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Abstract
The development of fetal thyroid function is dependent on

the embryogenesis, differentiation, and maturation of the

thyroid gland. This is coupled with evolution of the

hypothalamic–pituitary–thyroid axis and thyroid hormone

metabolism, resulting in the regulation of thyroid hormone

action, production, and secretion. Throughout gestation

there is a steady supply of maternal thyroxine (T4) which has

been observed in embryonic circulation as early as 4 weeks

post-implantation. This is essential for normal early fetal

neurogenesis. Triiodothyronine concentrations remain very

low during gestation due to metabolism via placental and

fetal deiodinase type 3. T4 concentrations are highly

regulated to maintain low concentrations, essential for

protecting the fetus and reaching key neurological sites
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such as the cerebral cortex at specific developmental stages.

There are many known cell membrane thyroid hormone

transporters in fetal brain that play an essential role in

regulating thyroid hormone concentrations in key structures.

They also provide the route for intracellular thyroid

hormone interaction with associated thyroid hormone

receptors, which activate their action. There is a growing

body of experimental evidence from rats and humans to

suggest that even mild maternal hypothyroxinemia may lead

to abnormalities in fetal neurological development. Our

review will focus on the ontogeny of thyroid hormone in

fetal development, with a focus on cell membrane

transporters and TR action in the brain.
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Introduction

While the impaired mental and physical development of

inhabitants of the iodine-deficient Alps was recognized as

cretinism hundreds of years ago, the link between iodine

deficiency, hypothyroidism, and impaired neurologic

development was made very much later (Cranefield 1962,

Morreale de Escobar et al. 2004). Thyroid hormones

(thyroxine (T4) and triiodothyronine (T3)) are essential for

the development and maintenance of normal physiological

processes, especially those of the central nervous system,

where thyroid hormones assist in brain maturation through-

out gestation (Joffe & Sokolov 1994, Neale et al. 2007).

Thyroid hormones primarily regulate genes involved in

myelination and neuronal\glial cell differentiation (Bernal

2005). Delivery of thyroid hormones to the fetal brain is a

complex process requiring, at different times, expression of

brain thyroid hormone receptors (TRs), materno-fetal

thyroid hormone and iodide transport, an intricate system

of endocrine feedback (the hypothalamic–pituitary–thyroid
(HPT) axis and thyroid hormone metabolism by liver and

brain deiodinase enzymes (deiodinase type 2 (D2) and

deiodinase type 3 (D3)) to ensure basal levels are sustained

(Zoeller et al. 2007)).

The fetal thyroid gland reaches maturity by week 11–12,

close to the end of the first trimester and begins to secrete

thyroid hormones by about week 16 (Obregon et al. 2007).

During this period, an adequate supply of maternal thyroid

hormones must be sustained to ensure normal neurological

development. Hypothyroid fetuses suffer various postnatal

disorders including mental retardation, deafness, and spasti-

city. Severe iodine deficiency, which causes both maternal and

fetal hypothyroidism, is, worldwide, the most common cause

of mental retardation (Glinoer 2001, Morreale de Escobar

et al. 2004, Pearce 2009). If thyroid hormone replacement

for congenital hypothyroid babies is not initiated soon after

birth, further impairment of cognitive development occurs.

More recent evidence suggests that even mild reductions in

maternal thyroid hormone levels in early pregnancy are

associated with reduced IQ in offspring (LaFranchi & Austin
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2007, Gyamfi et al. 2009). The molecular mechanisms by

which thyroid hormones affect fetal neurological structures

are still not well understood. This review will briefly discuss

some current aspects of the role of thyroid hormones in fetal

neurological development, focusing on TH transporters and

receptor activation in the brain.
Ontogenesis of thyroid hormone action in fetal
development

There is growing evidence that thyroid hormones act on

embryological and fetal tissues early in development. Thyroid

hormone and associated receptors are already found in human

fetal tissues prior to the production and secretion of fetal

thyroid hormones at 16–18 weeks of gestation, as evidenced

by detection of T4 and T3 in the human cerebral cortex by

week 12 gestation (Calvo et al. 2002, Kester et al. 2004). This

is confirmation that active transport of maternal thyroid

hormone across the placenta is occurring during this crucial

period of gestation and highlights the need for maternal

thyroid hormones to be at optimal levels at that time (Fig. 1;

Bernal 2007). Following onset of active T4 secretion by the

fetus, levels of T4 in fetal tissues parallel those in fetal plasma.

