mutations of 
PRKARIA gene have been found in patients affected by 

a rare autosomal dominant cancer-prone syndrome, 
Carney Complex, characterized by lentiginosis, atrial 
and cutaneous myxoma, pituitary adenoma, testicular 
tumors, ovarian cystis, schwannoma, and thyroid ade-
noma and carcinoma  [84, 85] . Somatic LOH at the gene 
locus on chr. 17q22–24 in Carney Complex patient tumor 
DNA confirms the tumor suppressor function of 
PRKARIA  [84] .

  In conclusion, all these data strongly support the con-
cept that RET partner genes’ inactivation in the context 
of RET/PTC rearrangements might be involved in thy-
roid carcinogenesis. In addition, since the rearrangement 
affects only one allele, it might be envisaged that chimeric 
RET/PTC oncoproteins might function as dominant neg-
ative mutants for their ability to interact and phosphory-
late the wild-type partner proteins, as shown for CCDC6 
and NCOA4 proteins  [72, 86] . In this light, the function 
of RET gene fusion partners, possibly representing new 
thyroid cancer genes, should be studied.
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