T4 levels are, however, low, reflecting active type 3

deiodination in the fetus (Ruiz de Ona et al. 1988, Obregon

et al. 2007). D3 converts T4 to the biologically inactive reverse

T3. In contrast to tissue T4 levels, T3 concentrations vary in

different tissues, for example levels are low in fetal liver and

plasma and high in brain and brown adipose tissue (Obregon

et al. 2007). These differences have been attributed to

variations in the activity of the D2, which converts T4 to

biologically active T3. This suggests an important role for T3

in brain developmental and maturation processes. D3 is also

active in placenta, ensuring the fetus is not exposed to

excessive amounts of maternal T4 (Galton 2005).

Much of the information known about thyroid hormones

and brain development has been derived from rodent

experiments. As in humans, normal neurological develop-

ment depends on thyroid hormone. TRs and deiodinase

enzymes are expressed in the early brain before the thyroid

gland develops (Obregon et al. 2007). The critical time period

for thyroid hormone action in rat brain is estimated to extend

from around embryonic day 18 (E18) to postnatal day 21–25

(P21–25; Porterfield & Hendrich 1993). Abnormalities in

brain development in hypothyroid rats are mostly seen in the

postnatal period and are demonstrated by reduced maturation

of key structures such as the cerebellum, where delayed

granular cell migration and Purkinje cell maturation are

prevented (Koibuchi et al. 2003). Although this may suggest

that rat brain is more affected by thyroid hormone action after

birth, it should be recognized that TRs are seen very early in

rat development (discussed below). Rat studies also indicate

that the developing brain is dependent on a supply of T4,

which is locally deiodinated to T3, and that replacement with

T3 does not adequately replenish brain T3 levels (Calvo et al. 1990).
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This emphasizes the need for maternal T4 levels to be

maintained to ensure normal fetal brain development. This

also explains why even minimally reduced maternal T4 levels

in early pregnancy can result in adverse outcomes to the

offspring (Lavado-Autric et al. 2003, Auso et al. 2004).
Deiodination of thyroid hormones

As mentioned above, locally generated T3 in the brain from

maternally transported T4 has been reported to be essential for

normal early brain development (Zoeller 2010). Almost

80% of brain T3 is produced locally by D2 (Crantz et al. 1982).

D2 is found almost exclusively in astrocytes, whereas TRs

are highly expressed in oligodendrocytes and neurons

(Guadano-Ferraz et al. 1997). In the fetal rat, D2 expression

is first seen at E16.5 and increases steadily until P15. In human

brain, D2 expression is first detectable in the cerebral cortex

in the first trimester of pregnancy at the same time that T3 can

be measured there (Chan et al. 2002). D2 is largely responsible

for maintaining appropriate concentrations of T3 during fetal

brain development (Guadano-Ferraz et al. 1999). D2 knock-

out (KO) mice also demonstrate impaired cochlea and visual

development, poor thermal regulation, reduced anxiety, and

crucially pituitary resistance to T4, further highlighting the

importance of D2 in developmental processes (Obregon et al.

1991). In cases of hypothyroidism, D2 expression and activity

are up-regulated, enhancing T3 supply, whereas in hyperthy-

roidism, the opposite is true (Burmeister et al. 1997).

Interestingly, however, a more recent study in D2KO mice

demonstrated that locomotor activity and learning and

memory skills were normal despite low local T3 generation

(Galton et al. 2007).

Raised brain levels of thyroid hormone in the fetus can also

cause neurological damage. D3 plays an important role in fetal

neurological development by ensuring that safe levels of

thyroid hormones are maintained (Gereben et al. 2008). D3 is

highly expressed in neurons and in contrast to D2 is positively

regulated by thyroid hormone. D3KO mice demonstrate

significant increases in perinatal mortality and an abnormal

HPTaxis (Hernandez et al. 2006, 2007). Furthermore, D3KO

mice are born hypothyroid with impaired growth and fertility

(Galton 2005). They exhibit excessive T3-responsive gene

activation during development and reduced activation later in

life (Horn & Heuer 2010).
Thyroid hormone transporters in the brain

Over the last decade, the notion of thyroid hormone uptake

into cells by passive diffusion has been dismissed following the

discovery of a number of thyroid hormone cell membrane

transporters. Thyroid hormones are amino acid derivatives,

and several classes of transmembrane transporter proteins can

transport thyroid hormones, including organic anion

transporters 2 and 3 (Oatp2 and Oatp3), L-type amino acid
www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 08/25/2022 07:25:02PM
via free access



A

B

C

Maternal thyroid hormone

Increasing D2 and T3 
in cerebral cortex

T3 
binding to brain nuclear receptors

Nuclear receptors in brain, liver, lung, kidney, etc.

Thyroid hormone secretionThyroid gland

Neurological cretinism Myxedermatous cretinism

Maternal hypothyroxinemia Prematurity Congenital hypothyrodism

Striatum

Neocortex

Cerebellum, dentate gyrus granular cells

Cochlea

Myelination

Glial cell proliferation

Synapse formation

Axon and dendrite sprouting

Neuronal migration

Neuronal proliferation

Weeks Years

Birth

0 5 10 15 20 25 30 35 40 1 2 3 4

Figure 1 (A) The ontogeny of fetal thyroid function and expression of thyroid hormone receptors and deiodinase enzymes during gestation
and early years postnatal are demonstrated. (B) Critical time points during gestation that require thyroid hormone action for fetal
neurological development. Neurological abnormalities can be seen if maternal or fetal hypothyroidism is present during gestation. (C) Rodent
studies, where time-specific actions of thyroid hormones on precise neurological and auditory structures were observed. Adapted image from
Bernal (2007).
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transporters (Lat1 and Lat2), and monocarboxylate transpor-

ters 8 and 10 (MCT8 and MCT10) (Abe et al. 1998, Friesema

et al. 2001, 2003, 2008). For thyroid hormone to gain access

to the brain during maturation, it must pass through many

different cell types which express the various cell membrane

transporters. For rodents, the preferred route of TH entry is

through the cerebral circulation and its blood–brain barrier,

with some thyroid hormone entering the cerebrospinal

fluid (CSF) via the choroid plexus (Dratman et al. 1991,
www.endocrinology-journals.org
Horn & Heuer 2010). The T4-binding protein, transthyretin,

produced in significant amounts by the choroid plexus, has

been implicated in this transport, and transthyretin may be

involved in delivery of CSF thyroid hormone to the brain

(Patel et al. 2010). T4 transported to the brain via blood

circulation passes through endothelial cells and is taken up by

astrocytes, probably through the Oatp1c1 cell membrane

transporter (Fig. 2; Hernandez et al. 2007). Within the

astrocyte, T4 is deionated via D2 to produce T3, which then
Journal of Endocrinology (2011) 209, 1–8
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Figure 2 T4 is transported to the brain thyroid hormone-binding proteins such as transthyretin (TTR), where T4 then
passes out through endothelial cells lining the blood vessels. T4 is rapidly transported through the cell membrane
transporter, Oatp1c1, located on the surface of astrocytes. T4 is then metabolized intracellularly by D2 to T3, where it
can then be transported out from astrocytes by an as yet unidentified cell membrane transporter. Within the brain
parenchyma, T3 is then promptly uptaked by neurons and oligodendrocytes via the MCT8 cell membrane transporter.
Within the cell, T3 can either translocate and bind to thyroid hormone receptors (TRs), resulting in thyroid hormone
action, or be metabolized via D3 to biologically inactive T2.
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exits the cell possibly via MCT8 (yet to be elucidated) and is

taken up via MCT8 by oligodendrocytes and neurons (Fig. 2;

Heuer et al. 2005).

In humans, the lack of MCT8 leads to greater neurological

damage than in rodents, suggesting that other but as yet

undefined transporters are present in rodents. Lat2 has been

proposed as a candidate, which although expressed in

developing rat brain is not present in human developing

neurons (Wirth et al. 2009). In humans, the absence of the

MCT8 transporter (the Allan–Herndon–Dudley syndrome)

results in X-linked moderate to severe mental retardation and

muscle hypotonia and hypoplasia (Dumitrescu et al. 2004,

Friesema et al. 2004, Schwartz et al. 2005). Raised serum T3

concentrations and low T4 levels are present, but TSH levels

are normal suggesting a role for MCT8 in pituitary thyroid

hormone uptake (Friesema et al. 2006). Patients also display

altered and delayed maturation of myelination (Namba et al.

2008). More than two dozen MCT8 gene mutations have

been reported linked to the X-chromosome (Friesema et al.

2010). Almost all are missense mutations resulting in reduced
Journal of Endocrinology (2011) 209, 1–8
MCT8 expression, cell surface translocation, and specific

substrate transport deficits, consequently producing a

complete loss-of-function phenotype in patients (Kinne

et al. 2009). MCT8 may transport other molecules essential

for brain maturation and which could explain the difference

between human and rodent brain maturation in the presence

of MCT8 transporter mutations.
TR genes and activity

There are two TR genes (THRA and THRB), which encode

for the four isotypes of TR (TRa1, TRb1, TRb2, and

TRb3) (Bernal 2007). The four isotypes all bind to T3 and

DNA and drive intracellular thyroid hormone action. Several

isoforms of the TR from alternate RNA splicing are also seen.

Two of these are the TRa2 (c-erbAa2) and truncated TRb3

(DTRb3), which are known as nonreceptor proteins (Bassett

et al. 2003). TRa2 has a conserved DNA-binding region but

is unable to bind T3. Conversely, DTRb3 is able to bind T3
www.endocrinology-journals.org
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but not to DNA. The physiological role of these nonreceptor

proteins is still unknown (Forrest & Vennstrom 2000, O’Shea

& Williams 2002, Bernal 2007).

TRs mediate their actions following homodimerization

or heterodimerization with retinoic acid receptors (RXR),

which then bind to specific sequences known as thyroid

response elements (TREs) in the regulatory regions of target

genes (Wagner et al. 1995, Feng et al. 1998). A multitude of

transcription factors are involved. Without the presence of

T3, the unliganded receptor (aporeceptor) recruits corepres-

sors, such as nuclear receptor corepressors (NCoR) or

silencing mediator for retinoic and thyroid receptor

(SMRT) and histone deacetylases, which retain the chromatin

in a compact repressed position (Bernal 2007). However, in

the presence of T3, the binding of the hormone to TR

initiates transcription by the release of corepressors

and recruiting coactivators (steroid receptor coactivators 1,

SRC-1), histone acetylases (CREB-binding protein, CBP;

p300; and mammalian homolog of the yeast transcriptional

activator GCN5, pCAF), and other mediators, all of which

assist in the access of transcription apparatus to the promoter

regions (Fig. 3; Bernal 2007, Cheng et al. 2010).

Both TR genes, THRA and THRB, are found within the

brain. In adult rat brain, more than 70–80% of all TRs

present are in the TRa1 isoform. The receptor proteins are

predominantly found in the cerebrum and cerebellum

(Ercan-Fang et al. 1996). It has been postulated that the

TRa1 isoform also plays an important role during fetal brain

development, both in humans and in rodents. This is

evidenced by detection in fetal rat brain of mRNA E11.5

in the neural tube and E12.5 in the diencephalon and ventral
TRRXR
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Transcriptional
machinery

A  Repression

TRE

Coactivators
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Transcriptional
machinery

T3

T3
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Figure 3 Schematic representation of thyroid hormone receptor
(TR) action. (A) Without the presence of the T3 ligand, corepressors
(CoR) (nuclear receptor corepressors (NCoR) or silencing mediator
for retinoic and thyroid receptor (SMRT)) and histone deacetylases
are recruited by TR to prevent transcription and translation of target
genes is demonstrated. (B) A bound TR with T3 results in the
recruitment of coactivators (CoA) (steroid receptor coactivators 1,
SRC-1) and histone acetylases (CREB-binding protein, CBP; p300;
and mammalian homolog of the yeast transcriptional activator
GCN5, pCAF) as well as the release of CoR, resulting in changes in
expression of target genes is demonstrated.
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rhombencephalon (Bradley et al. 1992). It is believed that the

TRs found in these regions mediate the biological effects of T3

that has been locally generated from transported maternal T4,

early in gestation. Conversely, TRb isoforms are expressed

more postnatally within specific neuronal populations such as

hippocampal pyramidal and granule cells, paraventricular

hypothalamic neurons, and cerebellar Purkinje cells (Bradley

et al. 1989, Horn & Heuer 2010). Studies in TRb KO mice

have shown that these isoforms are predominant in mediating

thyroid hormone effects on the development of the vision and

auditory systems (Jones et al. 2003).

There is a growing body of evidence suggesting that

deficiencies in TR may not lead to abnormal brain

development as seen in hypothyroidism, which suggests that

the lack of the ligand (T3) is more detrimental than being TR

deficient (Bernal 2007). This has been demonstrated by Bernal

et al. in TRa1 KO mice, which have normal cerebellar

development, even though the mice were hypothyroid

(Morte et al. 2002). Another interesting study has demon-

strated that TRa1 deletion did not affect cerebellar granule cell

migration during development, which is now known to take

place in the absence of both receptor and T3 (Yacubova &

Komuro 2002). It has been postulated by Bernal et al. that this

result could well demonstrate that in vivo thyroid hormones are

permissive when the TR are present, releasing any blocking

function that TR may be regulating (Bernal 2007). In contrast,

the absence of ligand could lead to aberrant receptor signaling,

which has been demonstrated with hypothyroid wild-type

animals with cell migration defects. This phenomenon has also

been demonstrated using pheochromocytoma PC12 cells.

When exposed to nerve growth factors, these cells differentiate

into neurons. Specifically, T3 has no effect on this process;

however, exogenous unliganded TRa1 will block this process

unless T3 is added to the culture medium (Munoz et al. 1993).

This has led to the hypothesis that the aporeceptor has

some transcriptional activity that may play an as yet unreco-

gnized role in developmental processes. This also poses the

possibility of the aporeceptor possibly repressing specific

gene expression until T3 becomes available to the cells in a

time-specific manner.

Further analysis into the role of TR and brain development

has been studied using mouse mutants expressing dominant

negative TR, where DNA binding is conserved with reduced

or absent T3-binding capacity. In two different models of

TRb mutant mice, impaired cerebellar Purkinje cell

development and maturation and motor deficits were

observed, with cerebellar morphology similar to that seen

in hypothyroidism (Forrest & Vennstrom 2000). This also

confirms the dominant role of TRb isoforms within the

Purkinje cells of the brain. In TRa mutant models where

T3-binding affinity was reduced by almost tenfold, mice

showed significant growth retardation and cardiac abnorm-

alities, with the heterozygous strain also demonstrating similar

cerebellar abnormalities seen in hypothyroidism (Tinnikov

et al. 2002). These mice also displayed striking anxiety-related

behavior as evidenced by time spent motionless and reduced
Journal of Endocrinology (2011) 209, 1–8
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exploratory behavior compared to the wild-type controls

(Tinnikov et al. 2002). This evidence further strengthens the

hypothesis that TR play roles in fetal brain development and

maturation, especially within the hippocampus, and in

maintaining adult brain function (Bernal 2007). Further

insights into phenotypic differences between these mutant

mice strains are of particular interest, with additional work now

being conducted in generating cell-specific TR mutant

models (Quignodon et al. 2007, Flamant & Quignodon 2010).

TRs have also been observed within the cytosol, where

they interact with p85, a regulatory subunit of phosphatidyl-

inositol 3-kinase (Moeller et al. 2006). This affects the AKT

pathway, resulting in induction of nitric oxide synthesis in

endothelial cells in response to middle cerebral artery

occlusion (Hiroi et al. 2006). This highlights the need for

further investigation into the complex roles that TR play in

physiological and pathological processes.
Conclusion

Our understanding of the complex processes involved in

ensuring normal fetal development is increasing. Knowledge

of the key relationships between thyroid hormone and brain

development has progressed significantly over the past decade.

However, many issues regarding TR and thyroid hormone

cell membrane transporters have yet to be clarified.

Differences between rodent and human development are

significant and need to be further explored to ensure that the

relationships between thyroid hormone and human brain

development are better understood.
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